1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct *refill_workqueue;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct *reset_workqueue;
46 /**************************************************************************
50 *************************************************************************/
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
55 * This sets the default for new devices. It can be controlled later
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63 * Use separate channels for TX and RX events
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
68 * This is only used in MSI-X interrupt mode
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
75 /* This is the weight assigned to each of the (per-channel) virtual
78 static int napi_weight = 64;
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
84 unsigned int efx_monitor_interval = 1 * HZ;
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
93 static unsigned int allow_bad_hwaddr;
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
101 static unsigned int rx_irq_mod_usec = 60;
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
112 static unsigned int tx_irq_mod_usec = 150;
114 /* This is the first interrupt mode to try out of:
119 static unsigned int interrupt_mode;
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
136 /**************************************************************************
138 * Utility functions and prototypes
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
148 if (efx->state == STATE_RUNNING) \
152 /**************************************************************************
154 * Event queue processing
156 *************************************************************************/
158 /* Process channel's event queue
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
167 struct efx_nic *efx = channel->efx;
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
174 rx_packets = falcon_process_eventq(channel, rx_quota);
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
185 efx_rx_strategy(channel);
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
192 /* Mark channel as finished processing
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
198 static inline void efx_channel_processed(struct efx_channel *channel)
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
206 falcon_eventq_read_ack(channel);
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
214 static int efx_poll(struct napi_struct *napi, int budget)
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
223 rx_packets = efx_process_channel(channel, budget);
225 if (rx_packets < budget) {
226 /* There is no race here; although napi_disable() will
227 * only wait for napi_complete(), this isn't a problem
228 * since efx_channel_processed() will have no effect if
229 * interrupts have already been disabled.
232 efx_channel_processed(channel);
238 /* Process the eventq of the specified channel immediately on this CPU
240 * Disable hardware generated interrupts, wait for any existing
241 * processing to finish, then directly poll (and ack ) the eventq.
242 * Finally reenable NAPI and interrupts.
244 * Since we are touching interrupts the caller should hold the suspend lock
246 void efx_process_channel_now(struct efx_channel *channel)
248 struct efx_nic *efx = channel->efx;
250 BUG_ON(!channel->used_flags);
251 BUG_ON(!channel->enabled);
253 /* Disable interrupts and wait for ISRs to complete */
254 falcon_disable_interrupts(efx);
256 synchronize_irq(efx->legacy_irq);
258 synchronize_irq(channel->irq);
260 /* Wait for any NAPI processing to complete */
261 napi_disable(&channel->napi_str);
263 /* Poll the channel */
264 efx_process_channel(channel, efx->type->evq_size);
266 /* Ack the eventq. This may cause an interrupt to be generated
267 * when they are reenabled */
268 efx_channel_processed(channel);
270 napi_enable(&channel->napi_str);
271 falcon_enable_interrupts(efx);
274 /* Create event queue
275 * Event queue memory allocations are done only once. If the channel
276 * is reset, the memory buffer will be reused; this guards against
277 * errors during channel reset and also simplifies interrupt handling.
279 static int efx_probe_eventq(struct efx_channel *channel)
281 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
283 return falcon_probe_eventq(channel);
286 /* Prepare channel's event queue */
287 static void efx_init_eventq(struct efx_channel *channel)
289 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
291 channel->eventq_read_ptr = 0;
293 falcon_init_eventq(channel);
296 static void efx_fini_eventq(struct efx_channel *channel)
298 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
300 falcon_fini_eventq(channel);
303 static void efx_remove_eventq(struct efx_channel *channel)
305 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
307 falcon_remove_eventq(channel);
310 /**************************************************************************
314 *************************************************************************/
316 static int efx_probe_channel(struct efx_channel *channel)
318 struct efx_tx_queue *tx_queue;
319 struct efx_rx_queue *rx_queue;
322 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
324 rc = efx_probe_eventq(channel);
328 efx_for_each_channel_tx_queue(tx_queue, channel) {
329 rc = efx_probe_tx_queue(tx_queue);
334 efx_for_each_channel_rx_queue(rx_queue, channel) {
335 rc = efx_probe_rx_queue(rx_queue);
340 channel->n_rx_frm_trunc = 0;
345 efx_for_each_channel_rx_queue(rx_queue, channel)
346 efx_remove_rx_queue(rx_queue);
348 efx_for_each_channel_tx_queue(tx_queue, channel)
349 efx_remove_tx_queue(tx_queue);
355 static void efx_set_channel_names(struct efx_nic *efx)
357 struct efx_channel *channel;
358 const char *type = "";
361 efx_for_each_channel(channel, efx) {
362 number = channel->channel;
363 if (efx->n_channels > efx->n_rx_queues) {
364 if (channel->channel < efx->n_rx_queues) {
368 number -= efx->n_rx_queues;
371 snprintf(channel->name, sizeof(channel->name),
372 "%s%s-%d", efx->name, type, number);
376 /* Channels are shutdown and reinitialised whilst the NIC is running
377 * to propagate configuration changes (mtu, checksum offload), or
378 * to clear hardware error conditions
380 static void efx_init_channels(struct efx_nic *efx)
382 struct efx_tx_queue *tx_queue;
383 struct efx_rx_queue *rx_queue;
384 struct efx_channel *channel;
386 /* Calculate the rx buffer allocation parameters required to
387 * support the current MTU, including padding for header
388 * alignment and overruns.
390 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
391 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
392 efx->type->rx_buffer_padding);
393 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
395 /* Initialise the channels */
396 efx_for_each_channel(channel, efx) {
397 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
399 efx_init_eventq(channel);
401 efx_for_each_channel_tx_queue(tx_queue, channel)
402 efx_init_tx_queue(tx_queue);
404 /* The rx buffer allocation strategy is MTU dependent */
405 efx_rx_strategy(channel);
407 efx_for_each_channel_rx_queue(rx_queue, channel)
408 efx_init_rx_queue(rx_queue);
410 WARN_ON(channel->rx_pkt != NULL);
411 efx_rx_strategy(channel);
415 /* This enables event queue processing and packet transmission.
417 * Note that this function is not allowed to fail, since that would
418 * introduce too much complexity into the suspend/resume path.
420 static void efx_start_channel(struct efx_channel *channel)
422 struct efx_rx_queue *rx_queue;
424 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426 if (!(channel->efx->net_dev->flags & IFF_UP))
427 netif_napi_add(channel->napi_dev, &channel->napi_str,
428 efx_poll, napi_weight);
430 /* The interrupt handler for this channel may set work_pending
431 * as soon as we enable it. Make sure it's cleared before
432 * then. Similarly, make sure it sees the enabled flag set. */
433 channel->work_pending = false;
434 channel->enabled = true;
437 napi_enable(&channel->napi_str);
439 /* Load up RX descriptors */
440 efx_for_each_channel_rx_queue(rx_queue, channel)
441 efx_fast_push_rx_descriptors(rx_queue);
444 /* This disables event queue processing and packet transmission.
445 * This function does not guarantee that all queue processing
446 * (e.g. RX refill) is complete.
448 static void efx_stop_channel(struct efx_channel *channel)
450 struct efx_rx_queue *rx_queue;
452 if (!channel->enabled)
455 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457 channel->enabled = false;
458 napi_disable(&channel->napi_str);
460 /* Ensure that any worker threads have exited or will be no-ops */
461 efx_for_each_channel_rx_queue(rx_queue, channel) {
462 spin_lock_bh(&rx_queue->add_lock);
463 spin_unlock_bh(&rx_queue->add_lock);
467 static void efx_fini_channels(struct efx_nic *efx)
469 struct efx_channel *channel;
470 struct efx_tx_queue *tx_queue;
471 struct efx_rx_queue *rx_queue;
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
477 rc = falcon_flush_queues(efx);
479 EFX_ERR(efx, "failed to flush queues\n");
481 EFX_LOG(efx, "successfully flushed all queues\n");
483 efx_for_each_channel(channel, efx) {
484 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
486 efx_for_each_channel_rx_queue(rx_queue, channel)
487 efx_fini_rx_queue(rx_queue);
488 efx_for_each_channel_tx_queue(tx_queue, channel)
489 efx_fini_tx_queue(tx_queue);
490 efx_fini_eventq(channel);
494 static void efx_remove_channel(struct efx_channel *channel)
496 struct efx_tx_queue *tx_queue;
497 struct efx_rx_queue *rx_queue;
499 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_remove_rx_queue(rx_queue);
503 efx_for_each_channel_tx_queue(tx_queue, channel)
504 efx_remove_tx_queue(tx_queue);
505 efx_remove_eventq(channel);
507 channel->used_flags = 0;
510 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
515 /**************************************************************************
519 **************************************************************************/
521 /* This ensures that the kernel is kept informed (via
522 * netif_carrier_on/off) of the link status, and also maintains the
523 * link status's stop on the port's TX queue.
525 static void efx_link_status_changed(struct efx_nic *efx)
527 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
528 * that no events are triggered between unregister_netdev() and the
529 * driver unloading. A more general condition is that NETDEV_CHANGE
530 * can only be generated between NETDEV_UP and NETDEV_DOWN */
531 if (!netif_running(efx->net_dev))
534 if (efx->port_inhibited) {
535 netif_carrier_off(efx->net_dev);
539 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
540 efx->n_link_state_changes++;
543 netif_carrier_on(efx->net_dev);
545 netif_carrier_off(efx->net_dev);
548 /* Status message for kernel log */
550 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
551 efx->link_speed, efx->link_fd ? "full" : "half",
553 (efx->promiscuous ? " [PROMISC]" : ""));
555 EFX_INFO(efx, "link down\n");
560 static void efx_fini_port(struct efx_nic *efx);
562 /* This call reinitialises the MAC to pick up new PHY settings. The
563 * caller must hold the mac_lock */
564 void __efx_reconfigure_port(struct efx_nic *efx)
566 WARN_ON(!mutex_is_locked(&efx->mac_lock));
568 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
569 raw_smp_processor_id());
571 /* Serialise the promiscuous flag with efx_set_multicast_list. */
572 if (efx_dev_registered(efx)) {
573 netif_addr_lock_bh(efx->net_dev);
574 netif_addr_unlock_bh(efx->net_dev);
577 falcon_deconfigure_mac_wrapper(efx);
579 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
580 if (LOOPBACK_INTERNAL(efx))
581 efx->phy_mode |= PHY_MODE_TX_DISABLED;
583 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
584 efx->phy_op->reconfigure(efx);
586 if (falcon_switch_mac(efx))
589 efx->mac_op->reconfigure(efx);
591 /* Inform kernel of loss/gain of carrier */
592 efx_link_status_changed(efx);
596 EFX_ERR(efx, "failed to reconfigure MAC\n");
597 efx->port_enabled = false;
601 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
603 void efx_reconfigure_port(struct efx_nic *efx)
605 EFX_ASSERT_RESET_SERIALISED(efx);
607 mutex_lock(&efx->mac_lock);
608 __efx_reconfigure_port(efx);
609 mutex_unlock(&efx->mac_lock);
612 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
613 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
614 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
615 static void efx_phy_work(struct work_struct *data)
617 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
619 mutex_lock(&efx->mac_lock);
620 if (efx->port_enabled)
621 __efx_reconfigure_port(efx);
622 mutex_unlock(&efx->mac_lock);
625 static void efx_mac_work(struct work_struct *data)
627 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
629 mutex_lock(&efx->mac_lock);
630 if (efx->port_enabled)
631 efx->mac_op->irq(efx);
632 mutex_unlock(&efx->mac_lock);
635 static int efx_probe_port(struct efx_nic *efx)
639 EFX_LOG(efx, "create port\n");
641 /* Connect up MAC/PHY operations table and read MAC address */
642 rc = falcon_probe_port(efx);
647 efx->phy_mode = PHY_MODE_SPECIAL;
649 /* Sanity check MAC address */
650 if (is_valid_ether_addr(efx->mac_address)) {
651 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
653 EFX_ERR(efx, "invalid MAC address %pM\n",
655 if (!allow_bad_hwaddr) {
659 random_ether_addr(efx->net_dev->dev_addr);
660 EFX_INFO(efx, "using locally-generated MAC %pM\n",
661 efx->net_dev->dev_addr);
667 efx_remove_port(efx);
671 static int efx_init_port(struct efx_nic *efx)
675 EFX_LOG(efx, "init port\n");
677 rc = efx->phy_op->init(efx);
680 mutex_lock(&efx->mac_lock);
681 efx->phy_op->reconfigure(efx);
682 rc = falcon_switch_mac(efx);
683 mutex_unlock(&efx->mac_lock);
686 efx->mac_op->reconfigure(efx);
688 efx->port_initialized = true;
689 efx_stats_enable(efx);
693 efx->phy_op->fini(efx);
697 /* Allow efx_reconfigure_port() to be scheduled, and close the window
698 * between efx_stop_port and efx_flush_all whereby a previously scheduled
699 * efx_phy_work()/efx_mac_work() may have been cancelled */
700 static void efx_start_port(struct efx_nic *efx)
702 EFX_LOG(efx, "start port\n");
703 BUG_ON(efx->port_enabled);
705 mutex_lock(&efx->mac_lock);
706 efx->port_enabled = true;
707 __efx_reconfigure_port(efx);
708 efx->mac_op->irq(efx);
709 mutex_unlock(&efx->mac_lock);
712 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
713 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
714 * and efx_mac_work may still be scheduled via NAPI processing until
715 * efx_flush_all() is called */
716 static void efx_stop_port(struct efx_nic *efx)
718 EFX_LOG(efx, "stop port\n");
720 mutex_lock(&efx->mac_lock);
721 efx->port_enabled = false;
722 mutex_unlock(&efx->mac_lock);
724 /* Serialise against efx_set_multicast_list() */
725 if (efx_dev_registered(efx)) {
726 netif_addr_lock_bh(efx->net_dev);
727 netif_addr_unlock_bh(efx->net_dev);
731 static void efx_fini_port(struct efx_nic *efx)
733 EFX_LOG(efx, "shut down port\n");
735 if (!efx->port_initialized)
738 efx_stats_disable(efx);
739 efx->phy_op->fini(efx);
740 efx->port_initialized = false;
742 efx->link_up = false;
743 efx_link_status_changed(efx);
746 static void efx_remove_port(struct efx_nic *efx)
748 EFX_LOG(efx, "destroying port\n");
750 falcon_remove_port(efx);
753 /**************************************************************************
757 **************************************************************************/
759 /* This configures the PCI device to enable I/O and DMA. */
760 static int efx_init_io(struct efx_nic *efx)
762 struct pci_dev *pci_dev = efx->pci_dev;
763 dma_addr_t dma_mask = efx->type->max_dma_mask;
766 EFX_LOG(efx, "initialising I/O\n");
768 rc = pci_enable_device(pci_dev);
770 EFX_ERR(efx, "failed to enable PCI device\n");
774 pci_set_master(pci_dev);
776 /* Set the PCI DMA mask. Try all possibilities from our
777 * genuine mask down to 32 bits, because some architectures
778 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
779 * masks event though they reject 46 bit masks.
781 while (dma_mask > 0x7fffffffUL) {
782 if (pci_dma_supported(pci_dev, dma_mask) &&
783 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
788 EFX_ERR(efx, "could not find a suitable DMA mask\n");
791 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
792 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
794 /* pci_set_consistent_dma_mask() is not *allowed* to
795 * fail with a mask that pci_set_dma_mask() accepted,
796 * but just in case...
798 EFX_ERR(efx, "failed to set consistent DMA mask\n");
802 efx->membase_phys = pci_resource_start(efx->pci_dev,
804 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
806 EFX_ERR(efx, "request for memory BAR failed\n");
810 efx->membase = ioremap_nocache(efx->membase_phys,
811 efx->type->mem_map_size);
813 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
815 (unsigned long long)efx->membase_phys,
816 efx->type->mem_map_size);
820 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
821 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
822 efx->type->mem_map_size, efx->membase);
827 pci_release_region(efx->pci_dev, efx->type->mem_bar);
829 efx->membase_phys = 0;
831 pci_disable_device(efx->pci_dev);
836 static void efx_fini_io(struct efx_nic *efx)
838 EFX_LOG(efx, "shutting down I/O\n");
841 iounmap(efx->membase);
845 if (efx->membase_phys) {
846 pci_release_region(efx->pci_dev, efx->type->mem_bar);
847 efx->membase_phys = 0;
850 pci_disable_device(efx->pci_dev);
853 /* Get number of RX queues wanted. Return number of online CPU
854 * packages in the expectation that an IRQ balancer will spread
855 * interrupts across them. */
856 static int efx_wanted_rx_queues(void)
862 cpus_clear(core_mask);
864 for_each_online_cpu(cpu) {
865 if (!cpu_isset(cpu, core_mask)) {
867 cpus_or(core_mask, core_mask,
868 topology_core_siblings(cpu));
875 /* Probe the number and type of interrupts we are able to obtain, and
876 * the resulting numbers of channels and RX queues.
878 static void efx_probe_interrupts(struct efx_nic *efx)
881 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
884 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
885 struct msix_entry xentries[EFX_MAX_CHANNELS];
889 /* We want one RX queue and interrupt per CPU package
890 * (or as specified by the rss_cpus module parameter).
891 * We will need one channel per interrupt.
893 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
894 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
895 wanted_ints = min(wanted_ints, max_channels);
897 for (i = 0; i < wanted_ints; i++)
898 xentries[i].entry = i;
899 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
901 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
902 " available (%d < %d).\n", rc, wanted_ints);
903 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
904 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
906 rc = pci_enable_msix(efx->pci_dev, xentries,
911 efx->n_rx_queues = min(rx_queues, wanted_ints);
912 efx->n_channels = wanted_ints;
913 for (i = 0; i < wanted_ints; i++)
914 efx->channel[i].irq = xentries[i].vector;
916 /* Fall back to single channel MSI */
917 efx->interrupt_mode = EFX_INT_MODE_MSI;
918 EFX_ERR(efx, "could not enable MSI-X\n");
922 /* Try single interrupt MSI */
923 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
924 efx->n_rx_queues = 1;
926 rc = pci_enable_msi(efx->pci_dev);
928 efx->channel[0].irq = efx->pci_dev->irq;
930 EFX_ERR(efx, "could not enable MSI\n");
931 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
935 /* Assume legacy interrupts */
936 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
937 efx->n_rx_queues = 1;
938 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
939 efx->legacy_irq = efx->pci_dev->irq;
943 static void efx_remove_interrupts(struct efx_nic *efx)
945 struct efx_channel *channel;
947 /* Remove MSI/MSI-X interrupts */
948 efx_for_each_channel(channel, efx)
950 pci_disable_msi(efx->pci_dev);
951 pci_disable_msix(efx->pci_dev);
953 /* Remove legacy interrupt */
957 static void efx_set_channels(struct efx_nic *efx)
959 struct efx_tx_queue *tx_queue;
960 struct efx_rx_queue *rx_queue;
962 efx_for_each_tx_queue(tx_queue, efx) {
963 if (separate_tx_channels)
964 tx_queue->channel = &efx->channel[efx->n_channels-1];
966 tx_queue->channel = &efx->channel[0];
967 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
970 efx_for_each_rx_queue(rx_queue, efx) {
971 rx_queue->channel = &efx->channel[rx_queue->queue];
972 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
976 static int efx_probe_nic(struct efx_nic *efx)
980 EFX_LOG(efx, "creating NIC\n");
982 /* Carry out hardware-type specific initialisation */
983 rc = falcon_probe_nic(efx);
987 /* Determine the number of channels and RX queues by trying to hook
988 * in MSI-X interrupts. */
989 efx_probe_interrupts(efx);
991 efx_set_channels(efx);
993 /* Initialise the interrupt moderation settings */
994 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
999 static void efx_remove_nic(struct efx_nic *efx)
1001 EFX_LOG(efx, "destroying NIC\n");
1003 efx_remove_interrupts(efx);
1004 falcon_remove_nic(efx);
1007 /**************************************************************************
1009 * NIC startup/shutdown
1011 *************************************************************************/
1013 static int efx_probe_all(struct efx_nic *efx)
1015 struct efx_channel *channel;
1019 rc = efx_probe_nic(efx);
1021 EFX_ERR(efx, "failed to create NIC\n");
1026 rc = efx_probe_port(efx);
1028 EFX_ERR(efx, "failed to create port\n");
1032 /* Create channels */
1033 efx_for_each_channel(channel, efx) {
1034 rc = efx_probe_channel(channel);
1036 EFX_ERR(efx, "failed to create channel %d\n",
1041 efx_set_channel_names(efx);
1046 efx_for_each_channel(channel, efx)
1047 efx_remove_channel(channel);
1048 efx_remove_port(efx);
1050 efx_remove_nic(efx);
1055 /* Called after previous invocation(s) of efx_stop_all, restarts the
1056 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1057 * and ensures that the port is scheduled to be reconfigured.
1058 * This function is safe to call multiple times when the NIC is in any
1060 static void efx_start_all(struct efx_nic *efx)
1062 struct efx_channel *channel;
1064 EFX_ASSERT_RESET_SERIALISED(efx);
1066 /* Check that it is appropriate to restart the interface. All
1067 * of these flags are safe to read under just the rtnl lock */
1068 if (efx->port_enabled)
1070 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1072 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1075 /* Mark the port as enabled so port reconfigurations can start, then
1076 * restart the transmit interface early so the watchdog timer stops */
1077 efx_start_port(efx);
1078 if (efx_dev_registered(efx))
1079 efx_wake_queue(efx);
1081 efx_for_each_channel(channel, efx)
1082 efx_start_channel(channel);
1084 falcon_enable_interrupts(efx);
1086 /* Start hardware monitor if we're in RUNNING */
1087 if (efx->state == STATE_RUNNING)
1088 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1089 efx_monitor_interval);
1092 /* Flush all delayed work. Should only be called when no more delayed work
1093 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1094 * since we're holding the rtnl_lock at this point. */
1095 static void efx_flush_all(struct efx_nic *efx)
1097 struct efx_rx_queue *rx_queue;
1099 /* Make sure the hardware monitor is stopped */
1100 cancel_delayed_work_sync(&efx->monitor_work);
1102 /* Ensure that all RX slow refills are complete. */
1103 efx_for_each_rx_queue(rx_queue, efx)
1104 cancel_delayed_work_sync(&rx_queue->work);
1106 /* Stop scheduled port reconfigurations */
1107 cancel_work_sync(&efx->mac_work);
1108 cancel_work_sync(&efx->phy_work);
1112 /* Quiesce hardware and software without bringing the link down.
1113 * Safe to call multiple times, when the nic and interface is in any
1114 * state. The caller is guaranteed to subsequently be in a position
1115 * to modify any hardware and software state they see fit without
1117 static void efx_stop_all(struct efx_nic *efx)
1119 struct efx_channel *channel;
1121 EFX_ASSERT_RESET_SERIALISED(efx);
1123 /* port_enabled can be read safely under the rtnl lock */
1124 if (!efx->port_enabled)
1127 /* Disable interrupts and wait for ISR to complete */
1128 falcon_disable_interrupts(efx);
1129 if (efx->legacy_irq)
1130 synchronize_irq(efx->legacy_irq);
1131 efx_for_each_channel(channel, efx) {
1133 synchronize_irq(channel->irq);
1136 /* Stop all NAPI processing and synchronous rx refills */
1137 efx_for_each_channel(channel, efx)
1138 efx_stop_channel(channel);
1140 /* Stop all asynchronous port reconfigurations. Since all
1141 * event processing has already been stopped, there is no
1142 * window to loose phy events */
1145 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1148 /* Isolate the MAC from the TX and RX engines, so that queue
1149 * flushes will complete in a timely fashion. */
1150 falcon_drain_tx_fifo(efx);
1152 /* Stop the kernel transmit interface late, so the watchdog
1153 * timer isn't ticking over the flush */
1154 if (efx_dev_registered(efx)) {
1155 efx_stop_queue(efx);
1156 netif_tx_lock_bh(efx->net_dev);
1157 netif_tx_unlock_bh(efx->net_dev);
1161 static void efx_remove_all(struct efx_nic *efx)
1163 struct efx_channel *channel;
1165 efx_for_each_channel(channel, efx)
1166 efx_remove_channel(channel);
1167 efx_remove_port(efx);
1168 efx_remove_nic(efx);
1171 /* A convinience function to safely flush all the queues */
1172 void efx_flush_queues(struct efx_nic *efx)
1174 EFX_ASSERT_RESET_SERIALISED(efx);
1178 efx_fini_channels(efx);
1179 efx_init_channels(efx);
1184 /**************************************************************************
1186 * Interrupt moderation
1188 **************************************************************************/
1190 /* Set interrupt moderation parameters */
1191 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1193 struct efx_tx_queue *tx_queue;
1194 struct efx_rx_queue *rx_queue;
1196 EFX_ASSERT_RESET_SERIALISED(efx);
1198 efx_for_each_tx_queue(tx_queue, efx)
1199 tx_queue->channel->irq_moderation = tx_usecs;
1201 efx_for_each_rx_queue(rx_queue, efx)
1202 rx_queue->channel->irq_moderation = rx_usecs;
1205 /**************************************************************************
1209 **************************************************************************/
1211 /* Run periodically off the general workqueue. Serialised against
1212 * efx_reconfigure_port via the mac_lock */
1213 static void efx_monitor(struct work_struct *data)
1215 struct efx_nic *efx = container_of(data, struct efx_nic,
1219 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1220 raw_smp_processor_id());
1222 /* If the mac_lock is already held then it is likely a port
1223 * reconfiguration is already in place, which will likely do
1224 * most of the work of check_hw() anyway. */
1225 if (!mutex_trylock(&efx->mac_lock))
1227 if (!efx->port_enabled)
1229 rc = efx->board_info.monitor(efx);
1231 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1232 (rc == -ERANGE) ? "reported fault" : "failed");
1233 efx->phy_mode |= PHY_MODE_LOW_POWER;
1234 falcon_sim_phy_event(efx);
1236 efx->phy_op->poll(efx);
1237 efx->mac_op->poll(efx);
1240 mutex_unlock(&efx->mac_lock);
1242 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1243 efx_monitor_interval);
1246 /**************************************************************************
1250 *************************************************************************/
1253 * Context: process, rtnl_lock() held.
1255 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1257 struct efx_nic *efx = netdev_priv(net_dev);
1259 EFX_ASSERT_RESET_SERIALISED(efx);
1261 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1264 /**************************************************************************
1268 **************************************************************************/
1270 static int efx_init_napi(struct efx_nic *efx)
1272 struct efx_channel *channel;
1274 efx_for_each_channel(channel, efx) {
1275 channel->napi_dev = efx->net_dev;
1280 static void efx_fini_napi(struct efx_nic *efx)
1282 struct efx_channel *channel;
1284 efx_for_each_channel(channel, efx) {
1285 channel->napi_dev = NULL;
1289 /**************************************************************************
1291 * Kernel netpoll interface
1293 *************************************************************************/
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1297 /* Although in the common case interrupts will be disabled, this is not
1298 * guaranteed. However, all our work happens inside the NAPI callback,
1299 * so no locking is required.
1301 static void efx_netpoll(struct net_device *net_dev)
1303 struct efx_nic *efx = netdev_priv(net_dev);
1304 struct efx_channel *channel;
1306 efx_for_each_channel(channel, efx)
1307 efx_schedule_channel(channel);
1312 /**************************************************************************
1314 * Kernel net device interface
1316 *************************************************************************/
1318 /* Context: process, rtnl_lock() held. */
1319 static int efx_net_open(struct net_device *net_dev)
1321 struct efx_nic *efx = netdev_priv(net_dev);
1322 EFX_ASSERT_RESET_SERIALISED(efx);
1324 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1325 raw_smp_processor_id());
1327 if (efx->state == STATE_DISABLED)
1329 if (efx->phy_mode & PHY_MODE_SPECIAL)
1336 /* Context: process, rtnl_lock() held.
1337 * Note that the kernel will ignore our return code; this method
1338 * should really be a void.
1340 static int efx_net_stop(struct net_device *net_dev)
1342 struct efx_nic *efx = netdev_priv(net_dev);
1344 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1345 raw_smp_processor_id());
1347 if (efx->state != STATE_DISABLED) {
1348 /* Stop the device and flush all the channels */
1350 efx_fini_channels(efx);
1351 efx_init_channels(efx);
1357 void efx_stats_disable(struct efx_nic *efx)
1359 spin_lock(&efx->stats_lock);
1360 ++efx->stats_disable_count;
1361 spin_unlock(&efx->stats_lock);
1364 void efx_stats_enable(struct efx_nic *efx)
1366 spin_lock(&efx->stats_lock);
1367 --efx->stats_disable_count;
1368 spin_unlock(&efx->stats_lock);
1371 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1372 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1374 struct efx_nic *efx = netdev_priv(net_dev);
1375 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1376 struct net_device_stats *stats = &net_dev->stats;
1378 /* Update stats if possible, but do not wait if another thread
1379 * is updating them or if MAC stats fetches are temporarily
1380 * disabled; slightly stale stats are acceptable.
1382 if (!spin_trylock(&efx->stats_lock))
1384 if (!efx->stats_disable_count) {
1385 efx->mac_op->update_stats(efx);
1386 falcon_update_nic_stats(efx);
1388 spin_unlock(&efx->stats_lock);
1390 stats->rx_packets = mac_stats->rx_packets;
1391 stats->tx_packets = mac_stats->tx_packets;
1392 stats->rx_bytes = mac_stats->rx_bytes;
1393 stats->tx_bytes = mac_stats->tx_bytes;
1394 stats->multicast = mac_stats->rx_multicast;
1395 stats->collisions = mac_stats->tx_collision;
1396 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1397 mac_stats->rx_length_error);
1398 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1399 stats->rx_crc_errors = mac_stats->rx_bad;
1400 stats->rx_frame_errors = mac_stats->rx_align_error;
1401 stats->rx_fifo_errors = mac_stats->rx_overflow;
1402 stats->rx_missed_errors = mac_stats->rx_missed;
1403 stats->tx_window_errors = mac_stats->tx_late_collision;
1405 stats->rx_errors = (stats->rx_length_errors +
1406 stats->rx_over_errors +
1407 stats->rx_crc_errors +
1408 stats->rx_frame_errors +
1409 stats->rx_fifo_errors +
1410 stats->rx_missed_errors +
1411 mac_stats->rx_symbol_error);
1412 stats->tx_errors = (stats->tx_window_errors +
1418 /* Context: netif_tx_lock held, BHs disabled. */
1419 static void efx_watchdog(struct net_device *net_dev)
1421 struct efx_nic *efx = netdev_priv(net_dev);
1423 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1424 " resetting channels\n",
1425 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1427 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1431 /* Context: process, rtnl_lock() held. */
1432 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1434 struct efx_nic *efx = netdev_priv(net_dev);
1437 EFX_ASSERT_RESET_SERIALISED(efx);
1439 if (new_mtu > EFX_MAX_MTU)
1444 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1446 efx_fini_channels(efx);
1447 net_dev->mtu = new_mtu;
1448 efx_init_channels(efx);
1454 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1456 struct efx_nic *efx = netdev_priv(net_dev);
1457 struct sockaddr *addr = data;
1458 char *new_addr = addr->sa_data;
1460 EFX_ASSERT_RESET_SERIALISED(efx);
1462 if (!is_valid_ether_addr(new_addr)) {
1463 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1468 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1470 /* Reconfigure the MAC */
1471 efx_reconfigure_port(efx);
1476 /* Context: netif_addr_lock held, BHs disabled. */
1477 static void efx_set_multicast_list(struct net_device *net_dev)
1479 struct efx_nic *efx = netdev_priv(net_dev);
1480 struct dev_mc_list *mc_list = net_dev->mc_list;
1481 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1482 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1483 bool changed = (efx->promiscuous != promiscuous);
1488 efx->promiscuous = promiscuous;
1490 /* Build multicast hash table */
1491 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1492 memset(mc_hash, 0xff, sizeof(*mc_hash));
1494 memset(mc_hash, 0x00, sizeof(*mc_hash));
1495 for (i = 0; i < net_dev->mc_count; i++) {
1496 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1497 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1498 set_bit_le(bit, mc_hash->byte);
1499 mc_list = mc_list->next;
1503 if (!efx->port_enabled)
1504 /* Delay pushing settings until efx_start_port() */
1508 queue_work(efx->workqueue, &efx->phy_work);
1510 /* Create and activate new global multicast hash table */
1511 falcon_set_multicast_hash(efx);
1514 static const struct net_device_ops efx_netdev_ops = {
1515 .ndo_open = efx_net_open,
1516 .ndo_stop = efx_net_stop,
1517 .ndo_get_stats = efx_net_stats,
1518 .ndo_tx_timeout = efx_watchdog,
1519 .ndo_start_xmit = efx_hard_start_xmit,
1520 .ndo_validate_addr = eth_validate_addr,
1521 .ndo_do_ioctl = efx_ioctl,
1522 .ndo_change_mtu = efx_change_mtu,
1523 .ndo_set_mac_address = efx_set_mac_address,
1524 .ndo_set_multicast_list = efx_set_multicast_list,
1525 #ifdef CONFIG_NET_POLL_CONTROLLER
1526 .ndo_poll_controller = efx_netpoll,
1530 static void efx_update_name(struct efx_nic *efx)
1532 strcpy(efx->name, efx->net_dev->name);
1533 efx_mtd_rename(efx);
1534 efx_set_channel_names(efx);
1537 static int efx_netdev_event(struct notifier_block *this,
1538 unsigned long event, void *ptr)
1540 struct net_device *net_dev = ptr;
1542 if (net_dev->netdev_ops == &efx_netdev_ops &&
1543 event == NETDEV_CHANGENAME)
1544 efx_update_name(netdev_priv(net_dev));
1549 static struct notifier_block efx_netdev_notifier = {
1550 .notifier_call = efx_netdev_event,
1554 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1556 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1557 return sprintf(buf, "%d\n", efx->phy_type);
1559 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1561 static int efx_register_netdev(struct efx_nic *efx)
1563 struct net_device *net_dev = efx->net_dev;
1566 net_dev->watchdog_timeo = 5 * HZ;
1567 net_dev->irq = efx->pci_dev->irq;
1568 net_dev->netdev_ops = &efx_netdev_ops;
1569 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1570 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1572 /* Always start with carrier off; PHY events will detect the link */
1573 netif_carrier_off(efx->net_dev);
1575 /* Clear MAC statistics */
1576 efx->mac_op->update_stats(efx);
1577 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1579 rc = register_netdev(net_dev);
1581 EFX_ERR(efx, "could not register net dev\n");
1586 efx_update_name(efx);
1589 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1591 EFX_ERR(efx, "failed to init net dev attributes\n");
1592 goto fail_registered;
1598 unregister_netdev(net_dev);
1602 static void efx_unregister_netdev(struct efx_nic *efx)
1604 struct efx_tx_queue *tx_queue;
1609 BUG_ON(netdev_priv(efx->net_dev) != efx);
1611 /* Free up any skbs still remaining. This has to happen before
1612 * we try to unregister the netdev as running their destructors
1613 * may be needed to get the device ref. count to 0. */
1614 efx_for_each_tx_queue(tx_queue, efx)
1615 efx_release_tx_buffers(tx_queue);
1617 if (efx_dev_registered(efx)) {
1618 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1619 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1620 unregister_netdev(efx->net_dev);
1624 /**************************************************************************
1626 * Device reset and suspend
1628 **************************************************************************/
1630 /* Tears down the entire software state and most of the hardware state
1632 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1633 struct ethtool_cmd *ecmd)
1635 EFX_ASSERT_RESET_SERIALISED(efx);
1637 efx_stats_disable(efx);
1639 mutex_lock(&efx->mac_lock);
1640 mutex_lock(&efx->spi_lock);
1642 efx->phy_op->get_settings(efx, ecmd);
1644 efx_fini_channels(efx);
1645 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1646 efx->phy_op->fini(efx);
1649 /* This function will always ensure that the locks acquired in
1650 * efx_reset_down() are released. A failure return code indicates
1651 * that we were unable to reinitialise the hardware, and the
1652 * driver should be disabled. If ok is false, then the rx and tx
1653 * engines are not restarted, pending a RESET_DISABLE. */
1654 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1655 struct ethtool_cmd *ecmd, bool ok)
1659 EFX_ASSERT_RESET_SERIALISED(efx);
1661 rc = falcon_init_nic(efx);
1663 EFX_ERR(efx, "failed to initialise NIC\n");
1667 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1669 rc = efx->phy_op->init(efx);
1674 efx->port_initialized = false;
1678 efx_init_channels(efx);
1680 if (efx->phy_op->set_settings(efx, ecmd))
1681 EFX_ERR(efx, "could not restore PHY settings\n");
1684 mutex_unlock(&efx->spi_lock);
1685 mutex_unlock(&efx->mac_lock);
1689 efx_stats_enable(efx);
1694 /* Reset the NIC as transparently as possible. Do not reset the PHY
1695 * Note that the reset may fail, in which case the card will be left
1696 * in a most-probably-unusable state.
1698 * This function will sleep. You cannot reset from within an atomic
1699 * state; use efx_schedule_reset() instead.
1701 * Grabs the rtnl_lock.
1703 static int efx_reset(struct efx_nic *efx)
1705 struct ethtool_cmd ecmd;
1706 enum reset_type method = efx->reset_pending;
1709 /* Serialise with kernel interfaces */
1712 /* If we're not RUNNING then don't reset. Leave the reset_pending
1713 * flag set so that efx_pci_probe_main will be retried */
1714 if (efx->state != STATE_RUNNING) {
1715 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1719 EFX_INFO(efx, "resetting (%d)\n", method);
1721 efx_reset_down(efx, method, &ecmd);
1723 rc = falcon_reset_hw(efx, method);
1725 EFX_ERR(efx, "failed to reset hardware\n");
1729 /* Allow resets to be rescheduled. */
1730 efx->reset_pending = RESET_TYPE_NONE;
1732 /* Reinitialise bus-mastering, which may have been turned off before
1733 * the reset was scheduled. This is still appropriate, even in the
1734 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1735 * can respond to requests. */
1736 pci_set_master(efx->pci_dev);
1738 /* Leave device stopped if necessary */
1739 if (method == RESET_TYPE_DISABLE) {
1740 efx_reset_up(efx, method, &ecmd, false);
1743 rc = efx_reset_up(efx, method, &ecmd, true);
1748 EFX_ERR(efx, "has been disabled\n");
1749 efx->state = STATE_DISABLED;
1750 dev_close(efx->net_dev);
1752 EFX_LOG(efx, "reset complete\n");
1760 /* The worker thread exists so that code that cannot sleep can
1761 * schedule a reset for later.
1763 static void efx_reset_work(struct work_struct *data)
1765 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1770 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1772 enum reset_type method;
1774 if (efx->reset_pending != RESET_TYPE_NONE) {
1775 EFX_INFO(efx, "quenching already scheduled reset\n");
1780 case RESET_TYPE_INVISIBLE:
1781 case RESET_TYPE_ALL:
1782 case RESET_TYPE_WORLD:
1783 case RESET_TYPE_DISABLE:
1786 case RESET_TYPE_RX_RECOVERY:
1787 case RESET_TYPE_RX_DESC_FETCH:
1788 case RESET_TYPE_TX_DESC_FETCH:
1789 case RESET_TYPE_TX_SKIP:
1790 method = RESET_TYPE_INVISIBLE;
1793 method = RESET_TYPE_ALL;
1798 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1800 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1802 efx->reset_pending = method;
1804 queue_work(reset_workqueue, &efx->reset_work);
1807 /**************************************************************************
1809 * List of NICs we support
1811 **************************************************************************/
1813 /* PCI device ID table */
1814 static struct pci_device_id efx_pci_table[] __devinitdata = {
1815 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1816 .driver_data = (unsigned long) &falcon_a_nic_type},
1817 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1818 .driver_data = (unsigned long) &falcon_b_nic_type},
1819 {0} /* end of list */
1822 /**************************************************************************
1824 * Dummy PHY/MAC/Board operations
1826 * Can be used for some unimplemented operations
1827 * Needed so all function pointers are valid and do not have to be tested
1830 **************************************************************************/
1831 int efx_port_dummy_op_int(struct efx_nic *efx)
1835 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1836 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1838 static struct efx_mac_operations efx_dummy_mac_operations = {
1839 .reconfigure = efx_port_dummy_op_void,
1840 .poll = efx_port_dummy_op_void,
1841 .irq = efx_port_dummy_op_void,
1844 static struct efx_phy_operations efx_dummy_phy_operations = {
1845 .init = efx_port_dummy_op_int,
1846 .reconfigure = efx_port_dummy_op_void,
1847 .poll = efx_port_dummy_op_void,
1848 .fini = efx_port_dummy_op_void,
1849 .clear_interrupt = efx_port_dummy_op_void,
1852 static struct efx_board efx_dummy_board_info = {
1853 .init = efx_port_dummy_op_int,
1854 .init_leds = efx_port_dummy_op_void,
1855 .set_id_led = efx_port_dummy_op_blink,
1856 .monitor = efx_port_dummy_op_int,
1857 .blink = efx_port_dummy_op_blink,
1858 .fini = efx_port_dummy_op_void,
1861 /**************************************************************************
1865 **************************************************************************/
1867 /* This zeroes out and then fills in the invariants in a struct
1868 * efx_nic (including all sub-structures).
1870 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1871 struct pci_dev *pci_dev, struct net_device *net_dev)
1873 struct efx_channel *channel;
1874 struct efx_tx_queue *tx_queue;
1875 struct efx_rx_queue *rx_queue;
1878 /* Initialise common structures */
1879 memset(efx, 0, sizeof(*efx));
1880 spin_lock_init(&efx->biu_lock);
1881 spin_lock_init(&efx->phy_lock);
1882 mutex_init(&efx->spi_lock);
1883 INIT_WORK(&efx->reset_work, efx_reset_work);
1884 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1885 efx->pci_dev = pci_dev;
1886 efx->state = STATE_INIT;
1887 efx->reset_pending = RESET_TYPE_NONE;
1888 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1889 efx->board_info = efx_dummy_board_info;
1891 efx->net_dev = net_dev;
1892 efx->rx_checksum_enabled = true;
1893 spin_lock_init(&efx->netif_stop_lock);
1894 spin_lock_init(&efx->stats_lock);
1895 efx->stats_disable_count = 1;
1896 mutex_init(&efx->mac_lock);
1897 efx->mac_op = &efx_dummy_mac_operations;
1898 efx->phy_op = &efx_dummy_phy_operations;
1899 efx->mii.dev = net_dev;
1900 INIT_WORK(&efx->phy_work, efx_phy_work);
1901 INIT_WORK(&efx->mac_work, efx_mac_work);
1902 atomic_set(&efx->netif_stop_count, 1);
1904 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1905 channel = &efx->channel[i];
1907 channel->channel = i;
1908 channel->work_pending = false;
1910 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1911 tx_queue = &efx->tx_queue[i];
1912 tx_queue->efx = efx;
1913 tx_queue->queue = i;
1914 tx_queue->buffer = NULL;
1915 tx_queue->channel = &efx->channel[0]; /* for safety */
1916 tx_queue->tso_headers_free = NULL;
1918 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1919 rx_queue = &efx->rx_queue[i];
1920 rx_queue->efx = efx;
1921 rx_queue->queue = i;
1922 rx_queue->channel = &efx->channel[0]; /* for safety */
1923 rx_queue->buffer = NULL;
1924 spin_lock_init(&rx_queue->add_lock);
1925 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1930 /* Sanity-check NIC type */
1931 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1932 (efx->type->txd_ring_mask + 1));
1933 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1934 (efx->type->rxd_ring_mask + 1));
1935 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1936 (efx->type->evq_size - 1));
1937 /* As close as we can get to guaranteeing that we don't overflow */
1938 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1939 (efx->type->txd_ring_mask + 1 +
1940 efx->type->rxd_ring_mask + 1));
1941 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1943 /* Higher numbered interrupt modes are less capable! */
1944 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1947 /* Would be good to use the net_dev name, but we're too early */
1948 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1950 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1951 if (!efx->workqueue)
1957 static void efx_fini_struct(struct efx_nic *efx)
1959 if (efx->workqueue) {
1960 destroy_workqueue(efx->workqueue);
1961 efx->workqueue = NULL;
1965 /**************************************************************************
1969 **************************************************************************/
1971 /* Main body of final NIC shutdown code
1972 * This is called only at module unload (or hotplug removal).
1974 static void efx_pci_remove_main(struct efx_nic *efx)
1976 EFX_ASSERT_RESET_SERIALISED(efx);
1978 /* Skip everything if we never obtained a valid membase */
1982 efx_fini_channels(efx);
1985 /* Shutdown the board, then the NIC and board state */
1986 efx->board_info.fini(efx);
1987 falcon_fini_interrupt(efx);
1990 efx_remove_all(efx);
1993 /* Final NIC shutdown
1994 * This is called only at module unload (or hotplug removal).
1996 static void efx_pci_remove(struct pci_dev *pci_dev)
1998 struct efx_nic *efx;
2000 efx = pci_get_drvdata(pci_dev);
2004 /* Mark the NIC as fini, then stop the interface */
2006 efx->state = STATE_FINI;
2007 dev_close(efx->net_dev);
2009 /* Allow any queued efx_resets() to complete */
2012 if (efx->membase == NULL)
2015 efx_unregister_netdev(efx);
2017 efx_mtd_remove(efx);
2019 /* Wait for any scheduled resets to complete. No more will be
2020 * scheduled from this point because efx_stop_all() has been
2021 * called, we are no longer registered with driverlink, and
2022 * the net_device's have been removed. */
2023 cancel_work_sync(&efx->reset_work);
2025 efx_pci_remove_main(efx);
2029 EFX_LOG(efx, "shutdown successful\n");
2031 pci_set_drvdata(pci_dev, NULL);
2032 efx_fini_struct(efx);
2033 free_netdev(efx->net_dev);
2036 /* Main body of NIC initialisation
2037 * This is called at module load (or hotplug insertion, theoretically).
2039 static int efx_pci_probe_main(struct efx_nic *efx)
2043 /* Do start-of-day initialisation */
2044 rc = efx_probe_all(efx);
2048 rc = efx_init_napi(efx);
2052 /* Initialise the board */
2053 rc = efx->board_info.init(efx);
2055 EFX_ERR(efx, "failed to initialise board\n");
2059 rc = falcon_init_nic(efx);
2061 EFX_ERR(efx, "failed to initialise NIC\n");
2065 rc = efx_init_port(efx);
2067 EFX_ERR(efx, "failed to initialise port\n");
2071 efx_init_channels(efx);
2073 rc = falcon_init_interrupt(efx);
2080 efx_fini_channels(efx);
2084 efx->board_info.fini(efx);
2088 efx_remove_all(efx);
2093 /* NIC initialisation
2095 * This is called at module load (or hotplug insertion,
2096 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2097 * sets up and registers the network devices with the kernel and hooks
2098 * the interrupt service routine. It does not prepare the device for
2099 * transmission; this is left to the first time one of the network
2100 * interfaces is brought up (i.e. efx_net_open).
2102 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2103 const struct pci_device_id *entry)
2105 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2106 struct net_device *net_dev;
2107 struct efx_nic *efx;
2110 /* Allocate and initialise a struct net_device and struct efx_nic */
2111 net_dev = alloc_etherdev(sizeof(*efx));
2114 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2115 NETIF_F_HIGHDMA | NETIF_F_TSO);
2117 net_dev->features |= NETIF_F_GRO;
2118 /* Mask for features that also apply to VLAN devices */
2119 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2120 NETIF_F_HIGHDMA | NETIF_F_TSO);
2121 efx = netdev_priv(net_dev);
2122 pci_set_drvdata(pci_dev, efx);
2123 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2127 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2129 /* Set up basic I/O (BAR mappings etc) */
2130 rc = efx_init_io(efx);
2134 /* No serialisation is required with the reset path because
2135 * we're in STATE_INIT. */
2136 for (i = 0; i < 5; i++) {
2137 rc = efx_pci_probe_main(efx);
2139 /* Serialise against efx_reset(). No more resets will be
2140 * scheduled since efx_stop_all() has been called, and we
2141 * have not and never have been registered with either
2142 * the rtnetlink or driverlink layers. */
2143 cancel_work_sync(&efx->reset_work);
2146 if (efx->reset_pending != RESET_TYPE_NONE) {
2147 /* If there was a scheduled reset during
2148 * probe, the NIC is probably hosed anyway */
2149 efx_pci_remove_main(efx);
2156 /* Retry if a recoverably reset event has been scheduled */
2157 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2158 (efx->reset_pending != RESET_TYPE_ALL))
2161 efx->reset_pending = RESET_TYPE_NONE;
2165 EFX_ERR(efx, "Could not reset NIC\n");
2169 /* Switch to the running state before we expose the device to
2170 * the OS. This is to ensure that the initial gathering of
2171 * MAC stats succeeds. */
2172 efx->state = STATE_RUNNING;
2174 efx_mtd_probe(efx); /* allowed to fail */
2176 rc = efx_register_netdev(efx);
2180 EFX_LOG(efx, "initialisation successful\n");
2184 efx_pci_remove_main(efx);
2189 efx_fini_struct(efx);
2191 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2192 free_netdev(net_dev);
2196 static struct pci_driver efx_pci_driver = {
2197 .name = EFX_DRIVER_NAME,
2198 .id_table = efx_pci_table,
2199 .probe = efx_pci_probe,
2200 .remove = efx_pci_remove,
2203 /**************************************************************************
2205 * Kernel module interface
2207 *************************************************************************/
2209 module_param(interrupt_mode, uint, 0444);
2210 MODULE_PARM_DESC(interrupt_mode,
2211 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2213 static int __init efx_init_module(void)
2217 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2219 rc = register_netdevice_notifier(&efx_netdev_notifier);
2223 refill_workqueue = create_workqueue("sfc_refill");
2224 if (!refill_workqueue) {
2228 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2229 if (!reset_workqueue) {
2234 rc = pci_register_driver(&efx_pci_driver);
2241 destroy_workqueue(reset_workqueue);
2243 destroy_workqueue(refill_workqueue);
2245 unregister_netdevice_notifier(&efx_netdev_notifier);
2250 static void __exit efx_exit_module(void)
2252 printk(KERN_INFO "Solarflare NET driver unloading\n");
2254 pci_unregister_driver(&efx_pci_driver);
2255 destroy_workqueue(reset_workqueue);
2256 destroy_workqueue(refill_workqueue);
2257 unregister_netdevice_notifier(&efx_netdev_notifier);
2261 module_init(efx_init_module);
2262 module_exit(efx_exit_module);
2264 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2265 "Solarflare Communications");
2266 MODULE_DESCRIPTION("Solarflare Communications network driver");
2267 MODULE_LICENSE("GPL");
2268 MODULE_DEVICE_TABLE(pci, efx_pci_table);