2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
22 /****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
46 #include <asm/apicdef.h>
47 #include <asm/system.h>
52 * Put the error code here just in case the user cares:
54 static int gdb_x86errcode;
57 * Likewise, the vector number here (since GDB only gets the signal
58 * number through the usual means, and that's not very specific):
60 static int gdb_x86vector = -1;
63 * pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
64 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
65 * @regs: The &struct pt_regs of the current process.
67 * Convert the pt_regs in @regs into the format for registers that
68 * GDB expects, stored in @gdb_regs.
70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
72 gdb_regs[GDB_AX] = regs->ax;
73 gdb_regs[GDB_BX] = regs->bx;
74 gdb_regs[GDB_CX] = regs->cx;
75 gdb_regs[GDB_DX] = regs->dx;
76 gdb_regs[GDB_SI] = regs->si;
77 gdb_regs[GDB_DI] = regs->di;
78 gdb_regs[GDB_BP] = regs->bp;
79 gdb_regs[GDB_PS] = regs->flags;
80 gdb_regs[GDB_PC] = regs->ip;
82 gdb_regs[GDB_DS] = regs->ds;
83 gdb_regs[GDB_ES] = regs->es;
84 gdb_regs[GDB_CS] = regs->cs;
85 gdb_regs[GDB_SS] = __KERNEL_DS;
86 gdb_regs[GDB_FS] = 0xFFFF;
87 gdb_regs[GDB_GS] = 0xFFFF;
89 gdb_regs[GDB_R8] = regs->r8;
90 gdb_regs[GDB_R9] = regs->r9;
91 gdb_regs[GDB_R10] = regs->r10;
92 gdb_regs[GDB_R11] = regs->r11;
93 gdb_regs[GDB_R12] = regs->r12;
94 gdb_regs[GDB_R13] = regs->r13;
95 gdb_regs[GDB_R14] = regs->r14;
96 gdb_regs[GDB_R15] = regs->r15;
98 gdb_regs[GDB_SP] = regs->sp;
102 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
103 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
104 * @p: The &struct task_struct of the desired process.
106 * Convert the register values of the sleeping process in @p to
107 * the format that GDB expects.
108 * This function is called when kgdb does not have access to the
109 * &struct pt_regs and therefore it should fill the gdb registers
110 * @gdb_regs with what has been saved in &struct thread_struct
111 * thread field during switch_to.
113 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
115 gdb_regs[GDB_AX] = 0;
116 gdb_regs[GDB_BX] = 0;
117 gdb_regs[GDB_CX] = 0;
118 gdb_regs[GDB_DX] = 0;
119 gdb_regs[GDB_SI] = 0;
120 gdb_regs[GDB_DI] = 0;
121 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
123 gdb_regs[GDB_DS] = __KERNEL_DS;
124 gdb_regs[GDB_ES] = __KERNEL_DS;
125 gdb_regs[GDB_PS] = 0;
126 gdb_regs[GDB_CS] = __KERNEL_CS;
127 gdb_regs[GDB_PC] = p->thread.ip;
128 gdb_regs[GDB_SS] = __KERNEL_DS;
129 gdb_regs[GDB_FS] = 0xFFFF;
130 gdb_regs[GDB_GS] = 0xFFFF;
132 gdb_regs[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
133 gdb_regs[GDB_PC] = 0;
134 gdb_regs[GDB_R8] = 0;
135 gdb_regs[GDB_R9] = 0;
136 gdb_regs[GDB_R10] = 0;
137 gdb_regs[GDB_R11] = 0;
138 gdb_regs[GDB_R12] = 0;
139 gdb_regs[GDB_R13] = 0;
140 gdb_regs[GDB_R14] = 0;
141 gdb_regs[GDB_R15] = 0;
143 gdb_regs[GDB_SP] = p->thread.sp;
147 * gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
148 * @gdb_regs: A pointer to hold the registers we've received from GDB.
149 * @regs: A pointer to a &struct pt_regs to hold these values in.
151 * Convert the GDB regs in @gdb_regs into the pt_regs, and store them
154 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
156 regs->ax = gdb_regs[GDB_AX];
157 regs->bx = gdb_regs[GDB_BX];
158 regs->cx = gdb_regs[GDB_CX];
159 regs->dx = gdb_regs[GDB_DX];
160 regs->si = gdb_regs[GDB_SI];
161 regs->di = gdb_regs[GDB_DI];
162 regs->bp = gdb_regs[GDB_BP];
163 regs->flags = gdb_regs[GDB_PS];
164 regs->ip = gdb_regs[GDB_PC];
166 regs->ds = gdb_regs[GDB_DS];
167 regs->es = gdb_regs[GDB_ES];
168 regs->cs = gdb_regs[GDB_CS];
170 regs->r8 = gdb_regs[GDB_R8];
171 regs->r9 = gdb_regs[GDB_R9];
172 regs->r10 = gdb_regs[GDB_R10];
173 regs->r11 = gdb_regs[GDB_R11];
174 regs->r12 = gdb_regs[GDB_R12];
175 regs->r13 = gdb_regs[GDB_R13];
176 regs->r14 = gdb_regs[GDB_R14];
177 regs->r15 = gdb_regs[GDB_R15];
181 static struct hw_breakpoint {
188 static void kgdb_correct_hw_break(void)
195 get_debugreg(dr7, 7);
196 for (breakno = 0; breakno < 4; breakno++) {
197 breakbit = 2 << (breakno << 1);
198 if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
201 dr7 &= ~(0xf0000 << (breakno << 2));
202 dr7 |= ((breakinfo[breakno].len << 2) |
203 breakinfo[breakno].type) <<
204 ((breakno << 2) + 16);
205 if (breakno >= 0 && breakno <= 3)
206 set_debugreg(breakinfo[breakno].addr, breakno);
209 if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
212 dr7 &= ~(0xf0000 << (breakno << 2));
217 set_debugreg(dr7, 7);
221 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
225 for (i = 0; i < 4; i++)
226 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
231 breakinfo[i].enabled = 0;
236 static void kgdb_remove_all_hw_break(void)
240 for (i = 0; i < 4; i++)
241 memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
245 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
250 for (i = 0; i < 4; i++)
251 if (!breakinfo[i].enabled)
257 case BP_HARDWARE_BREAKPOINT:
261 case BP_WRITE_WATCHPOINT:
264 case BP_ACCESS_WATCHPOINT:
271 if (len == 1 || len == 2 || len == 4)
272 breakinfo[i].len = len - 1;
276 breakinfo[i].enabled = 1;
277 breakinfo[i].addr = addr;
278 breakinfo[i].type = type;
284 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
285 * @regs: Current &struct pt_regs.
287 * This function will be called if the particular architecture must
288 * disable hardware debugging while it is processing gdb packets or
289 * handling exception.
291 void kgdb_disable_hw_debug(struct pt_regs *regs)
293 /* Disable hardware debugging while we are in kgdb: */
294 set_debugreg(0UL, 7);
298 * kgdb_post_primary_code - Save error vector/code numbers.
299 * @regs: Original pt_regs.
300 * @e_vector: Original error vector.
301 * @err_code: Original error code.
303 * This is needed on architectures which support SMP and KGDB.
304 * This function is called after all the slave cpus have been put
305 * to a know spin state and the primary CPU has control over KGDB.
307 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
309 /* primary processor is completely in the debugger */
310 gdb_x86vector = e_vector;
311 gdb_x86errcode = err_code;
316 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
317 * @flags: Current IRQ state
319 * On SMP systems, we need to get the attention of the other CPUs
320 * and get them be in a known state. This should do what is needed
321 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
322 * the NMI approach is not used for rounding up all the CPUs. For example,
323 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
324 * this case, we have to make sure that interrupts are enabled before
325 * calling smp_call_function(). The argument to this function is
326 * the flags that will be used when restoring the interrupts. There is
327 * local_irq_save() call before kgdb_roundup_cpus().
329 * On non-SMP systems, this is not called.
331 void kgdb_roundup_cpus(unsigned long flags)
333 send_IPI_allbutself(APIC_DM_NMI);
338 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
339 * @vector: The error vector of the exception that happened.
340 * @signo: The signal number of the exception that happened.
341 * @err_code: The error code of the exception that happened.
342 * @remcom_in_buffer: The buffer of the packet we have read.
343 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
344 * @regs: The &struct pt_regs of the current process.
346 * This function MUST handle the 'c' and 's' command packets,
347 * as well packets to set / remove a hardware breakpoint, if used.
348 * If there are additional packets which the hardware needs to handle,
349 * they are handled here. The code should return -1 if it wants to
350 * process more packets, and a %0 or %1 if it wants to exit from the
353 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
354 char *remcomInBuffer, char *remcomOutBuffer,
355 struct pt_regs *linux_regs)
362 switch (remcomInBuffer[0]) {
365 /* try to read optional parameter, pc unchanged if no parm */
366 ptr = &remcomInBuffer[1];
367 if (kgdb_hex2long(&ptr, &addr))
368 linux_regs->ip = addr;
371 newPC = linux_regs->ip;
373 /* clear the trace bit */
374 linux_regs->flags &= ~X86_EFLAGS_TF;
375 atomic_set(&kgdb_cpu_doing_single_step, -1);
377 /* set the trace bit if we're stepping */
378 if (remcomInBuffer[0] == 's') {
379 linux_regs->flags |= X86_EFLAGS_TF;
380 kgdb_single_step = 1;
381 if (kgdb_contthread) {
382 atomic_set(&kgdb_cpu_doing_single_step,
383 raw_smp_processor_id());
387 get_debugreg(dr6, 6);
388 if (!(dr6 & 0x4000)) {
391 for (breakno = 0; breakno < 4; breakno++) {
392 if (dr6 & (1 << breakno) &&
393 breakinfo[breakno].type == 0) {
394 /* Set restore flag: */
395 linux_regs->flags |= X86_EFLAGS_RF;
400 set_debugreg(0UL, 6);
401 kgdb_correct_hw_break();
406 /* this means that we do not want to exit from the handler: */
411 single_step_cont(struct pt_regs *regs, struct die_args *args)
414 * Single step exception from kernel space to user space so
415 * eat the exception and continue the process:
417 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
419 kgdb_arch_handle_exception(args->trapnr, args->signr,
420 args->err, "c", "", regs);
425 static int was_in_debug_nmi[NR_CPUS];
427 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
429 struct pt_regs *regs = args->regs;
433 if (atomic_read(&kgdb_active) != -1) {
434 /* KGDB CPU roundup */
435 kgdb_nmicallback(raw_smp_processor_id(), regs);
436 was_in_debug_nmi[raw_smp_processor_id()] = 1;
437 touch_nmi_watchdog();
443 if (atomic_read(&kgdb_active) != -1) {
444 /* KGDB CPU roundup */
445 kgdb_nmicallback(raw_smp_processor_id(), regs);
446 was_in_debug_nmi[raw_smp_processor_id()] = 1;
447 touch_nmi_watchdog();
452 if (was_in_debug_nmi[raw_smp_processor_id()]) {
453 was_in_debug_nmi[raw_smp_processor_id()] = 0;
458 case DIE_NMIWATCHDOG:
459 if (atomic_read(&kgdb_active) != -1) {
460 /* KGDB CPU roundup: */
461 kgdb_nmicallback(raw_smp_processor_id(), regs);
464 /* Enter debugger: */
468 if (atomic_read(&kgdb_cpu_doing_single_step) ==
469 raw_smp_processor_id() &&
471 return single_step_cont(regs, args);
478 if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
481 /* Must touch watchdog before return to normal operation */
482 touch_nmi_watchdog();
487 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
492 local_irq_save(flags);
493 ret = __kgdb_notify(ptr, cmd);
494 local_irq_restore(flags);
499 static struct notifier_block kgdb_notifier = {
500 .notifier_call = kgdb_notify,
503 * Lowest-prio notifier priority, we want to be notified last:
505 .priority = -INT_MAX,
509 * kgdb_arch_init - Perform any architecture specific initalization.
511 * This function will handle the initalization of any architecture
512 * specific callbacks.
514 int kgdb_arch_init(void)
516 return register_die_notifier(&kgdb_notifier);
520 * kgdb_arch_exit - Perform any architecture specific uninitalization.
522 * This function will handle the uninitalization of any architecture
523 * specific callbacks, for dynamic registration and unregistration.
525 void kgdb_arch_exit(void)
527 unregister_die_notifier(&kgdb_notifier);
532 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
533 * @exception: Exception vector number
534 * @regs: Current &struct pt_regs.
536 * On some architectures we need to skip a breakpoint exception when
537 * it occurs after a breakpoint has been removed.
539 * Skip an int3 exception when it occurs after a breakpoint has been
540 * removed. Backtrack eip by 1 since the int3 would have caused it to
543 int kgdb_skipexception(int exception, struct pt_regs *regs)
545 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
552 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
555 return instruction_pointer(regs) - 1;
556 return instruction_pointer(regs);
559 struct kgdb_arch arch_kgdb_ops = {
560 /* Breakpoint instruction: */
561 .gdb_bpt_instr = { 0xcc },
562 .flags = KGDB_HW_BREAKPOINT,
563 .set_hw_breakpoint = kgdb_set_hw_break,
564 .remove_hw_breakpoint = kgdb_remove_hw_break,
565 .remove_all_hw_break = kgdb_remove_all_hw_break,
566 .correct_hw_break = kgdb_correct_hw_break,