fbdev: uninline lock_fb_info()
[linux-2.6] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct block_device_operations mm_fops;
144 static struct timer_list battery_timer;
145
146 static int num_cards;
147
148 static struct gendisk *mm_gendisk[MM_MAXCARDS];
149
150 static void check_batteries(struct cardinfo *card);
151
152 static int get_userbit(struct cardinfo *card, int bit)
153 {
154         unsigned char led;
155
156         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
157         return led & bit;
158 }
159
160 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
161 {
162         unsigned char led;
163
164         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
165         if (state)
166                 led |= bit;
167         else
168                 led &= ~bit;
169         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
170
171         return 0;
172 }
173
174 /*
175  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
176  */
177 static void set_led(struct cardinfo *card, int shift, unsigned char state)
178 {
179         unsigned char led;
180
181         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
182         if (state == LED_FLIP)
183                 led ^= (1<<shift);
184         else {
185                 led &= ~(0x03 << shift);
186                 led |= (state << shift);
187         }
188         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
189
190 }
191
192 #ifdef MM_DIAG
193 static void dump_regs(struct cardinfo *card)
194 {
195         unsigned char *p;
196         int i, i1;
197
198         p = card->csr_remap;
199         for (i = 0; i < 8; i++) {
200                 printk(KERN_DEBUG "%p   ", p);
201
202                 for (i1 = 0; i1 < 16; i1++)
203                         printk("%02x ", *p++);
204
205                 printk("\n");
206         }
207 }
208 #endif
209
210 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
211 {
212         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
213         if (dmastat & DMASCR_ANY_ERR)
214                 printk(KERN_CONT "ANY_ERR ");
215         if (dmastat & DMASCR_MBE_ERR)
216                 printk(KERN_CONT "MBE_ERR ");
217         if (dmastat & DMASCR_PARITY_ERR_REP)
218                 printk(KERN_CONT "PARITY_ERR_REP ");
219         if (dmastat & DMASCR_PARITY_ERR_DET)
220                 printk(KERN_CONT "PARITY_ERR_DET ");
221         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
222                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
223         if (dmastat & DMASCR_TARGET_ABT)
224                 printk(KERN_CONT "TARGET_ABT ");
225         if (dmastat & DMASCR_MASTER_ABT)
226                 printk(KERN_CONT "MASTER_ABT ");
227         if (dmastat & DMASCR_CHAIN_COMPLETE)
228                 printk(KERN_CONT "CHAIN_COMPLETE ");
229         if (dmastat & DMASCR_DMA_COMPLETE)
230                 printk(KERN_CONT "DMA_COMPLETE ");
231         printk("\n");
232 }
233
234 /*
235  * Theory of request handling
236  *
237  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
238  * We have two pages of mm_dma_desc, holding about 64 descriptors
239  * each.  These are allocated at init time.
240  * One page is "Ready" and is either full, or can have request added.
241  * The other page might be "Active", which DMA is happening on it.
242  *
243  * Whenever IO on the active page completes, the Ready page is activated
244  * and the ex-Active page is clean out and made Ready.
245  * Otherwise the Ready page is only activated when it becomes full, or
246  * when mm_unplug_device is called via the unplug_io_fn.
247  *
248  * If a request arrives while both pages a full, it is queued, and b_rdev is
249  * overloaded to record whether it was a read or a write.
250  *
251  * The interrupt handler only polls the device to clear the interrupt.
252  * The processing of the result is done in a tasklet.
253  */
254
255 static void mm_start_io(struct cardinfo *card)
256 {
257         /* we have the lock, we know there is
258          * no IO active, and we know that card->Active
259          * is set
260          */
261         struct mm_dma_desc *desc;
262         struct mm_page *page;
263         int offset;
264
265         /* make the last descriptor end the chain */
266         page = &card->mm_pages[card->Active];
267         pr_debug("start_io: %d %d->%d\n",
268                 card->Active, page->headcnt, page->cnt - 1);
269         desc = &page->desc[page->cnt-1];
270
271         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
272         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
273         desc->sem_control_bits = desc->control_bits;
274
275
276         if (debug & DEBUG_LED_ON_TRANSFER)
277                 set_led(card, LED_REMOVE, LED_ON);
278
279         desc = &page->desc[page->headcnt];
280         writel(0, card->csr_remap + DMA_PCI_ADDR);
281         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
282
283         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
284         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
285
286         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
287         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
288
289         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
290         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
291
292         offset = ((char *)desc) - ((char *)page->desc);
293         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
294                card->csr_remap + DMA_DESCRIPTOR_ADDR);
295         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
296          * and on some ports will do nothing ! */
297         writel(cpu_to_le32(((u64)page->page_dma)>>32),
298                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
299
300         /* Go, go, go */
301         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
302                card->csr_remap + DMA_STATUS_CTRL);
303 }
304
305 static int add_bio(struct cardinfo *card);
306
307 static void activate(struct cardinfo *card)
308 {
309         /* if No page is Active, and Ready is
310          * not empty, then switch Ready page
311          * to active and start IO.
312          * Then add any bh's that are available to Ready
313          */
314
315         do {
316                 while (add_bio(card))
317                         ;
318
319                 if (card->Active == -1 &&
320                     card->mm_pages[card->Ready].cnt > 0) {
321                         card->Active = card->Ready;
322                         card->Ready = 1-card->Ready;
323                         mm_start_io(card);
324                 }
325
326         } while (card->Active == -1 && add_bio(card));
327 }
328
329 static inline void reset_page(struct mm_page *page)
330 {
331         page->cnt = 0;
332         page->headcnt = 0;
333         page->bio = NULL;
334         page->biotail = &page->bio;
335 }
336
337 static void mm_unplug_device(struct request_queue *q)
338 {
339         struct cardinfo *card = q->queuedata;
340         unsigned long flags;
341
342         spin_lock_irqsave(&card->lock, flags);
343         if (blk_remove_plug(q))
344                 activate(card);
345         spin_unlock_irqrestore(&card->lock, flags);
346 }
347
348 /*
349  * If there is room on Ready page, take
350  * one bh off list and add it.
351  * return 1 if there was room, else 0.
352  */
353 static int add_bio(struct cardinfo *card)
354 {
355         struct mm_page *p;
356         struct mm_dma_desc *desc;
357         dma_addr_t dma_handle;
358         int offset;
359         struct bio *bio;
360         struct bio_vec *vec;
361         int idx;
362         int rw;
363         int len;
364
365         bio = card->currentbio;
366         if (!bio && card->bio) {
367                 card->currentbio = card->bio;
368                 card->current_idx = card->bio->bi_idx;
369                 card->current_sector = card->bio->bi_sector;
370                 card->bio = card->bio->bi_next;
371                 if (card->bio == NULL)
372                         card->biotail = &card->bio;
373                 card->currentbio->bi_next = NULL;
374                 return 1;
375         }
376         if (!bio)
377                 return 0;
378         idx = card->current_idx;
379
380         rw = bio_rw(bio);
381         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
382                 return 0;
383
384         vec = bio_iovec_idx(bio, idx);
385         len = vec->bv_len;
386         dma_handle = pci_map_page(card->dev,
387                                   vec->bv_page,
388                                   vec->bv_offset,
389                                   len,
390                                   (rw == READ) ?
391                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
392
393         p = &card->mm_pages[card->Ready];
394         desc = &p->desc[p->cnt];
395         p->cnt++;
396         if (p->bio == NULL)
397                 p->idx = idx;
398         if ((p->biotail) != &bio->bi_next) {
399                 *(p->biotail) = bio;
400                 p->biotail = &(bio->bi_next);
401                 bio->bi_next = NULL;
402         }
403
404         desc->data_dma_handle = dma_handle;
405
406         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
407         desc->local_addr = cpu_to_le64(card->current_sector << 9);
408         desc->transfer_size = cpu_to_le32(len);
409         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
410         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
411         desc->zero1 = desc->zero2 = 0;
412         offset = (((char *)(desc+1)) - ((char *)p->desc));
413         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
414         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
415                                          DMASCR_PARITY_INT_EN|
416                                          DMASCR_CHAIN_EN |
417                                          DMASCR_SEM_EN |
418                                          pci_cmds);
419         if (rw == WRITE)
420                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
421         desc->sem_control_bits = desc->control_bits;
422
423         card->current_sector += (len >> 9);
424         idx++;
425         card->current_idx = idx;
426         if (idx >= bio->bi_vcnt)
427                 card->currentbio = NULL;
428
429         return 1;
430 }
431
432 static void process_page(unsigned long data)
433 {
434         /* check if any of the requests in the page are DMA_COMPLETE,
435          * and deal with them appropriately.
436          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
437          * dma must have hit an error on that descriptor, so use dma_status
438          * instead and assume that all following descriptors must be re-tried.
439          */
440         struct mm_page *page;
441         struct bio *return_bio = NULL;
442         struct cardinfo *card = (struct cardinfo *)data;
443         unsigned int dma_status = card->dma_status;
444
445         spin_lock_bh(&card->lock);
446         if (card->Active < 0)
447                 goto out_unlock;
448         page = &card->mm_pages[card->Active];
449
450         while (page->headcnt < page->cnt) {
451                 struct bio *bio = page->bio;
452                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
453                 int control = le32_to_cpu(desc->sem_control_bits);
454                 int last = 0;
455                 int idx;
456
457                 if (!(control & DMASCR_DMA_COMPLETE)) {
458                         control = dma_status;
459                         last = 1;
460                 }
461                 page->headcnt++;
462                 idx = page->idx;
463                 page->idx++;
464                 if (page->idx >= bio->bi_vcnt) {
465                         page->bio = bio->bi_next;
466                         if (page->bio)
467                                 page->idx = page->bio->bi_idx;
468                 }
469
470                 pci_unmap_page(card->dev, desc->data_dma_handle,
471                                bio_iovec_idx(bio, idx)->bv_len,
472                                  (control & DMASCR_TRANSFER_READ) ?
473                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
474                 if (control & DMASCR_HARD_ERROR) {
475                         /* error */
476                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
477                         dev_printk(KERN_WARNING, &card->dev->dev,
478                                 "I/O error on sector %d/%d\n",
479                                 le32_to_cpu(desc->local_addr)>>9,
480                                 le32_to_cpu(desc->transfer_size));
481                         dump_dmastat(card, control);
482                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
483                            le32_to_cpu(desc->local_addr) >> 9 ==
484                                 card->init_size) {
485                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
486                         if (card->init_size >> 1 >= card->mm_size) {
487                                 dev_printk(KERN_INFO, &card->dev->dev,
488                                         "memory now initialised\n");
489                                 set_userbit(card, MEMORY_INITIALIZED, 1);
490                         }
491                 }
492                 if (bio != page->bio) {
493                         bio->bi_next = return_bio;
494                         return_bio = bio;
495                 }
496
497                 if (last)
498                         break;
499         }
500
501         if (debug & DEBUG_LED_ON_TRANSFER)
502                 set_led(card, LED_REMOVE, LED_OFF);
503
504         if (card->check_batteries) {
505                 card->check_batteries = 0;
506                 check_batteries(card);
507         }
508         if (page->headcnt >= page->cnt) {
509                 reset_page(page);
510                 card->Active = -1;
511                 activate(card);
512         } else {
513                 /* haven't finished with this one yet */
514                 pr_debug("do some more\n");
515                 mm_start_io(card);
516         }
517  out_unlock:
518         spin_unlock_bh(&card->lock);
519
520         while (return_bio) {
521                 struct bio *bio = return_bio;
522
523                 return_bio = bio->bi_next;
524                 bio->bi_next = NULL;
525                 bio_endio(bio, 0);
526         }
527 }
528
529 static int mm_make_request(struct request_queue *q, struct bio *bio)
530 {
531         struct cardinfo *card = q->queuedata;
532         pr_debug("mm_make_request %llu %u\n",
533                  (unsigned long long)bio->bi_sector, bio->bi_size);
534
535         spin_lock_irq(&card->lock);
536         *card->biotail = bio;
537         bio->bi_next = NULL;
538         card->biotail = &bio->bi_next;
539         blk_plug_device(q);
540         spin_unlock_irq(&card->lock);
541
542         return 0;
543 }
544
545 static irqreturn_t mm_interrupt(int irq, void *__card)
546 {
547         struct cardinfo *card = (struct cardinfo *) __card;
548         unsigned int dma_status;
549         unsigned short cfg_status;
550
551 HW_TRACE(0x30);
552
553         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
554
555         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
556                 /* interrupt wasn't for me ... */
557                 return IRQ_NONE;
558         }
559
560         /* clear COMPLETION interrupts */
561         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
562                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
563                        card->csr_remap + DMA_STATUS_CTRL);
564         else
565                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
566                        card->csr_remap + DMA_STATUS_CTRL + 2);
567
568         /* log errors and clear interrupt status */
569         if (dma_status & DMASCR_ANY_ERR) {
570                 unsigned int    data_log1, data_log2;
571                 unsigned int    addr_log1, addr_log2;
572                 unsigned char   stat, count, syndrome, check;
573
574                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
575
576                 data_log1 = le32_to_cpu(readl(card->csr_remap +
577                                                 ERROR_DATA_LOG));
578                 data_log2 = le32_to_cpu(readl(card->csr_remap +
579                                                 ERROR_DATA_LOG + 4));
580                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
581                                                 ERROR_ADDR_LOG));
582                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
583
584                 count = readb(card->csr_remap + ERROR_COUNT);
585                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
586                 check = readb(card->csr_remap + ERROR_CHECK);
587
588                 dump_dmastat(card, dma_status);
589
590                 if (stat & 0x01)
591                         dev_printk(KERN_ERR, &card->dev->dev,
592                                 "Memory access error detected (err count %d)\n",
593                                 count);
594                 if (stat & 0x02)
595                         dev_printk(KERN_ERR, &card->dev->dev,
596                                 "Multi-bit EDC error\n");
597
598                 dev_printk(KERN_ERR, &card->dev->dev,
599                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
600                         addr_log2, addr_log1, data_log2, data_log1);
601                 dev_printk(KERN_ERR, &card->dev->dev,
602                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
603                         check, syndrome);
604
605                 writeb(0, card->csr_remap + ERROR_COUNT);
606         }
607
608         if (dma_status & DMASCR_PARITY_ERR_REP) {
609                 dev_printk(KERN_ERR, &card->dev->dev,
610                         "PARITY ERROR REPORTED\n");
611                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
612                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
613         }
614
615         if (dma_status & DMASCR_PARITY_ERR_DET) {
616                 dev_printk(KERN_ERR, &card->dev->dev,
617                         "PARITY ERROR DETECTED\n");
618                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
619                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
620         }
621
622         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
623                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
624                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
625                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
626         }
627
628         if (dma_status & DMASCR_TARGET_ABT) {
629                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
630                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
631                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
632         }
633
634         if (dma_status & DMASCR_MASTER_ABT) {
635                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
636                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
638         }
639
640         /* and process the DMA descriptors */
641         card->dma_status = dma_status;
642         tasklet_schedule(&card->tasklet);
643
644 HW_TRACE(0x36);
645
646         return IRQ_HANDLED;
647 }
648
649 /*
650  * If both batteries are good, no LED
651  * If either battery has been warned, solid LED
652  * If both batteries are bad, flash the LED quickly
653  * If either battery is bad, flash the LED semi quickly
654  */
655 static void set_fault_to_battery_status(struct cardinfo *card)
656 {
657         if (card->battery[0].good && card->battery[1].good)
658                 set_led(card, LED_FAULT, LED_OFF);
659         else if (card->battery[0].warned || card->battery[1].warned)
660                 set_led(card, LED_FAULT, LED_ON);
661         else if (!card->battery[0].good && !card->battery[1].good)
662                 set_led(card, LED_FAULT, LED_FLASH_7_0);
663         else
664                 set_led(card, LED_FAULT, LED_FLASH_3_5);
665 }
666
667 static void init_battery_timer(void);
668
669 static int check_battery(struct cardinfo *card, int battery, int status)
670 {
671         if (status != card->battery[battery].good) {
672                 card->battery[battery].good = !card->battery[battery].good;
673                 card->battery[battery].last_change = jiffies;
674
675                 if (card->battery[battery].good) {
676                         dev_printk(KERN_ERR, &card->dev->dev,
677                                 "Battery %d now good\n", battery + 1);
678                         card->battery[battery].warned = 0;
679                 } else
680                         dev_printk(KERN_ERR, &card->dev->dev,
681                                 "Battery %d now FAILED\n", battery + 1);
682
683                 return 1;
684         } else if (!card->battery[battery].good &&
685                    !card->battery[battery].warned &&
686                    time_after_eq(jiffies, card->battery[battery].last_change +
687                                  (HZ * 60 * 60 * 5))) {
688                 dev_printk(KERN_ERR, &card->dev->dev,
689                         "Battery %d still FAILED after 5 hours\n", battery + 1);
690                 card->battery[battery].warned = 1;
691
692                 return 1;
693         }
694
695         return 0;
696 }
697
698 static void check_batteries(struct cardinfo *card)
699 {
700         /* NOTE: this must *never* be called while the card
701          * is doing (bus-to-card) DMA, or you will need the
702          * reset switch
703          */
704         unsigned char status;
705         int ret1, ret2;
706
707         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
708         if (debug & DEBUG_BATTERY_POLLING)
709                 dev_printk(KERN_DEBUG, &card->dev->dev,
710                         "checking battery status, 1 = %s, 2 = %s\n",
711                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
712                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
713
714         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
715         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
716
717         if (ret1 || ret2)
718                 set_fault_to_battery_status(card);
719 }
720
721 static void check_all_batteries(unsigned long ptr)
722 {
723         int i;
724
725         for (i = 0; i < num_cards; i++)
726                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
727                         struct cardinfo *card = &cards[i];
728                         spin_lock_bh(&card->lock);
729                         if (card->Active >= 0)
730                                 card->check_batteries = 1;
731                         else
732                                 check_batteries(card);
733                         spin_unlock_bh(&card->lock);
734                 }
735
736         init_battery_timer();
737 }
738
739 static void init_battery_timer(void)
740 {
741         init_timer(&battery_timer);
742         battery_timer.function = check_all_batteries;
743         battery_timer.expires = jiffies + (HZ * 60);
744         add_timer(&battery_timer);
745 }
746
747 static void del_battery_timer(void)
748 {
749         del_timer(&battery_timer);
750 }
751
752 /*
753  * Note no locks taken out here.  In a worst case scenario, we could drop
754  * a chunk of system memory.  But that should never happen, since validation
755  * happens at open or mount time, when locks are held.
756  *
757  *      That's crap, since doing that while some partitions are opened
758  * or mounted will give you really nasty results.
759  */
760 static int mm_revalidate(struct gendisk *disk)
761 {
762         struct cardinfo *card = disk->private_data;
763         set_capacity(disk, card->mm_size << 1);
764         return 0;
765 }
766
767 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
768 {
769         struct cardinfo *card = bdev->bd_disk->private_data;
770         int size = card->mm_size * (1024 / MM_HARDSECT);
771
772         /*
773          * get geometry: we have to fake one...  trim the size to a
774          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
775          * whatever cylinders.
776          */
777         geo->heads     = 64;
778         geo->sectors   = 32;
779         geo->cylinders = size / (geo->heads * geo->sectors);
780         return 0;
781 }
782
783 /*
784  * Future support for removable devices
785  */
786 static int mm_check_change(struct gendisk *disk)
787 {
788 /*  struct cardinfo *dev = disk->private_data; */
789         return 0;
790 }
791
792 static struct block_device_operations mm_fops = {
793         .owner          = THIS_MODULE,
794         .getgeo         = mm_getgeo,
795         .revalidate_disk = mm_revalidate,
796         .media_changed  = mm_check_change,
797 };
798
799 static int __devinit mm_pci_probe(struct pci_dev *dev,
800                                 const struct pci_device_id *id)
801 {
802         int ret = -ENODEV;
803         struct cardinfo *card = &cards[num_cards];
804         unsigned char   mem_present;
805         unsigned char   batt_status;
806         unsigned int    saved_bar, data;
807         unsigned long   csr_base;
808         unsigned long   csr_len;
809         int             magic_number;
810         static int      printed_version;
811
812         if (!printed_version++)
813                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
814
815         ret = pci_enable_device(dev);
816         if (ret)
817                 return ret;
818
819         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
820         pci_set_master(dev);
821
822         card->dev         = dev;
823
824         csr_base = pci_resource_start(dev, 0);
825         csr_len  = pci_resource_len(dev, 0);
826         if (!csr_base || !csr_len)
827                 return -ENODEV;
828
829         dev_printk(KERN_INFO, &dev->dev,
830           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
831
832         if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
833             pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
834                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
835                 return  -ENOMEM;
836         }
837
838         ret = pci_request_regions(dev, DRIVER_NAME);
839         if (ret) {
840                 dev_printk(KERN_ERR, &card->dev->dev,
841                         "Unable to request memory region\n");
842                 goto failed_req_csr;
843         }
844
845         card->csr_remap = ioremap_nocache(csr_base, csr_len);
846         if (!card->csr_remap) {
847                 dev_printk(KERN_ERR, &card->dev->dev,
848                         "Unable to remap memory region\n");
849                 ret = -ENOMEM;
850
851                 goto failed_remap_csr;
852         }
853
854         dev_printk(KERN_INFO, &card->dev->dev,
855                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
856                csr_base, card->csr_remap, csr_len);
857
858         switch (card->dev->device) {
859         case 0x5415:
860                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
861                 magic_number = 0x59;
862                 break;
863
864         case 0x5425:
865                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
866                 magic_number = 0x5C;
867                 break;
868
869         case 0x6155:
870                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
871                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
872                 magic_number = 0x99;
873                 break;
874
875         default:
876                 magic_number = 0x100;
877                 break;
878         }
879
880         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
881                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
882                 ret = -ENOMEM;
883                 goto failed_magic;
884         }
885
886         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
887                                                 PAGE_SIZE * 2,
888                                                 &card->mm_pages[0].page_dma);
889         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
890                                                 PAGE_SIZE * 2,
891                                                 &card->mm_pages[1].page_dma);
892         if (card->mm_pages[0].desc == NULL ||
893             card->mm_pages[1].desc == NULL) {
894                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
895                 goto failed_alloc;
896         }
897         reset_page(&card->mm_pages[0]);
898         reset_page(&card->mm_pages[1]);
899         card->Ready = 0;        /* page 0 is ready */
900         card->Active = -1;      /* no page is active */
901         card->bio = NULL;
902         card->biotail = &card->bio;
903
904         card->queue = blk_alloc_queue(GFP_KERNEL);
905         if (!card->queue)
906                 goto failed_alloc;
907
908         blk_queue_make_request(card->queue, mm_make_request);
909         card->queue->queuedata = card;
910         card->queue->unplug_fn = mm_unplug_device;
911
912         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
913
914         card->check_batteries = 0;
915
916         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
917         switch (mem_present) {
918         case MEM_128_MB:
919                 card->mm_size = 1024 * 128;
920                 break;
921         case MEM_256_MB:
922                 card->mm_size = 1024 * 256;
923                 break;
924         case MEM_512_MB:
925                 card->mm_size = 1024 * 512;
926                 break;
927         case MEM_1_GB:
928                 card->mm_size = 1024 * 1024;
929                 break;
930         case MEM_2_GB:
931                 card->mm_size = 1024 * 2048;
932                 break;
933         default:
934                 card->mm_size = 0;
935                 break;
936         }
937
938         /* Clear the LED's we control */
939         set_led(card, LED_REMOVE, LED_OFF);
940         set_led(card, LED_FAULT, LED_OFF);
941
942         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
943
944         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
945         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
946         card->battery[0].last_change = card->battery[1].last_change = jiffies;
947
948         if (card->flags & UM_FLAG_NO_BATT)
949                 dev_printk(KERN_INFO, &card->dev->dev,
950                         "Size %d KB\n", card->mm_size);
951         else {
952                 dev_printk(KERN_INFO, &card->dev->dev,
953                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
954                        card->mm_size,
955                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
956                        card->battery[0].good ? "OK" : "FAILURE",
957                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
958                        card->battery[1].good ? "OK" : "FAILURE");
959
960                 set_fault_to_battery_status(card);
961         }
962
963         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
964         data = 0xffffffff;
965         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
966         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
967         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
968         data &= 0xfffffff0;
969         data = ~data;
970         data += 1;
971
972         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
973                         card)) {
974                 dev_printk(KERN_ERR, &card->dev->dev,
975                         "Unable to allocate IRQ\n");
976                 ret = -ENODEV;
977                 goto failed_req_irq;
978         }
979
980         dev_printk(KERN_INFO, &card->dev->dev,
981                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
982
983         spin_lock_init(&card->lock);
984
985         pci_set_drvdata(dev, card);
986
987         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
988                 pci_write_cmd = 0x07;   /* then Memory Write command */
989
990         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
991                 unsigned short cfg_command;
992                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
993                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
994                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
995         }
996         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
997
998         num_cards++;
999
1000         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1001                 dev_printk(KERN_INFO, &card->dev->dev,
1002                   "memory NOT initialized. Consider over-writing whole device.\n");
1003                 card->init_size = 0;
1004         } else {
1005                 dev_printk(KERN_INFO, &card->dev->dev,
1006                         "memory already initialized\n");
1007                 card->init_size = card->mm_size;
1008         }
1009
1010         /* Enable ECC */
1011         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1012
1013         return 0;
1014
1015  failed_req_irq:
1016  failed_alloc:
1017         if (card->mm_pages[0].desc)
1018                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1019                                     card->mm_pages[0].desc,
1020                                     card->mm_pages[0].page_dma);
1021         if (card->mm_pages[1].desc)
1022                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1023                                     card->mm_pages[1].desc,
1024                                     card->mm_pages[1].page_dma);
1025  failed_magic:
1026         iounmap(card->csr_remap);
1027  failed_remap_csr:
1028         pci_release_regions(dev);
1029  failed_req_csr:
1030
1031         return ret;
1032 }
1033
1034 static void mm_pci_remove(struct pci_dev *dev)
1035 {
1036         struct cardinfo *card = pci_get_drvdata(dev);
1037
1038         tasklet_kill(&card->tasklet);
1039         free_irq(dev->irq, card);
1040         iounmap(card->csr_remap);
1041
1042         if (card->mm_pages[0].desc)
1043                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1044                                     card->mm_pages[0].desc,
1045                                     card->mm_pages[0].page_dma);
1046         if (card->mm_pages[1].desc)
1047                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1048                                     card->mm_pages[1].desc,
1049                                     card->mm_pages[1].page_dma);
1050         blk_cleanup_queue(card->queue);
1051
1052         pci_release_regions(dev);
1053         pci_disable_device(dev);
1054 }
1055
1056 static const struct pci_device_id mm_pci_ids[] = {
1057     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1058     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1059     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1060     {
1061         .vendor =       0x8086,
1062         .device =       0xB555,
1063         .subvendor =    0x1332,
1064         .subdevice =    0x5460,
1065         .class =        0x050000,
1066         .class_mask =   0,
1067     }, { /* end: all zeroes */ }
1068 };
1069
1070 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1071
1072 static struct pci_driver mm_pci_driver = {
1073         .name           = DRIVER_NAME,
1074         .id_table       = mm_pci_ids,
1075         .probe          = mm_pci_probe,
1076         .remove         = mm_pci_remove,
1077 };
1078
1079 static int __init mm_init(void)
1080 {
1081         int retval, i;
1082         int err;
1083
1084         retval = pci_register_driver(&mm_pci_driver);
1085         if (retval)
1086                 return -ENOMEM;
1087
1088         err = major_nr = register_blkdev(0, DRIVER_NAME);
1089         if (err < 0) {
1090                 pci_unregister_driver(&mm_pci_driver);
1091                 return -EIO;
1092         }
1093
1094         for (i = 0; i < num_cards; i++) {
1095                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1096                 if (!mm_gendisk[i])
1097                         goto out;
1098         }
1099
1100         for (i = 0; i < num_cards; i++) {
1101                 struct gendisk *disk = mm_gendisk[i];
1102                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1103                 spin_lock_init(&cards[i].lock);
1104                 disk->major = major_nr;
1105                 disk->first_minor  = i << MM_SHIFT;
1106                 disk->fops = &mm_fops;
1107                 disk->private_data = &cards[i];
1108                 disk->queue = cards[i].queue;
1109                 set_capacity(disk, cards[i].mm_size << 1);
1110                 add_disk(disk);
1111         }
1112
1113         init_battery_timer();
1114         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1115 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1116         return 0;
1117
1118 out:
1119         pci_unregister_driver(&mm_pci_driver);
1120         unregister_blkdev(major_nr, DRIVER_NAME);
1121         while (i--)
1122                 put_disk(mm_gendisk[i]);
1123         return -ENOMEM;
1124 }
1125
1126 static void __exit mm_cleanup(void)
1127 {
1128         int i;
1129
1130         del_battery_timer();
1131
1132         for (i = 0; i < num_cards ; i++) {
1133                 del_gendisk(mm_gendisk[i]);
1134                 put_disk(mm_gendisk[i]);
1135         }
1136
1137         pci_unregister_driver(&mm_pci_driver);
1138
1139         unregister_blkdev(major_nr, DRIVER_NAME);
1140 }
1141
1142 module_init(mm_init);
1143 module_exit(mm_cleanup);
1144
1145 MODULE_AUTHOR(DRIVER_AUTHOR);
1146 MODULE_DESCRIPTION(DRIVER_DESC);
1147 MODULE_LICENSE("GPL");