2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * arch/sh64/kernel/time.c
8 * Copyright (C) 2000, 2001 Paolo Alberelli
9 * Copyright (C) 2003, 2004 Paul Mundt
10 * Copyright (C) 2003 Richard Curnow
12 * Original TMU/RTC code taken from sh version.
13 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
14 * Some code taken from i386 version.
15 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
18 #include <linux/errno.h>
19 #include <linux/rwsem.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
25 #include <linux/interrupt.h>
26 #include <linux/time.h>
27 #include <linux/delay.h>
28 #include <linux/init.h>
29 #include <linux/profile.h>
30 #include <linux/smp.h>
31 #include <linux/module.h>
32 #include <linux/bcd.h>
34 #include <asm/registers.h> /* required by inline __asm__ stmt. */
36 #include <asm/processor.h>
37 #include <asm/uaccess.h>
40 #include <asm/delay.h>
42 #include <linux/timex.h>
43 #include <linux/irq.h>
44 #include <asm/hardware.h>
46 #define TMU_TOCR_INIT 0x00
47 #define TMU0_TCR_INIT 0x0020
48 #define TMU_TSTR_INIT 1
49 #define TMU_TSTR_OFF 0
52 #define RCR1_CF 0x80 /* Carry Flag */
53 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
54 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
55 #define RCR1_AF 0x01 /* Alarm Flag */
58 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
59 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
60 #define RCR2_RTCEN 0x08 /* ENable RTC */
61 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
62 #define RCR2_RESET 0x02 /* Reset bit */
63 #define RCR2_START 0x01 /* Start bit */
65 /* Clock, Power and Reset Controller */
66 #define CPRC_BLOCK_OFF 0x01010000
67 #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
69 #define FRQCR (cprc_base+0x0)
70 #define WTCSR (cprc_base+0x0018)
71 #define STBCR (cprc_base+0x0030)
73 /* Time Management Unit */
74 #define TMU_BLOCK_OFF 0x01020000
75 #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
76 #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
77 #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
78 #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
80 #define TMU_TOCR tmu_base+0x0 /* Byte access */
81 #define TMU_TSTR tmu_base+0x4 /* Byte access */
83 #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
84 #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
85 #define TMU0_TCR TMU0_BASE+0x8 /* Word access */
88 #define RTC_BLOCK_OFF 0x01040000
89 #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
91 #define R64CNT rtc_base+0x00
92 #define RSECCNT rtc_base+0x04
93 #define RMINCNT rtc_base+0x08
94 #define RHRCNT rtc_base+0x0c
95 #define RWKCNT rtc_base+0x10
96 #define RDAYCNT rtc_base+0x14
97 #define RMONCNT rtc_base+0x18
98 #define RYRCNT rtc_base+0x1c /* 16bit */
99 #define RSECAR rtc_base+0x20
100 #define RMINAR rtc_base+0x24
101 #define RHRAR rtc_base+0x28
102 #define RWKAR rtc_base+0x2c
103 #define RDAYAR rtc_base+0x30
104 #define RMONAR rtc_base+0x34
105 #define RCR1 rtc_base+0x38
106 #define RCR2 rtc_base+0x3c
108 #define TICK_SIZE (tick_nsec / 1000)
110 extern unsigned long wall_jiffies;
112 static unsigned long tmu_base, rtc_base;
113 unsigned long cprc_base;
115 /* Variables to allow interpolation of time of day to resolution better than a
118 /* This is effectively protected by xtime_lock */
119 static unsigned long ctc_last_interrupt;
120 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
122 #define CTC_JIFFY_SCALE_SHIFT 40
124 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
125 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
127 /* Estimate number of microseconds that have elapsed since the last timer tick,
128 by scaling the delta that has occured in the CTC register.
130 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
131 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
132 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
133 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
134 sleeping, though will be coarser.
136 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
137 is running or if the freq or tick arguments of adjtimex are modified after
138 we have calibrated the scaling factor? This will result in either a jump at
139 the end of a tick period, or a wrap backwards at the start of the next one,
140 if the application is reading the time of day often enough. I think we
141 ought to do better than this. For this reason, usecs_per_jiffy is left
142 separated out in the calculation below. This allows some future hook into
143 the adjtime-related stuff in kernel/timer.c to remove this hazard.
147 static unsigned long usecs_since_tick(void)
149 unsigned long long current_ctc;
150 long ctc_ticks_since_interrupt;
151 unsigned long long ull_ctc_ticks_since_interrupt;
152 unsigned long result;
154 unsigned long long mul1_out;
155 unsigned long long mul1_out_high;
156 unsigned long long mul2_out_low, mul2_out_high;
158 /* Read CTC register */
159 asm ("getcon cr62, %0" : "=r" (current_ctc));
160 /* Note, the CTC counts down on each CPU clock, not up.
161 Note(2), use long type to get correct wraparound arithmetic when
162 the counter crosses zero. */
163 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
164 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
166 /* Inline assembly to do 32x32x32->64 multiplier */
167 asm volatile ("mulu.l %1, %2, %0" :
169 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
171 mul1_out_high = mul1_out >> 32;
173 asm volatile ("mulu.l %1, %2, %0" :
174 "=r" (mul2_out_low) :
175 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
178 asm volatile ("mulu.l %1, %2, %0" :
179 "=r" (mul2_out_high) :
180 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
183 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
188 void do_gettimeofday(struct timeval *tv)
192 unsigned long usec, sec;
195 seq = read_seqbegin_irqsave(&xtime_lock, flags);
196 usec = usecs_since_tick();
198 unsigned long lost = jiffies - wall_jiffies;
201 usec += lost * (1000000 / HZ);
205 usec += xtime.tv_nsec / 1000;
206 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
208 while (usec >= 1000000) {
217 int do_settimeofday(struct timespec *tv)
219 time_t wtm_sec, sec = tv->tv_sec;
220 long wtm_nsec, nsec = tv->tv_nsec;
222 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
225 write_seqlock_irq(&xtime_lock);
227 * This is revolting. We need to set "xtime" correctly. However, the
228 * value in this location is the value at the most recent update of
229 * wall time. Discover what correction gettimeofday() would have
230 * made, and then undo it!
232 nsec -= 1000 * (usecs_since_tick() +
233 (jiffies - wall_jiffies) * (1000000 / HZ));
235 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
236 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
238 set_normalized_timespec(&xtime, sec, nsec);
239 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
242 write_sequnlock_irq(&xtime_lock);
247 EXPORT_SYMBOL(do_settimeofday);
249 static int set_rtc_time(unsigned long nowtime)
252 int real_seconds, real_minutes, cmos_minutes;
254 ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */
256 cmos_minutes = ctrl_inb(RMINCNT);
257 BCD_TO_BIN(cmos_minutes);
260 * since we're only adjusting minutes and seconds,
261 * don't interfere with hour overflow. This avoids
262 * messing with unknown time zones but requires your
263 * RTC not to be off by more than 15 minutes
265 real_seconds = nowtime % 60;
266 real_minutes = nowtime / 60;
267 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
268 real_minutes += 30; /* correct for half hour time zone */
271 if (abs(real_minutes - cmos_minutes) < 30) {
272 BIN_TO_BCD(real_seconds);
273 BIN_TO_BCD(real_minutes);
274 ctrl_outb(real_seconds, RSECCNT);
275 ctrl_outb(real_minutes, RMINCNT);
278 "set_rtc_time: can't update from %d to %d\n",
279 cmos_minutes, real_minutes);
283 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */
288 /* last time the RTC clock got updated */
289 static long last_rtc_update = 0;
292 * timer_interrupt() needs to keep up the real-time clock,
293 * as well as call the "do_timer()" routine every clocktick
295 static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
297 unsigned long long current_ctc;
298 asm ("getcon cr62, %0" : "=r" (current_ctc));
299 ctc_last_interrupt = (unsigned long) current_ctc;
303 update_process_times(user_mode(regs));
305 profile_tick(CPU_PROFILING, regs);
307 #ifdef CONFIG_HEARTBEAT
309 extern void heartbeat(void);
316 * If we have an externally synchronized Linux clock, then update
317 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
318 * called as close as possible to 500 ms before the new second starts.
321 xtime.tv_sec > last_rtc_update + 660 &&
322 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
323 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
324 if (set_rtc_time(xtime.tv_sec) == 0)
325 last_rtc_update = xtime.tv_sec;
327 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
332 * This is the same as the above, except we _also_ save the current
333 * Time Stamp Counter value at the time of the timer interrupt, so that
334 * we later on can estimate the time of day more exactly.
336 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
338 unsigned long timer_status;
341 timer_status = ctrl_inw(TMU0_TCR);
342 timer_status &= ~0x100;
343 ctrl_outw(timer_status, TMU0_TCR);
346 * Here we are in the timer irq handler. We just have irqs locally
347 * disabled but we don't know if the timer_bh is running on the other
348 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
349 * the irq version of write_lock because as just said we have irq
350 * locally disabled. -arca
352 write_lock(&xtime_lock);
353 do_timer_interrupt(irq, regs);
354 write_unlock(&xtime_lock);
359 static unsigned long get_rtc_time(void)
361 unsigned int sec, min, hr, wk, day, mon, yr, yr100;
365 ctrl_outb(0, RCR1); /* Clear CF-bit */
366 sec = ctrl_inb(RSECCNT);
367 min = ctrl_inb(RMINCNT);
368 hr = ctrl_inb(RHRCNT);
369 wk = ctrl_inb(RWKCNT);
370 day = ctrl_inb(RDAYCNT);
371 mon = ctrl_inb(RMONCNT);
372 yr = ctrl_inw(RYRCNT);
375 } while ((ctrl_inb(RCR1) & RCR1_CF) != 0);
385 if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 ||
386 hr > 23 || min > 59 || sec > 59) {
388 "SH RTC: invalid value, resetting to 1 Jan 2000\n");
389 ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */
390 ctrl_outb(0, RSECCNT);
391 ctrl_outb(0, RMINCNT);
392 ctrl_outb(0, RHRCNT);
393 ctrl_outb(6, RWKCNT);
394 ctrl_outb(1, RDAYCNT);
395 ctrl_outb(1, RMONCNT);
396 ctrl_outw(0x2000, RYRCNT);
397 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */
401 return mktime(yr100 * 100 + yr, mon, day, hr, min, sec);
404 static __init unsigned int get_cpu_hz(void)
407 unsigned long __dummy;
408 unsigned long ctc_val_init, ctc_val;
411 ** Regardless the toolchain, force the compiler to use the
412 ** arbitrary register r3 as a clock tick counter.
413 ** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
415 register unsigned long long __rtc_irq_flag __asm__ ("r3");
418 do {} while (ctrl_inb(R64CNT) != 0);
419 ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */
422 * r3 is arbitrary. CDC does not support "=z".
424 ctc_val_init = 0xffffffff;
425 ctc_val = ctc_val_init;
427 asm volatile("gettr tr0, %1\n\t"
428 "putcon %0, " __CTC "\n\t"
429 "and %2, r63, %2\n\t"
431 "beq/l %2, r63, tr0\n\t"
433 "getcon " __CTC ", %0\n\t"
434 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
439 * CPU clock = 4 stages * loop
443 * (if) pipe line stole
449 * CPU clock = 6 stages * loop
454 * Use CTC register to count. This approach returns the right value
455 * even if the I-cache is disabled (e.g. whilst debugging.)
459 count = ctc_val_init - ctc_val; /* CTC counts down */
461 #if defined (CONFIG_SH_SIMULATOR)
463 * Let's pretend we are a 5MHz SH-5 to avoid a too
464 * little timer interval. Also to keep delay
465 * calibration within a reasonable time.
470 * This really is count by the number of clock cycles
471 * by the ratio between a complete R64CNT
472 * wrap-around (128) and CUI interrupt being raised (64).
478 static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id,
479 struct pt_regs *regs)
481 ctrl_outb(0, RCR1); /* Disable Carry Interrupts */
482 regs->regs[3] = 1; /* Using r3 */
487 static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};
488 static struct irqaction irq1 = { sh64_rtc_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "rtc", NULL, NULL};
490 void __init time_init(void)
492 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
493 unsigned long interval;
494 unsigned long frqcr, ifc, pfc;
495 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
496 #define bfc_table ifc_table /* Same */
497 #define pfc_table ifc_table /* Same */
499 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
501 panic("Unable to remap TMU\n");
504 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
506 panic("Unable to remap RTC\n");
509 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
511 panic("Unable to remap CPRC\n");
514 xtime.tv_sec = get_rtc_time();
517 setup_irq(TIMER_IRQ, &irq0);
518 setup_irq(RTC_IRQ, &irq1);
520 /* Check how fast it is.. */
521 cpu_clock = get_cpu_hz();
523 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
524 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
526 disable_irq(RTC_IRQ);
528 printk("CPU clock: %d.%02dMHz\n",
529 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
532 frqcr = ctrl_inl(FRQCR);
533 ifc = ifc_table[(frqcr>> 6) & 0x0007];
534 bfc = bfc_table[(frqcr>> 3) & 0x0007];
535 pfc = pfc_table[(frqcr>> 12) & 0x0007];
536 master_clock = cpu_clock * ifc;
537 bus_clock = master_clock/bfc;
540 printk("Bus clock: %d.%02dMHz\n",
541 (bus_clock/1000000), (bus_clock % 1000000)/10000);
542 module_clock = master_clock/pfc;
543 printk("Module clock: %d.%02dMHz\n",
544 (module_clock/1000000), (module_clock % 1000000)/10000);
545 interval = (module_clock/(HZ*4));
547 printk("Interval = %ld\n", interval);
549 current_cpu_data.cpu_clock = cpu_clock;
550 current_cpu_data.master_clock = master_clock;
551 current_cpu_data.bus_clock = bus_clock;
552 current_cpu_data.module_clock = module_clock;
555 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
556 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
557 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
558 ctrl_outl(interval, TMU0_TCOR);
559 ctrl_outl(interval, TMU0_TCNT);
560 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
563 void enter_deep_standby(void)
565 /* Disable watchdog timer */
566 ctrl_outl(0xa5000000, WTCSR);
567 /* Configure deep standby on sleep */
568 ctrl_outl(0x03, STBCR);
570 #ifdef CONFIG_SH_ALPHANUMERIC
572 extern void mach_alphanum(int position, unsigned char value);
573 extern void mach_alphanum_brightness(int setting);
574 char halted[] = "Halted. ";
576 mach_alphanum_brightness(6); /* dimmest setting above off */
577 for (i=0; i<8; i++) {
578 mach_alphanum(i, halted[i]);
580 asm __volatile__ ("synco");
584 asm __volatile__ ("sleep");
585 asm __volatile__ ("synci");
586 asm __volatile__ ("nop");
587 asm __volatile__ ("nop");
588 asm __volatile__ ("nop");
589 asm __volatile__ ("nop");
590 panic("Unexpected wakeup!\n");
594 * Scheduler clock - returns current time in nanosec units.
596 unsigned long long sched_clock(void)
598 return (unsigned long long)jiffies * (1000000000 / HZ);