2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t->blocked, sig))
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 switch (_NSIG_WORDS) {
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
216 PENDING(&t->pending, &t->blocked) ||
217 PENDING(&t->signal->shared_pending, &t->blocked))
218 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 clear_tsk_thread_flag(t, TIF_SIGPENDING);
223 void recalc_sigpending(void)
225 recalc_sigpending_tsk(current);
228 /* Given the mask, find the first available signal that should be serviced. */
231 next_signal(struct sigpending *pending, sigset_t *mask)
233 unsigned long i, *s, *m, x;
236 s = pending->signal.sig;
238 switch (_NSIG_WORDS) {
240 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
241 if ((x = *s &~ *m) != 0) {
242 sig = ffz(~x) + i*_NSIG_BPW + 1;
247 case 2: if ((x = s[0] &~ m[0]) != 0)
249 else if ((x = s[1] &~ m[1]) != 0)
256 case 1: if ((x = *s &~ *m) != 0)
264 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
267 struct sigqueue *q = NULL;
269 atomic_inc(&t->user->sigpending);
270 if (override_rlimit ||
271 atomic_read(&t->user->sigpending) <=
272 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
273 q = kmem_cache_alloc(sigqueue_cachep, flags);
274 if (unlikely(q == NULL)) {
275 atomic_dec(&t->user->sigpending);
277 INIT_LIST_HEAD(&q->list);
280 q->user = get_uid(t->user);
285 static inline void __sigqueue_free(struct sigqueue *q)
287 if (q->flags & SIGQUEUE_PREALLOC)
289 atomic_dec(&q->user->sigpending);
291 kmem_cache_free(sigqueue_cachep, q);
294 static void flush_sigqueue(struct sigpending *queue)
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
307 * Flush all pending signals for a task.
311 flush_signals(struct task_struct *t)
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
323 * This function expects the tasklist_lock write-locked.
325 void __exit_sighand(struct task_struct *tsk)
327 struct sighand_struct * sighand = tsk->sighand;
329 /* Ok, we're done with the signal handlers */
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
335 void exit_sighand(struct task_struct *tsk)
337 write_lock_irq(&tasklist_lock);
339 write_unlock_irq(&tasklist_lock);
343 * This function expects the tasklist_lock write-locked.
345 void __exit_signal(struct task_struct *tsk)
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
352 if (!atomic_read(&sig->count))
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
365 * If there is any task waiting for the group exit
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
399 * We are cleaning up the signal_struct here. We delayed
400 * calling exit_itimers until after flush_sigqueue, just in
401 * case our thread-local pending queue contained a queued
402 * timer signal that would have been cleared in
403 * exit_itimers. When that called sigqueue_free, it would
404 * attempt to re-take the tasklist_lock and deadlock. This
405 * can never happen if we ensure that all queues the
406 * timer's signal might be queued on have been flushed
407 * first. The shared_pending queue, and our own pending
408 * queue are the only queues the timer could be on, since
409 * there are no other threads left in the group and timer
410 * signals are constrained to threads inside the group.
413 exit_thread_group_keys(sig);
414 kmem_cache_free(signal_cachep, sig);
418 void exit_signal(struct task_struct *tsk)
420 write_lock_irq(&tasklist_lock);
422 write_unlock_irq(&tasklist_lock);
426 * Flush all handlers for a task.
430 flush_signal_handlers(struct task_struct *t, int force_default)
433 struct k_sigaction *ka = &t->sighand->action[0];
434 for (i = _NSIG ; i != 0 ; i--) {
435 if (force_default || ka->sa.sa_handler != SIG_IGN)
436 ka->sa.sa_handler = SIG_DFL;
438 sigemptyset(&ka->sa.sa_mask);
444 /* Notify the system that a driver wants to block all signals for this
445 * process, and wants to be notified if any signals at all were to be
446 * sent/acted upon. If the notifier routine returns non-zero, then the
447 * signal will be acted upon after all. If the notifier routine returns 0,
448 * then then signal will be blocked. Only one block per process is
449 * allowed. priv is a pointer to private data that the notifier routine
450 * can use to determine if the signal should be blocked or not. */
453 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
457 spin_lock_irqsave(¤t->sighand->siglock, flags);
458 current->notifier_mask = mask;
459 current->notifier_data = priv;
460 current->notifier = notifier;
461 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
464 /* Notify the system that blocking has ended. */
467 unblock_all_signals(void)
471 spin_lock_irqsave(¤t->sighand->siglock, flags);
472 current->notifier = NULL;
473 current->notifier_data = NULL;
475 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
478 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480 struct sigqueue *q, *first = NULL;
481 int still_pending = 0;
483 if (unlikely(!sigismember(&list->signal, sig)))
487 * Collect the siginfo appropriate to this signal. Check if
488 * there is another siginfo for the same signal.
490 list_for_each_entry(q, &list->list, list) {
491 if (q->info.si_signo == sig) {
500 list_del_init(&first->list);
501 copy_siginfo(info, &first->info);
502 __sigqueue_free(first);
504 sigdelset(&list->signal, sig);
507 /* Ok, it wasn't in the queue. This must be
508 a fast-pathed signal or we must have been
509 out of queue space. So zero out the info.
511 sigdelset(&list->signal, sig);
512 info->si_signo = sig;
521 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
526 sig = next_signal(pending, mask);
528 if (current->notifier) {
529 if (sigismember(current->notifier_mask, sig)) {
530 if (!(current->notifier)(current->notifier_data)) {
531 clear_thread_flag(TIF_SIGPENDING);
537 if (!collect_signal(sig, pending, info))
547 * Dequeue a signal and return the element to the caller, which is
548 * expected to free it.
550 * All callers have to hold the siglock.
552 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
554 int signr = __dequeue_signal(&tsk->pending, mask, info);
556 signr = __dequeue_signal(&tsk->signal->shared_pending,
558 if (signr && unlikely(sig_kernel_stop(signr))) {
560 * Set a marker that we have dequeued a stop signal. Our
561 * caller might release the siglock and then the pending
562 * stop signal it is about to process is no longer in the
563 * pending bitmasks, but must still be cleared by a SIGCONT
564 * (and overruled by a SIGKILL). So those cases clear this
565 * shared flag after we've set it. Note that this flag may
566 * remain set after the signal we return is ignored or
567 * handled. That doesn't matter because its only purpose
568 * is to alert stop-signal processing code when another
569 * processor has come along and cleared the flag.
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
590 * Tell a process that it has a new active signal..
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
600 void signal_wake_up(struct task_struct *t, int resume)
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
613 mask = TASK_INTERRUPTIBLE;
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
624 * All callers must be holding the siglock.
626 static int rm_from_queue(unsigned long mask, struct sigpending *s)
628 struct sigqueue *q, *n;
630 if (!sigtestsetmask(&s->signal, mask))
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
645 * Bad permissions for sending the signal
647 static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
651 if (!valid_signal(sig))
654 if ((!info || ((unsigned long)info != 1 &&
655 (unsigned long)info != 2 && SI_FROMUSER(info)))
656 && ((sig != SIGCONT) ||
657 (current->signal->session != t->signal->session))
658 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
659 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
660 && !capable(CAP_KILL))
663 error = security_task_kill(t, info, sig);
665 audit_signal_info(sig, t); /* Let audit system see the signal */
670 static void do_notify_parent_cldstop(struct task_struct *tsk,
671 struct task_struct *parent,
675 * Handle magic process-wide effects of stop/continue signals.
676 * Unlike the signal actions, these happen immediately at signal-generation
677 * time regardless of blocking, ignoring, or handling. This does the
678 * actual continuing for SIGCONT, but not the actual stopping for stop
679 * signals. The process stop is done as a signal action for SIG_DFL.
681 static void handle_stop_signal(int sig, struct task_struct *p)
683 struct task_struct *t;
685 if (p->flags & SIGNAL_GROUP_EXIT)
687 * The process is in the middle of dying already.
691 if (sig_kernel_stop(sig)) {
693 * This is a stop signal. Remove SIGCONT from all queues.
695 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
698 rm_from_queue(sigmask(SIGCONT), &t->pending);
701 } else if (sig == SIGCONT) {
703 * Remove all stop signals from all queues,
704 * and wake all threads.
706 if (unlikely(p->signal->group_stop_count > 0)) {
708 * There was a group stop in progress. We'll
709 * pretend it finished before we got here. We are
710 * obliged to report it to the parent: if the
711 * SIGSTOP happened "after" this SIGCONT, then it
712 * would have cleared this pending SIGCONT. If it
713 * happened "before" this SIGCONT, then the parent
714 * got the SIGCHLD about the stop finishing before
715 * the continue happened. We do the notification
716 * now, and it's as if the stop had finished and
717 * the SIGCHLD was pending on entry to this kill.
719 p->signal->group_stop_count = 0;
720 p->signal->flags = SIGNAL_STOP_CONTINUED;
721 spin_unlock(&p->sighand->siglock);
722 if (p->ptrace & PT_PTRACED)
723 do_notify_parent_cldstop(p, p->parent,
726 do_notify_parent_cldstop(
728 p->group_leader->real_parent,
730 spin_lock(&p->sighand->siglock);
732 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
736 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
739 * If there is a handler for SIGCONT, we must make
740 * sure that no thread returns to user mode before
741 * we post the signal, in case it was the only
742 * thread eligible to run the signal handler--then
743 * it must not do anything between resuming and
744 * running the handler. With the TIF_SIGPENDING
745 * flag set, the thread will pause and acquire the
746 * siglock that we hold now and until we've queued
747 * the pending signal.
749 * Wake up the stopped thread _after_ setting
752 state = TASK_STOPPED;
753 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
754 set_tsk_thread_flag(t, TIF_SIGPENDING);
755 state |= TASK_INTERRUPTIBLE;
757 wake_up_state(t, state);
762 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
764 * We were in fact stopped, and are now continued.
765 * Notify the parent with CLD_CONTINUED.
767 p->signal->flags = SIGNAL_STOP_CONTINUED;
768 p->signal->group_exit_code = 0;
769 spin_unlock(&p->sighand->siglock);
770 if (p->ptrace & PT_PTRACED)
771 do_notify_parent_cldstop(p, p->parent,
774 do_notify_parent_cldstop(
776 p->group_leader->real_parent,
778 spin_lock(&p->sighand->siglock);
781 * We are not stopped, but there could be a stop
782 * signal in the middle of being processed after
783 * being removed from the queue. Clear that too.
785 p->signal->flags = 0;
787 } else if (sig == SIGKILL) {
789 * Make sure that any pending stop signal already dequeued
790 * is undone by the wakeup for SIGKILL.
792 p->signal->flags = 0;
796 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
797 struct sigpending *signals)
799 struct sigqueue * q = NULL;
803 * fast-pathed signals for kernel-internal things like SIGSTOP
806 if ((unsigned long)info == 2)
809 /* Real-time signals must be queued if sent by sigqueue, or
810 some other real-time mechanism. It is implementation
811 defined whether kill() does so. We attempt to do so, on
812 the principle of least surprise, but since kill is not
813 allowed to fail with EAGAIN when low on memory we just
814 make sure at least one signal gets delivered and don't
815 pass on the info struct. */
817 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
818 ((unsigned long) info < 2 ||
819 info->si_code >= 0)));
821 list_add_tail(&q->list, &signals->list);
822 switch ((unsigned long) info) {
824 q->info.si_signo = sig;
825 q->info.si_errno = 0;
826 q->info.si_code = SI_USER;
827 q->info.si_pid = current->pid;
828 q->info.si_uid = current->uid;
831 q->info.si_signo = sig;
832 q->info.si_errno = 0;
833 q->info.si_code = SI_KERNEL;
838 copy_siginfo(&q->info, info);
842 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
843 && info->si_code != SI_USER)
845 * Queue overflow, abort. We may abort if the signal was rt
846 * and sent by user using something other than kill().
849 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
851 * Set up a return to indicate that we dropped
854 ret = info->si_sys_private;
858 sigaddset(&signals->signal, sig);
862 #define LEGACY_QUEUE(sigptr, sig) \
863 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
867 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
871 if (!irqs_disabled())
873 assert_spin_locked(&t->sighand->siglock);
875 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
877 * Set up a return to indicate that we dropped the signal.
879 ret = info->si_sys_private;
881 /* Short-circuit ignored signals. */
882 if (sig_ignored(t, sig))
885 /* Support queueing exactly one non-rt signal, so that we
886 can get more detailed information about the cause of
888 if (LEGACY_QUEUE(&t->pending, sig))
891 ret = send_signal(sig, info, t, &t->pending);
892 if (!ret && !sigismember(&t->blocked, sig))
893 signal_wake_up(t, sig == SIGKILL);
899 * Force a signal that the process can't ignore: if necessary
900 * we unblock the signal and change any SIG_IGN to SIG_DFL.
904 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
906 unsigned long int flags;
909 spin_lock_irqsave(&t->sighand->siglock, flags);
910 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
911 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
912 sigdelset(&t->blocked, sig);
913 recalc_sigpending_tsk(t);
915 ret = specific_send_sig_info(sig, info, t);
916 spin_unlock_irqrestore(&t->sighand->siglock, flags);
922 force_sig_specific(int sig, struct task_struct *t)
924 unsigned long int flags;
926 spin_lock_irqsave(&t->sighand->siglock, flags);
927 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
928 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
929 sigdelset(&t->blocked, sig);
930 recalc_sigpending_tsk(t);
931 specific_send_sig_info(sig, (void *)2, t);
932 spin_unlock_irqrestore(&t->sighand->siglock, flags);
936 * Test if P wants to take SIG. After we've checked all threads with this,
937 * it's equivalent to finding no threads not blocking SIG. Any threads not
938 * blocking SIG were ruled out because they are not running and already
939 * have pending signals. Such threads will dequeue from the shared queue
940 * as soon as they're available, so putting the signal on the shared queue
941 * will be equivalent to sending it to one such thread.
943 #define wants_signal(sig, p, mask) \
944 (!sigismember(&(p)->blocked, sig) \
945 && !((p)->state & mask) \
946 && !((p)->flags & PF_EXITING) \
947 && (task_curr(p) || !signal_pending(p)))
951 __group_complete_signal(int sig, struct task_struct *p)
954 struct task_struct *t;
957 * Don't bother traced and stopped tasks (but
958 * SIGKILL will punch through that).
960 mask = TASK_STOPPED | TASK_TRACED;
965 * Now find a thread we can wake up to take the signal off the queue.
967 * If the main thread wants the signal, it gets first crack.
968 * Probably the least surprising to the average bear.
970 if (wants_signal(sig, p, mask))
972 else if (thread_group_empty(p))
974 * There is just one thread and it does not need to be woken.
975 * It will dequeue unblocked signals before it runs again.
980 * Otherwise try to find a suitable thread.
982 t = p->signal->curr_target;
984 /* restart balancing at this thread */
985 t = p->signal->curr_target = p;
986 BUG_ON(t->tgid != p->tgid);
988 while (!wants_signal(sig, t, mask)) {
990 if (t == p->signal->curr_target)
992 * No thread needs to be woken.
993 * Any eligible threads will see
994 * the signal in the queue soon.
998 p->signal->curr_target = t;
1002 * Found a killable thread. If the signal will be fatal,
1003 * then start taking the whole group down immediately.
1005 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1006 !sigismember(&t->real_blocked, sig) &&
1007 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1009 * This signal will be fatal to the whole group.
1011 if (!sig_kernel_coredump(sig)) {
1013 * Start a group exit and wake everybody up.
1014 * This way we don't have other threads
1015 * running and doing things after a slower
1016 * thread has the fatal signal pending.
1018 p->signal->flags = SIGNAL_GROUP_EXIT;
1019 p->signal->group_exit_code = sig;
1020 p->signal->group_stop_count = 0;
1023 sigaddset(&t->pending.signal, SIGKILL);
1024 signal_wake_up(t, 1);
1031 * There will be a core dump. We make all threads other
1032 * than the chosen one go into a group stop so that nothing
1033 * happens until it gets scheduled, takes the signal off
1034 * the shared queue, and does the core dump. This is a
1035 * little more complicated than strictly necessary, but it
1036 * keeps the signal state that winds up in the core dump
1037 * unchanged from the death state, e.g. which thread had
1038 * the core-dump signal unblocked.
1040 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1041 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1042 p->signal->group_stop_count = 0;
1043 p->signal->group_exit_task = t;
1046 p->signal->group_stop_count++;
1047 signal_wake_up(t, 0);
1050 wake_up_process(p->signal->group_exit_task);
1055 * The signal is already in the shared-pending queue.
1056 * Tell the chosen thread to wake up and dequeue it.
1058 signal_wake_up(t, sig == SIGKILL);
1063 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1067 assert_spin_locked(&p->sighand->siglock);
1068 handle_stop_signal(sig, p);
1070 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1072 * Set up a return to indicate that we dropped the signal.
1074 ret = info->si_sys_private;
1076 /* Short-circuit ignored signals. */
1077 if (sig_ignored(p, sig))
1080 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1081 /* This is a non-RT signal and we already have one queued. */
1085 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1086 * We always use the shared queue for process-wide signals,
1087 * to avoid several races.
1089 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1093 __group_complete_signal(sig, p);
1098 * Nuke all other threads in the group.
1100 void zap_other_threads(struct task_struct *p)
1102 struct task_struct *t;
1104 p->signal->flags = SIGNAL_GROUP_EXIT;
1105 p->signal->group_stop_count = 0;
1107 if (thread_group_empty(p))
1110 for (t = next_thread(p); t != p; t = next_thread(t)) {
1112 * Don't bother with already dead threads
1118 * We don't want to notify the parent, since we are
1119 * killed as part of a thread group due to another
1120 * thread doing an execve() or similar. So set the
1121 * exit signal to -1 to allow immediate reaping of
1122 * the process. But don't detach the thread group
1125 if (t != p->group_leader)
1126 t->exit_signal = -1;
1128 sigaddset(&t->pending.signal, SIGKILL);
1129 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1130 signal_wake_up(t, 1);
1135 * Must be called with the tasklist_lock held for reading!
1137 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1139 unsigned long flags;
1142 ret = check_kill_permission(sig, info, p);
1143 if (!ret && sig && p->sighand) {
1144 spin_lock_irqsave(&p->sighand->siglock, flags);
1145 ret = __group_send_sig_info(sig, info, p);
1146 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1153 * kill_pg_info() sends a signal to a process group: this is what the tty
1154 * control characters do (^C, ^Z etc)
1157 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1159 struct task_struct *p = NULL;
1160 int retval, success;
1167 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1168 int err = group_send_sig_info(sig, info, p);
1171 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1172 return success ? 0 : retval;
1176 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1180 read_lock(&tasklist_lock);
1181 retval = __kill_pg_info(sig, info, pgrp);
1182 read_unlock(&tasklist_lock);
1188 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1191 struct task_struct *p;
1193 read_lock(&tasklist_lock);
1194 p = find_task_by_pid(pid);
1197 error = group_send_sig_info(sig, info, p);
1198 read_unlock(&tasklist_lock);
1204 * kill_something_info() interprets pid in interesting ways just like kill(2).
1206 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1207 * is probably wrong. Should make it like BSD or SYSV.
1210 static int kill_something_info(int sig, struct siginfo *info, int pid)
1213 return kill_pg_info(sig, info, process_group(current));
1214 } else if (pid == -1) {
1215 int retval = 0, count = 0;
1216 struct task_struct * p;
1218 read_lock(&tasklist_lock);
1219 for_each_process(p) {
1220 if (p->pid > 1 && p->tgid != current->tgid) {
1221 int err = group_send_sig_info(sig, info, p);
1227 read_unlock(&tasklist_lock);
1228 return count ? retval : -ESRCH;
1229 } else if (pid < 0) {
1230 return kill_pg_info(sig, info, -pid);
1232 return kill_proc_info(sig, info, pid);
1237 * These are for backward compatibility with the rest of the kernel source.
1241 * These two are the most common entry points. They send a signal
1242 * just to the specific thread.
1245 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1248 unsigned long flags;
1251 * Make sure legacy kernel users don't send in bad values
1252 * (normal paths check this in check_kill_permission).
1254 if (!valid_signal(sig))
1258 * We need the tasklist lock even for the specific
1259 * thread case (when we don't need to follow the group
1260 * lists) in order to avoid races with "p->sighand"
1261 * going away or changing from under us.
1263 read_lock(&tasklist_lock);
1264 spin_lock_irqsave(&p->sighand->siglock, flags);
1265 ret = specific_send_sig_info(sig, info, p);
1266 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1267 read_unlock(&tasklist_lock);
1272 send_sig(int sig, struct task_struct *p, int priv)
1274 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1278 * This is the entry point for "process-wide" signals.
1279 * They will go to an appropriate thread in the thread group.
1282 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1285 read_lock(&tasklist_lock);
1286 ret = group_send_sig_info(sig, info, p);
1287 read_unlock(&tasklist_lock);
1292 force_sig(int sig, struct task_struct *p)
1294 force_sig_info(sig, (void*)1L, p);
1298 * When things go south during signal handling, we
1299 * will force a SIGSEGV. And if the signal that caused
1300 * the problem was already a SIGSEGV, we'll want to
1301 * make sure we don't even try to deliver the signal..
1304 force_sigsegv(int sig, struct task_struct *p)
1306 if (sig == SIGSEGV) {
1307 unsigned long flags;
1308 spin_lock_irqsave(&p->sighand->siglock, flags);
1309 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1310 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1312 force_sig(SIGSEGV, p);
1317 kill_pg(pid_t pgrp, int sig, int priv)
1319 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1323 kill_proc(pid_t pid, int sig, int priv)
1325 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1329 * These functions support sending signals using preallocated sigqueue
1330 * structures. This is needed "because realtime applications cannot
1331 * afford to lose notifications of asynchronous events, like timer
1332 * expirations or I/O completions". In the case of Posix Timers
1333 * we allocate the sigqueue structure from the timer_create. If this
1334 * allocation fails we are able to report the failure to the application
1335 * with an EAGAIN error.
1338 struct sigqueue *sigqueue_alloc(void)
1342 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1343 q->flags |= SIGQUEUE_PREALLOC;
1347 void sigqueue_free(struct sigqueue *q)
1349 unsigned long flags;
1350 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1352 * If the signal is still pending remove it from the
1355 if (unlikely(!list_empty(&q->list))) {
1356 read_lock(&tasklist_lock);
1357 spin_lock_irqsave(q->lock, flags);
1358 if (!list_empty(&q->list))
1359 list_del_init(&q->list);
1360 spin_unlock_irqrestore(q->lock, flags);
1361 read_unlock(&tasklist_lock);
1363 q->flags &= ~SIGQUEUE_PREALLOC;
1368 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1370 unsigned long flags;
1374 * We need the tasklist lock even for the specific
1375 * thread case (when we don't need to follow the group
1376 * lists) in order to avoid races with "p->sighand"
1377 * going away or changing from under us.
1379 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1380 read_lock(&tasklist_lock);
1381 spin_lock_irqsave(&p->sighand->siglock, flags);
1383 if (unlikely(!list_empty(&q->list))) {
1385 * If an SI_TIMER entry is already queue just increment
1386 * the overrun count.
1388 if (q->info.si_code != SI_TIMER)
1390 q->info.si_overrun++;
1393 /* Short-circuit ignored signals. */
1394 if (sig_ignored(p, sig)) {
1399 q->lock = &p->sighand->siglock;
1400 list_add_tail(&q->list, &p->pending.list);
1401 sigaddset(&p->pending.signal, sig);
1402 if (!sigismember(&p->blocked, sig))
1403 signal_wake_up(p, sig == SIGKILL);
1406 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1407 read_unlock(&tasklist_lock);
1412 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1414 unsigned long flags;
1417 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1418 read_lock(&tasklist_lock);
1419 spin_lock_irqsave(&p->sighand->siglock, flags);
1420 handle_stop_signal(sig, p);
1422 /* Short-circuit ignored signals. */
1423 if (sig_ignored(p, sig)) {
1428 if (unlikely(!list_empty(&q->list))) {
1430 * If an SI_TIMER entry is already queue just increment
1431 * the overrun count. Other uses should not try to
1432 * send the signal multiple times.
1434 if (q->info.si_code != SI_TIMER)
1436 q->info.si_overrun++;
1441 * Put this signal on the shared-pending queue.
1442 * We always use the shared queue for process-wide signals,
1443 * to avoid several races.
1445 q->lock = &p->sighand->siglock;
1446 list_add_tail(&q->list, &p->signal->shared_pending.list);
1447 sigaddset(&p->signal->shared_pending.signal, sig);
1449 __group_complete_signal(sig, p);
1451 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1452 read_unlock(&tasklist_lock);
1457 * Wake up any threads in the parent blocked in wait* syscalls.
1459 static inline void __wake_up_parent(struct task_struct *p,
1460 struct task_struct *parent)
1462 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1466 * Let a parent know about the death of a child.
1467 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1470 void do_notify_parent(struct task_struct *tsk, int sig)
1472 struct siginfo info;
1473 unsigned long flags;
1474 struct sighand_struct *psig;
1478 /* do_notify_parent_cldstop should have been called instead. */
1479 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1481 BUG_ON(!tsk->ptrace &&
1482 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1484 info.si_signo = sig;
1486 info.si_pid = tsk->pid;
1487 info.si_uid = tsk->uid;
1489 /* FIXME: find out whether or not this is supposed to be c*time. */
1490 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1491 tsk->signal->utime));
1492 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1493 tsk->signal->stime));
1495 info.si_status = tsk->exit_code & 0x7f;
1496 if (tsk->exit_code & 0x80)
1497 info.si_code = CLD_DUMPED;
1498 else if (tsk->exit_code & 0x7f)
1499 info.si_code = CLD_KILLED;
1501 info.si_code = CLD_EXITED;
1502 info.si_status = tsk->exit_code >> 8;
1505 psig = tsk->parent->sighand;
1506 spin_lock_irqsave(&psig->siglock, flags);
1507 if (sig == SIGCHLD &&
1508 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1509 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1511 * We are exiting and our parent doesn't care. POSIX.1
1512 * defines special semantics for setting SIGCHLD to SIG_IGN
1513 * or setting the SA_NOCLDWAIT flag: we should be reaped
1514 * automatically and not left for our parent's wait4 call.
1515 * Rather than having the parent do it as a magic kind of
1516 * signal handler, we just set this to tell do_exit that we
1517 * can be cleaned up without becoming a zombie. Note that
1518 * we still call __wake_up_parent in this case, because a
1519 * blocked sys_wait4 might now return -ECHILD.
1521 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1522 * is implementation-defined: we do (if you don't want
1523 * it, just use SIG_IGN instead).
1525 tsk->exit_signal = -1;
1526 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1529 if (valid_signal(sig) && sig > 0)
1530 __group_send_sig_info(sig, &info, tsk->parent);
1531 __wake_up_parent(tsk, tsk->parent);
1532 spin_unlock_irqrestore(&psig->siglock, flags);
1536 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1539 struct siginfo info;
1540 unsigned long flags;
1541 struct sighand_struct *sighand;
1543 info.si_signo = SIGCHLD;
1545 info.si_pid = tsk->pid;
1546 info.si_uid = tsk->uid;
1548 /* FIXME: find out whether or not this is supposed to be c*time. */
1549 info.si_utime = cputime_to_jiffies(tsk->utime);
1550 info.si_stime = cputime_to_jiffies(tsk->stime);
1555 info.si_status = SIGCONT;
1558 info.si_status = tsk->signal->group_exit_code & 0x7f;
1561 info.si_status = tsk->exit_code & 0x7f;
1567 sighand = parent->sighand;
1568 spin_lock_irqsave(&sighand->siglock, flags);
1569 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1570 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1571 __group_send_sig_info(SIGCHLD, &info, parent);
1573 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1575 __wake_up_parent(tsk, parent);
1576 spin_unlock_irqrestore(&sighand->siglock, flags);
1580 * This must be called with current->sighand->siglock held.
1582 * This should be the path for all ptrace stops.
1583 * We always set current->last_siginfo while stopped here.
1584 * That makes it a way to test a stopped process for
1585 * being ptrace-stopped vs being job-control-stopped.
1587 * If we actually decide not to stop at all because the tracer is gone,
1588 * we leave nostop_code in current->exit_code.
1590 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1593 * If there is a group stop in progress,
1594 * we must participate in the bookkeeping.
1596 if (current->signal->group_stop_count > 0)
1597 --current->signal->group_stop_count;
1599 current->last_siginfo = info;
1600 current->exit_code = exit_code;
1602 /* Let the debugger run. */
1603 set_current_state(TASK_TRACED);
1604 spin_unlock_irq(¤t->sighand->siglock);
1605 read_lock(&tasklist_lock);
1606 if (likely(current->ptrace & PT_PTRACED) &&
1607 likely(current->parent != current->real_parent ||
1608 !(current->ptrace & PT_ATTACHED)) &&
1609 (likely(current->parent->signal != current->signal) ||
1610 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1611 do_notify_parent_cldstop(current, current->parent,
1613 read_unlock(&tasklist_lock);
1617 * By the time we got the lock, our tracer went away.
1620 read_unlock(&tasklist_lock);
1621 set_current_state(TASK_RUNNING);
1622 current->exit_code = nostop_code;
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1630 spin_lock_irq(¤t->sighand->siglock);
1631 current->last_siginfo = NULL;
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1637 recalc_sigpending();
1640 void ptrace_notify(int exit_code)
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = current->pid;
1650 info.si_uid = current->uid;
1652 /* Let the debugger run. */
1653 spin_lock_irq(¤t->sighand->siglock);
1654 ptrace_stop(exit_code, 0, &info);
1655 spin_unlock_irq(¤t->sighand->siglock);
1659 finish_stop(int stop_count)
1662 * If there are no other threads in the group, or if there is
1663 * a group stop in progress and we are the last to stop,
1664 * report to the parent. When ptraced, every thread reports itself.
1666 if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1667 read_lock(&tasklist_lock);
1668 do_notify_parent_cldstop(current, current->parent,
1670 read_unlock(&tasklist_lock);
1672 else if (stop_count == 0) {
1673 read_lock(&tasklist_lock);
1674 do_notify_parent_cldstop(current->group_leader,
1675 current->group_leader->real_parent,
1677 read_unlock(&tasklist_lock);
1682 * Now we don't run again until continued.
1684 current->exit_code = 0;
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1694 do_signal_stop(int signr)
1696 struct signal_struct *sig = current->signal;
1697 struct sighand_struct *sighand = current->sighand;
1698 int stop_count = -1;
1700 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1703 if (sig->group_stop_count > 0) {
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1708 signr = sig->group_exit_code;
1709 stop_count = --sig->group_stop_count;
1710 current->exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1716 else if (thread_group_empty(current)) {
1718 * Lock must be held through transition to stopped state.
1720 current->exit_code = current->signal->group_exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 sig->flags = SIGNAL_STOP_STOPPED;
1723 spin_unlock_irq(&sighand->siglock);
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1734 struct task_struct *t;
1736 spin_unlock_irq(&sighand->siglock);
1738 /* signals can be posted during this window */
1740 read_lock(&tasklist_lock);
1741 spin_lock_irq(&sighand->siglock);
1743 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1752 read_unlock(&tasklist_lock);
1756 if (sig->group_stop_count == 0) {
1757 sig->group_exit_code = signr;
1759 for (t = next_thread(current); t != current;
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1766 if (t->state < TASK_STOPPED) {
1768 signal_wake_up(t, 0);
1770 sig->group_stop_count = stop_count;
1773 /* A race with another thread while unlocked. */
1774 signr = sig->group_exit_code;
1775 stop_count = --sig->group_stop_count;
1778 current->exit_code = signr;
1779 set_current_state(TASK_STOPPED);
1780 if (stop_count == 0)
1781 sig->flags = SIGNAL_STOP_STOPPED;
1783 spin_unlock_irq(&sighand->siglock);
1784 read_unlock(&tasklist_lock);
1787 finish_stop(stop_count);
1792 * Do appropriate magic when group_stop_count > 0.
1793 * We return nonzero if we stopped, after releasing the siglock.
1794 * We return zero if we still hold the siglock and should look
1795 * for another signal without checking group_stop_count again.
1797 static inline int handle_group_stop(void)
1801 if (current->signal->group_exit_task == current) {
1803 * Group stop is so we can do a core dump,
1804 * We are the initiating thread, so get on with it.
1806 current->signal->group_exit_task = NULL;
1810 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1812 * Group stop is so another thread can do a core dump,
1813 * or else we are racing against a death signal.
1814 * Just punt the stop so we can get the next signal.
1819 * There is a group stop in progress. We stop
1820 * without any associated signal being in our queue.
1822 stop_count = --current->signal->group_stop_count;
1823 if (stop_count == 0)
1824 current->signal->flags = SIGNAL_STOP_STOPPED;
1825 current->exit_code = current->signal->group_exit_code;
1826 set_current_state(TASK_STOPPED);
1827 spin_unlock_irq(¤t->sighand->siglock);
1828 finish_stop(stop_count);
1832 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1833 struct pt_regs *regs, void *cookie)
1835 sigset_t *mask = ¤t->blocked;
1839 spin_lock_irq(¤t->sighand->siglock);
1841 struct k_sigaction *ka;
1843 if (unlikely(current->signal->group_stop_count > 0) &&
1844 handle_group_stop())
1847 signr = dequeue_signal(current, mask, info);
1850 break; /* will return 0 */
1852 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1853 ptrace_signal_deliver(regs, cookie);
1855 /* Let the debugger run. */
1856 ptrace_stop(signr, signr, info);
1858 /* We're back. Did the debugger cancel the sig? */
1859 signr = current->exit_code;
1863 current->exit_code = 0;
1865 /* Update the siginfo structure if the signal has
1866 changed. If the debugger wanted something
1867 specific in the siginfo structure then it should
1868 have updated *info via PTRACE_SETSIGINFO. */
1869 if (signr != info->si_signo) {
1870 info->si_signo = signr;
1872 info->si_code = SI_USER;
1873 info->si_pid = current->parent->pid;
1874 info->si_uid = current->parent->uid;
1877 /* If the (new) signal is now blocked, requeue it. */
1878 if (sigismember(¤t->blocked, signr)) {
1879 specific_send_sig_info(signr, info, current);
1884 ka = ¤t->sighand->action[signr-1];
1885 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1887 if (ka->sa.sa_handler != SIG_DFL) {
1888 /* Run the handler. */
1891 if (ka->sa.sa_flags & SA_ONESHOT)
1892 ka->sa.sa_handler = SIG_DFL;
1894 break; /* will return non-zero "signr" value */
1898 * Now we are doing the default action for this signal.
1900 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1903 /* Init gets no signals it doesn't want. */
1904 if (current->pid == 1)
1907 if (sig_kernel_stop(signr)) {
1909 * The default action is to stop all threads in
1910 * the thread group. The job control signals
1911 * do nothing in an orphaned pgrp, but SIGSTOP
1912 * always works. Note that siglock needs to be
1913 * dropped during the call to is_orphaned_pgrp()
1914 * because of lock ordering with tasklist_lock.
1915 * This allows an intervening SIGCONT to be posted.
1916 * We need to check for that and bail out if necessary.
1918 if (signr != SIGSTOP) {
1919 spin_unlock_irq(¤t->sighand->siglock);
1921 /* signals can be posted during this window */
1923 if (is_orphaned_pgrp(process_group(current)))
1926 spin_lock_irq(¤t->sighand->siglock);
1929 if (likely(do_signal_stop(signr))) {
1930 /* It released the siglock. */
1935 * We didn't actually stop, due to a race
1936 * with SIGCONT or something like that.
1941 spin_unlock_irq(¤t->sighand->siglock);
1944 * Anything else is fatal, maybe with a core dump.
1946 current->flags |= PF_SIGNALED;
1947 if (sig_kernel_coredump(signr)) {
1949 * If it was able to dump core, this kills all
1950 * other threads in the group and synchronizes with
1951 * their demise. If we lost the race with another
1952 * thread getting here, it set group_exit_code
1953 * first and our do_group_exit call below will use
1954 * that value and ignore the one we pass it.
1956 do_coredump((long)signr, signr, regs);
1960 * Death signals, no core dump.
1962 do_group_exit(signr);
1965 spin_unlock_irq(¤t->sighand->siglock);
1969 EXPORT_SYMBOL(recalc_sigpending);
1970 EXPORT_SYMBOL_GPL(dequeue_signal);
1971 EXPORT_SYMBOL(flush_signals);
1972 EXPORT_SYMBOL(force_sig);
1973 EXPORT_SYMBOL(kill_pg);
1974 EXPORT_SYMBOL(kill_proc);
1975 EXPORT_SYMBOL(ptrace_notify);
1976 EXPORT_SYMBOL(send_sig);
1977 EXPORT_SYMBOL(send_sig_info);
1978 EXPORT_SYMBOL(sigprocmask);
1979 EXPORT_SYMBOL(block_all_signals);
1980 EXPORT_SYMBOL(unblock_all_signals);
1984 * System call entry points.
1987 asmlinkage long sys_restart_syscall(void)
1989 struct restart_block *restart = ¤t_thread_info()->restart_block;
1990 return restart->fn(restart);
1993 long do_no_restart_syscall(struct restart_block *param)
1999 * We don't need to get the kernel lock - this is all local to this
2000 * particular thread.. (and that's good, because this is _heavily_
2001 * used by various programs)
2005 * This is also useful for kernel threads that want to temporarily
2006 * (or permanently) block certain signals.
2008 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2009 * interface happily blocks "unblockable" signals like SIGKILL
2012 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2017 spin_lock_irq(¤t->sighand->siglock);
2018 old_block = current->blocked;
2022 sigorsets(¤t->blocked, ¤t->blocked, set);
2025 signandsets(¤t->blocked, ¤t->blocked, set);
2028 current->blocked = *set;
2033 recalc_sigpending();
2034 spin_unlock_irq(¤t->sighand->siglock);
2036 *oldset = old_block;
2041 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2043 int error = -EINVAL;
2044 sigset_t old_set, new_set;
2046 /* XXX: Don't preclude handling different sized sigset_t's. */
2047 if (sigsetsize != sizeof(sigset_t))
2052 if (copy_from_user(&new_set, set, sizeof(*set)))
2054 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2056 error = sigprocmask(how, &new_set, &old_set);
2062 spin_lock_irq(¤t->sighand->siglock);
2063 old_set = current->blocked;
2064 spin_unlock_irq(¤t->sighand->siglock);
2068 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2076 long do_sigpending(void __user *set, unsigned long sigsetsize)
2078 long error = -EINVAL;
2081 if (sigsetsize > sizeof(sigset_t))
2084 spin_lock_irq(¤t->sighand->siglock);
2085 sigorsets(&pending, ¤t->pending.signal,
2086 ¤t->signal->shared_pending.signal);
2087 spin_unlock_irq(¤t->sighand->siglock);
2089 /* Outside the lock because only this thread touches it. */
2090 sigandsets(&pending, ¤t->blocked, &pending);
2093 if (!copy_to_user(set, &pending, sigsetsize))
2101 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2103 return do_sigpending(set, sigsetsize);
2106 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2108 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2112 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2114 if (from->si_code < 0)
2115 return __copy_to_user(to, from, sizeof(siginfo_t))
2118 * If you change siginfo_t structure, please be sure
2119 * this code is fixed accordingly.
2120 * It should never copy any pad contained in the structure
2121 * to avoid security leaks, but must copy the generic
2122 * 3 ints plus the relevant union member.
2124 err = __put_user(from->si_signo, &to->si_signo);
2125 err |= __put_user(from->si_errno, &to->si_errno);
2126 err |= __put_user((short)from->si_code, &to->si_code);
2127 switch (from->si_code & __SI_MASK) {
2129 err |= __put_user(from->si_pid, &to->si_pid);
2130 err |= __put_user(from->si_uid, &to->si_uid);
2133 err |= __put_user(from->si_tid, &to->si_tid);
2134 err |= __put_user(from->si_overrun, &to->si_overrun);
2135 err |= __put_user(from->si_ptr, &to->si_ptr);
2138 err |= __put_user(from->si_band, &to->si_band);
2139 err |= __put_user(from->si_fd, &to->si_fd);
2142 err |= __put_user(from->si_addr, &to->si_addr);
2143 #ifdef __ARCH_SI_TRAPNO
2144 err |= __put_user(from->si_trapno, &to->si_trapno);
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 err |= __put_user(from->si_status, &to->si_status);
2151 err |= __put_user(from->si_utime, &to->si_utime);
2152 err |= __put_user(from->si_stime, &to->si_stime);
2154 case __SI_RT: /* This is not generated by the kernel as of now. */
2155 case __SI_MESGQ: /* But this is */
2156 err |= __put_user(from->si_pid, &to->si_pid);
2157 err |= __put_user(from->si_uid, &to->si_uid);
2158 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 default: /* this is just in case for now ... */
2161 err |= __put_user(from->si_pid, &to->si_pid);
2162 err |= __put_user(from->si_uid, &to->si_uid);
2171 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2172 siginfo_t __user *uinfo,
2173 const struct timespec __user *uts,
2182 /* XXX: Don't preclude handling different sized sigset_t's. */
2183 if (sigsetsize != sizeof(sigset_t))
2186 if (copy_from_user(&these, uthese, sizeof(these)))
2190 * Invert the set of allowed signals to get those we
2193 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2197 if (copy_from_user(&ts, uts, sizeof(ts)))
2199 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2204 spin_lock_irq(¤t->sighand->siglock);
2205 sig = dequeue_signal(current, &these, &info);
2207 timeout = MAX_SCHEDULE_TIMEOUT;
2209 timeout = (timespec_to_jiffies(&ts)
2210 + (ts.tv_sec || ts.tv_nsec));
2213 /* None ready -- temporarily unblock those we're
2214 * interested while we are sleeping in so that we'll
2215 * be awakened when they arrive. */
2216 current->real_blocked = current->blocked;
2217 sigandsets(¤t->blocked, ¤t->blocked, &these);
2218 recalc_sigpending();
2219 spin_unlock_irq(¤t->sighand->siglock);
2221 current->state = TASK_INTERRUPTIBLE;
2222 timeout = schedule_timeout(timeout);
2224 if (current->flags & PF_FREEZE)
2225 refrigerator(PF_FREEZE);
2226 spin_lock_irq(¤t->sighand->siglock);
2227 sig = dequeue_signal(current, &these, &info);
2228 current->blocked = current->real_blocked;
2229 siginitset(¤t->real_blocked, 0);
2230 recalc_sigpending();
2233 spin_unlock_irq(¤t->sighand->siglock);
2238 if (copy_siginfo_to_user(uinfo, &info))
2251 sys_kill(int pid, int sig)
2253 struct siginfo info;
2255 info.si_signo = sig;
2257 info.si_code = SI_USER;
2258 info.si_pid = current->tgid;
2259 info.si_uid = current->uid;
2261 return kill_something_info(sig, &info, pid);
2265 * sys_tgkill - send signal to one specific thread
2266 * @tgid: the thread group ID of the thread
2267 * @pid: the PID of the thread
2268 * @sig: signal to be sent
2270 * This syscall also checks the tgid and returns -ESRCH even if the PID
2271 * exists but it's not belonging to the target process anymore. This
2272 * method solves the problem of threads exiting and PIDs getting reused.
2274 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2276 struct siginfo info;
2278 struct task_struct *p;
2280 /* This is only valid for single tasks */
2281 if (pid <= 0 || tgid <= 0)
2284 info.si_signo = sig;
2286 info.si_code = SI_TKILL;
2287 info.si_pid = current->tgid;
2288 info.si_uid = current->uid;
2290 read_lock(&tasklist_lock);
2291 p = find_task_by_pid(pid);
2293 if (p && (p->tgid == tgid)) {
2294 error = check_kill_permission(sig, &info, p);
2296 * The null signal is a permissions and process existence
2297 * probe. No signal is actually delivered.
2299 if (!error && sig && p->sighand) {
2300 spin_lock_irq(&p->sighand->siglock);
2301 handle_stop_signal(sig, p);
2302 error = specific_send_sig_info(sig, &info, p);
2303 spin_unlock_irq(&p->sighand->siglock);
2306 read_unlock(&tasklist_lock);
2311 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2314 sys_tkill(int pid, int sig)
2316 struct siginfo info;
2318 struct task_struct *p;
2320 /* This is only valid for single tasks */
2324 info.si_signo = sig;
2326 info.si_code = SI_TKILL;
2327 info.si_pid = current->tgid;
2328 info.si_uid = current->uid;
2330 read_lock(&tasklist_lock);
2331 p = find_task_by_pid(pid);
2334 error = check_kill_permission(sig, &info, p);
2336 * The null signal is a permissions and process existence
2337 * probe. No signal is actually delivered.
2339 if (!error && sig && p->sighand) {
2340 spin_lock_irq(&p->sighand->siglock);
2341 handle_stop_signal(sig, p);
2342 error = specific_send_sig_info(sig, &info, p);
2343 spin_unlock_irq(&p->sighand->siglock);
2346 read_unlock(&tasklist_lock);
2351 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2355 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2358 /* Not even root can pretend to send signals from the kernel.
2359 Nor can they impersonate a kill(), which adds source info. */
2360 if (info.si_code >= 0)
2362 info.si_signo = sig;
2364 /* POSIX.1b doesn't mention process groups. */
2365 return kill_proc_info(sig, &info, pid);
2369 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2371 struct k_sigaction *k;
2373 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2376 k = ¤t->sighand->action[sig-1];
2378 spin_lock_irq(¤t->sighand->siglock);
2379 if (signal_pending(current)) {
2381 * If there might be a fatal signal pending on multiple
2382 * threads, make sure we take it before changing the action.
2384 spin_unlock_irq(¤t->sighand->siglock);
2385 return -ERESTARTNOINTR;
2394 * "Setting a signal action to SIG_IGN for a signal that is
2395 * pending shall cause the pending signal to be discarded,
2396 * whether or not it is blocked."
2398 * "Setting a signal action to SIG_DFL for a signal that is
2399 * pending and whose default action is to ignore the signal
2400 * (for example, SIGCHLD), shall cause the pending signal to
2401 * be discarded, whether or not it is blocked"
2403 if (act->sa.sa_handler == SIG_IGN ||
2404 (act->sa.sa_handler == SIG_DFL &&
2405 sig_kernel_ignore(sig))) {
2407 * This is a fairly rare case, so we only take the
2408 * tasklist_lock once we're sure we'll need it.
2409 * Now we must do this little unlock and relock
2410 * dance to maintain the lock hierarchy.
2412 struct task_struct *t = current;
2413 spin_unlock_irq(&t->sighand->siglock);
2414 read_lock(&tasklist_lock);
2415 spin_lock_irq(&t->sighand->siglock);
2417 sigdelsetmask(&k->sa.sa_mask,
2418 sigmask(SIGKILL) | sigmask(SIGSTOP));
2419 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2421 rm_from_queue(sigmask(sig), &t->pending);
2422 recalc_sigpending_tsk(t);
2424 } while (t != current);
2425 spin_unlock_irq(¤t->sighand->siglock);
2426 read_unlock(&tasklist_lock);
2431 sigdelsetmask(&k->sa.sa_mask,
2432 sigmask(SIGKILL) | sigmask(SIGSTOP));
2435 spin_unlock_irq(¤t->sighand->siglock);
2440 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2446 oss.ss_sp = (void __user *) current->sas_ss_sp;
2447 oss.ss_size = current->sas_ss_size;
2448 oss.ss_flags = sas_ss_flags(sp);
2457 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2458 || __get_user(ss_sp, &uss->ss_sp)
2459 || __get_user(ss_flags, &uss->ss_flags)
2460 || __get_user(ss_size, &uss->ss_size))
2464 if (on_sig_stack(sp))
2470 * Note - this code used to test ss_flags incorrectly
2471 * old code may have been written using ss_flags==0
2472 * to mean ss_flags==SS_ONSTACK (as this was the only
2473 * way that worked) - this fix preserves that older
2476 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2479 if (ss_flags == SS_DISABLE) {
2484 if (ss_size < MINSIGSTKSZ)
2488 current->sas_ss_sp = (unsigned long) ss_sp;
2489 current->sas_ss_size = ss_size;
2494 if (copy_to_user(uoss, &oss, sizeof(oss)))
2503 #ifdef __ARCH_WANT_SYS_SIGPENDING
2506 sys_sigpending(old_sigset_t __user *set)
2508 return do_sigpending(set, sizeof(*set));
2513 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2514 /* Some platforms have their own version with special arguments others
2515 support only sys_rt_sigprocmask. */
2518 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2521 old_sigset_t old_set, new_set;
2525 if (copy_from_user(&new_set, set, sizeof(*set)))
2527 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2529 spin_lock_irq(¤t->sighand->siglock);
2530 old_set = current->blocked.sig[0];
2538 sigaddsetmask(¤t->blocked, new_set);
2541 sigdelsetmask(¤t->blocked, new_set);
2544 current->blocked.sig[0] = new_set;
2548 recalc_sigpending();
2549 spin_unlock_irq(¤t->sighand->siglock);
2555 old_set = current->blocked.sig[0];
2558 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2565 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2567 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2569 sys_rt_sigaction(int sig,
2570 const struct sigaction __user *act,
2571 struct sigaction __user *oact,
2574 struct k_sigaction new_sa, old_sa;
2577 /* XXX: Don't preclude handling different sized sigset_t's. */
2578 if (sigsetsize != sizeof(sigset_t))
2582 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2586 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2589 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2595 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2597 #ifdef __ARCH_WANT_SYS_SGETMASK
2600 * For backwards compatibility. Functionality superseded by sigprocmask.
2606 return current->blocked.sig[0];
2610 sys_ssetmask(int newmask)
2614 spin_lock_irq(¤t->sighand->siglock);
2615 old = current->blocked.sig[0];
2617 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2619 recalc_sigpending();
2620 spin_unlock_irq(¤t->sighand->siglock);
2624 #endif /* __ARCH_WANT_SGETMASK */
2626 #ifdef __ARCH_WANT_SYS_SIGNAL
2628 * For backwards compatibility. Functionality superseded by sigaction.
2630 asmlinkage unsigned long
2631 sys_signal(int sig, __sighandler_t handler)
2633 struct k_sigaction new_sa, old_sa;
2636 new_sa.sa.sa_handler = handler;
2637 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2639 ret = do_sigaction(sig, &new_sa, &old_sa);
2641 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2643 #endif /* __ARCH_WANT_SYS_SIGNAL */
2645 #ifdef __ARCH_WANT_SYS_PAUSE
2650 current->state = TASK_INTERRUPTIBLE;
2652 return -ERESTARTNOHAND;
2657 void __init signals_init(void)
2660 kmem_cache_create("sigqueue",
2661 sizeof(struct sigqueue),
2662 __alignof__(struct sigqueue),
2663 SLAB_PANIC, NULL, NULL);