2 * spidev.c -- simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/smp_lock.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spidev.h>
38 #include <asm/uaccess.h>
42 * This supports acccess to SPI devices using normal userspace I/O calls.
43 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
44 * and often mask message boundaries, full SPI support requires full duplex
45 * transfers. There are several kinds of of internal message boundaries to
46 * handle chipselect management and other protocol options.
48 * SPI has a character major number assigned. We allocate minor numbers
49 * dynamically using a bitmask. You must use hotplug tools, such as udev
50 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
51 * nodes, since there is no fixed association of minor numbers with any
52 * particular SPI bus or device.
54 #define SPIDEV_MAJOR 153 /* assigned */
55 #define N_SPI_MINORS 32 /* ... up to 256 */
57 static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG];
60 /* Bit masks for spi_device.mode management. Note that incorrect
61 * settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other
62 * devices on a shared bus: CS_HIGH, because this device will be
63 * active when it shouldn't be; 3WIRE, because when active it won't
64 * behave as it should.
66 * REVISIT should changing those two modes be privileged?
68 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
69 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP)
74 struct spi_device *spi;
75 struct list_head device_entry;
77 /* buffer is NULL unless this device is open (users > 0) */
78 struct mutex buf_lock;
83 static LIST_HEAD(device_list);
84 static DEFINE_MUTEX(device_list_lock);
86 static unsigned bufsiz = 4096;
87 module_param(bufsiz, uint, S_IRUGO);
88 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
90 /*-------------------------------------------------------------------------*/
93 * We can't use the standard synchronous wrappers for file I/O; we
94 * need to protect against async removal of the underlying spi_device.
96 static void spidev_complete(void *arg)
102 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
104 DECLARE_COMPLETION_ONSTACK(done);
107 message->complete = spidev_complete;
108 message->context = &done;
110 spin_lock_irq(&spidev->spi_lock);
111 if (spidev->spi == NULL)
114 status = spi_async(spidev->spi, message);
115 spin_unlock_irq(&spidev->spi_lock);
118 wait_for_completion(&done);
119 status = message->status;
121 status = message->actual_length;
126 static inline ssize_t
127 spidev_sync_write(struct spidev_data *spidev, size_t len)
129 struct spi_transfer t = {
130 .tx_buf = spidev->buffer,
133 struct spi_message m;
135 spi_message_init(&m);
136 spi_message_add_tail(&t, &m);
137 return spidev_sync(spidev, &m);
140 static inline ssize_t
141 spidev_sync_read(struct spidev_data *spidev, size_t len)
143 struct spi_transfer t = {
144 .rx_buf = spidev->buffer,
147 struct spi_message m;
149 spi_message_init(&m);
150 spi_message_add_tail(&t, &m);
151 return spidev_sync(spidev, &m);
154 /*-------------------------------------------------------------------------*/
156 /* Read-only message with current device setup */
158 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
160 struct spidev_data *spidev;
163 /* chipselect only toggles at start or end of operation */
167 spidev = filp->private_data;
169 mutex_lock(&spidev->buf_lock);
170 status = spidev_sync_read(spidev, count);
172 unsigned long missing;
174 missing = copy_to_user(buf, spidev->buffer, status);
175 if (missing == status)
178 status = status - missing;
180 mutex_unlock(&spidev->buf_lock);
185 /* Write-only message with current device setup */
187 spidev_write(struct file *filp, const char __user *buf,
188 size_t count, loff_t *f_pos)
190 struct spidev_data *spidev;
192 unsigned long missing;
194 /* chipselect only toggles at start or end of operation */
198 spidev = filp->private_data;
200 mutex_lock(&spidev->buf_lock);
201 missing = copy_from_user(spidev->buffer, buf, count);
203 status = spidev_sync_write(spidev, count);
206 mutex_unlock(&spidev->buf_lock);
211 static int spidev_message(struct spidev_data *spidev,
212 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
214 struct spi_message msg;
215 struct spi_transfer *k_xfers;
216 struct spi_transfer *k_tmp;
217 struct spi_ioc_transfer *u_tmp;
220 int status = -EFAULT;
222 spi_message_init(&msg);
223 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
227 /* Construct spi_message, copying any tx data to bounce buffer.
228 * We walk the array of user-provided transfers, using each one
229 * to initialize a kernel version of the same transfer.
231 mutex_lock(&spidev->buf_lock);
232 buf = spidev->buffer;
234 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
236 n--, k_tmp++, u_tmp++) {
237 k_tmp->len = u_tmp->len;
240 if (total > bufsiz) {
247 if (!access_ok(VERIFY_WRITE, (u8 __user *)
248 (uintptr_t) u_tmp->rx_buf,
254 if (copy_from_user(buf, (const u8 __user *)
255 (uintptr_t) u_tmp->tx_buf,
261 k_tmp->cs_change = !!u_tmp->cs_change;
262 k_tmp->bits_per_word = u_tmp->bits_per_word;
263 k_tmp->delay_usecs = u_tmp->delay_usecs;
264 k_tmp->speed_hz = u_tmp->speed_hz;
267 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
269 u_tmp->rx_buf ? "rx " : "",
270 u_tmp->tx_buf ? "tx " : "",
271 u_tmp->cs_change ? "cs " : "",
272 u_tmp->bits_per_word ? : spi->bits_per_word,
274 u_tmp->speed_hz ? : spi->max_speed_hz);
276 spi_message_add_tail(k_tmp, &msg);
279 status = spidev_sync(spidev, &msg);
283 /* copy any rx data out of bounce buffer */
284 buf = spidev->buffer;
285 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
287 if (__copy_to_user((u8 __user *)
288 (uintptr_t) u_tmp->rx_buf, buf,
299 mutex_unlock(&spidev->buf_lock);
305 spidev_ioctl(struct inode *inode, struct file *filp,
306 unsigned int cmd, unsigned long arg)
310 struct spidev_data *spidev;
311 struct spi_device *spi;
314 struct spi_ioc_transfer *ioc;
316 /* Check type and command number */
317 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
320 /* Check access direction once here; don't repeat below.
321 * IOC_DIR is from the user perspective, while access_ok is
322 * from the kernel perspective; so they look reversed.
324 if (_IOC_DIR(cmd) & _IOC_READ)
325 err = !access_ok(VERIFY_WRITE,
326 (void __user *)arg, _IOC_SIZE(cmd));
327 if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
328 err = !access_ok(VERIFY_READ,
329 (void __user *)arg, _IOC_SIZE(cmd));
333 /* guard against device removal before, or while,
334 * we issue this ioctl.
336 spidev = filp->private_data;
337 spin_lock_irq(&spidev->spi_lock);
338 spi = spi_dev_get(spidev->spi);
339 spin_unlock_irq(&spidev->spi_lock);
346 case SPI_IOC_RD_MODE:
347 retval = __put_user(spi->mode & SPI_MODE_MASK,
350 case SPI_IOC_RD_LSB_FIRST:
351 retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
354 case SPI_IOC_RD_BITS_PER_WORD:
355 retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
357 case SPI_IOC_RD_MAX_SPEED_HZ:
358 retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
362 case SPI_IOC_WR_MODE:
363 retval = __get_user(tmp, (u8 __user *)arg);
367 if (tmp & ~SPI_MODE_MASK) {
372 tmp |= spi->mode & ~SPI_MODE_MASK;
374 retval = spi_setup(spi);
378 dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
381 case SPI_IOC_WR_LSB_FIRST:
382 retval = __get_user(tmp, (__u8 __user *)arg);
387 spi->mode |= SPI_LSB_FIRST;
389 spi->mode &= ~SPI_LSB_FIRST;
390 retval = spi_setup(spi);
394 dev_dbg(&spi->dev, "%csb first\n",
398 case SPI_IOC_WR_BITS_PER_WORD:
399 retval = __get_user(tmp, (__u8 __user *)arg);
401 u8 save = spi->bits_per_word;
403 spi->bits_per_word = tmp;
404 retval = spi_setup(spi);
406 spi->bits_per_word = save;
408 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
411 case SPI_IOC_WR_MAX_SPEED_HZ:
412 retval = __get_user(tmp, (__u32 __user *)arg);
414 u32 save = spi->max_speed_hz;
416 spi->max_speed_hz = tmp;
417 retval = spi_setup(spi);
419 spi->max_speed_hz = save;
421 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
426 /* segmented and/or full-duplex I/O request */
427 if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
428 || _IOC_DIR(cmd) != _IOC_WRITE) {
433 tmp = _IOC_SIZE(cmd);
434 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
438 n_ioc = tmp / sizeof(struct spi_ioc_transfer);
442 /* copy into scratch area */
443 ioc = kmalloc(tmp, GFP_KERNEL);
448 if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
454 /* translate to spi_message, execute */
455 retval = spidev_message(spidev, ioc, n_ioc);
463 static int spidev_open(struct inode *inode, struct file *filp)
465 struct spidev_data *spidev;
469 mutex_lock(&device_list_lock);
471 list_for_each_entry(spidev, &device_list, device_entry) {
472 if (spidev->devt == inode->i_rdev) {
478 if (!spidev->buffer) {
479 spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
480 if (!spidev->buffer) {
481 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
487 filp->private_data = spidev;
488 nonseekable_open(inode, filp);
491 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
493 mutex_unlock(&device_list_lock);
498 static int spidev_release(struct inode *inode, struct file *filp)
500 struct spidev_data *spidev;
503 mutex_lock(&device_list_lock);
504 spidev = filp->private_data;
505 filp->private_data = NULL;
509 if (!spidev->users) {
512 kfree(spidev->buffer);
513 spidev->buffer = NULL;
515 /* ... after we unbound from the underlying device? */
516 spin_lock_irq(&spidev->spi_lock);
517 dofree = (spidev->spi == NULL);
518 spin_unlock_irq(&spidev->spi_lock);
523 mutex_unlock(&device_list_lock);
528 static struct file_operations spidev_fops = {
529 .owner = THIS_MODULE,
530 /* REVISIT switch to aio primitives, so that userspace
531 * gets more complete API coverage. It'll simplify things
532 * too, except for the locking.
534 .write = spidev_write,
536 .ioctl = spidev_ioctl,
538 .release = spidev_release,
541 /*-------------------------------------------------------------------------*/
543 /* The main reason to have this class is to make mdev/udev create the
544 * /dev/spidevB.C character device nodes exposing our userspace API.
545 * It also simplifies memory management.
548 static struct class *spidev_class;
550 /*-------------------------------------------------------------------------*/
552 static int spidev_probe(struct spi_device *spi)
554 struct spidev_data *spidev;
558 /* Allocate driver data */
559 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
563 /* Initialize the driver data */
565 spin_lock_init(&spidev->spi_lock);
566 mutex_init(&spidev->buf_lock);
568 INIT_LIST_HEAD(&spidev->device_entry);
570 /* If we can allocate a minor number, hook up this device.
571 * Reusing minors is fine so long as udev or mdev is working.
573 mutex_lock(&device_list_lock);
574 minor = find_first_zero_bit(minors, N_SPI_MINORS);
575 if (minor < N_SPI_MINORS) {
578 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
579 dev = device_create_drvdata(spidev_class, &spi->dev,
580 spidev->devt, spidev,
582 spi->master->bus_num, spi->chip_select);
583 status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
585 dev_dbg(&spi->dev, "no minor number available!\n");
589 set_bit(minor, minors);
590 list_add(&spidev->device_entry, &device_list);
592 mutex_unlock(&device_list_lock);
600 static int spidev_remove(struct spi_device *spi)
602 struct spidev_data *spidev = spi_get_drvdata(spi);
604 /* make sure ops on existing fds can abort cleanly */
605 spin_lock_irq(&spidev->spi_lock);
607 spi_set_drvdata(spi, NULL);
608 spin_unlock_irq(&spidev->spi_lock);
610 /* prevent new opens */
611 mutex_lock(&device_list_lock);
612 list_del(&spidev->device_entry);
613 device_destroy(spidev_class, spidev->devt);
614 clear_bit(MINOR(spidev->devt), minors);
615 if (spidev->users == 0)
617 mutex_unlock(&device_list_lock);
622 static struct spi_driver spidev_spi = {
625 .owner = THIS_MODULE,
627 .probe = spidev_probe,
628 .remove = __devexit_p(spidev_remove),
630 /* NOTE: suspend/resume methods are not necessary here.
631 * We don't do anything except pass the requests to/from
632 * the underlying controller. The refrigerator handles
633 * most issues; the controller driver handles the rest.
637 /*-------------------------------------------------------------------------*/
639 static int __init spidev_init(void)
643 /* Claim our 256 reserved device numbers. Then register a class
644 * that will key udev/mdev to add/remove /dev nodes. Last, register
645 * the driver which manages those device numbers.
647 BUILD_BUG_ON(N_SPI_MINORS > 256);
648 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
652 spidev_class = class_create(THIS_MODULE, "spidev");
653 if (IS_ERR(spidev_class)) {
654 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
655 return PTR_ERR(spidev_class);
658 status = spi_register_driver(&spidev_spi);
660 class_destroy(spidev_class);
661 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
665 module_init(spidev_init);
667 static void __exit spidev_exit(void)
669 spi_unregister_driver(&spidev_spi);
670 class_destroy(spidev_class);
671 unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
673 module_exit(spidev_exit);
675 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
676 MODULE_DESCRIPTION("User mode SPI device interface");
677 MODULE_LICENSE("GPL");