2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/preempt.h>
34 #include <asm/cacheflush.h>
35 #include <asm/kdebug.h>
37 #include <asm/uaccess.h>
39 void jprobe_return_end(void);
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 /* insert a jmp code */
45 static __always_inline void set_jmp_op(void *from, void *to)
47 struct __arch_jmp_op {
50 } __attribute__((packed)) *jop;
51 jop = (struct __arch_jmp_op *)from;
52 jop->raddr = (long)(to) - ((long)(from) + 5);
53 jop->op = RELATIVEJUMP_INSTRUCTION;
57 * returns non-zero if opcodes can be boosted.
59 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not be boost.
71 static const unsigned long twobyte_is_boostable[256 / 32] = {
72 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
73 /* ------------------------------- */
74 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
90 /* ------------------------------- */
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
94 kprobe_opcode_t opcode;
95 kprobe_opcode_t *orig_opcodes = opcodes;
97 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
99 opcode = *(opcodes++);
101 /* 2nd-byte opcode */
102 if (opcode == 0x0f) {
103 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
105 return test_bit(*opcodes, twobyte_is_boostable);
108 switch (opcode & 0xf0) {
110 if (0x63 < opcode && opcode < 0x67)
111 goto retry; /* prefixes */
112 /* can't boost Address-size override and bound */
113 return (opcode != 0x62 && opcode != 0x67);
115 return 0; /* can't boost conditional jump */
117 /* can't boost software-interruptions */
118 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
120 /* can boost AA* and XLAT */
121 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
123 /* can boost in/out and absolute jmps */
124 return ((opcode & 0x04) || opcode == 0xea);
126 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
127 goto retry; /* lock/rep(ne) prefix */
128 /* clear and set flags can be boost */
129 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
131 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
132 goto retry; /* prefixes */
133 /* can't boost CS override and call */
134 return (opcode != 0x2e && opcode != 0x9a);
139 * returns non-zero if opcode modifies the interrupt flag.
141 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
146 case 0xcf: /* iret/iretd */
147 case 0x9d: /* popf/popfd */
153 int __kprobes arch_prepare_kprobe(struct kprobe *p)
155 /* insn: must be on special executable page on i386. */
156 p->ainsn.insn = get_insn_slot();
160 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
161 p->opcode = *p->addr;
162 if (can_boost(p->addr)) {
163 p->ainsn.boostable = 0;
165 p->ainsn.boostable = -1;
170 void __kprobes arch_arm_kprobe(struct kprobe *p)
172 *p->addr = BREAKPOINT_INSTRUCTION;
173 flush_icache_range((unsigned long) p->addr,
174 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
177 void __kprobes arch_disarm_kprobe(struct kprobe *p)
179 *p->addr = p->opcode;
180 flush_icache_range((unsigned long) p->addr,
181 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
184 void __kprobes arch_remove_kprobe(struct kprobe *p)
186 mutex_lock(&kprobe_mutex);
187 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
188 mutex_unlock(&kprobe_mutex);
191 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
193 kcb->prev_kprobe.kp = kprobe_running();
194 kcb->prev_kprobe.status = kcb->kprobe_status;
195 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
196 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
199 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
201 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
202 kcb->kprobe_status = kcb->prev_kprobe.status;
203 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
204 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
207 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
208 struct kprobe_ctlblk *kcb)
210 __get_cpu_var(current_kprobe) = p;
211 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
212 = (regs->eflags & (TF_MASK | IF_MASK));
213 if (is_IF_modifier(p->opcode))
214 kcb->kprobe_saved_eflags &= ~IF_MASK;
217 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
219 regs->eflags |= TF_MASK;
220 regs->eflags &= ~IF_MASK;
221 /*single step inline if the instruction is an int3*/
222 if (p->opcode == BREAKPOINT_INSTRUCTION)
223 regs->eip = (unsigned long)p->addr;
225 regs->eip = (unsigned long)p->ainsn.insn;
228 /* Called with kretprobe_lock held */
229 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
230 struct pt_regs *regs)
232 unsigned long *sara = (unsigned long *)®s->esp;
234 struct kretprobe_instance *ri;
236 if ((ri = get_free_rp_inst(rp)) != NULL) {
239 ri->ret_addr = (kprobe_opcode_t *) *sara;
241 /* Replace the return addr with trampoline addr */
242 *sara = (unsigned long) &kretprobe_trampoline;
250 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
251 * remain disabled thorough out this function.
253 static int __kprobes kprobe_handler(struct pt_regs *regs)
257 kprobe_opcode_t *addr;
258 struct kprobe_ctlblk *kcb;
260 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
263 * We don't want to be preempted for the entire
264 * duration of kprobe processing
267 kcb = get_kprobe_ctlblk();
269 /* Check we're not actually recursing */
270 if (kprobe_running()) {
271 p = get_kprobe(addr);
273 if (kcb->kprobe_status == KPROBE_HIT_SS &&
274 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
275 regs->eflags &= ~TF_MASK;
276 regs->eflags |= kcb->kprobe_saved_eflags;
279 /* We have reentered the kprobe_handler(), since
280 * another probe was hit while within the handler.
281 * We here save the original kprobes variables and
282 * just single step on the instruction of the new probe
283 * without calling any user handlers.
285 save_previous_kprobe(kcb);
286 set_current_kprobe(p, regs, kcb);
287 kprobes_inc_nmissed_count(p);
288 prepare_singlestep(p, regs);
289 kcb->kprobe_status = KPROBE_REENTER;
292 if (*addr != BREAKPOINT_INSTRUCTION) {
293 /* The breakpoint instruction was removed by
294 * another cpu right after we hit, no further
295 * handling of this interrupt is appropriate
297 regs->eip -= sizeof(kprobe_opcode_t);
301 p = __get_cpu_var(current_kprobe);
302 if (p->break_handler && p->break_handler(p, regs)) {
309 p = get_kprobe(addr);
311 if (*addr != BREAKPOINT_INSTRUCTION) {
313 * The breakpoint instruction was removed right
314 * after we hit it. Another cpu has removed
315 * either a probepoint or a debugger breakpoint
316 * at this address. In either case, no further
317 * handling of this interrupt is appropriate.
318 * Back up over the (now missing) int3 and run
319 * the original instruction.
321 regs->eip -= sizeof(kprobe_opcode_t);
324 /* Not one of ours: let kernel handle it */
328 set_current_kprobe(p, regs, kcb);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
331 if (p->pre_handler && p->pre_handler(p, regs))
332 /* handler has already set things up, so skip ss setup */
336 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
337 if (p->ainsn.boostable == 1 && !p->post_handler){
338 /* Boost up -- we can execute copied instructions directly */
339 reset_current_kprobe();
340 regs->eip = (unsigned long)p->ainsn.insn;
341 preempt_enable_no_resched();
345 prepare_singlestep(p, regs);
346 kcb->kprobe_status = KPROBE_HIT_SS;
350 preempt_enable_no_resched();
355 * For function-return probes, init_kprobes() establishes a probepoint
356 * here. When a retprobed function returns, this probe is hit and
357 * trampoline_probe_handler() runs, calling the kretprobe's handler.
359 void __kprobes kretprobe_trampoline_holder(void)
361 asm volatile ( ".global kretprobe_trampoline\n"
362 "kretprobe_trampoline: \n"
364 /* skip cs, eip, orig_eax */
377 " call trampoline_handler\n"
378 /* move eflags to cs */
379 " movl 52(%esp), %edx\n"
380 " movl %edx, 48(%esp)\n"
381 /* save true return address on eflags */
382 " movl %eax, 52(%esp)\n"
390 /* skip eip, orig_eax, es, ds, gs */
397 * Called from kretprobe_trampoline
399 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
401 struct kretprobe_instance *ri = NULL;
402 struct hlist_head *head, empty_rp;
403 struct hlist_node *node, *tmp;
404 unsigned long flags, orig_ret_address = 0;
405 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
407 INIT_HLIST_HEAD(&empty_rp);
408 spin_lock_irqsave(&kretprobe_lock, flags);
409 head = kretprobe_inst_table_head(current);
410 /* fixup registers */
411 regs->xcs = __KERNEL_CS;
412 regs->eip = trampoline_address;
413 regs->orig_eax = 0xffffffff;
416 * It is possible to have multiple instances associated with a given
417 * task either because an multiple functions in the call path
418 * have a return probe installed on them, and/or more then one return
419 * return probe was registered for a target function.
421 * We can handle this because:
422 * - instances are always inserted at the head of the list
423 * - when multiple return probes are registered for the same
424 * function, the first instance's ret_addr will point to the
425 * real return address, and all the rest will point to
426 * kretprobe_trampoline
428 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
429 if (ri->task != current)
430 /* another task is sharing our hash bucket */
433 if (ri->rp && ri->rp->handler){
434 __get_cpu_var(current_kprobe) = &ri->rp->kp;
435 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
436 ri->rp->handler(ri, regs);
437 __get_cpu_var(current_kprobe) = NULL;
440 orig_ret_address = (unsigned long)ri->ret_addr;
441 recycle_rp_inst(ri, &empty_rp);
443 if (orig_ret_address != trampoline_address)
445 * This is the real return address. Any other
446 * instances associated with this task are for
447 * other calls deeper on the call stack
452 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
454 spin_unlock_irqrestore(&kretprobe_lock, flags);
456 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
457 hlist_del(&ri->hlist);
460 return (void*)orig_ret_address;
464 * Called after single-stepping. p->addr is the address of the
465 * instruction whose first byte has been replaced by the "int 3"
466 * instruction. To avoid the SMP problems that can occur when we
467 * temporarily put back the original opcode to single-step, we
468 * single-stepped a copy of the instruction. The address of this
469 * copy is p->ainsn.insn.
471 * This function prepares to return from the post-single-step
472 * interrupt. We have to fix up the stack as follows:
474 * 0) Except in the case of absolute or indirect jump or call instructions,
475 * the new eip is relative to the copied instruction. We need to make
476 * it relative to the original instruction.
478 * 1) If the single-stepped instruction was pushfl, then the TF and IF
479 * flags are set in the just-pushed eflags, and may need to be cleared.
481 * 2) If the single-stepped instruction was a call, the return address
482 * that is atop the stack is the address following the copied instruction.
483 * We need to make it the address following the original instruction.
485 * This function also checks instruction size for preparing direct execution.
487 static void __kprobes resume_execution(struct kprobe *p,
488 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
490 unsigned long *tos = (unsigned long *)®s->esp;
491 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
492 unsigned long orig_eip = (unsigned long)p->addr;
494 regs->eflags &= ~TF_MASK;
495 switch (p->ainsn.insn[0]) {
496 case 0x9c: /* pushfl */
497 *tos &= ~(TF_MASK | IF_MASK);
498 *tos |= kcb->kprobe_old_eflags;
500 case 0xc2: /* iret/ret/lret */
505 case 0xea: /* jmp absolute -- eip is correct */
506 /* eip is already adjusted, no more changes required */
507 p->ainsn.boostable = 1;
509 case 0xe8: /* call relative - Fix return addr */
510 *tos = orig_eip + (*tos - copy_eip);
512 case 0x9a: /* call absolute -- same as call absolute, indirect */
513 *tos = orig_eip + (*tos - copy_eip);
516 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
518 * call absolute, indirect
519 * Fix return addr; eip is correct.
520 * But this is not boostable
522 *tos = orig_eip + (*tos - copy_eip);
524 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
525 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
526 /* eip is correct. And this is boostable */
527 p->ainsn.boostable = 1;
534 if (p->ainsn.boostable == 0) {
535 if ((regs->eip > copy_eip) &&
536 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
538 * These instructions can be executed directly if it
539 * jumps back to correct address.
541 set_jmp_op((void *)regs->eip,
542 (void *)orig_eip + (regs->eip - copy_eip));
543 p->ainsn.boostable = 1;
545 p->ainsn.boostable = -1;
549 regs->eip = orig_eip + (regs->eip - copy_eip);
556 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
557 * remain disabled thoroughout this function.
559 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
561 struct kprobe *cur = kprobe_running();
562 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
567 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
568 kcb->kprobe_status = KPROBE_HIT_SSDONE;
569 cur->post_handler(cur, regs, 0);
572 resume_execution(cur, regs, kcb);
573 regs->eflags |= kcb->kprobe_saved_eflags;
575 /*Restore back the original saved kprobes variables and continue. */
576 if (kcb->kprobe_status == KPROBE_REENTER) {
577 restore_previous_kprobe(kcb);
580 reset_current_kprobe();
582 preempt_enable_no_resched();
585 * if somebody else is singlestepping across a probe point, eflags
586 * will have TF set, in which case, continue the remaining processing
587 * of do_debug, as if this is not a probe hit.
589 if (regs->eflags & TF_MASK)
595 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
597 struct kprobe *cur = kprobe_running();
598 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
600 switch(kcb->kprobe_status) {
604 * We are here because the instruction being single
605 * stepped caused a page fault. We reset the current
606 * kprobe and the eip points back to the probe address
607 * and allow the page fault handler to continue as a
610 regs->eip = (unsigned long)cur->addr;
611 regs->eflags |= kcb->kprobe_old_eflags;
612 if (kcb->kprobe_status == KPROBE_REENTER)
613 restore_previous_kprobe(kcb);
615 reset_current_kprobe();
616 preempt_enable_no_resched();
618 case KPROBE_HIT_ACTIVE:
619 case KPROBE_HIT_SSDONE:
621 * We increment the nmissed count for accounting,
622 * we can also use npre/npostfault count for accouting
623 * these specific fault cases.
625 kprobes_inc_nmissed_count(cur);
628 * We come here because instructions in the pre/post
629 * handler caused the page_fault, this could happen
630 * if handler tries to access user space by
631 * copy_from_user(), get_user() etc. Let the
632 * user-specified handler try to fix it first.
634 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
638 * In case the user-specified fault handler returned
639 * zero, try to fix up.
641 if (fixup_exception(regs))
645 * fixup_exception() could not handle it,
646 * Let do_page_fault() fix it.
656 * Wrapper routine to for handling exceptions.
658 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
659 unsigned long val, void *data)
661 struct die_args *args = (struct die_args *)data;
662 int ret = NOTIFY_DONE;
664 if (args->regs && user_mode_vm(args->regs))
669 if (kprobe_handler(args->regs))
673 if (post_kprobe_handler(args->regs))
678 /* kprobe_running() needs smp_processor_id() */
680 if (kprobe_running() &&
681 kprobe_fault_handler(args->regs, args->trapnr))
691 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
693 struct jprobe *jp = container_of(p, struct jprobe, kp);
695 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
697 kcb->jprobe_saved_regs = *regs;
698 kcb->jprobe_saved_esp = ®s->esp;
699 addr = (unsigned long)(kcb->jprobe_saved_esp);
702 * TBD: As Linus pointed out, gcc assumes that the callee
703 * owns the argument space and could overwrite it, e.g.
704 * tailcall optimization. So, to be absolutely safe
705 * we also save and restore enough stack bytes to cover
708 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
709 MIN_STACK_SIZE(addr));
710 regs->eflags &= ~IF_MASK;
711 regs->eip = (unsigned long)(jp->entry);
715 void __kprobes jprobe_return(void)
717 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
719 asm volatile (" xchgl %%ebx,%%esp \n"
721 " .globl jprobe_return_end \n"
722 " jprobe_return_end: \n"
724 (kcb->jprobe_saved_esp):"memory");
727 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
729 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
730 u8 *addr = (u8 *) (regs->eip - 1);
731 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
732 struct jprobe *jp = container_of(p, struct jprobe, kp);
734 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
735 if (®s->esp != kcb->jprobe_saved_esp) {
736 struct pt_regs *saved_regs =
737 container_of(kcb->jprobe_saved_esp,
738 struct pt_regs, esp);
739 printk("current esp %p does not match saved esp %p\n",
740 ®s->esp, kcb->jprobe_saved_esp);
741 printk("Saved registers for jprobe %p\n", jp);
742 show_registers(saved_regs);
743 printk("Current registers\n");
744 show_registers(regs);
747 *regs = kcb->jprobe_saved_regs;
748 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
749 MIN_STACK_SIZE(stack_addr));
750 preempt_enable_no_resched();
756 int __init arch_init_kprobes(void)