2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
155 static ctlr_info_t *hba[MAX_CTLR];
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
184 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
185 unsigned int use_unit_num, unsigned int log_unit,
186 __u8 page_code, int cmd_type);
188 static void fail_all_cmds(unsigned long ctlr);
190 #ifdef CONFIG_PROC_FS
191 static void cciss_procinit(int i);
193 static void cciss_procinit(int i)
196 #endif /* CONFIG_PROC_FS */
199 static int cciss_compat_ioctl(struct block_device *, fmode_t,
200 unsigned, unsigned long);
203 static struct block_device_operations cciss_fops = {
204 .owner = THIS_MODULE,
206 .release = cciss_release,
207 .locked_ioctl = cciss_ioctl,
208 .getgeo = cciss_getgeo,
210 .compat_ioctl = cciss_compat_ioctl,
212 .revalidate_disk = cciss_revalidate,
216 * Enqueuing and dequeuing functions for cmdlists.
218 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
222 c->next = c->prev = c;
224 c->prev = (*Qptr)->prev;
226 (*Qptr)->prev->next = c;
231 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
232 CommandList_struct *c)
234 if (c && c->next != c) {
237 c->prev->next = c->next;
238 c->next->prev = c->prev;
245 #include "cciss_scsi.c" /* For SCSI tape support */
247 #define RAID_UNKNOWN 6
249 #ifdef CONFIG_PROC_FS
252 * Report information about this controller.
254 #define ENG_GIG 1000000000
255 #define ENG_GIG_FACTOR (ENG_GIG/512)
256 #define ENGAGE_SCSI "engage scsi"
257 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
261 static struct proc_dir_entry *proc_cciss;
263 static void cciss_seq_show_header(struct seq_file *seq)
265 ctlr_info_t *h = seq->private;
267 seq_printf(seq, "%s: HP %s Controller\n"
268 "Board ID: 0x%08lx\n"
269 "Firmware Version: %c%c%c%c\n"
271 "Logical drives: %d\n"
272 "Current Q depth: %d\n"
273 "Current # commands on controller: %d\n"
274 "Max Q depth since init: %d\n"
275 "Max # commands on controller since init: %d\n"
276 "Max SG entries since init: %d\n",
279 (unsigned long)h->board_id,
280 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
281 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
283 h->Qdepth, h->commands_outstanding,
284 h->maxQsinceinit, h->max_outstanding, h->maxSG);
286 #ifdef CONFIG_CISS_SCSI_TAPE
287 cciss_seq_tape_report(seq, h->ctlr);
288 #endif /* CONFIG_CISS_SCSI_TAPE */
291 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
293 ctlr_info_t *h = seq->private;
294 unsigned ctlr = h->ctlr;
297 /* prevent displaying bogus info during configuration
298 * or deconfiguration of a logical volume
300 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
301 if (h->busy_configuring) {
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
303 return ERR_PTR(-EBUSY);
305 h->busy_configuring = 1;
306 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
309 cciss_seq_show_header(seq);
314 static int cciss_seq_show(struct seq_file *seq, void *v)
316 sector_t vol_sz, vol_sz_frac;
317 ctlr_info_t *h = seq->private;
318 unsigned ctlr = h->ctlr;
320 drive_info_struct *drv = &h->drv[*pos];
322 if (*pos > h->highest_lun)
328 vol_sz = drv->nr_blocks;
329 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
331 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
333 if (drv->raid_level > 5)
334 drv->raid_level = RAID_UNKNOWN;
335 seq_printf(seq, "cciss/c%dd%d:"
336 "\t%4u.%02uGB\tRAID %s\n",
337 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
338 raid_label[drv->raid_level]);
342 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
344 ctlr_info_t *h = seq->private;
346 if (*pos > h->highest_lun)
353 static void cciss_seq_stop(struct seq_file *seq, void *v)
355 ctlr_info_t *h = seq->private;
357 /* Only reset h->busy_configuring if we succeeded in setting
358 * it during cciss_seq_start. */
359 if (v == ERR_PTR(-EBUSY))
362 h->busy_configuring = 0;
365 static struct seq_operations cciss_seq_ops = {
366 .start = cciss_seq_start,
367 .show = cciss_seq_show,
368 .next = cciss_seq_next,
369 .stop = cciss_seq_stop,
372 static int cciss_seq_open(struct inode *inode, struct file *file)
374 int ret = seq_open(file, &cciss_seq_ops);
375 struct seq_file *seq = file->private_data;
378 seq->private = PDE(inode)->data;
384 cciss_proc_write(struct file *file, const char __user *buf,
385 size_t length, loff_t *ppos)
390 #ifndef CONFIG_CISS_SCSI_TAPE
394 if (!buf || length > PAGE_SIZE - 1)
397 buffer = (char *)__get_free_page(GFP_KERNEL);
402 if (copy_from_user(buffer, buf, length))
404 buffer[length] = '\0';
406 #ifdef CONFIG_CISS_SCSI_TAPE
407 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
408 struct seq_file *seq = file->private_data;
409 ctlr_info_t *h = seq->private;
412 rc = cciss_engage_scsi(h->ctlr);
418 #endif /* CONFIG_CISS_SCSI_TAPE */
420 /* might be nice to have "disengage" too, but it's not
421 safely possible. (only 1 module use count, lock issues.) */
424 free_page((unsigned long)buffer);
428 static struct file_operations cciss_proc_fops = {
429 .owner = THIS_MODULE,
430 .open = cciss_seq_open,
433 .release = seq_release,
434 .write = cciss_proc_write,
437 static void __devinit cciss_procinit(int i)
439 struct proc_dir_entry *pde;
441 if (proc_cciss == NULL)
442 proc_cciss = proc_mkdir("driver/cciss", NULL);
445 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
447 &cciss_proc_fops, hba[i]);
449 #endif /* CONFIG_PROC_FS */
452 * For operations that cannot sleep, a command block is allocated at init,
453 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
454 * which ones are free or in use. For operations that can wait for kmalloc
455 * to possible sleep, this routine can be called with get_from_pool set to 0.
456 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
458 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
460 CommandList_struct *c;
463 dma_addr_t cmd_dma_handle, err_dma_handle;
465 if (!get_from_pool) {
466 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
467 sizeof(CommandList_struct), &cmd_dma_handle);
470 memset(c, 0, sizeof(CommandList_struct));
474 c->err_info = (ErrorInfo_struct *)
475 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
478 if (c->err_info == NULL) {
479 pci_free_consistent(h->pdev,
480 sizeof(CommandList_struct), c, cmd_dma_handle);
483 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
484 } else { /* get it out of the controllers pool */
487 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
490 } while (test_and_set_bit
491 (i & (BITS_PER_LONG - 1),
492 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
494 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
497 memset(c, 0, sizeof(CommandList_struct));
498 cmd_dma_handle = h->cmd_pool_dhandle
499 + i * sizeof(CommandList_struct);
500 c->err_info = h->errinfo_pool + i;
501 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
502 err_dma_handle = h->errinfo_pool_dhandle
503 + i * sizeof(ErrorInfo_struct);
509 c->busaddr = (__u32) cmd_dma_handle;
510 temp64.val = (__u64) err_dma_handle;
511 c->ErrDesc.Addr.lower = temp64.val32.lower;
512 c->ErrDesc.Addr.upper = temp64.val32.upper;
513 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
520 * Frees a command block that was previously allocated with cmd_alloc().
522 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
527 if (!got_from_pool) {
528 temp64.val32.lower = c->ErrDesc.Addr.lower;
529 temp64.val32.upper = c->ErrDesc.Addr.upper;
530 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
531 c->err_info, (dma_addr_t) temp64.val);
532 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
533 c, (dma_addr_t) c->busaddr);
536 clear_bit(i & (BITS_PER_LONG - 1),
537 h->cmd_pool_bits + (i / BITS_PER_LONG));
542 static inline ctlr_info_t *get_host(struct gendisk *disk)
544 return disk->queue->queuedata;
547 static inline drive_info_struct *get_drv(struct gendisk *disk)
549 return disk->private_data;
553 * Open. Make sure the device is really there.
555 static int cciss_open(struct block_device *bdev, fmode_t mode)
557 ctlr_info_t *host = get_host(bdev->bd_disk);
558 drive_info_struct *drv = get_drv(bdev->bd_disk);
561 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
562 #endif /* CCISS_DEBUG */
564 if (host->busy_initializing || drv->busy_configuring)
567 * Root is allowed to open raw volume zero even if it's not configured
568 * so array config can still work. Root is also allowed to open any
569 * volume that has a LUN ID, so it can issue IOCTL to reread the
570 * disk information. I don't think I really like this
571 * but I'm already using way to many device nodes to claim another one
572 * for "raw controller".
574 if (drv->heads == 0) {
575 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
576 /* if not node 0 make sure it is a partition = 0 */
577 if (MINOR(bdev->bd_dev) & 0x0f) {
579 /* if it is, make sure we have a LUN ID */
580 } else if (drv->LunID == 0) {
584 if (!capable(CAP_SYS_ADMIN))
595 static int cciss_release(struct gendisk *disk, fmode_t mode)
597 ctlr_info_t *host = get_host(disk);
598 drive_info_struct *drv = get_drv(disk);
601 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
602 #endif /* CCISS_DEBUG */
611 static int do_ioctl(struct block_device *bdev, fmode_t mode,
612 unsigned cmd, unsigned long arg)
616 ret = cciss_ioctl(bdev, mode, cmd, arg);
621 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
622 unsigned cmd, unsigned long arg);
623 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
624 unsigned cmd, unsigned long arg);
626 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
627 unsigned cmd, unsigned long arg)
630 case CCISS_GETPCIINFO:
631 case CCISS_GETINTINFO:
632 case CCISS_SETINTINFO:
633 case CCISS_GETNODENAME:
634 case CCISS_SETNODENAME:
635 case CCISS_GETHEARTBEAT:
636 case CCISS_GETBUSTYPES:
637 case CCISS_GETFIRMVER:
638 case CCISS_GETDRIVVER:
639 case CCISS_REVALIDVOLS:
640 case CCISS_DEREGDISK:
641 case CCISS_REGNEWDISK:
643 case CCISS_RESCANDISK:
644 case CCISS_GETLUNINFO:
645 return do_ioctl(bdev, mode, cmd, arg);
647 case CCISS_PASSTHRU32:
648 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
649 case CCISS_BIG_PASSTHRU32:
650 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
657 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
658 unsigned cmd, unsigned long arg)
660 IOCTL32_Command_struct __user *arg32 =
661 (IOCTL32_Command_struct __user *) arg;
662 IOCTL_Command_struct arg64;
663 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
669 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
670 sizeof(arg64.LUN_info));
672 copy_from_user(&arg64.Request, &arg32->Request,
673 sizeof(arg64.Request));
675 copy_from_user(&arg64.error_info, &arg32->error_info,
676 sizeof(arg64.error_info));
677 err |= get_user(arg64.buf_size, &arg32->buf_size);
678 err |= get_user(cp, &arg32->buf);
679 arg64.buf = compat_ptr(cp);
680 err |= copy_to_user(p, &arg64, sizeof(arg64));
685 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
689 copy_in_user(&arg32->error_info, &p->error_info,
690 sizeof(arg32->error_info));
696 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
697 unsigned cmd, unsigned long arg)
699 BIG_IOCTL32_Command_struct __user *arg32 =
700 (BIG_IOCTL32_Command_struct __user *) arg;
701 BIG_IOCTL_Command_struct arg64;
702 BIG_IOCTL_Command_struct __user *p =
703 compat_alloc_user_space(sizeof(arg64));
709 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
710 sizeof(arg64.LUN_info));
712 copy_from_user(&arg64.Request, &arg32->Request,
713 sizeof(arg64.Request));
715 copy_from_user(&arg64.error_info, &arg32->error_info,
716 sizeof(arg64.error_info));
717 err |= get_user(arg64.buf_size, &arg32->buf_size);
718 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
719 err |= get_user(cp, &arg32->buf);
720 arg64.buf = compat_ptr(cp);
721 err |= copy_to_user(p, &arg64, sizeof(arg64));
726 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
730 copy_in_user(&arg32->error_info, &p->error_info,
731 sizeof(arg32->error_info));
738 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
740 drive_info_struct *drv = get_drv(bdev->bd_disk);
745 geo->heads = drv->heads;
746 geo->sectors = drv->sectors;
747 geo->cylinders = drv->cylinders;
754 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
755 unsigned int cmd, unsigned long arg)
757 struct gendisk *disk = bdev->bd_disk;
758 ctlr_info_t *host = get_host(disk);
759 drive_info_struct *drv = get_drv(disk);
760 int ctlr = host->ctlr;
761 void __user *argp = (void __user *)arg;
764 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
765 #endif /* CCISS_DEBUG */
768 case CCISS_GETPCIINFO:
770 cciss_pci_info_struct pciinfo;
774 pciinfo.domain = pci_domain_nr(host->pdev->bus);
775 pciinfo.bus = host->pdev->bus->number;
776 pciinfo.dev_fn = host->pdev->devfn;
777 pciinfo.board_id = host->board_id;
779 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
783 case CCISS_GETINTINFO:
785 cciss_coalint_struct intinfo;
789 readl(&host->cfgtable->HostWrite.CoalIntDelay);
791 readl(&host->cfgtable->HostWrite.CoalIntCount);
793 (argp, &intinfo, sizeof(cciss_coalint_struct)))
797 case CCISS_SETINTINFO:
799 cciss_coalint_struct intinfo;
805 if (!capable(CAP_SYS_ADMIN))
808 (&intinfo, argp, sizeof(cciss_coalint_struct)))
810 if ((intinfo.delay == 0) && (intinfo.count == 0))
812 // printk("cciss_ioctl: delay and count cannot be 0\n");
815 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
816 /* Update the field, and then ring the doorbell */
817 writel(intinfo.delay,
818 &(host->cfgtable->HostWrite.CoalIntDelay));
819 writel(intinfo.count,
820 &(host->cfgtable->HostWrite.CoalIntCount));
821 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
823 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
824 if (!(readl(host->vaddr + SA5_DOORBELL)
827 /* delay and try again */
830 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
831 if (i >= MAX_IOCTL_CONFIG_WAIT)
835 case CCISS_GETNODENAME:
837 NodeName_type NodeName;
842 for (i = 0; i < 16; i++)
844 readb(&host->cfgtable->ServerName[i]);
845 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
849 case CCISS_SETNODENAME:
851 NodeName_type NodeName;
857 if (!capable(CAP_SYS_ADMIN))
861 (NodeName, argp, sizeof(NodeName_type)))
864 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
866 /* Update the field, and then ring the doorbell */
867 for (i = 0; i < 16; i++)
869 &host->cfgtable->ServerName[i]);
871 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
873 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
874 if (!(readl(host->vaddr + SA5_DOORBELL)
877 /* delay and try again */
880 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
881 if (i >= MAX_IOCTL_CONFIG_WAIT)
886 case CCISS_GETHEARTBEAT:
888 Heartbeat_type heartbeat;
892 heartbeat = readl(&host->cfgtable->HeartBeat);
894 (argp, &heartbeat, sizeof(Heartbeat_type)))
898 case CCISS_GETBUSTYPES:
900 BusTypes_type BusTypes;
904 BusTypes = readl(&host->cfgtable->BusTypes);
906 (argp, &BusTypes, sizeof(BusTypes_type)))
910 case CCISS_GETFIRMVER:
912 FirmwareVer_type firmware;
916 memcpy(firmware, host->firm_ver, 4);
919 (argp, firmware, sizeof(FirmwareVer_type)))
923 case CCISS_GETDRIVVER:
925 DriverVer_type DriverVer = DRIVER_VERSION;
931 (argp, &DriverVer, sizeof(DriverVer_type)))
936 case CCISS_DEREGDISK:
938 case CCISS_REVALIDVOLS:
939 return rebuild_lun_table(host, 0);
941 case CCISS_GETLUNINFO:{
942 LogvolInfo_struct luninfo;
944 luninfo.LunID = drv->LunID;
945 luninfo.num_opens = drv->usage_count;
946 luninfo.num_parts = 0;
947 if (copy_to_user(argp, &luninfo,
948 sizeof(LogvolInfo_struct)))
954 IOCTL_Command_struct iocommand;
955 CommandList_struct *c;
959 DECLARE_COMPLETION_ONSTACK(wait);
964 if (!capable(CAP_SYS_RAWIO))
968 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
970 if ((iocommand.buf_size < 1) &&
971 (iocommand.Request.Type.Direction != XFER_NONE)) {
974 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
975 /* Check kmalloc limits */
976 if (iocommand.buf_size > 128000)
979 if (iocommand.buf_size > 0) {
980 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
984 if (iocommand.Request.Type.Direction == XFER_WRITE) {
985 /* Copy the data into the buffer we created */
987 (buff, iocommand.buf, iocommand.buf_size)) {
992 memset(buff, 0, iocommand.buf_size);
994 if ((c = cmd_alloc(host, 0)) == NULL) {
998 // Fill in the command type
999 c->cmd_type = CMD_IOCTL_PEND;
1000 // Fill in Command Header
1001 c->Header.ReplyQueue = 0; // unused in simple mode
1002 if (iocommand.buf_size > 0) // buffer to fill
1004 c->Header.SGList = 1;
1005 c->Header.SGTotal = 1;
1006 } else // no buffers to fill
1008 c->Header.SGList = 0;
1009 c->Header.SGTotal = 0;
1011 c->Header.LUN = iocommand.LUN_info;
1012 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1014 // Fill in Request block
1015 c->Request = iocommand.Request;
1017 // Fill in the scatter gather information
1018 if (iocommand.buf_size > 0) {
1019 temp64.val = pci_map_single(host->pdev, buff,
1021 PCI_DMA_BIDIRECTIONAL);
1022 c->SG[0].Addr.lower = temp64.val32.lower;
1023 c->SG[0].Addr.upper = temp64.val32.upper;
1024 c->SG[0].Len = iocommand.buf_size;
1025 c->SG[0].Ext = 0; // we are not chaining
1029 /* Put the request on the tail of the request queue */
1030 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1031 addQ(&host->reqQ, c);
1034 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1036 wait_for_completion(&wait);
1038 /* unlock the buffers from DMA */
1039 temp64.val32.lower = c->SG[0].Addr.lower;
1040 temp64.val32.upper = c->SG[0].Addr.upper;
1041 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1043 PCI_DMA_BIDIRECTIONAL);
1045 /* Copy the error information out */
1046 iocommand.error_info = *(c->err_info);
1048 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1050 cmd_free(host, c, 0);
1054 if (iocommand.Request.Type.Direction == XFER_READ) {
1055 /* Copy the data out of the buffer we created */
1057 (iocommand.buf, buff, iocommand.buf_size)) {
1059 cmd_free(host, c, 0);
1064 cmd_free(host, c, 0);
1067 case CCISS_BIG_PASSTHRU:{
1068 BIG_IOCTL_Command_struct *ioc;
1069 CommandList_struct *c;
1070 unsigned char **buff = NULL;
1071 int *buff_size = NULL;
1073 unsigned long flags;
1077 DECLARE_COMPLETION_ONSTACK(wait);
1080 BYTE __user *data_ptr;
1084 if (!capable(CAP_SYS_RAWIO))
1086 ioc = (BIG_IOCTL_Command_struct *)
1087 kmalloc(sizeof(*ioc), GFP_KERNEL);
1092 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1096 if ((ioc->buf_size < 1) &&
1097 (ioc->Request.Type.Direction != XFER_NONE)) {
1101 /* Check kmalloc limits using all SGs */
1102 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1106 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1111 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1116 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1122 left = ioc->buf_size;
1123 data_ptr = ioc->buf;
1126 ioc->malloc_size) ? ioc->
1128 buff_size[sg_used] = sz;
1129 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1130 if (buff[sg_used] == NULL) {
1134 if (ioc->Request.Type.Direction == XFER_WRITE) {
1136 (buff[sg_used], data_ptr, sz)) {
1141 memset(buff[sg_used], 0, sz);
1147 if ((c = cmd_alloc(host, 0)) == NULL) {
1151 c->cmd_type = CMD_IOCTL_PEND;
1152 c->Header.ReplyQueue = 0;
1154 if (ioc->buf_size > 0) {
1155 c->Header.SGList = sg_used;
1156 c->Header.SGTotal = sg_used;
1158 c->Header.SGList = 0;
1159 c->Header.SGTotal = 0;
1161 c->Header.LUN = ioc->LUN_info;
1162 c->Header.Tag.lower = c->busaddr;
1164 c->Request = ioc->Request;
1165 if (ioc->buf_size > 0) {
1167 for (i = 0; i < sg_used; i++) {
1169 pci_map_single(host->pdev, buff[i],
1171 PCI_DMA_BIDIRECTIONAL);
1172 c->SG[i].Addr.lower =
1174 c->SG[i].Addr.upper =
1176 c->SG[i].Len = buff_size[i];
1177 c->SG[i].Ext = 0; /* we are not chaining */
1181 /* Put the request on the tail of the request queue */
1182 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1183 addQ(&host->reqQ, c);
1186 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1187 wait_for_completion(&wait);
1188 /* unlock the buffers from DMA */
1189 for (i = 0; i < sg_used; i++) {
1190 temp64.val32.lower = c->SG[i].Addr.lower;
1191 temp64.val32.upper = c->SG[i].Addr.upper;
1192 pci_unmap_single(host->pdev,
1193 (dma_addr_t) temp64.val, buff_size[i],
1194 PCI_DMA_BIDIRECTIONAL);
1196 /* Copy the error information out */
1197 ioc->error_info = *(c->err_info);
1198 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1199 cmd_free(host, c, 0);
1203 if (ioc->Request.Type.Direction == XFER_READ) {
1204 /* Copy the data out of the buffer we created */
1205 BYTE __user *ptr = ioc->buf;
1206 for (i = 0; i < sg_used; i++) {
1208 (ptr, buff[i], buff_size[i])) {
1209 cmd_free(host, c, 0);
1213 ptr += buff_size[i];
1216 cmd_free(host, c, 0);
1220 for (i = 0; i < sg_used; i++)
1229 /* scsi_cmd_ioctl handles these, below, though some are not */
1230 /* very meaningful for cciss. SG_IO is the main one people want. */
1232 case SG_GET_VERSION_NUM:
1233 case SG_SET_TIMEOUT:
1234 case SG_GET_TIMEOUT:
1235 case SG_GET_RESERVED_SIZE:
1236 case SG_SET_RESERVED_SIZE:
1237 case SG_EMULATED_HOST:
1239 case SCSI_IOCTL_SEND_COMMAND:
1240 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1242 /* scsi_cmd_ioctl would normally handle these, below, but */
1243 /* they aren't a good fit for cciss, as CD-ROMs are */
1244 /* not supported, and we don't have any bus/target/lun */
1245 /* which we present to the kernel. */
1247 case CDROM_SEND_PACKET:
1248 case CDROMCLOSETRAY:
1250 case SCSI_IOCTL_GET_IDLUN:
1251 case SCSI_IOCTL_GET_BUS_NUMBER:
1257 static void cciss_check_queues(ctlr_info_t *h)
1259 int start_queue = h->next_to_run;
1262 /* check to see if we have maxed out the number of commands that can
1263 * be placed on the queue. If so then exit. We do this check here
1264 * in case the interrupt we serviced was from an ioctl and did not
1265 * free any new commands.
1267 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1270 /* We have room on the queue for more commands. Now we need to queue
1271 * them up. We will also keep track of the next queue to run so
1272 * that every queue gets a chance to be started first.
1274 for (i = 0; i < h->highest_lun + 1; i++) {
1275 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1276 /* make sure the disk has been added and the drive is real
1277 * because this can be called from the middle of init_one.
1279 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1281 blk_start_queue(h->gendisk[curr_queue]->queue);
1283 /* check to see if we have maxed out the number of commands
1284 * that can be placed on the queue.
1286 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1287 if (curr_queue == start_queue) {
1289 (start_queue + 1) % (h->highest_lun + 1);
1292 h->next_to_run = curr_queue;
1299 static void cciss_softirq_done(struct request *rq)
1301 CommandList_struct *cmd = rq->completion_data;
1302 ctlr_info_t *h = hba[cmd->ctlr];
1303 unsigned long flags;
1307 if (cmd->Request.Type.Direction == XFER_READ)
1308 ddir = PCI_DMA_FROMDEVICE;
1310 ddir = PCI_DMA_TODEVICE;
1312 /* command did not need to be retried */
1313 /* unmap the DMA mapping for all the scatter gather elements */
1314 for (i = 0; i < cmd->Header.SGList; i++) {
1315 temp64.val32.lower = cmd->SG[i].Addr.lower;
1316 temp64.val32.upper = cmd->SG[i].Addr.upper;
1317 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1321 printk("Done with %p\n", rq);
1322 #endif /* CCISS_DEBUG */
1324 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1327 spin_lock_irqsave(&h->lock, flags);
1328 cmd_free(h, cmd, 1);
1329 cciss_check_queues(h);
1330 spin_unlock_irqrestore(&h->lock, flags);
1333 /* This function gets the serial number of a logical drive via
1334 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1335 * number cannot be had, for whatever reason, 16 bytes of 0xff
1336 * are returned instead.
1338 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1339 unsigned char *serial_no, int buflen)
1341 #define PAGE_83_INQ_BYTES 64
1347 memset(serial_no, 0xff, buflen);
1348 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1351 memset(serial_no, 0, buflen);
1353 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1354 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1356 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1357 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1359 memcpy(serial_no, &buf[8], buflen);
1364 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1367 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1368 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1369 disk->major = h->major;
1370 disk->first_minor = drv_index << NWD_SHIFT;
1371 disk->fops = &cciss_fops;
1372 disk->private_data = &h->drv[drv_index];
1373 disk->driverfs_dev = &h->pdev->dev;
1375 /* Set up queue information */
1376 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1378 /* This is a hardware imposed limit. */
1379 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1381 /* This is a limit in the driver and could be eliminated. */
1382 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1384 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1386 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1388 disk->queue->queuedata = h;
1390 blk_queue_hardsect_size(disk->queue,
1391 h->drv[drv_index].block_size);
1393 /* Make sure all queue data is written out before */
1394 /* setting h->drv[drv_index].queue, as setting this */
1395 /* allows the interrupt handler to start the queue */
1397 h->drv[drv_index].queue = disk->queue;
1401 /* This function will check the usage_count of the drive to be updated/added.
1402 * If the usage_count is zero and it is a heretofore unknown drive, or,
1403 * the drive's capacity, geometry, or serial number has changed,
1404 * then the drive information will be updated and the disk will be
1405 * re-registered with the kernel. If these conditions don't hold,
1406 * then it will be left alone for the next reboot. The exception to this
1407 * is disk 0 which will always be left registered with the kernel since it
1408 * is also the controller node. Any changes to disk 0 will show up on
1411 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1413 ctlr_info_t *h = hba[ctlr];
1414 struct gendisk *disk;
1415 InquiryData_struct *inq_buff = NULL;
1416 unsigned int block_size;
1417 sector_t total_size;
1418 unsigned long flags = 0;
1420 drive_info_struct *drvinfo;
1421 int was_only_controller_node;
1423 /* Get information about the disk and modify the driver structure */
1424 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1425 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1426 if (inq_buff == NULL || drvinfo == NULL)
1429 /* See if we're trying to update the "controller node"
1430 * this will happen the when the first logical drive gets
1433 was_only_controller_node = (drv_index == 0 &&
1434 h->drv[0].raid_level == -1);
1436 /* testing to see if 16-byte CDBs are already being used */
1437 if (h->cciss_read == CCISS_READ_16) {
1438 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1439 &total_size, &block_size);
1442 cciss_read_capacity(ctlr, drv_index, 1,
1443 &total_size, &block_size);
1445 /* if read_capacity returns all F's this volume is >2TB */
1446 /* in size so we switch to 16-byte CDB's for all */
1447 /* read/write ops */
1448 if (total_size == 0xFFFFFFFFULL) {
1449 cciss_read_capacity_16(ctlr, drv_index, 1,
1450 &total_size, &block_size);
1451 h->cciss_read = CCISS_READ_16;
1452 h->cciss_write = CCISS_WRITE_16;
1454 h->cciss_read = CCISS_READ_10;
1455 h->cciss_write = CCISS_WRITE_10;
1459 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1461 drvinfo->block_size = block_size;
1462 drvinfo->nr_blocks = total_size + 1;
1464 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1465 sizeof(drvinfo->serial_no));
1467 /* Is it the same disk we already know, and nothing's changed? */
1468 if (h->drv[drv_index].raid_level != -1 &&
1469 ((memcmp(drvinfo->serial_no,
1470 h->drv[drv_index].serial_no, 16) == 0) &&
1471 drvinfo->block_size == h->drv[drv_index].block_size &&
1472 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1473 drvinfo->heads == h->drv[drv_index].heads &&
1474 drvinfo->sectors == h->drv[drv_index].sectors &&
1475 drvinfo->cylinders == h->drv[drv_index].cylinders))
1476 /* The disk is unchanged, nothing to update */
1479 /* If we get here it's not the same disk, or something's changed,
1480 * so we need to * deregister it, and re-register it, if it's not
1482 * If the disk already exists then deregister it before proceeding
1483 * (unless it's the first disk (for the controller node).
1485 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1486 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1487 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1488 h->drv[drv_index].busy_configuring = 1;
1489 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1491 /* deregister_disk sets h->drv[drv_index].queue = NULL
1492 * which keeps the interrupt handler from starting
1495 ret = deregister_disk(h->gendisk[drv_index],
1496 &h->drv[drv_index], 0);
1497 h->drv[drv_index].busy_configuring = 0;
1500 /* If the disk is in use return */
1504 /* Save the new information from cciss_geometry_inquiry
1505 * and serial number inquiry.
1507 h->drv[drv_index].block_size = drvinfo->block_size;
1508 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1509 h->drv[drv_index].heads = drvinfo->heads;
1510 h->drv[drv_index].sectors = drvinfo->sectors;
1511 h->drv[drv_index].cylinders = drvinfo->cylinders;
1512 h->drv[drv_index].raid_level = drvinfo->raid_level;
1513 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1516 disk = h->gendisk[drv_index];
1517 set_capacity(disk, h->drv[drv_index].nr_blocks);
1519 /* If it's not disk 0 (drv_index != 0)
1520 * or if it was disk 0, but there was previously
1521 * no actual corresponding configured logical drive
1522 * (raid_leve == -1) then we want to update the
1523 * logical drive's information.
1525 if (drv_index || first_time)
1526 cciss_add_disk(h, disk, drv_index);
1533 printk(KERN_ERR "cciss: out of memory\n");
1537 /* This function will find the first index of the controllers drive array
1538 * that has a -1 for the raid_level and will return that index. This is
1539 * where new drives will be added. If the index to be returned is greater
1540 * than the highest_lun index for the controller then highest_lun is set
1541 * to this new index. If there are no available indexes then -1 is returned.
1542 * "controller_node" is used to know if this is a real logical drive, or just
1543 * the controller node, which determines if this counts towards highest_lun.
1545 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1549 for (i = 0; i < CISS_MAX_LUN; i++) {
1550 if (hba[ctlr]->drv[i].raid_level == -1) {
1551 if (i > hba[ctlr]->highest_lun)
1552 if (!controller_node)
1553 hba[ctlr]->highest_lun = i;
1560 /* cciss_add_gendisk finds a free hba[]->drv structure
1561 * and allocates a gendisk if needed, and sets the lunid
1562 * in the drvinfo structure. It returns the index into
1563 * the ->drv[] array, or -1 if none are free.
1564 * is_controller_node indicates whether highest_lun should
1565 * count this disk, or if it's only being added to provide
1566 * a means to talk to the controller in case no logical
1567 * drives have yet been configured.
1569 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1573 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1574 if (drv_index == -1)
1576 /*Check if the gendisk needs to be allocated */
1577 if (!h->gendisk[drv_index]) {
1578 h->gendisk[drv_index] =
1579 alloc_disk(1 << NWD_SHIFT);
1580 if (!h->gendisk[drv_index]) {
1581 printk(KERN_ERR "cciss%d: could not "
1582 "allocate a new disk %d\n",
1583 h->ctlr, drv_index);
1587 h->drv[drv_index].LunID = lunid;
1589 /* Don't need to mark this busy because nobody */
1590 /* else knows about this disk yet to contend */
1591 /* for access to it. */
1592 h->drv[drv_index].busy_configuring = 0;
1597 /* This is for the special case of a controller which
1598 * has no logical drives. In this case, we still need
1599 * to register a disk so the controller can be accessed
1600 * by the Array Config Utility.
1602 static void cciss_add_controller_node(ctlr_info_t *h)
1604 struct gendisk *disk;
1607 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1610 drv_index = cciss_add_gendisk(h, 0, 1);
1611 if (drv_index == -1) {
1612 printk(KERN_WARNING "cciss%d: could not "
1613 "add disk 0.\n", h->ctlr);
1616 h->drv[drv_index].block_size = 512;
1617 h->drv[drv_index].nr_blocks = 0;
1618 h->drv[drv_index].heads = 0;
1619 h->drv[drv_index].sectors = 0;
1620 h->drv[drv_index].cylinders = 0;
1621 h->drv[drv_index].raid_level = -1;
1622 memset(h->drv[drv_index].serial_no, 0, 16);
1623 disk = h->gendisk[drv_index];
1624 cciss_add_disk(h, disk, drv_index);
1627 /* This function will add and remove logical drives from the Logical
1628 * drive array of the controller and maintain persistency of ordering
1629 * so that mount points are preserved until the next reboot. This allows
1630 * for the removal of logical drives in the middle of the drive array
1631 * without a re-ordering of those drives.
1633 * h = The controller to perform the operations on
1635 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1639 ReportLunData_struct *ld_buff = NULL;
1646 unsigned long flags;
1648 if (!capable(CAP_SYS_RAWIO))
1651 /* Set busy_configuring flag for this operation */
1652 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1653 if (h->busy_configuring) {
1654 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1657 h->busy_configuring = 1;
1658 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1660 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1661 if (ld_buff == NULL)
1664 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1665 sizeof(ReportLunData_struct), 0,
1668 if (return_code == IO_OK)
1669 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1670 else { /* reading number of logical volumes failed */
1671 printk(KERN_WARNING "cciss: report logical volume"
1672 " command failed\n");
1677 num_luns = listlength / 8; /* 8 bytes per entry */
1678 if (num_luns > CISS_MAX_LUN) {
1679 num_luns = CISS_MAX_LUN;
1680 printk(KERN_WARNING "cciss: more luns configured"
1681 " on controller than can be handled by"
1686 cciss_add_controller_node(h);
1688 /* Compare controller drive array to driver's drive array
1689 * to see if any drives are missing on the controller due
1690 * to action of Array Config Utility (user deletes drive)
1691 * and deregister logical drives which have disappeared.
1693 for (i = 0; i <= h->highest_lun; i++) {
1696 for (j = 0; j < num_luns; j++) {
1697 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1698 lunid = le32_to_cpu(lunid);
1699 if (h->drv[i].LunID == lunid) {
1705 /* Deregister it from the OS, it's gone. */
1706 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1707 h->drv[i].busy_configuring = 1;
1708 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1709 return_code = deregister_disk(h->gendisk[i],
1711 h->drv[i].busy_configuring = 0;
1715 /* Compare controller drive array to driver's drive array.
1716 * Check for updates in the drive information and any new drives
1717 * on the controller due to ACU adding logical drives, or changing
1718 * a logical drive's size, etc. Reregister any new/changed drives
1720 for (i = 0; i < num_luns; i++) {
1725 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1726 lunid = le32_to_cpu(lunid);
1728 /* Find if the LUN is already in the drive array
1729 * of the driver. If so then update its info
1730 * if not in use. If it does not exist then find
1731 * the first free index and add it.
1733 for (j = 0; j <= h->highest_lun; j++) {
1734 if (h->drv[j].raid_level != -1 &&
1735 h->drv[j].LunID == lunid) {
1742 /* check if the drive was found already in the array */
1744 drv_index = cciss_add_gendisk(h, lunid, 0);
1745 if (drv_index == -1)
1748 cciss_update_drive_info(ctlr, drv_index, first_time);
1753 h->busy_configuring = 0;
1754 /* We return -1 here to tell the ACU that we have registered/updated
1755 * all of the drives that we can and to keep it from calling us
1760 printk(KERN_ERR "cciss: out of memory\n");
1761 h->busy_configuring = 0;
1765 /* This function will deregister the disk and it's queue from the
1766 * kernel. It must be called with the controller lock held and the
1767 * drv structures busy_configuring flag set. It's parameters are:
1769 * disk = This is the disk to be deregistered
1770 * drv = This is the drive_info_struct associated with the disk to be
1771 * deregistered. It contains information about the disk used
1773 * clear_all = This flag determines whether or not the disk information
1774 * is going to be completely cleared out and the highest_lun
1775 * reset. Sometimes we want to clear out information about
1776 * the disk in preparation for re-adding it. In this case
1777 * the highest_lun should be left unchanged and the LunID
1778 * should not be cleared.
1780 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1784 ctlr_info_t *h = get_host(disk);
1786 if (!capable(CAP_SYS_RAWIO))
1789 /* make sure logical volume is NOT is use */
1790 if (clear_all || (h->gendisk[0] == disk)) {
1791 if (drv->usage_count > 1)
1793 } else if (drv->usage_count > 0)
1796 /* invalidate the devices and deregister the disk. If it is disk
1797 * zero do not deregister it but just zero out it's values. This
1798 * allows us to delete disk zero but keep the controller registered.
1800 if (h->gendisk[0] != disk) {
1801 struct request_queue *q = disk->queue;
1802 if (disk->flags & GENHD_FL_UP)
1805 blk_cleanup_queue(q);
1806 /* Set drv->queue to NULL so that we do not try
1807 * to call blk_start_queue on this queue in the
1812 /* If clear_all is set then we are deleting the logical
1813 * drive, not just refreshing its info. For drives
1814 * other than disk 0 we will call put_disk. We do not
1815 * do this for disk 0 as we need it to be able to
1816 * configure the controller.
1819 /* This isn't pretty, but we need to find the
1820 * disk in our array and NULL our the pointer.
1821 * This is so that we will call alloc_disk if
1822 * this index is used again later.
1824 for (i=0; i < CISS_MAX_LUN; i++){
1825 if (h->gendisk[i] == disk) {
1826 h->gendisk[i] = NULL;
1833 set_capacity(disk, 0);
1837 /* zero out the disk size info */
1839 drv->block_size = 0;
1843 drv->raid_level = -1; /* This can be used as a flag variable to
1844 * indicate that this element of the drive
1849 /* check to see if it was the last disk */
1850 if (drv == h->drv + h->highest_lun) {
1851 /* if so, find the new hightest lun */
1852 int i, newhighest = -1;
1853 for (i = 0; i <= h->highest_lun; i++) {
1854 /* if the disk has size > 0, it is available */
1855 if (h->drv[i].heads)
1858 h->highest_lun = newhighest;
1866 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1867 1: address logical volume log_unit,
1868 2: periph device address is scsi3addr */
1869 unsigned int log_unit, __u8 page_code,
1870 unsigned char *scsi3addr, int cmd_type)
1872 ctlr_info_t *h = hba[ctlr];
1873 u64bit buff_dma_handle;
1876 c->cmd_type = CMD_IOCTL_PEND;
1877 c->Header.ReplyQueue = 0;
1879 c->Header.SGList = 1;
1880 c->Header.SGTotal = 1;
1882 c->Header.SGList = 0;
1883 c->Header.SGTotal = 0;
1885 c->Header.Tag.lower = c->busaddr;
1887 c->Request.Type.Type = cmd_type;
1888 if (cmd_type == TYPE_CMD) {
1891 /* If the logical unit number is 0 then, this is going
1892 to controller so It's a physical command
1893 mode = 0 target = 0. So we have nothing to write.
1894 otherwise, if use_unit_num == 1,
1895 mode = 1(volume set addressing) target = LUNID
1896 otherwise, if use_unit_num == 2,
1897 mode = 0(periph dev addr) target = scsi3addr */
1898 if (use_unit_num == 1) {
1899 c->Header.LUN.LogDev.VolId =
1900 h->drv[log_unit].LunID;
1901 c->Header.LUN.LogDev.Mode = 1;
1902 } else if (use_unit_num == 2) {
1903 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1905 c->Header.LUN.LogDev.Mode = 0;
1907 /* are we trying to read a vital product page */
1908 if (page_code != 0) {
1909 c->Request.CDB[1] = 0x01;
1910 c->Request.CDB[2] = page_code;
1912 c->Request.CDBLen = 6;
1913 c->Request.Type.Attribute = ATTR_SIMPLE;
1914 c->Request.Type.Direction = XFER_READ;
1915 c->Request.Timeout = 0;
1916 c->Request.CDB[0] = CISS_INQUIRY;
1917 c->Request.CDB[4] = size & 0xFF;
1919 case CISS_REPORT_LOG:
1920 case CISS_REPORT_PHYS:
1921 /* Talking to controller so It's a physical command
1922 mode = 00 target = 0. Nothing to write.
1924 c->Request.CDBLen = 12;
1925 c->Request.Type.Attribute = ATTR_SIMPLE;
1926 c->Request.Type.Direction = XFER_READ;
1927 c->Request.Timeout = 0;
1928 c->Request.CDB[0] = cmd;
1929 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1930 c->Request.CDB[7] = (size >> 16) & 0xFF;
1931 c->Request.CDB[8] = (size >> 8) & 0xFF;
1932 c->Request.CDB[9] = size & 0xFF;
1935 case CCISS_READ_CAPACITY:
1936 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1937 c->Header.LUN.LogDev.Mode = 1;
1938 c->Request.CDBLen = 10;
1939 c->Request.Type.Attribute = ATTR_SIMPLE;
1940 c->Request.Type.Direction = XFER_READ;
1941 c->Request.Timeout = 0;
1942 c->Request.CDB[0] = cmd;
1944 case CCISS_READ_CAPACITY_16:
1945 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1946 c->Header.LUN.LogDev.Mode = 1;
1947 c->Request.CDBLen = 16;
1948 c->Request.Type.Attribute = ATTR_SIMPLE;
1949 c->Request.Type.Direction = XFER_READ;
1950 c->Request.Timeout = 0;
1951 c->Request.CDB[0] = cmd;
1952 c->Request.CDB[1] = 0x10;
1953 c->Request.CDB[10] = (size >> 24) & 0xFF;
1954 c->Request.CDB[11] = (size >> 16) & 0xFF;
1955 c->Request.CDB[12] = (size >> 8) & 0xFF;
1956 c->Request.CDB[13] = size & 0xFF;
1957 c->Request.Timeout = 0;
1958 c->Request.CDB[0] = cmd;
1960 case CCISS_CACHE_FLUSH:
1961 c->Request.CDBLen = 12;
1962 c->Request.Type.Attribute = ATTR_SIMPLE;
1963 c->Request.Type.Direction = XFER_WRITE;
1964 c->Request.Timeout = 0;
1965 c->Request.CDB[0] = BMIC_WRITE;
1966 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1970 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1973 } else if (cmd_type == TYPE_MSG) {
1975 case 0: /* ABORT message */
1976 c->Request.CDBLen = 12;
1977 c->Request.Type.Attribute = ATTR_SIMPLE;
1978 c->Request.Type.Direction = XFER_WRITE;
1979 c->Request.Timeout = 0;
1980 c->Request.CDB[0] = cmd; /* abort */
1981 c->Request.CDB[1] = 0; /* abort a command */
1982 /* buff contains the tag of the command to abort */
1983 memcpy(&c->Request.CDB[4], buff, 8);
1985 case 1: /* RESET message */
1986 c->Request.CDBLen = 12;
1987 c->Request.Type.Attribute = ATTR_SIMPLE;
1988 c->Request.Type.Direction = XFER_WRITE;
1989 c->Request.Timeout = 0;
1990 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1991 c->Request.CDB[0] = cmd; /* reset */
1992 c->Request.CDB[1] = 0x04; /* reset a LUN */
1994 case 3: /* No-Op message */
1995 c->Request.CDBLen = 1;
1996 c->Request.Type.Attribute = ATTR_SIMPLE;
1997 c->Request.Type.Direction = XFER_WRITE;
1998 c->Request.Timeout = 0;
1999 c->Request.CDB[0] = cmd;
2003 "cciss%d: unknown message type %d\n", ctlr, cmd);
2008 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2011 /* Fill in the scatter gather information */
2013 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2015 PCI_DMA_BIDIRECTIONAL);
2016 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2017 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2018 c->SG[0].Len = size;
2019 c->SG[0].Ext = 0; /* we are not chaining */
2024 static int sendcmd_withirq(__u8 cmd,
2028 unsigned int use_unit_num,
2029 unsigned int log_unit, __u8 page_code, int cmd_type)
2031 ctlr_info_t *h = hba[ctlr];
2032 CommandList_struct *c;
2033 u64bit buff_dma_handle;
2034 unsigned long flags;
2036 DECLARE_COMPLETION_ONSTACK(wait);
2038 if ((c = cmd_alloc(h, 0)) == NULL)
2040 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2041 log_unit, page_code, NULL, cmd_type);
2042 if (return_status != IO_OK) {
2044 return return_status;
2049 /* Put the request on the tail of the queue and send it */
2050 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2054 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2056 wait_for_completion(&wait);
2058 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2059 switch (c->err_info->CommandStatus) {
2060 case CMD_TARGET_STATUS:
2061 printk(KERN_WARNING "cciss: cmd %p has "
2062 " completed with errors\n", c);
2063 if (c->err_info->ScsiStatus) {
2064 printk(KERN_WARNING "cciss: cmd %p "
2065 "has SCSI Status = %x\n",
2066 c, c->err_info->ScsiStatus);
2070 case CMD_DATA_UNDERRUN:
2071 case CMD_DATA_OVERRUN:
2072 /* expected for inquire and report lun commands */
2075 printk(KERN_WARNING "cciss: Cmd %p is "
2076 "reported invalid\n", c);
2077 return_status = IO_ERROR;
2079 case CMD_PROTOCOL_ERR:
2080 printk(KERN_WARNING "cciss: cmd %p has "
2081 "protocol error \n", c);
2082 return_status = IO_ERROR;
2084 case CMD_HARDWARE_ERR:
2085 printk(KERN_WARNING "cciss: cmd %p had "
2086 " hardware error\n", c);
2087 return_status = IO_ERROR;
2089 case CMD_CONNECTION_LOST:
2090 printk(KERN_WARNING "cciss: cmd %p had "
2091 "connection lost\n", c);
2092 return_status = IO_ERROR;
2095 printk(KERN_WARNING "cciss: cmd %p was "
2097 return_status = IO_ERROR;
2099 case CMD_ABORT_FAILED:
2100 printk(KERN_WARNING "cciss: cmd %p reports "
2101 "abort failed\n", c);
2102 return_status = IO_ERROR;
2104 case CMD_UNSOLICITED_ABORT:
2106 "cciss%d: unsolicited abort %p\n", ctlr, c);
2107 if (c->retry_count < MAX_CMD_RETRIES) {
2109 "cciss%d: retrying %p\n", ctlr, c);
2111 /* erase the old error information */
2112 memset(c->err_info, 0,
2113 sizeof(ErrorInfo_struct));
2114 return_status = IO_OK;
2115 INIT_COMPLETION(wait);
2118 return_status = IO_ERROR;
2121 printk(KERN_WARNING "cciss: cmd %p returned "
2122 "unknown status %x\n", c,
2123 c->err_info->CommandStatus);
2124 return_status = IO_ERROR;
2127 /* unlock the buffers from DMA */
2128 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2129 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2130 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2131 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2133 return return_status;
2136 static void cciss_geometry_inquiry(int ctlr, int logvol,
2137 int withirq, sector_t total_size,
2138 unsigned int block_size,
2139 InquiryData_struct *inq_buff,
2140 drive_info_struct *drv)
2145 memset(inq_buff, 0, sizeof(InquiryData_struct));
2147 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2148 inq_buff, sizeof(*inq_buff), 1,
2149 logvol, 0xC1, TYPE_CMD);
2151 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2152 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2154 if (return_code == IO_OK) {
2155 if (inq_buff->data_byte[8] == 0xFF) {
2157 "cciss: reading geometry failed, volume "
2158 "does not support reading geometry\n");
2160 drv->sectors = 32; // Sectors per track
2161 drv->cylinders = total_size + 1;
2162 drv->raid_level = RAID_UNKNOWN;
2164 drv->heads = inq_buff->data_byte[6];
2165 drv->sectors = inq_buff->data_byte[7];
2166 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2167 drv->cylinders += inq_buff->data_byte[5];
2168 drv->raid_level = inq_buff->data_byte[8];
2170 drv->block_size = block_size;
2171 drv->nr_blocks = total_size + 1;
2172 t = drv->heads * drv->sectors;
2174 sector_t real_size = total_size + 1;
2175 unsigned long rem = sector_div(real_size, t);
2178 drv->cylinders = real_size;
2180 } else { /* Get geometry failed */
2181 printk(KERN_WARNING "cciss: reading geometry failed\n");
2183 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2184 drv->heads, drv->sectors, drv->cylinders);
2188 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2189 unsigned int *block_size)
2191 ReadCapdata_struct *buf;
2194 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2196 printk(KERN_WARNING "cciss: out of memory\n");
2201 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2202 ctlr, buf, sizeof(ReadCapdata_struct),
2203 1, logvol, 0, TYPE_CMD);
2205 return_code = sendcmd(CCISS_READ_CAPACITY,
2206 ctlr, buf, sizeof(ReadCapdata_struct),
2207 1, logvol, 0, NULL, TYPE_CMD);
2208 if (return_code == IO_OK) {
2209 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2210 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2211 } else { /* read capacity command failed */
2212 printk(KERN_WARNING "cciss: read capacity failed\n");
2214 *block_size = BLOCK_SIZE;
2216 if (*total_size != 0)
2217 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2218 (unsigned long long)*total_size+1, *block_size);
2223 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2225 ReadCapdata_struct_16 *buf;
2228 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2230 printk(KERN_WARNING "cciss: out of memory\n");
2235 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2236 ctlr, buf, sizeof(ReadCapdata_struct_16),
2237 1, logvol, 0, TYPE_CMD);
2240 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2241 ctlr, buf, sizeof(ReadCapdata_struct_16),
2242 1, logvol, 0, NULL, TYPE_CMD);
2244 if (return_code == IO_OK) {
2245 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2246 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2247 } else { /* read capacity command failed */
2248 printk(KERN_WARNING "cciss: read capacity failed\n");
2250 *block_size = BLOCK_SIZE;
2252 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2253 (unsigned long long)*total_size+1, *block_size);
2257 static int cciss_revalidate(struct gendisk *disk)
2259 ctlr_info_t *h = get_host(disk);
2260 drive_info_struct *drv = get_drv(disk);
2263 unsigned int block_size;
2264 sector_t total_size;
2265 InquiryData_struct *inq_buff = NULL;
2267 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2268 if (h->drv[logvol].LunID == drv->LunID) {
2277 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2278 if (inq_buff == NULL) {
2279 printk(KERN_WARNING "cciss: out of memory\n");
2282 if (h->cciss_read == CCISS_READ_10) {
2283 cciss_read_capacity(h->ctlr, logvol, 1,
2284 &total_size, &block_size);
2286 cciss_read_capacity_16(h->ctlr, logvol, 1,
2287 &total_size, &block_size);
2289 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2292 blk_queue_hardsect_size(drv->queue, drv->block_size);
2293 set_capacity(disk, drv->nr_blocks);
2300 * Wait polling for a command to complete.
2301 * The memory mapped FIFO is polled for the completion.
2302 * Used only at init time, interrupts from the HBA are disabled.
2304 static unsigned long pollcomplete(int ctlr)
2309 /* Wait (up to 20 seconds) for a command to complete */
2311 for (i = 20 * HZ; i > 0; i--) {
2312 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2313 if (done == FIFO_EMPTY)
2314 schedule_timeout_uninterruptible(1);
2318 /* Invalid address to tell caller we ran out of time */
2322 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2324 /* We get in here if sendcmd() is polling for completions
2325 and gets some command back that it wasn't expecting --
2326 something other than that which it just sent down.
2327 Ordinarily, that shouldn't happen, but it can happen when
2328 the scsi tape stuff gets into error handling mode, and
2329 starts using sendcmd() to try to abort commands and
2330 reset tape drives. In that case, sendcmd may pick up
2331 completions of commands that were sent to logical drives
2332 through the block i/o system, or cciss ioctls completing, etc.
2333 In that case, we need to save those completions for later
2334 processing by the interrupt handler.
2337 #ifdef CONFIG_CISS_SCSI_TAPE
2338 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2340 /* If it's not the scsi tape stuff doing error handling, (abort */
2341 /* or reset) then we don't expect anything weird. */
2342 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2344 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2345 "Invalid command list address returned! (%lx)\n",
2347 /* not much we can do. */
2348 #ifdef CONFIG_CISS_SCSI_TAPE
2352 /* We've sent down an abort or reset, but something else
2354 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2355 /* Uh oh. No room to save it for later... */
2356 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2357 "reject list overflow, command lost!\n", ctlr);
2360 /* Save it for later */
2361 srl->complete[srl->ncompletions] = complete;
2362 srl->ncompletions++;
2368 * Send a command to the controller, and wait for it to complete.
2369 * Only used at init time.
2371 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2372 1: address logical volume log_unit,
2373 2: periph device address is scsi3addr */
2374 unsigned int log_unit,
2375 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2377 CommandList_struct *c;
2379 unsigned long complete;
2380 ctlr_info_t *info_p = hba[ctlr];
2381 u64bit buff_dma_handle;
2382 int status, done = 0;
2384 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2385 printk(KERN_WARNING "cciss: unable to get memory");
2388 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2389 log_unit, page_code, scsi3addr, cmd_type);
2390 if (status != IO_OK) {
2391 cmd_free(info_p, c, 1);
2399 printk(KERN_DEBUG "cciss: turning intr off\n");
2400 #endif /* CCISS_DEBUG */
2401 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2403 /* Make sure there is room in the command FIFO */
2404 /* Actually it should be completely empty at this time */
2405 /* unless we are in here doing error handling for the scsi */
2406 /* tape side of the driver. */
2407 for (i = 200000; i > 0; i--) {
2408 /* if fifo isn't full go */
2409 if (!(info_p->access.fifo_full(info_p))) {
2414 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2415 " waiting!\n", ctlr);
2420 info_p->access.submit_command(info_p, c);
2423 complete = pollcomplete(ctlr);
2426 printk(KERN_DEBUG "cciss: command completed\n");
2427 #endif /* CCISS_DEBUG */
2429 if (complete == 1) {
2431 "cciss cciss%d: SendCmd Timeout out, "
2432 "No command list address returned!\n", ctlr);
2438 /* This will need to change for direct lookup completions */
2439 if ((complete & CISS_ERROR_BIT)
2440 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2441 /* if data overrun or underun on Report command
2444 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2445 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2446 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2447 ((c->err_info->CommandStatus ==
2448 CMD_DATA_OVERRUN) ||
2449 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2451 complete = c->busaddr;
2453 if (c->err_info->CommandStatus ==
2454 CMD_UNSOLICITED_ABORT) {
2455 printk(KERN_WARNING "cciss%d: "
2456 "unsolicited abort %p\n",
2458 if (c->retry_count < MAX_CMD_RETRIES) {
2460 "cciss%d: retrying %p\n",
2463 /* erase the old error */
2465 memset(c->err_info, 0,
2467 (ErrorInfo_struct));
2471 "cciss%d: retried %p too "
2472 "many times\n", ctlr, c);
2476 } else if (c->err_info->CommandStatus ==
2479 "cciss%d: command could not be aborted.\n",
2484 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2485 " Error %x \n", ctlr,
2486 c->err_info->CommandStatus);
2487 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2489 " size %x\n num %x value %x\n",
2491 c->err_info->MoreErrInfo.Invalid_Cmd.
2493 c->err_info->MoreErrInfo.Invalid_Cmd.
2495 c->err_info->MoreErrInfo.Invalid_Cmd.
2501 /* This will need changing for direct lookup completions */
2502 if (complete != c->busaddr) {
2503 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2504 BUG(); /* we are pretty much hosed if we get here. */
2512 /* unlock the data buffer from DMA */
2513 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2514 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2515 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2516 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2517 #ifdef CONFIG_CISS_SCSI_TAPE
2518 /* if we saved some commands for later, process them now. */
2519 if (info_p->scsi_rejects.ncompletions > 0)
2520 do_cciss_intr(0, info_p);
2522 cmd_free(info_p, c, 1);
2527 * Map (physical) PCI mem into (virtual) kernel space
2529 static void __iomem *remap_pci_mem(ulong base, ulong size)
2531 ulong page_base = ((ulong) base) & PAGE_MASK;
2532 ulong page_offs = ((ulong) base) - page_base;
2533 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2535 return page_remapped ? (page_remapped + page_offs) : NULL;
2539 * Takes jobs of the Q and sends them to the hardware, then puts it on
2540 * the Q to wait for completion.
2542 static void start_io(ctlr_info_t *h)
2544 CommandList_struct *c;
2546 while ((c = h->reqQ) != NULL) {
2547 /* can't do anything if fifo is full */
2548 if ((h->access.fifo_full(h))) {
2549 printk(KERN_WARNING "cciss: fifo full\n");
2553 /* Get the first entry from the Request Q */
2554 removeQ(&(h->reqQ), c);
2557 /* Tell the controller execute command */
2558 h->access.submit_command(h, c);
2560 /* Put job onto the completed Q */
2561 addQ(&(h->cmpQ), c);
2565 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2566 /* Zeros out the error record and then resends the command back */
2567 /* to the controller */
2568 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2570 /* erase the old error information */
2571 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2573 /* add it to software queue and then send it to the controller */
2574 addQ(&(h->reqQ), c);
2576 if (h->Qdepth > h->maxQsinceinit)
2577 h->maxQsinceinit = h->Qdepth;
2582 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2583 unsigned int msg_byte, unsigned int host_byte,
2584 unsigned int driver_byte)
2586 /* inverse of macros in scsi.h */
2587 return (scsi_status_byte & 0xff) |
2588 ((msg_byte & 0xff) << 8) |
2589 ((host_byte & 0xff) << 16) |
2590 ((driver_byte & 0xff) << 24);
2593 static inline int evaluate_target_status(CommandList_struct *cmd)
2595 unsigned char sense_key;
2596 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2599 /* If we get in here, it means we got "target status", that is, scsi status */
2600 status_byte = cmd->err_info->ScsiStatus;
2601 driver_byte = DRIVER_OK;
2602 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2604 if (blk_pc_request(cmd->rq))
2605 host_byte = DID_PASSTHROUGH;
2609 error_value = make_status_bytes(status_byte, msg_byte,
2610 host_byte, driver_byte);
2612 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2613 if (!blk_pc_request(cmd->rq))
2614 printk(KERN_WARNING "cciss: cmd %p "
2615 "has SCSI Status 0x%x\n",
2616 cmd, cmd->err_info->ScsiStatus);
2620 /* check the sense key */
2621 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2622 /* no status or recovered error */
2623 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2626 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2627 if (error_value != 0)
2628 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2629 " sense key = 0x%x\n", cmd, sense_key);
2633 /* SG_IO or similar, copy sense data back */
2634 if (cmd->rq->sense) {
2635 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2636 cmd->rq->sense_len = cmd->err_info->SenseLen;
2637 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2638 cmd->rq->sense_len);
2640 cmd->rq->sense_len = 0;
2645 /* checks the status of the job and calls complete buffers to mark all
2646 * buffers for the completed job. Note that this function does not need
2647 * to hold the hba/queue lock.
2649 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2653 struct request *rq = cmd->rq;
2658 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2660 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2661 goto after_error_processing;
2663 switch (cmd->err_info->CommandStatus) {
2664 case CMD_TARGET_STATUS:
2665 rq->errors = evaluate_target_status(cmd);
2667 case CMD_DATA_UNDERRUN:
2668 if (blk_fs_request(cmd->rq)) {
2669 printk(KERN_WARNING "cciss: cmd %p has"
2670 " completed with data underrun "
2672 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2675 case CMD_DATA_OVERRUN:
2676 if (blk_fs_request(cmd->rq))
2677 printk(KERN_WARNING "cciss: cmd %p has"
2678 " completed with data overrun "
2682 printk(KERN_WARNING "cciss: cmd %p is "
2683 "reported invalid\n", cmd);
2684 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2685 cmd->err_info->CommandStatus, DRIVER_OK,
2686 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2688 case CMD_PROTOCOL_ERR:
2689 printk(KERN_WARNING "cciss: cmd %p has "
2690 "protocol error \n", cmd);
2691 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2692 cmd->err_info->CommandStatus, DRIVER_OK,
2693 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2695 case CMD_HARDWARE_ERR:
2696 printk(KERN_WARNING "cciss: cmd %p had "
2697 " hardware error\n", cmd);
2698 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2699 cmd->err_info->CommandStatus, DRIVER_OK,
2700 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2702 case CMD_CONNECTION_LOST:
2703 printk(KERN_WARNING "cciss: cmd %p had "
2704 "connection lost\n", cmd);
2705 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2706 cmd->err_info->CommandStatus, DRIVER_OK,
2707 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2710 printk(KERN_WARNING "cciss: cmd %p was "
2712 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2713 cmd->err_info->CommandStatus, DRIVER_OK,
2714 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2716 case CMD_ABORT_FAILED:
2717 printk(KERN_WARNING "cciss: cmd %p reports "
2718 "abort failed\n", cmd);
2719 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2720 cmd->err_info->CommandStatus, DRIVER_OK,
2721 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2723 case CMD_UNSOLICITED_ABORT:
2724 printk(KERN_WARNING "cciss%d: unsolicited "
2725 "abort %p\n", h->ctlr, cmd);
2726 if (cmd->retry_count < MAX_CMD_RETRIES) {
2729 "cciss%d: retrying %p\n", h->ctlr, cmd);
2733 "cciss%d: %p retried too "
2734 "many times\n", h->ctlr, cmd);
2735 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2736 cmd->err_info->CommandStatus, DRIVER_OK,
2737 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2740 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2741 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2742 cmd->err_info->CommandStatus, DRIVER_OK,
2743 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2746 printk(KERN_WARNING "cciss: cmd %p returned "
2747 "unknown status %x\n", cmd,
2748 cmd->err_info->CommandStatus);
2749 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2750 cmd->err_info->CommandStatus, DRIVER_OK,
2751 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2754 after_error_processing:
2756 /* We need to return this command */
2758 resend_cciss_cmd(h, cmd);
2761 cmd->rq->completion_data = cmd;
2762 blk_complete_request(cmd->rq);
2766 * Get a request and submit it to the controller.
2768 static void do_cciss_request(struct request_queue *q)
2770 ctlr_info_t *h = q->queuedata;
2771 CommandList_struct *c;
2774 struct request *creq;
2776 struct scatterlist tmp_sg[MAXSGENTRIES];
2777 drive_info_struct *drv;
2780 /* We call start_io here in case there is a command waiting on the
2781 * queue that has not been sent.
2783 if (blk_queue_plugged(q))
2787 creq = elv_next_request(q);
2791 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2793 if ((c = cmd_alloc(h, 1)) == NULL)
2796 blkdev_dequeue_request(creq);
2798 spin_unlock_irq(q->queue_lock);
2800 c->cmd_type = CMD_RWREQ;
2803 /* fill in the request */
2804 drv = creq->rq_disk->private_data;
2805 c->Header.ReplyQueue = 0; // unused in simple mode
2806 /* got command from pool, so use the command block index instead */
2807 /* for direct lookups. */
2808 /* The first 2 bits are reserved for controller error reporting. */
2809 c->Header.Tag.lower = (c->cmdindex << 3);
2810 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2811 c->Header.LUN.LogDev.VolId = drv->LunID;
2812 c->Header.LUN.LogDev.Mode = 1;
2813 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2814 c->Request.Type.Type = TYPE_CMD; // It is a command.
2815 c->Request.Type.Attribute = ATTR_SIMPLE;
2816 c->Request.Type.Direction =
2817 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2818 c->Request.Timeout = 0; // Don't time out
2820 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2821 start_blk = creq->sector;
2823 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2824 (int)creq->nr_sectors);
2825 #endif /* CCISS_DEBUG */
2827 sg_init_table(tmp_sg, MAXSGENTRIES);
2828 seg = blk_rq_map_sg(q, creq, tmp_sg);
2830 /* get the DMA records for the setup */
2831 if (c->Request.Type.Direction == XFER_READ)
2832 dir = PCI_DMA_FROMDEVICE;
2834 dir = PCI_DMA_TODEVICE;
2836 for (i = 0; i < seg; i++) {
2837 c->SG[i].Len = tmp_sg[i].length;
2838 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2840 tmp_sg[i].length, dir);
2841 c->SG[i].Addr.lower = temp64.val32.lower;
2842 c->SG[i].Addr.upper = temp64.val32.upper;
2843 c->SG[i].Ext = 0; // we are not chaining
2845 /* track how many SG entries we are using */
2850 printk(KERN_DEBUG "cciss: Submitting %lu sectors in %d segments\n",
2851 creq->nr_sectors, seg);
2852 #endif /* CCISS_DEBUG */
2854 c->Header.SGList = c->Header.SGTotal = seg;
2855 if (likely(blk_fs_request(creq))) {
2856 if(h->cciss_read == CCISS_READ_10) {
2857 c->Request.CDB[1] = 0;
2858 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2859 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2860 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2861 c->Request.CDB[5] = start_blk & 0xff;
2862 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2863 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2864 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2865 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2867 u32 upper32 = upper_32_bits(start_blk);
2869 c->Request.CDBLen = 16;
2870 c->Request.CDB[1]= 0;
2871 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2872 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2873 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2874 c->Request.CDB[5]= upper32 & 0xff;
2875 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2876 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2877 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2878 c->Request.CDB[9]= start_blk & 0xff;
2879 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2880 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2881 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2882 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2883 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2885 } else if (blk_pc_request(creq)) {
2886 c->Request.CDBLen = creq->cmd_len;
2887 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2889 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2893 spin_lock_irq(q->queue_lock);
2895 addQ(&(h->reqQ), c);
2897 if (h->Qdepth > h->maxQsinceinit)
2898 h->maxQsinceinit = h->Qdepth;
2904 /* We will already have the driver lock here so not need
2910 static inline unsigned long get_next_completion(ctlr_info_t *h)
2912 #ifdef CONFIG_CISS_SCSI_TAPE
2913 /* Any rejects from sendcmd() lying around? Process them first */
2914 if (h->scsi_rejects.ncompletions == 0)
2915 return h->access.command_completed(h);
2917 struct sendcmd_reject_list *srl;
2919 srl = &h->scsi_rejects;
2920 n = --srl->ncompletions;
2921 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2923 return srl->complete[n];
2926 return h->access.command_completed(h);
2930 static inline int interrupt_pending(ctlr_info_t *h)
2932 #ifdef CONFIG_CISS_SCSI_TAPE
2933 return (h->access.intr_pending(h)
2934 || (h->scsi_rejects.ncompletions > 0));
2936 return h->access.intr_pending(h);
2940 static inline long interrupt_not_for_us(ctlr_info_t *h)
2942 #ifdef CONFIG_CISS_SCSI_TAPE
2943 return (((h->access.intr_pending(h) == 0) ||
2944 (h->interrupts_enabled == 0))
2945 && (h->scsi_rejects.ncompletions == 0));
2947 return (((h->access.intr_pending(h) == 0) ||
2948 (h->interrupts_enabled == 0)));
2952 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2954 ctlr_info_t *h = dev_id;
2955 CommandList_struct *c;
2956 unsigned long flags;
2959 if (interrupt_not_for_us(h))
2962 * If there are completed commands in the completion queue,
2963 * we had better do something about it.
2965 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2966 while (interrupt_pending(h)) {
2967 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2971 if (a2 >= h->nr_cmds) {
2973 "cciss: controller cciss%d failed, stopping.\n",
2975 fail_all_cmds(h->ctlr);
2979 c = h->cmd_pool + a2;
2984 if ((c = h->cmpQ) == NULL) {
2986 "cciss: Completion of %08x ignored\n",
2990 while (c->busaddr != a) {
2997 * If we've found the command, take it off the
2998 * completion Q and free it
3000 if (c->busaddr == a) {
3001 removeQ(&h->cmpQ, c);
3002 if (c->cmd_type == CMD_RWREQ) {
3003 complete_command(h, c, 0);
3004 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3005 complete(c->waiting);
3007 # ifdef CONFIG_CISS_SCSI_TAPE
3008 else if (c->cmd_type == CMD_SCSI)
3009 complete_scsi_command(c, 0, a1);
3016 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3021 * We cannot read the structure directly, for portability we must use
3023 * This is for debug only.
3026 static void print_cfg_table(CfgTable_struct *tb)
3031 printk("Controller Configuration information\n");
3032 printk("------------------------------------\n");
3033 for (i = 0; i < 4; i++)
3034 temp_name[i] = readb(&(tb->Signature[i]));
3035 temp_name[4] = '\0';
3036 printk(" Signature = %s\n", temp_name);
3037 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3038 printk(" Transport methods supported = 0x%x\n",
3039 readl(&(tb->TransportSupport)));
3040 printk(" Transport methods active = 0x%x\n",
3041 readl(&(tb->TransportActive)));
3042 printk(" Requested transport Method = 0x%x\n",
3043 readl(&(tb->HostWrite.TransportRequest)));
3044 printk(" Coalesce Interrupt Delay = 0x%x\n",
3045 readl(&(tb->HostWrite.CoalIntDelay)));
3046 printk(" Coalesce Interrupt Count = 0x%x\n",
3047 readl(&(tb->HostWrite.CoalIntCount)));
3048 printk(" Max outstanding commands = 0x%d\n",
3049 readl(&(tb->CmdsOutMax)));
3050 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3051 for (i = 0; i < 16; i++)
3052 temp_name[i] = readb(&(tb->ServerName[i]));
3053 temp_name[16] = '\0';
3054 printk(" Server Name = %s\n", temp_name);
3055 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3057 #endif /* CCISS_DEBUG */
3059 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3061 int i, offset, mem_type, bar_type;
3062 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3065 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3066 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3067 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3070 mem_type = pci_resource_flags(pdev, i) &
3071 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3073 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3074 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3075 offset += 4; /* 32 bit */
3077 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3080 default: /* reserved in PCI 2.2 */
3082 "Base address is invalid\n");
3087 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3093 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3094 * controllers that are capable. If not, we use IO-APIC mode.
3097 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3098 struct pci_dev *pdev, __u32 board_id)
3100 #ifdef CONFIG_PCI_MSI
3102 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3106 /* Some boards advertise MSI but don't really support it */
3107 if ((board_id == 0x40700E11) ||
3108 (board_id == 0x40800E11) ||
3109 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3110 goto default_int_mode;
3112 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3113 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3115 c->intr[0] = cciss_msix_entries[0].vector;
3116 c->intr[1] = cciss_msix_entries[1].vector;
3117 c->intr[2] = cciss_msix_entries[2].vector;
3118 c->intr[3] = cciss_msix_entries[3].vector;
3123 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3124 "available\n", err);
3125 goto default_int_mode;
3127 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3129 goto default_int_mode;
3132 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3133 if (!pci_enable_msi(pdev)) {
3136 printk(KERN_WARNING "cciss: MSI init failed\n");
3140 #endif /* CONFIG_PCI_MSI */
3141 /* if we get here we're going to use the default interrupt mode */
3142 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3146 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3148 ushort subsystem_vendor_id, subsystem_device_id, command;
3149 __u32 board_id, scratchpad = 0;
3151 __u32 cfg_base_addr;
3152 __u64 cfg_base_addr_index;
3155 /* check to see if controller has been disabled */
3156 /* BEFORE trying to enable it */
3157 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3158 if (!(command & 0x02)) {
3160 "cciss: controller appears to be disabled\n");
3164 err = pci_enable_device(pdev);
3166 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3170 err = pci_request_regions(pdev, "cciss");
3172 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3177 subsystem_vendor_id = pdev->subsystem_vendor;
3178 subsystem_device_id = pdev->subsystem_device;
3179 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3180 subsystem_vendor_id);
3183 printk("command = %x\n", command);
3184 printk("irq = %x\n", pdev->irq);
3185 printk("board_id = %x\n", board_id);
3186 #endif /* CCISS_DEBUG */
3188 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3189 * else we use the IO-APIC interrupt assigned to us by system ROM.
3191 cciss_interrupt_mode(c, pdev, board_id);
3194 * Memory base addr is first addr , the second points to the config
3198 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3200 printk("address 0 = %lx\n", c->paddr);
3201 #endif /* CCISS_DEBUG */
3202 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3204 /* Wait for the board to become ready. (PCI hotplug needs this.)
3205 * We poll for up to 120 secs, once per 100ms. */
3206 for (i = 0; i < 1200; i++) {
3207 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3208 if (scratchpad == CCISS_FIRMWARE_READY)
3210 set_current_state(TASK_INTERRUPTIBLE);
3211 schedule_timeout(HZ / 10); /* wait 100ms */
3213 if (scratchpad != CCISS_FIRMWARE_READY) {
3214 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3216 goto err_out_free_res;
3219 /* get the address index number */
3220 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3221 cfg_base_addr &= (__u32) 0x0000ffff;
3223 printk("cfg base address = %x\n", cfg_base_addr);
3224 #endif /* CCISS_DEBUG */
3225 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3227 printk("cfg base address index = %llx\n",
3228 (unsigned long long)cfg_base_addr_index);
3229 #endif /* CCISS_DEBUG */
3230 if (cfg_base_addr_index == -1) {
3231 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3233 goto err_out_free_res;
3236 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3238 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3239 #endif /* CCISS_DEBUG */
3240 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3241 cfg_base_addr_index) +
3242 cfg_offset, sizeof(CfgTable_struct));
3243 c->board_id = board_id;
3246 print_cfg_table(c->cfgtable);
3247 #endif /* CCISS_DEBUG */
3249 /* Some controllers support Zero Memory Raid (ZMR).
3250 * When configured in ZMR mode the number of supported
3251 * commands drops to 64. So instead of just setting an
3252 * arbitrary value we make the driver a little smarter.
3253 * We read the config table to tell us how many commands
3254 * are supported on the controller then subtract 4 to
3255 * leave a little room for ioctl calls.
3257 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3258 for (i = 0; i < ARRAY_SIZE(products); i++) {
3259 if (board_id == products[i].board_id) {
3260 c->product_name = products[i].product_name;
3261 c->access = *(products[i].access);
3262 c->nr_cmds = c->max_commands - 4;
3266 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3267 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3268 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3269 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3270 printk("Does not appear to be a valid CISS config table\n");
3272 goto err_out_free_res;
3274 /* We didn't find the controller in our list. We know the
3275 * signature is valid. If it's an HP device let's try to
3276 * bind to the device and fire it up. Otherwise we bail.
3278 if (i == ARRAY_SIZE(products)) {
3279 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3280 c->product_name = products[i-1].product_name;
3281 c->access = *(products[i-1].access);
3282 c->nr_cmds = c->max_commands - 4;
3283 printk(KERN_WARNING "cciss: This is an unknown "
3284 "Smart Array controller.\n"
3285 "cciss: Please update to the latest driver "
3286 "available from www.hp.com.\n");
3288 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3289 " to access the Smart Array controller %08lx\n"
3290 , (unsigned long)board_id);
3292 goto err_out_free_res;
3297 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3299 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3301 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3305 /* Disabling DMA prefetch and refetch for the P600.
3306 * An ASIC bug may result in accesses to invalid memory addresses.
3307 * We've disabled prefetch for some time now. Testing with XEN
3308 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3310 if(board_id == 0x3225103C) {
3313 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3314 dma_prefetch |= 0x8000;
3315 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3316 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3318 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3322 printk("Trying to put board into Simple mode\n");
3323 #endif /* CCISS_DEBUG */
3324 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3325 /* Update the field, and then ring the doorbell */
3326 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3327 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3329 /* under certain very rare conditions, this can take awhile.
3330 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3331 * as we enter this code.) */
3332 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3333 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3335 /* delay and try again */
3336 set_current_state(TASK_INTERRUPTIBLE);
3337 schedule_timeout(10);
3341 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3342 readl(c->vaddr + SA5_DOORBELL));
3343 #endif /* CCISS_DEBUG */
3345 print_cfg_table(c->cfgtable);
3346 #endif /* CCISS_DEBUG */
3348 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3349 printk(KERN_WARNING "cciss: unable to get board into"
3352 goto err_out_free_res;
3358 * Deliberately omit pci_disable_device(): it does something nasty to
3359 * Smart Array controllers that pci_enable_device does not undo
3361 pci_release_regions(pdev);
3365 /* Function to find the first free pointer into our hba[] array
3366 * Returns -1 if no free entries are left.
3368 static int alloc_cciss_hba(void)
3372 for (i = 0; i < MAX_CTLR; i++) {
3376 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3383 printk(KERN_WARNING "cciss: This driver supports a maximum"
3384 " of %d controllers.\n", MAX_CTLR);
3387 printk(KERN_ERR "cciss: out of memory.\n");
3391 static void free_hba(int i)
3393 ctlr_info_t *p = hba[i];
3397 for (n = 0; n < CISS_MAX_LUN; n++)
3398 put_disk(p->gendisk[n]);
3403 * This is it. Find all the controllers and register them. I really hate
3404 * stealing all these major device numbers.
3405 * returns the number of block devices registered.
3407 static int __devinit cciss_init_one(struct pci_dev *pdev,
3408 const struct pci_device_id *ent)
3413 int dac, return_code;
3414 InquiryData_struct *inq_buff = NULL;
3416 i = alloc_cciss_hba();
3420 hba[i]->busy_initializing = 1;
3422 if (cciss_pci_init(hba[i], pdev) != 0)
3425 sprintf(hba[i]->devname, "cciss%d", i);
3427 hba[i]->pdev = pdev;
3429 /* configure PCI DMA stuff */
3430 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3432 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3435 printk(KERN_ERR "cciss: no suitable DMA available\n");
3440 * register with the major number, or get a dynamic major number
3441 * by passing 0 as argument. This is done for greater than
3442 * 8 controller support.
3444 if (i < MAX_CTLR_ORIG)
3445 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3446 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3447 if (rc == -EBUSY || rc == -EINVAL) {
3449 "cciss: Unable to get major number %d for %s "
3450 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3453 if (i >= MAX_CTLR_ORIG)
3457 /* make sure the board interrupts are off */
3458 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3459 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3460 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3461 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3462 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3466 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3467 hba[i]->devname, pdev->device, pci_name(pdev),
3468 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3470 hba[i]->cmd_pool_bits =
3471 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3472 * sizeof(unsigned long), GFP_KERNEL);
3473 hba[i]->cmd_pool = (CommandList_struct *)
3474 pci_alloc_consistent(hba[i]->pdev,
3475 hba[i]->nr_cmds * sizeof(CommandList_struct),
3476 &(hba[i]->cmd_pool_dhandle));
3477 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3478 pci_alloc_consistent(hba[i]->pdev,
3479 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3480 &(hba[i]->errinfo_pool_dhandle));
3481 if ((hba[i]->cmd_pool_bits == NULL)
3482 || (hba[i]->cmd_pool == NULL)
3483 || (hba[i]->errinfo_pool == NULL)) {
3484 printk(KERN_ERR "cciss: out of memory");
3487 #ifdef CONFIG_CISS_SCSI_TAPE
3488 hba[i]->scsi_rejects.complete =
3489 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3490 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3491 if (hba[i]->scsi_rejects.complete == NULL) {
3492 printk(KERN_ERR "cciss: out of memory");
3496 spin_lock_init(&hba[i]->lock);
3498 /* Initialize the pdev driver private data.
3499 have it point to hba[i]. */
3500 pci_set_drvdata(pdev, hba[i]);
3501 /* command and error info recs zeroed out before
3503 memset(hba[i]->cmd_pool_bits, 0,
3504 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3505 * sizeof(unsigned long));
3507 hba[i]->num_luns = 0;
3508 hba[i]->highest_lun = -1;
3509 for (j = 0; j < CISS_MAX_LUN; j++) {
3510 hba[i]->drv[j].raid_level = -1;
3511 hba[i]->drv[j].queue = NULL;
3512 hba[i]->gendisk[j] = NULL;
3515 cciss_scsi_setup(i);
3517 /* Turn the interrupts on so we can service requests */
3518 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3520 /* Get the firmware version */
3521 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3522 if (inq_buff == NULL) {
3523 printk(KERN_ERR "cciss: out of memory\n");
3527 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
3528 sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD);
3529 if (return_code == IO_OK) {
3530 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
3531 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
3532 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
3533 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
3534 } else { /* send command failed */
3535 printk(KERN_WARNING "cciss: unable to determine firmware"
3536 " version of controller\n");
3541 hba[i]->cciss_max_sectors = 2048;
3543 hba[i]->busy_initializing = 0;
3545 rebuild_lun_table(hba[i], 1);
3550 #ifdef CONFIG_CISS_SCSI_TAPE
3551 kfree(hba[i]->scsi_rejects.complete);
3553 kfree(hba[i]->cmd_pool_bits);
3554 if (hba[i]->cmd_pool)
3555 pci_free_consistent(hba[i]->pdev,
3556 hba[i]->nr_cmds * sizeof(CommandList_struct),
3557 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3558 if (hba[i]->errinfo_pool)
3559 pci_free_consistent(hba[i]->pdev,
3560 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3561 hba[i]->errinfo_pool,
3562 hba[i]->errinfo_pool_dhandle);
3563 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3565 unregister_blkdev(hba[i]->major, hba[i]->devname);
3567 hba[i]->busy_initializing = 0;
3568 /* cleanup any queues that may have been initialized */
3569 for (j=0; j <= hba[i]->highest_lun; j++){
3570 drive_info_struct *drv = &(hba[i]->drv[j]);
3572 blk_cleanup_queue(drv->queue);
3575 * Deliberately omit pci_disable_device(): it does something nasty to
3576 * Smart Array controllers that pci_enable_device does not undo
3578 pci_release_regions(pdev);
3579 pci_set_drvdata(pdev, NULL);
3584 static void cciss_shutdown(struct pci_dev *pdev)
3586 ctlr_info_t *tmp_ptr;
3591 tmp_ptr = pci_get_drvdata(pdev);
3592 if (tmp_ptr == NULL)
3598 /* Turn board interrupts off and send the flush cache command */
3599 /* sendcmd will turn off interrupt, and send the flush...
3600 * To write all data in the battery backed cache to disks */
3601 memset(flush_buf, 0, 4);
3602 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3604 if (return_code == IO_OK) {
3605 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3607 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3609 free_irq(hba[i]->intr[2], hba[i]);
3612 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3614 ctlr_info_t *tmp_ptr;
3617 if (pci_get_drvdata(pdev) == NULL) {
3618 printk(KERN_ERR "cciss: Unable to remove device \n");
3621 tmp_ptr = pci_get_drvdata(pdev);
3623 if (hba[i] == NULL) {
3624 printk(KERN_ERR "cciss: device appears to "
3625 "already be removed \n");
3629 remove_proc_entry(hba[i]->devname, proc_cciss);
3630 unregister_blkdev(hba[i]->major, hba[i]->devname);
3632 /* remove it from the disk list */
3633 for (j = 0; j < CISS_MAX_LUN; j++) {
3634 struct gendisk *disk = hba[i]->gendisk[j];
3636 struct request_queue *q = disk->queue;
3638 if (disk->flags & GENHD_FL_UP)
3641 blk_cleanup_queue(q);
3645 #ifdef CONFIG_CISS_SCSI_TAPE
3646 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3649 cciss_shutdown(pdev);
3651 #ifdef CONFIG_PCI_MSI
3652 if (hba[i]->msix_vector)
3653 pci_disable_msix(hba[i]->pdev);
3654 else if (hba[i]->msi_vector)
3655 pci_disable_msi(hba[i]->pdev);
3656 #endif /* CONFIG_PCI_MSI */
3658 iounmap(hba[i]->vaddr);
3660 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3661 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3662 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3663 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3664 kfree(hba[i]->cmd_pool_bits);
3665 #ifdef CONFIG_CISS_SCSI_TAPE
3666 kfree(hba[i]->scsi_rejects.complete);
3669 * Deliberately omit pci_disable_device(): it does something nasty to
3670 * Smart Array controllers that pci_enable_device does not undo
3672 pci_release_regions(pdev);
3673 pci_set_drvdata(pdev, NULL);
3677 static struct pci_driver cciss_pci_driver = {
3679 .probe = cciss_init_one,
3680 .remove = __devexit_p(cciss_remove_one),
3681 .id_table = cciss_pci_device_id, /* id_table */
3682 .shutdown = cciss_shutdown,
3686 * This is it. Register the PCI driver information for the cards we control
3687 * the OS will call our registered routines when it finds one of our cards.
3689 static int __init cciss_init(void)
3691 printk(KERN_INFO DRIVER_NAME "\n");
3693 /* Register for our PCI devices */
3694 return pci_register_driver(&cciss_pci_driver);
3697 static void __exit cciss_cleanup(void)
3701 pci_unregister_driver(&cciss_pci_driver);
3702 /* double check that all controller entrys have been removed */
3703 for (i = 0; i < MAX_CTLR; i++) {
3704 if (hba[i] != NULL) {
3705 printk(KERN_WARNING "cciss: had to remove"
3706 " controller %d\n", i);
3707 cciss_remove_one(hba[i]->pdev);
3710 remove_proc_entry("driver/cciss", NULL);
3713 static void fail_all_cmds(unsigned long ctlr)
3715 /* If we get here, the board is apparently dead. */
3716 ctlr_info_t *h = hba[ctlr];
3717 CommandList_struct *c;
3718 unsigned long flags;
3720 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3721 h->alive = 0; /* the controller apparently died... */
3723 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3725 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3727 /* move everything off the request queue onto the completed queue */
3728 while ((c = h->reqQ) != NULL) {
3729 removeQ(&(h->reqQ), c);
3731 addQ(&(h->cmpQ), c);
3734 /* Now, fail everything on the completed queue with a HW error */
3735 while ((c = h->cmpQ) != NULL) {
3736 removeQ(&h->cmpQ, c);
3737 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3738 if (c->cmd_type == CMD_RWREQ) {
3739 complete_command(h, c, 0);
3740 } else if (c->cmd_type == CMD_IOCTL_PEND)
3741 complete(c->waiting);
3742 #ifdef CONFIG_CISS_SCSI_TAPE
3743 else if (c->cmd_type == CMD_SCSI)
3744 complete_scsi_command(c, 0, 0);
3747 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3751 module_init(cciss_init);
3752 module_exit(cciss_cleanup);