qlge: bugfix: Move netif_napi_del() to common call point.
[linux-2.6] / drivers / net / wireless / ath9k / hw.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
88 {
89         int i;
90
91         BUG_ON(timeout < AH_TIME_QUANTUM);
92
93         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
94                 if ((REG_READ(ah, reg) & mask) == val)
95                         return true;
96
97                 udelay(AH_TIME_QUANTUM);
98         }
99
100         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
101                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
102                 timeout, reg, REG_READ(ah, reg), mask, val);
103
104         return false;
105 }
106
107 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
108 {
109         u32 retval;
110         int i;
111
112         for (i = 0, retval = 0; i < n; i++) {
113                 retval = (retval << 1) | (val & 1);
114                 val >>= 1;
115         }
116         return retval;
117 }
118
119 bool ath9k_get_channel_edges(struct ath_hw *ah,
120                              u16 flags, u16 *low,
121                              u16 *high)
122 {
123         struct ath9k_hw_capabilities *pCap = &ah->caps;
124
125         if (flags & CHANNEL_5GHZ) {
126                 *low = pCap->low_5ghz_chan;
127                 *high = pCap->high_5ghz_chan;
128                 return true;
129         }
130         if ((flags & CHANNEL_2GHZ)) {
131                 *low = pCap->low_2ghz_chan;
132                 *high = pCap->high_2ghz_chan;
133                 return true;
134         }
135         return false;
136 }
137
138 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
139                            struct ath_rate_table *rates,
140                            u32 frameLen, u16 rateix,
141                            bool shortPreamble)
142 {
143         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
144         u32 kbps;
145
146         kbps = rates->info[rateix].ratekbps;
147
148         if (kbps == 0)
149                 return 0;
150
151         switch (rates->info[rateix].phy) {
152         case WLAN_RC_PHY_CCK:
153                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
154                 if (shortPreamble && rates->info[rateix].short_preamble)
155                         phyTime >>= 1;
156                 numBits = frameLen << 3;
157                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
158                 break;
159         case WLAN_RC_PHY_OFDM:
160                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
161                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
162                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
163                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
164                         txTime = OFDM_SIFS_TIME_QUARTER
165                                 + OFDM_PREAMBLE_TIME_QUARTER
166                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
167                 } else if (ah->curchan &&
168                            IS_CHAN_HALF_RATE(ah->curchan)) {
169                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
170                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
171                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
172                         txTime = OFDM_SIFS_TIME_HALF +
173                                 OFDM_PREAMBLE_TIME_HALF
174                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
175                 } else {
176                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
177                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
178                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
179                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
180                                 + (numSymbols * OFDM_SYMBOL_TIME);
181                 }
182                 break;
183         default:
184                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
185                         "Unknown phy %u (rate ix %u)\n",
186                         rates->info[rateix].phy, rateix);
187                 txTime = 0;
188                 break;
189         }
190
191         return txTime;
192 }
193
194 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
195                                   struct ath9k_channel *chan,
196                                   struct chan_centers *centers)
197 {
198         int8_t extoff;
199
200         if (!IS_CHAN_HT40(chan)) {
201                 centers->ctl_center = centers->ext_center =
202                         centers->synth_center = chan->channel;
203                 return;
204         }
205
206         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
207             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
208                 centers->synth_center =
209                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
210                 extoff = 1;
211         } else {
212                 centers->synth_center =
213                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
214                 extoff = -1;
215         }
216
217         centers->ctl_center =
218                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
219         centers->ext_center =
220                 centers->synth_center + (extoff *
221                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
222                           HT40_CHANNEL_CENTER_SHIFT : 15));
223 }
224
225 /******************/
226 /* Chip Revisions */
227 /******************/
228
229 static void ath9k_hw_read_revisions(struct ath_hw *ah)
230 {
231         u32 val;
232
233         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
234
235         if (val == 0xFF) {
236                 val = REG_READ(ah, AR_SREV);
237                 ah->hw_version.macVersion =
238                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
239                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
240                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
241         } else {
242                 if (!AR_SREV_9100(ah))
243                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
244
245                 ah->hw_version.macRev = val & AR_SREV_REVISION;
246
247                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
248                         ah->is_pciexpress = true;
249         }
250 }
251
252 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
253 {
254         u32 val;
255         int i;
256
257         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
258
259         for (i = 0; i < 8; i++)
260                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
261         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
262         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
263
264         return ath9k_hw_reverse_bits(val, 8);
265 }
266
267 /************************************/
268 /* HW Attach, Detach, Init Routines */
269 /************************************/
270
271 static void ath9k_hw_disablepcie(struct ath_hw *ah)
272 {
273         if (AR_SREV_9100(ah))
274                 return;
275
276         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
277         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
278         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
279         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
280         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
281         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
282         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
283         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
284         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
285
286         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
287 }
288
289 static bool ath9k_hw_chip_test(struct ath_hw *ah)
290 {
291         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
292         u32 regHold[2];
293         u32 patternData[4] = { 0x55555555,
294                                0xaaaaaaaa,
295                                0x66666666,
296                                0x99999999 };
297         int i, j;
298
299         for (i = 0; i < 2; i++) {
300                 u32 addr = regAddr[i];
301                 u32 wrData, rdData;
302
303                 regHold[i] = REG_READ(ah, addr);
304                 for (j = 0; j < 0x100; j++) {
305                         wrData = (j << 16) | j;
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (rdData != wrData) {
309                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
310                                         "address test failed "
311                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
312                                         addr, wrData, rdData);
313                                 return false;
314                         }
315                 }
316                 for (j = 0; j < 4; j++) {
317                         wrData = patternData[j];
318                         REG_WRITE(ah, addr, wrData);
319                         rdData = REG_READ(ah, addr);
320                         if (wrData != rdData) {
321                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
322                                         "address test failed "
323                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
324                                         addr, wrData, rdData);
325                                 return false;
326                         }
327                 }
328                 REG_WRITE(ah, regAddr[i], regHold[i]);
329         }
330         udelay(100);
331
332         return true;
333 }
334
335 static const char *ath9k_hw_devname(u16 devid)
336 {
337         switch (devid) {
338         case AR5416_DEVID_PCI:
339                 return "Atheros 5416";
340         case AR5416_DEVID_PCIE:
341                 return "Atheros 5418";
342         case AR9160_DEVID_PCI:
343                 return "Atheros 9160";
344         case AR5416_AR9100_DEVID:
345                 return "Atheros 9100";
346         case AR9280_DEVID_PCI:
347         case AR9280_DEVID_PCIE:
348                 return "Atheros 9280";
349         case AR9285_DEVID_PCIE:
350                 return "Atheros 9285";
351         }
352
353         return NULL;
354 }
355
356 static void ath9k_hw_set_defaults(struct ath_hw *ah)
357 {
358         int i;
359
360         ah->config.dma_beacon_response_time = 2;
361         ah->config.sw_beacon_response_time = 10;
362         ah->config.additional_swba_backoff = 0;
363         ah->config.ack_6mb = 0x0;
364         ah->config.cwm_ignore_extcca = 0;
365         ah->config.pcie_powersave_enable = 0;
366         ah->config.pcie_l1skp_enable = 0;
367         ah->config.pcie_clock_req = 0;
368         ah->config.pcie_power_reset = 0x100;
369         ah->config.pcie_restore = 0;
370         ah->config.pcie_waen = 0;
371         ah->config.analog_shiftreg = 1;
372         ah->config.ht_enable = 1;
373         ah->config.ofdm_trig_low = 200;
374         ah->config.ofdm_trig_high = 500;
375         ah->config.cck_trig_high = 200;
376         ah->config.cck_trig_low = 100;
377         ah->config.enable_ani = 1;
378         ah->config.noise_immunity_level = 4;
379         ah->config.ofdm_weaksignal_det = 1;
380         ah->config.cck_weaksignal_thr = 0;
381         ah->config.spur_immunity_level = 2;
382         ah->config.firstep_level = 0;
383         ah->config.rssi_thr_high = 40;
384         ah->config.rssi_thr_low = 7;
385         ah->config.diversity_control = 0;
386         ah->config.antenna_switch_swap = 0;
387
388         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
389                 ah->config.spurchans[i][0] = AR_NO_SPUR;
390                 ah->config.spurchans[i][1] = AR_NO_SPUR;
391         }
392
393         ah->config.intr_mitigation = 1;
394 }
395
396 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
397                                         int *status)
398 {
399         struct ath_hw *ah;
400
401         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
402         if (ah == NULL) {
403                 DPRINTF(sc, ATH_DBG_FATAL,
404                         "Cannot allocate memory for state block\n");
405                 *status = -ENOMEM;
406                 return NULL;
407         }
408
409         ah->ah_sc = sc;
410         ah->hw_version.magic = AR5416_MAGIC;
411         ah->regulatory.country_code = CTRY_DEFAULT;
412         ah->hw_version.devid = devid;
413         ah->hw_version.subvendorid = 0;
414
415         ah->ah_flags = 0;
416         if ((devid == AR5416_AR9100_DEVID))
417                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
418         if (!AR_SREV_9100(ah))
419                 ah->ah_flags = AH_USE_EEPROM;
420
421         ah->regulatory.power_limit = MAX_RATE_POWER;
422         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
423         ah->atim_window = 0;
424         ah->diversity_control = ah->config.diversity_control;
425         ah->antenna_switch_swap =
426                 ah->config.antenna_switch_swap;
427         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
428         ah->beacon_interval = 100;
429         ah->enable_32kHz_clock = DONT_USE_32KHZ;
430         ah->slottime = (u32) -1;
431         ah->acktimeout = (u32) -1;
432         ah->ctstimeout = (u32) -1;
433         ah->globaltxtimeout = (u32) -1;
434
435         ah->gbeacon_rate = 0;
436
437         return ah;
438 }
439
440 static int ath9k_hw_rfattach(struct ath_hw *ah)
441 {
442         bool rfStatus = false;
443         int ecode = 0;
444
445         rfStatus = ath9k_hw_init_rf(ah, &ecode);
446         if (!rfStatus) {
447                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
448                         "RF setup failed, status %u\n", ecode);
449                 return ecode;
450         }
451
452         return 0;
453 }
454
455 static int ath9k_hw_rf_claim(struct ath_hw *ah)
456 {
457         u32 val;
458
459         REG_WRITE(ah, AR_PHY(0), 0x00000007);
460
461         val = ath9k_hw_get_radiorev(ah);
462         switch (val & AR_RADIO_SREV_MAJOR) {
463         case 0:
464                 val = AR_RAD5133_SREV_MAJOR;
465                 break;
466         case AR_RAD5133_SREV_MAJOR:
467         case AR_RAD5122_SREV_MAJOR:
468         case AR_RAD2133_SREV_MAJOR:
469         case AR_RAD2122_SREV_MAJOR:
470                 break;
471         default:
472                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
473                         "5G Radio Chip Rev 0x%02X is not "
474                         "supported by this driver\n",
475                         ah->hw_version.analog5GhzRev);
476                 return -EOPNOTSUPP;
477         }
478
479         ah->hw_version.analog5GhzRev = val;
480
481         return 0;
482 }
483
484 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
485 {
486         u32 sum;
487         int i;
488         u16 eeval;
489
490         sum = 0;
491         for (i = 0; i < 3; i++) {
492                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
493                 sum += eeval;
494                 ah->macaddr[2 * i] = eeval >> 8;
495                 ah->macaddr[2 * i + 1] = eeval & 0xff;
496         }
497         if (sum == 0 || sum == 0xffff * 3) {
498                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
499                         "mac address read failed: %pM\n",
500                         ah->macaddr);
501                 return -EADDRNOTAVAIL;
502         }
503
504         return 0;
505 }
506
507 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
508 {
509         u32 rxgain_type;
510
511         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
512                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
513
514                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
515                         INIT_INI_ARRAY(&ah->iniModesRxGain,
516                         ar9280Modes_backoff_13db_rxgain_9280_2,
517                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
518                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
519                         INIT_INI_ARRAY(&ah->iniModesRxGain,
520                         ar9280Modes_backoff_23db_rxgain_9280_2,
521                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
522                 else
523                         INIT_INI_ARRAY(&ah->iniModesRxGain,
524                         ar9280Modes_original_rxgain_9280_2,
525                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
526         } else {
527                 INIT_INI_ARRAY(&ah->iniModesRxGain,
528                         ar9280Modes_original_rxgain_9280_2,
529                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
530         }
531 }
532
533 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
534 {
535         u32 txgain_type;
536
537         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
538                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
539
540                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
541                         INIT_INI_ARRAY(&ah->iniModesTxGain,
542                         ar9280Modes_high_power_tx_gain_9280_2,
543                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
544                 else
545                         INIT_INI_ARRAY(&ah->iniModesTxGain,
546                         ar9280Modes_original_tx_gain_9280_2,
547                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
548         } else {
549                 INIT_INI_ARRAY(&ah->iniModesTxGain,
550                 ar9280Modes_original_tx_gain_9280_2,
551                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
552         }
553 }
554
555 static int ath9k_hw_post_attach(struct ath_hw *ah)
556 {
557         int ecode;
558
559         if (!ath9k_hw_chip_test(ah)) {
560                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
561                         "hardware self-test failed\n");
562                 return -ENODEV;
563         }
564
565         ecode = ath9k_hw_rf_claim(ah);
566         if (ecode != 0)
567                 return ecode;
568
569         ecode = ath9k_hw_eeprom_attach(ah);
570         if (ecode != 0)
571                 return ecode;
572         ecode = ath9k_hw_rfattach(ah);
573         if (ecode != 0)
574                 return ecode;
575
576         if (!AR_SREV_9100(ah)) {
577                 ath9k_hw_ani_setup(ah);
578                 ath9k_hw_ani_attach(ah);
579         }
580
581         return 0;
582 }
583
584 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
585                                          int *status)
586 {
587         struct ath_hw *ah;
588         int ecode;
589         u32 i, j;
590
591         ah = ath9k_hw_newstate(devid, sc, status);
592         if (ah == NULL)
593                 return NULL;
594
595         ath9k_hw_set_defaults(ah);
596
597         if (ah->config.intr_mitigation != 0)
598                 ah->intr_mitigation = true;
599
600         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
601                 DPRINTF(sc, ATH_DBG_RESET, "Couldn't reset chip\n");
602                 ecode = -EIO;
603                 goto bad;
604         }
605
606         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
607                 DPRINTF(sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
608                 ecode = -EIO;
609                 goto bad;
610         }
611
612         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
613                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) {
614                         ah->config.serialize_regmode =
615                                 SER_REG_MODE_ON;
616                 } else {
617                         ah->config.serialize_regmode =
618                                 SER_REG_MODE_OFF;
619                 }
620         }
621
622         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
623                 ah->config.serialize_regmode);
624
625         if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
626             (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
627             (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
628             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
629                 DPRINTF(sc, ATH_DBG_RESET,
630                         "Mac Chip Rev 0x%02x.%x is not supported by "
631                         "this driver\n", ah->hw_version.macVersion,
632                         ah->hw_version.macRev);
633                 ecode = -EOPNOTSUPP;
634                 goto bad;
635         }
636
637         if (AR_SREV_9100(ah)) {
638                 ah->iq_caldata.calData = &iq_cal_multi_sample;
639                 ah->supp_cals = IQ_MISMATCH_CAL;
640                 ah->is_pciexpress = false;
641         }
642         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
643
644         if (AR_SREV_9160_10_OR_LATER(ah)) {
645                 if (AR_SREV_9280_10_OR_LATER(ah)) {
646                         ah->iq_caldata.calData = &iq_cal_single_sample;
647                         ah->adcgain_caldata.calData =
648                                 &adc_gain_cal_single_sample;
649                         ah->adcdc_caldata.calData =
650                                 &adc_dc_cal_single_sample;
651                         ah->adcdc_calinitdata.calData =
652                                 &adc_init_dc_cal;
653                 } else {
654                         ah->iq_caldata.calData = &iq_cal_multi_sample;
655                         ah->adcgain_caldata.calData =
656                                 &adc_gain_cal_multi_sample;
657                         ah->adcdc_caldata.calData =
658                                 &adc_dc_cal_multi_sample;
659                         ah->adcdc_calinitdata.calData =
660                                 &adc_init_dc_cal;
661                 }
662                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
663         }
664
665         if (AR_SREV_9160(ah)) {
666                 ah->config.enable_ani = 1;
667                 ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
668                                         ATH9K_ANI_FIRSTEP_LEVEL);
669         } else {
670                 ah->ani_function = ATH9K_ANI_ALL;
671                 if (AR_SREV_9280_10_OR_LATER(ah)) {
672                         ah->ani_function &=     ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
673                 }
674         }
675
676         DPRINTF(sc, ATH_DBG_RESET,
677                 "This Mac Chip Rev 0x%02x.%x is \n",
678                 ah->hw_version.macVersion, ah->hw_version.macRev);
679
680         if (AR_SREV_9285_12_OR_LATER(ah)) {
681                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
682                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
683                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
684                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
685
686                 if (ah->config.pcie_clock_req) {
687                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
688                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
689                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
690                 } else {
691                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
692                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
693                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
694                                   2);
695                 }
696         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
697                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
698                                ARRAY_SIZE(ar9285Modes_9285), 6);
699                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
700                                ARRAY_SIZE(ar9285Common_9285), 2);
701
702                 if (ah->config.pcie_clock_req) {
703                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
704                         ar9285PciePhy_clkreq_off_L1_9285,
705                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
706                 } else {
707                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
708                         ar9285PciePhy_clkreq_always_on_L1_9285,
709                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
710                 }
711         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
712                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
713                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
715                                ARRAY_SIZE(ar9280Common_9280_2), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                                ar9280PciePhy_clkreq_off_L1_9280,
720                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                                ar9280PciePhy_clkreq_always_on_L1_9280,
724                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
725                 }
726                 INIT_INI_ARRAY(&ah->iniModesAdditional,
727                                ar9280Modes_fast_clock_9280_2,
728                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
729         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
730                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
731                                ARRAY_SIZE(ar9280Modes_9280), 6);
732                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
733                                ARRAY_SIZE(ar9280Common_9280), 2);
734         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
735                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
736                                ARRAY_SIZE(ar5416Modes_9160), 6);
737                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
738                                ARRAY_SIZE(ar5416Common_9160), 2);
739                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
740                                ARRAY_SIZE(ar5416Bank0_9160), 2);
741                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
742                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
743                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
744                                ARRAY_SIZE(ar5416Bank1_9160), 2);
745                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
746                                ARRAY_SIZE(ar5416Bank2_9160), 2);
747                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
748                                ARRAY_SIZE(ar5416Bank3_9160), 3);
749                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
750                                ARRAY_SIZE(ar5416Bank6_9160), 3);
751                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
752                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
753                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
754                                ARRAY_SIZE(ar5416Bank7_9160), 2);
755                 if (AR_SREV_9160_11(ah)) {
756                         INIT_INI_ARRAY(&ah->iniAddac,
757                                        ar5416Addac_91601_1,
758                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
759                 } else {
760                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
761                                        ARRAY_SIZE(ar5416Addac_9160), 2);
762                 }
763         } else if (AR_SREV_9100_OR_LATER(ah)) {
764                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
765                                ARRAY_SIZE(ar5416Modes_9100), 6);
766                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
767                                ARRAY_SIZE(ar5416Common_9100), 2);
768                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
769                                ARRAY_SIZE(ar5416Bank0_9100), 2);
770                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
771                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
772                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
773                                ARRAY_SIZE(ar5416Bank1_9100), 2);
774                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
775                                ARRAY_SIZE(ar5416Bank2_9100), 2);
776                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
777                                ARRAY_SIZE(ar5416Bank3_9100), 3);
778                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
779                                ARRAY_SIZE(ar5416Bank6_9100), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
781                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
782                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
783                                ARRAY_SIZE(ar5416Bank7_9100), 2);
784                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
785                                ARRAY_SIZE(ar5416Addac_9100), 2);
786         } else {
787                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
788                                ARRAY_SIZE(ar5416Modes), 6);
789                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
790                                ARRAY_SIZE(ar5416Common), 2);
791                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
792                                ARRAY_SIZE(ar5416Bank0), 2);
793                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
794                                ARRAY_SIZE(ar5416BB_RfGain), 3);
795                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
796                                ARRAY_SIZE(ar5416Bank1), 2);
797                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
798                                ARRAY_SIZE(ar5416Bank2), 2);
799                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
800                                ARRAY_SIZE(ar5416Bank3), 3);
801                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
802                                ARRAY_SIZE(ar5416Bank6), 3);
803                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
804                                ARRAY_SIZE(ar5416Bank6TPC), 3);
805                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
806                                ARRAY_SIZE(ar5416Bank7), 2);
807                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
808                                ARRAY_SIZE(ar5416Addac), 2);
809         }
810
811         if (ah->is_pciexpress)
812                 ath9k_hw_configpcipowersave(ah, 0);
813         else
814                 ath9k_hw_disablepcie(ah);
815
816         ecode = ath9k_hw_post_attach(ah);
817         if (ecode != 0)
818                 goto bad;
819
820         /* rxgain table */
821         if (AR_SREV_9280_20(ah))
822                 ath9k_hw_init_rxgain_ini(ah);
823
824         /* txgain table */
825         if (AR_SREV_9280_20(ah))
826                 ath9k_hw_init_txgain_ini(ah);
827
828         if (!ath9k_hw_fill_cap_info(ah)) {
829                 DPRINTF(sc, ATH_DBG_RESET, "failed ath9k_hw_fill_cap_info\n");
830                 ecode = -EINVAL;
831                 goto bad;
832         }
833
834         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
835             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
836
837                 /* EEPROM Fixup */
838                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
839                         u32 reg = INI_RA(&ah->iniModes, i, 0);
840
841                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
842                                 u32 val = INI_RA(&ah->iniModes, i, j);
843
844                                 INI_RA(&ah->iniModes, i, j) =
845                                         ath9k_hw_ini_fixup(ah,
846                                                            &ah->eeprom.def,
847                                                            reg, val);
848                         }
849                 }
850         }
851
852         ecode = ath9k_hw_init_macaddr(ah);
853         if (ecode != 0) {
854                 DPRINTF(sc, ATH_DBG_RESET,
855                         "failed initializing mac address\n");
856                 goto bad;
857         }
858
859         if (AR_SREV_9285(ah))
860                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
861         else
862                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
863
864         ath9k_init_nfcal_hist_buffer(ah);
865
866         return ah;
867 bad:
868         if (ah)
869                 ath9k_hw_detach(ah);
870         if (status)
871                 *status = ecode;
872
873         return NULL;
874 }
875
876 static void ath9k_hw_init_bb(struct ath_hw *ah,
877                              struct ath9k_channel *chan)
878 {
879         u32 synthDelay;
880
881         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
882         if (IS_CHAN_B(chan))
883                 synthDelay = (4 * synthDelay) / 22;
884         else
885                 synthDelay /= 10;
886
887         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
888
889         udelay(synthDelay + BASE_ACTIVATE_DELAY);
890 }
891
892 static void ath9k_hw_init_qos(struct ath_hw *ah)
893 {
894         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
895         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
896
897         REG_WRITE(ah, AR_QOS_NO_ACK,
898                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
899                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
900                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
901
902         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
903         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
904         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
905         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
906         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
907 }
908
909 static void ath9k_hw_init_pll(struct ath_hw *ah,
910                               struct ath9k_channel *chan)
911 {
912         u32 pll;
913
914         if (AR_SREV_9100(ah)) {
915                 if (chan && IS_CHAN_5GHZ(chan))
916                         pll = 0x1450;
917                 else
918                         pll = 0x1458;
919         } else {
920                 if (AR_SREV_9280_10_OR_LATER(ah)) {
921                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
922
923                         if (chan && IS_CHAN_HALF_RATE(chan))
924                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
925                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
926                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
927
928                         if (chan && IS_CHAN_5GHZ(chan)) {
929                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
930
931
932                                 if (AR_SREV_9280_20(ah)) {
933                                         if (((chan->channel % 20) == 0)
934                                             || ((chan->channel % 10) == 0))
935                                                 pll = 0x2850;
936                                         else
937                                                 pll = 0x142c;
938                                 }
939                         } else {
940                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
941                         }
942
943                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
944
945                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
946
947                         if (chan && IS_CHAN_HALF_RATE(chan))
948                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
949                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
950                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
951
952                         if (chan && IS_CHAN_5GHZ(chan))
953                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
954                         else
955                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
956                 } else {
957                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
958
959                         if (chan && IS_CHAN_HALF_RATE(chan))
960                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
961                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
962                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
963
964                         if (chan && IS_CHAN_5GHZ(chan))
965                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
966                         else
967                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
968                 }
969         }
970         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
971
972         udelay(RTC_PLL_SETTLE_DELAY);
973
974         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
975 }
976
977 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
978 {
979         int rx_chainmask, tx_chainmask;
980
981         rx_chainmask = ah->rxchainmask;
982         tx_chainmask = ah->txchainmask;
983
984         switch (rx_chainmask) {
985         case 0x5:
986                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
987                             AR_PHY_SWAP_ALT_CHAIN);
988         case 0x3:
989                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
990                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
991                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
992                         break;
993                 }
994         case 0x1:
995         case 0x2:
996         case 0x7:
997                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
998                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
999                 break;
1000         default:
1001                 break;
1002         }
1003
1004         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1005         if (tx_chainmask == 0x5) {
1006                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1007                             AR_PHY_SWAP_ALT_CHAIN);
1008         }
1009         if (AR_SREV_9100(ah))
1010                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1011                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1012 }
1013
1014 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1015                                           enum nl80211_iftype opmode)
1016 {
1017         ah->mask_reg = AR_IMR_TXERR |
1018                 AR_IMR_TXURN |
1019                 AR_IMR_RXERR |
1020                 AR_IMR_RXORN |
1021                 AR_IMR_BCNMISC;
1022
1023         if (ah->intr_mitigation)
1024                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1025         else
1026                 ah->mask_reg |= AR_IMR_RXOK;
1027
1028         ah->mask_reg |= AR_IMR_TXOK;
1029
1030         if (opmode == NL80211_IFTYPE_AP)
1031                 ah->mask_reg |= AR_IMR_MIB;
1032
1033         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1034         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1035
1036         if (!AR_SREV_9100(ah)) {
1037                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1038                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1039                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1040         }
1041 }
1042
1043 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1044 {
1045         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1046                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1047                 ah->acktimeout = (u32) -1;
1048                 return false;
1049         } else {
1050                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1051                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1052                 ah->acktimeout = us;
1053                 return true;
1054         }
1055 }
1056
1057 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1058 {
1059         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1060                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1061                 ah->ctstimeout = (u32) -1;
1062                 return false;
1063         } else {
1064                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1065                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1066                 ah->ctstimeout = us;
1067                 return true;
1068         }
1069 }
1070
1071 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1072 {
1073         if (tu > 0xFFFF) {
1074                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1075                         "bad global tx timeout %u\n", tu);
1076                 ah->globaltxtimeout = (u32) -1;
1077                 return false;
1078         } else {
1079                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1080                 ah->globaltxtimeout = tu;
1081                 return true;
1082         }
1083 }
1084
1085 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1086 {
1087         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1088                 ah->misc_mode);
1089
1090         if (ah->misc_mode != 0)
1091                 REG_WRITE(ah, AR_PCU_MISC,
1092                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1093         if (ah->slottime != (u32) -1)
1094                 ath9k_hw_setslottime(ah, ah->slottime);
1095         if (ah->acktimeout != (u32) -1)
1096                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1097         if (ah->ctstimeout != (u32) -1)
1098                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1099         if (ah->globaltxtimeout != (u32) -1)
1100                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1101 }
1102
1103 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1104 {
1105         return vendorid == ATHEROS_VENDOR_ID ?
1106                 ath9k_hw_devname(devid) : NULL;
1107 }
1108
1109 void ath9k_hw_detach(struct ath_hw *ah)
1110 {
1111         if (!AR_SREV_9100(ah))
1112                 ath9k_hw_ani_detach(ah);
1113
1114         ath9k_hw_rfdetach(ah);
1115         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1116         kfree(ah);
1117 }
1118
1119 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1120 {
1121         struct ath_hw *ah = NULL;
1122
1123         switch (devid) {
1124         case AR5416_DEVID_PCI:
1125         case AR5416_DEVID_PCIE:
1126         case AR5416_AR9100_DEVID:
1127         case AR9160_DEVID_PCI:
1128         case AR9280_DEVID_PCI:
1129         case AR9280_DEVID_PCIE:
1130         case AR9285_DEVID_PCIE:
1131                 ah = ath9k_hw_do_attach(devid, sc, error);
1132                 break;
1133         default:
1134                 *error = -ENXIO;
1135                 break;
1136         }
1137
1138         return ah;
1139 }
1140
1141 /*******/
1142 /* INI */
1143 /*******/
1144
1145 static void ath9k_hw_override_ini(struct ath_hw *ah,
1146                                   struct ath9k_channel *chan)
1147 {
1148         /*
1149          * Set the RX_ABORT and RX_DIS and clear if off only after
1150          * RXE is set for MAC. This prevents frames with corrupted
1151          * descriptor status.
1152          */
1153         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1154
1155
1156         if (!AR_SREV_5416_V20_OR_LATER(ah) ||
1157             AR_SREV_9280_10_OR_LATER(ah))
1158                 return;
1159
1160         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1161 }
1162
1163 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1164                               struct ar5416_eeprom_def *pEepData,
1165                               u32 reg, u32 value)
1166 {
1167         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1168
1169         switch (ah->hw_version.devid) {
1170         case AR9280_DEVID_PCI:
1171                 if (reg == 0x7894) {
1172                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1173                                 "ini VAL: %x  EEPROM: %x\n", value,
1174                                 (pBase->version & 0xff));
1175
1176                         if ((pBase->version & 0xff) > 0x0a) {
1177                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1178                                         "PWDCLKIND: %d\n",
1179                                         pBase->pwdclkind);
1180                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1181                                 value |= AR_AN_TOP2_PWDCLKIND &
1182                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1183                         } else {
1184                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1185                                         "PWDCLKIND Earlier Rev\n");
1186                         }
1187
1188                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
1189                                 "final ini VAL: %x\n", value);
1190                 }
1191                 break;
1192         }
1193
1194         return value;
1195 }
1196
1197 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1198                               struct ar5416_eeprom_def *pEepData,
1199                               u32 reg, u32 value)
1200 {
1201         if (ah->eep_map == EEP_MAP_4KBITS)
1202                 return value;
1203         else
1204                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1205 }
1206
1207 static void ath9k_olc_init(struct ath_hw *ah)
1208 {
1209         u32 i;
1210
1211         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1212                 ah->originalGain[i] =
1213                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1214                                         AR_PHY_TX_GAIN);
1215         ah->PDADCdelta = 0;
1216 }
1217
1218 static int ath9k_hw_process_ini(struct ath_hw *ah,
1219                                 struct ath9k_channel *chan,
1220                                 enum ath9k_ht_macmode macmode)
1221 {
1222         int i, regWrites = 0;
1223         struct ieee80211_channel *channel = chan->chan;
1224         u32 modesIndex, freqIndex;
1225         int status;
1226
1227         switch (chan->chanmode) {
1228         case CHANNEL_A:
1229         case CHANNEL_A_HT20:
1230                 modesIndex = 1;
1231                 freqIndex = 1;
1232                 break;
1233         case CHANNEL_A_HT40PLUS:
1234         case CHANNEL_A_HT40MINUS:
1235                 modesIndex = 2;
1236                 freqIndex = 1;
1237                 break;
1238         case CHANNEL_G:
1239         case CHANNEL_G_HT20:
1240         case CHANNEL_B:
1241                 modesIndex = 4;
1242                 freqIndex = 2;
1243                 break;
1244         case CHANNEL_G_HT40PLUS:
1245         case CHANNEL_G_HT40MINUS:
1246                 modesIndex = 3;
1247                 freqIndex = 2;
1248                 break;
1249
1250         default:
1251                 return -EINVAL;
1252         }
1253
1254         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1255         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1256         ah->eep_ops->set_addac(ah, chan);
1257
1258         if (AR_SREV_5416_V22_OR_LATER(ah)) {
1259                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1260         } else {
1261                 struct ar5416IniArray temp;
1262                 u32 addacSize =
1263                         sizeof(u32) * ah->iniAddac.ia_rows *
1264                         ah->iniAddac.ia_columns;
1265
1266                 memcpy(ah->addac5416_21,
1267                        ah->iniAddac.ia_array, addacSize);
1268
1269                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1270
1271                 temp.ia_array = ah->addac5416_21;
1272                 temp.ia_columns = ah->iniAddac.ia_columns;
1273                 temp.ia_rows = ah->iniAddac.ia_rows;
1274                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1275         }
1276
1277         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1278
1279         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1280                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1281                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1282
1283                 REG_WRITE(ah, reg, val);
1284
1285                 if (reg >= 0x7800 && reg < 0x78a0
1286                     && ah->config.analog_shiftreg) {
1287                         udelay(100);
1288                 }
1289
1290                 DO_DELAY(regWrites);
1291         }
1292
1293         if (AR_SREV_9280(ah))
1294                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1295
1296         if (AR_SREV_9280(ah))
1297                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1298
1299         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1300                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1301                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1302
1303                 REG_WRITE(ah, reg, val);
1304
1305                 if (reg >= 0x7800 && reg < 0x78a0
1306                     && ah->config.analog_shiftreg) {
1307                         udelay(100);
1308                 }
1309
1310                 DO_DELAY(regWrites);
1311         }
1312
1313         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1314
1315         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1316                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1317                                 regWrites);
1318         }
1319
1320         ath9k_hw_override_ini(ah, chan);
1321         ath9k_hw_set_regs(ah, chan, macmode);
1322         ath9k_hw_init_chain_masks(ah);
1323
1324         if (OLC_FOR_AR9280_20_LATER)
1325                 ath9k_olc_init(ah);
1326
1327         status = ah->eep_ops->set_txpower(ah, chan,
1328                                   ath9k_regd_get_ctl(ah, chan),
1329                                   channel->max_antenna_gain * 2,
1330                                   channel->max_power * 2,
1331                                   min((u32) MAX_RATE_POWER,
1332                                       (u32) ah->regulatory.power_limit));
1333         if (status != 0) {
1334                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1335                         "error init'ing transmit power\n");
1336                 return -EIO;
1337         }
1338
1339         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1340                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1341                         "ar5416SetRfRegs failed\n");
1342                 return -EIO;
1343         }
1344
1345         return 0;
1346 }
1347
1348 /****************************************/
1349 /* Reset and Channel Switching Routines */
1350 /****************************************/
1351
1352 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1353 {
1354         u32 rfMode = 0;
1355
1356         if (chan == NULL)
1357                 return;
1358
1359         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1360                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1361
1362         if (!AR_SREV_9280_10_OR_LATER(ah))
1363                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1364                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1365
1366         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1367                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1368
1369         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1370 }
1371
1372 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1373 {
1374         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1375 }
1376
1377 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1378 {
1379         u32 regval;
1380
1381         regval = REG_READ(ah, AR_AHB_MODE);
1382         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1383
1384         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1385         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1386
1387         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1388
1389         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1390         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1391
1392         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1393
1394         if (AR_SREV_9285(ah)) {
1395                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1396                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1397         } else {
1398                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1399                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1400         }
1401 }
1402
1403 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1404 {
1405         u32 val;
1406
1407         val = REG_READ(ah, AR_STA_ID1);
1408         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1409         switch (opmode) {
1410         case NL80211_IFTYPE_AP:
1411                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1412                           | AR_STA_ID1_KSRCH_MODE);
1413                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1414                 break;
1415         case NL80211_IFTYPE_ADHOC:
1416                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1417                           | AR_STA_ID1_KSRCH_MODE);
1418                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1419                 break;
1420         case NL80211_IFTYPE_STATION:
1421         case NL80211_IFTYPE_MONITOR:
1422                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1423                 break;
1424         }
1425 }
1426
1427 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1428                                                  u32 coef_scaled,
1429                                                  u32 *coef_mantissa,
1430                                                  u32 *coef_exponent)
1431 {
1432         u32 coef_exp, coef_man;
1433
1434         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1435                 if ((coef_scaled >> coef_exp) & 0x1)
1436                         break;
1437
1438         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1439
1440         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1441
1442         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1443         *coef_exponent = coef_exp - 16;
1444 }
1445
1446 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1447                                      struct ath9k_channel *chan)
1448 {
1449         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1450         u32 clockMhzScaled = 0x64000000;
1451         struct chan_centers centers;
1452
1453         if (IS_CHAN_HALF_RATE(chan))
1454                 clockMhzScaled = clockMhzScaled >> 1;
1455         else if (IS_CHAN_QUARTER_RATE(chan))
1456                 clockMhzScaled = clockMhzScaled >> 2;
1457
1458         ath9k_hw_get_channel_centers(ah, chan, &centers);
1459         coef_scaled = clockMhzScaled / centers.synth_center;
1460
1461         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1462                                       &ds_coef_exp);
1463
1464         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1465                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1466         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1467                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1468
1469         coef_scaled = (9 * coef_scaled) / 10;
1470
1471         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1472                                       &ds_coef_exp);
1473
1474         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1475                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1476         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1477                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1478 }
1479
1480 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1481 {
1482         u32 rst_flags;
1483         u32 tmpReg;
1484
1485         if (AR_SREV_9100(ah)) {
1486                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1487                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1488                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1489                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1490                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1491         }
1492
1493         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1494                   AR_RTC_FORCE_WAKE_ON_INT);
1495
1496         if (AR_SREV_9100(ah)) {
1497                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1498                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1499         } else {
1500                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1501                 if (tmpReg &
1502                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1503                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1504                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1505                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1506                 } else {
1507                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1508                 }
1509
1510                 rst_flags = AR_RTC_RC_MAC_WARM;
1511                 if (type == ATH9K_RESET_COLD)
1512                         rst_flags |= AR_RTC_RC_MAC_COLD;
1513         }
1514
1515         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1516         udelay(50);
1517
1518         REG_WRITE(ah, AR_RTC_RC, 0);
1519         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1520                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1521                         "RTC stuck in MAC reset\n");
1522                 return false;
1523         }
1524
1525         if (!AR_SREV_9100(ah))
1526                 REG_WRITE(ah, AR_RC, 0);
1527
1528         ath9k_hw_init_pll(ah, NULL);
1529
1530         if (AR_SREV_9100(ah))
1531                 udelay(50);
1532
1533         return true;
1534 }
1535
1536 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1537 {
1538         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1539                   AR_RTC_FORCE_WAKE_ON_INT);
1540
1541         REG_WRITE(ah, AR_RTC_RESET, 0);
1542         udelay(2);
1543         REG_WRITE(ah, AR_RTC_RESET, 1);
1544
1545         if (!ath9k_hw_wait(ah,
1546                            AR_RTC_STATUS,
1547                            AR_RTC_STATUS_M,
1548                            AR_RTC_STATUS_ON,
1549                            AH_WAIT_TIMEOUT)) {
1550                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1551                 return false;
1552         }
1553
1554         ath9k_hw_read_revisions(ah);
1555
1556         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1557 }
1558
1559 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1560 {
1561         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1562                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1563
1564         switch (type) {
1565         case ATH9K_RESET_POWER_ON:
1566                 return ath9k_hw_set_reset_power_on(ah);
1567                 break;
1568         case ATH9K_RESET_WARM:
1569         case ATH9K_RESET_COLD:
1570                 return ath9k_hw_set_reset(ah, type);
1571                 break;
1572         default:
1573                 return false;
1574         }
1575 }
1576
1577 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1578                               enum ath9k_ht_macmode macmode)
1579 {
1580         u32 phymode;
1581         u32 enableDacFifo = 0;
1582
1583         if (AR_SREV_9285_10_OR_LATER(ah))
1584                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1585                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1586
1587         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1588                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1589
1590         if (IS_CHAN_HT40(chan)) {
1591                 phymode |= AR_PHY_FC_DYN2040_EN;
1592
1593                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1594                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1595                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1596
1597                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1598                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1599         }
1600         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1601
1602         ath9k_hw_set11nmac2040(ah, macmode);
1603
1604         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1605         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1606 }
1607
1608 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1609                                 struct ath9k_channel *chan)
1610 {
1611         if (OLC_FOR_AR9280_20_LATER) {
1612                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1613                         return false;
1614         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1615                 return false;
1616
1617         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1618                 return false;
1619
1620         ah->chip_fullsleep = false;
1621         ath9k_hw_init_pll(ah, chan);
1622         ath9k_hw_set_rfmode(ah, chan);
1623
1624         return true;
1625 }
1626
1627 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1628                                     struct ath9k_channel *chan,
1629                                     enum ath9k_ht_macmode macmode)
1630 {
1631         struct ieee80211_channel *channel = chan->chan;
1632         u32 synthDelay, qnum;
1633
1634         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1635                 if (ath9k_hw_numtxpending(ah, qnum)) {
1636                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1637                                 "Transmit frames pending on queue %d\n", qnum);
1638                         return false;
1639                 }
1640         }
1641
1642         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1643         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1644                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1645                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1646                         "Could not kill baseband RX\n");
1647                 return false;
1648         }
1649
1650         ath9k_hw_set_regs(ah, chan, macmode);
1651
1652         if (AR_SREV_9280_10_OR_LATER(ah)) {
1653                 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1654                         DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1655                                 "failed to set channel\n");
1656                         return false;
1657                 }
1658         } else {
1659                 if (!(ath9k_hw_set_channel(ah, chan))) {
1660                         DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1661                                 "failed to set channel\n");
1662                         return false;
1663                 }
1664         }
1665
1666         if (ah->eep_ops->set_txpower(ah, chan,
1667                              ath9k_regd_get_ctl(ah, chan),
1668                              channel->max_antenna_gain * 2,
1669                              channel->max_power * 2,
1670                              min((u32) MAX_RATE_POWER,
1671                                  (u32) ah->regulatory.power_limit)) != 0) {
1672                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1673                         "error init'ing transmit power\n");
1674                 return false;
1675         }
1676
1677         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1678         if (IS_CHAN_B(chan))
1679                 synthDelay = (4 * synthDelay) / 22;
1680         else
1681                 synthDelay /= 10;
1682
1683         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1684
1685         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1686
1687         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1688                 ath9k_hw_set_delta_slope(ah, chan);
1689
1690         if (AR_SREV_9280_10_OR_LATER(ah))
1691                 ath9k_hw_9280_spur_mitigate(ah, chan);
1692         else
1693                 ath9k_hw_spur_mitigate(ah, chan);
1694
1695         if (!chan->oneTimeCalsDone)
1696                 chan->oneTimeCalsDone = true;
1697
1698         return true;
1699 }
1700
1701 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1702 {
1703         int bb_spur = AR_NO_SPUR;
1704         int freq;
1705         int bin, cur_bin;
1706         int bb_spur_off, spur_subchannel_sd;
1707         int spur_freq_sd;
1708         int spur_delta_phase;
1709         int denominator;
1710         int upper, lower, cur_vit_mask;
1711         int tmp, newVal;
1712         int i;
1713         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1714                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1715         };
1716         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1717                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1718         };
1719         int inc[4] = { 0, 100, 0, 0 };
1720         struct chan_centers centers;
1721
1722         int8_t mask_m[123];
1723         int8_t mask_p[123];
1724         int8_t mask_amt;
1725         int tmp_mask;
1726         int cur_bb_spur;
1727         bool is2GHz = IS_CHAN_2GHZ(chan);
1728
1729         memset(&mask_m, 0, sizeof(int8_t) * 123);
1730         memset(&mask_p, 0, sizeof(int8_t) * 123);
1731
1732         ath9k_hw_get_channel_centers(ah, chan, &centers);
1733         freq = centers.synth_center;
1734
1735         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1736         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1737                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1738
1739                 if (is2GHz)
1740                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1741                 else
1742                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1743
1744                 if (AR_NO_SPUR == cur_bb_spur)
1745                         break;
1746                 cur_bb_spur = cur_bb_spur - freq;
1747
1748                 if (IS_CHAN_HT40(chan)) {
1749                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1750                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1751                                 bb_spur = cur_bb_spur;
1752                                 break;
1753                         }
1754                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1755                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1756                         bb_spur = cur_bb_spur;
1757                         break;
1758                 }
1759         }
1760
1761         if (AR_NO_SPUR == bb_spur) {
1762                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1763                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1764                 return;
1765         } else {
1766                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1767                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1768         }
1769
1770         bin = bb_spur * 320;
1771
1772         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1773
1774         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1775                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1776                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1777                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1778         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1779
1780         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1781                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1782                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1783                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1784                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1785         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1786
1787         if (IS_CHAN_HT40(chan)) {
1788                 if (bb_spur < 0) {
1789                         spur_subchannel_sd = 1;
1790                         bb_spur_off = bb_spur + 10;
1791                 } else {
1792                         spur_subchannel_sd = 0;
1793                         bb_spur_off = bb_spur - 10;
1794                 }
1795         } else {
1796                 spur_subchannel_sd = 0;
1797                 bb_spur_off = bb_spur;
1798         }
1799
1800         if (IS_CHAN_HT40(chan))
1801                 spur_delta_phase =
1802                         ((bb_spur * 262144) /
1803                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1804         else
1805                 spur_delta_phase =
1806                         ((bb_spur * 524288) /
1807                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1808
1809         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1810         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1811
1812         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1813                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1814                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1815         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1816
1817         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1818         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1819
1820         cur_bin = -6000;
1821         upper = bin + 100;
1822         lower = bin - 100;
1823
1824         for (i = 0; i < 4; i++) {
1825                 int pilot_mask = 0;
1826                 int chan_mask = 0;
1827                 int bp = 0;
1828                 for (bp = 0; bp < 30; bp++) {
1829                         if ((cur_bin > lower) && (cur_bin < upper)) {
1830                                 pilot_mask = pilot_mask | 0x1 << bp;
1831                                 chan_mask = chan_mask | 0x1 << bp;
1832                         }
1833                         cur_bin += 100;
1834                 }
1835                 cur_bin += inc[i];
1836                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1837                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1838         }
1839
1840         cur_vit_mask = 6100;
1841         upper = bin + 120;
1842         lower = bin - 120;
1843
1844         for (i = 0; i < 123; i++) {
1845                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1846
1847                         /* workaround for gcc bug #37014 */
1848                         volatile int tmp_v = abs(cur_vit_mask - bin);
1849
1850                         if (tmp_v < 75)
1851                                 mask_amt = 1;
1852                         else
1853                                 mask_amt = 0;
1854                         if (cur_vit_mask < 0)
1855                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1856                         else
1857                                 mask_p[cur_vit_mask / 100] = mask_amt;
1858                 }
1859                 cur_vit_mask -= 100;
1860         }
1861
1862         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1863                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1864                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1865                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1866                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1867                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1868                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1869                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1870         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1871         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1872
1873         tmp_mask = (mask_m[31] << 28)
1874                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1875                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1876                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1877                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1878                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1879                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1880                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1881         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1882         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1883
1884         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1885                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1886                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1887                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1888                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1889                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1890                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1891                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1892         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1893         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1894
1895         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1896                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1897                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1898                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1899                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1900                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1901                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1902                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1903         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1904         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1905
1906         tmp_mask = (mask_p[15] << 28)
1907                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1908                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1909                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1910                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1911                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1912                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1913                 | (mask_p[2] << 2) | (mask_p[1] << 0);
1914         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1915         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1916
1917         tmp_mask = (mask_p[30] << 28)
1918                 | (mask_p[29] << 26) | (mask_p[28] << 24)
1919                 | (mask_p[27] << 22) | (mask_p[26] << 20)
1920                 | (mask_p[25] << 18) | (mask_p[24] << 16)
1921                 | (mask_p[23] << 14) | (mask_p[22] << 12)
1922                 | (mask_p[21] << 10) | (mask_p[20] << 8)
1923                 | (mask_p[19] << 6) | (mask_p[18] << 4)
1924                 | (mask_p[17] << 2) | (mask_p[16] << 0);
1925         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1926         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1927
1928         tmp_mask = (mask_p[45] << 28)
1929                 | (mask_p[44] << 26) | (mask_p[43] << 24)
1930                 | (mask_p[42] << 22) | (mask_p[41] << 20)
1931                 | (mask_p[40] << 18) | (mask_p[39] << 16)
1932                 | (mask_p[38] << 14) | (mask_p[37] << 12)
1933                 | (mask_p[36] << 10) | (mask_p[35] << 8)
1934                 | (mask_p[34] << 6) | (mask_p[33] << 4)
1935                 | (mask_p[32] << 2) | (mask_p[31] << 0);
1936         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1937         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1938
1939         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1940                 | (mask_p[59] << 26) | (mask_p[58] << 24)
1941                 | (mask_p[57] << 22) | (mask_p[56] << 20)
1942                 | (mask_p[55] << 18) | (mask_p[54] << 16)
1943                 | (mask_p[53] << 14) | (mask_p[52] << 12)
1944                 | (mask_p[51] << 10) | (mask_p[50] << 8)
1945                 | (mask_p[49] << 6) | (mask_p[48] << 4)
1946                 | (mask_p[47] << 2) | (mask_p[46] << 0);
1947         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1948         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1949 }
1950
1951 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1952 {
1953         int bb_spur = AR_NO_SPUR;
1954         int bin, cur_bin;
1955         int spur_freq_sd;
1956         int spur_delta_phase;
1957         int denominator;
1958         int upper, lower, cur_vit_mask;
1959         int tmp, new;
1960         int i;
1961         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1962                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1963         };
1964         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1965                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1966         };
1967         int inc[4] = { 0, 100, 0, 0 };
1968
1969         int8_t mask_m[123];
1970         int8_t mask_p[123];
1971         int8_t mask_amt;
1972         int tmp_mask;
1973         int cur_bb_spur;
1974         bool is2GHz = IS_CHAN_2GHZ(chan);
1975
1976         memset(&mask_m, 0, sizeof(int8_t) * 123);
1977         memset(&mask_p, 0, sizeof(int8_t) * 123);
1978
1979         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1980                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1981                 if (AR_NO_SPUR == cur_bb_spur)
1982                         break;
1983                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
1984                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
1985                         bb_spur = cur_bb_spur;
1986                         break;
1987                 }
1988         }
1989
1990         if (AR_NO_SPUR == bb_spur)
1991                 return;
1992
1993         bin = bb_spur * 32;
1994
1995         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1996         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1997                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1998                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1999                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2000
2001         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2002
2003         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2004                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2005                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2006                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2007                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2008         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2009
2010         spur_delta_phase = ((bb_spur * 524288) / 100) &
2011                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2012
2013         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2014         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2015
2016         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2017                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2018                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2019         REG_WRITE(ah, AR_PHY_TIMING11, new);
2020
2021         cur_bin = -6000;
2022         upper = bin + 100;
2023         lower = bin - 100;
2024
2025         for (i = 0; i < 4; i++) {
2026                 int pilot_mask = 0;
2027                 int chan_mask = 0;
2028                 int bp = 0;
2029                 for (bp = 0; bp < 30; bp++) {
2030                         if ((cur_bin > lower) && (cur_bin < upper)) {
2031                                 pilot_mask = pilot_mask | 0x1 << bp;
2032                                 chan_mask = chan_mask | 0x1 << bp;
2033                         }
2034                         cur_bin += 100;
2035                 }
2036                 cur_bin += inc[i];
2037                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2038                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2039         }
2040
2041         cur_vit_mask = 6100;
2042         upper = bin + 120;
2043         lower = bin - 120;
2044
2045         for (i = 0; i < 123; i++) {
2046                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2047
2048                         /* workaround for gcc bug #37014 */
2049                         volatile int tmp_v = abs(cur_vit_mask - bin);
2050
2051                         if (tmp_v < 75)
2052                                 mask_amt = 1;
2053                         else
2054                                 mask_amt = 0;
2055                         if (cur_vit_mask < 0)
2056                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2057                         else
2058                                 mask_p[cur_vit_mask / 100] = mask_amt;
2059                 }
2060                 cur_vit_mask -= 100;
2061         }
2062
2063         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2064                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2065                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2066                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2067                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2068                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2069                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2070                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2071         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2072         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2073
2074         tmp_mask = (mask_m[31] << 28)
2075                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2076                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2077                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2078                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2079                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2080                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2081                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2082         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2083         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2084
2085         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2086                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2087                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2088                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2089                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2090                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2091                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2092                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2093         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2094         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2095
2096         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2097                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2098                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2099                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2100                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2101                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2102                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2103                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2104         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2105         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2106
2107         tmp_mask = (mask_p[15] << 28)
2108                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2109                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2110                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2111                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2112                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2113                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2114                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2115         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2116         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2117
2118         tmp_mask = (mask_p[30] << 28)
2119                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2120                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2121                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2122                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2123                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2124                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2125                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2126         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2127         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2128
2129         tmp_mask = (mask_p[45] << 28)
2130                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2131                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2132                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2133                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2134                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2135                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2136                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2137         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2138         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2139
2140         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2141                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2142                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2143                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2144                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2145                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2146                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2147                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2148         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2149         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2150 }
2151
2152 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2153                     bool bChannelChange)
2154 {
2155         u32 saveLedState;
2156         struct ath_softc *sc = ah->ah_sc;
2157         struct ath9k_channel *curchan = ah->curchan;
2158         u32 saveDefAntenna;
2159         u32 macStaId1;
2160         int i, rx_chainmask, r;
2161
2162         ah->extprotspacing = sc->ht_extprotspacing;
2163         ah->txchainmask = sc->tx_chainmask;
2164         ah->rxchainmask = sc->rx_chainmask;
2165
2166         if (AR_SREV_9285(ah)) {
2167                 ah->txchainmask &= 0x1;
2168                 ah->rxchainmask &= 0x1;
2169         } else if (AR_SREV_9280(ah)) {
2170                 ah->txchainmask &= 0x3;
2171                 ah->rxchainmask &= 0x3;
2172         }
2173
2174         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2175                 return -EIO;
2176
2177         if (curchan)
2178                 ath9k_hw_getnf(ah, curchan);
2179
2180         if (bChannelChange &&
2181             (ah->chip_fullsleep != true) &&
2182             (ah->curchan != NULL) &&
2183             (chan->channel != ah->curchan->channel) &&
2184             ((chan->channelFlags & CHANNEL_ALL) ==
2185              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2186             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2187                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2188
2189                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2190                         ath9k_hw_loadnf(ah, ah->curchan);
2191                         ath9k_hw_start_nfcal(ah);
2192                         return 0;
2193                 }
2194         }
2195
2196         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2197         if (saveDefAntenna == 0)
2198                 saveDefAntenna = 1;
2199
2200         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2201
2202         saveLedState = REG_READ(ah, AR_CFG_LED) &
2203                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2204                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2205
2206         ath9k_hw_mark_phy_inactive(ah);
2207
2208         if (!ath9k_hw_chip_reset(ah, chan)) {
2209                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
2210                 return -EINVAL;
2211         }
2212
2213         if (AR_SREV_9280_10_OR_LATER(ah))
2214                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2215
2216         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2217         if (r)
2218                 return r;
2219
2220         /* Setup MFP options for CCMP */
2221         if (AR_SREV_9280_20_OR_LATER(ah)) {
2222                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2223                  * frames when constructing CCMP AAD. */
2224                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2225                               0xc7ff);
2226                 ah->sw_mgmt_crypto = false;
2227         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2228                 /* Disable hardware crypto for management frames */
2229                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2230                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2231                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2232                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2233                 ah->sw_mgmt_crypto = true;
2234         } else
2235                 ah->sw_mgmt_crypto = true;
2236
2237         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2238                 ath9k_hw_set_delta_slope(ah, chan);
2239
2240         if (AR_SREV_9280_10_OR_LATER(ah))
2241                 ath9k_hw_9280_spur_mitigate(ah, chan);
2242         else
2243                 ath9k_hw_spur_mitigate(ah, chan);
2244
2245         if (!ah->eep_ops->set_board_values(ah, chan)) {
2246                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2247                         "error setting board options\n");
2248                 return -EIO;
2249         }
2250
2251         ath9k_hw_decrease_chain_power(ah, chan);
2252
2253         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2254         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2255                   | macStaId1
2256                   | AR_STA_ID1_RTS_USE_DEF
2257                   | (ah->config.
2258                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2259                   | ah->sta_id1_defaults);
2260         ath9k_hw_set_operating_mode(ah, ah->opmode);
2261
2262         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2263         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2264
2265         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2266
2267         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2268         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2269                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2270
2271         REG_WRITE(ah, AR_ISR, ~0);
2272
2273         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2274
2275         if (AR_SREV_9280_10_OR_LATER(ah)) {
2276                 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
2277                         return -EIO;
2278         } else {
2279                 if (!(ath9k_hw_set_channel(ah, chan)))
2280                         return -EIO;
2281         }
2282
2283         for (i = 0; i < AR_NUM_DCU; i++)
2284                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2285
2286         ah->intr_txqs = 0;
2287         for (i = 0; i < ah->caps.total_queues; i++)
2288                 ath9k_hw_resettxqueue(ah, i);
2289
2290         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2291         ath9k_hw_init_qos(ah);
2292
2293 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2294         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2295                 ath9k_enable_rfkill(ah);
2296 #endif
2297         ath9k_hw_init_user_settings(ah);
2298
2299         REG_WRITE(ah, AR_STA_ID1,
2300                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2301
2302         ath9k_hw_set_dma(ah);
2303
2304         REG_WRITE(ah, AR_OBS, 8);
2305
2306         if (ah->intr_mitigation) {
2307
2308                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2309                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2310         }
2311
2312         ath9k_hw_init_bb(ah, chan);
2313
2314         if (!ath9k_hw_init_cal(ah, chan))
2315                 return -EIO;;
2316
2317         rx_chainmask = ah->rxchainmask;
2318         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2319                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2320                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2321         }
2322
2323         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2324
2325         if (AR_SREV_9100(ah)) {
2326                 u32 mask;
2327                 mask = REG_READ(ah, AR_CFG);
2328                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2329                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2330                                 "CFG Byte Swap Set 0x%x\n", mask);
2331                 } else {
2332                         mask =
2333                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2334                         REG_WRITE(ah, AR_CFG, mask);
2335                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2336                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2337                 }
2338         } else {
2339 #ifdef __BIG_ENDIAN
2340                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2341 #endif
2342         }
2343
2344         return 0;
2345 }
2346
2347 /************************/
2348 /* Key Cache Management */
2349 /************************/
2350
2351 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2352 {
2353         u32 keyType;
2354
2355         if (entry >= ah->caps.keycache_size) {
2356                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2357                         "entry %u out of range\n", entry);
2358                 return false;
2359         }
2360
2361         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2362
2363         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2364         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2365         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2366         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2367         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2368         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2369         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2370         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2371
2372         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2373                 u16 micentry = entry + 64;
2374
2375                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2376                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2377                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2378                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2379
2380         }
2381
2382         if (ah->curchan == NULL)
2383                 return true;
2384
2385         return true;
2386 }
2387
2388 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2389 {
2390         u32 macHi, macLo;
2391
2392         if (entry >= ah->caps.keycache_size) {
2393                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2394                         "entry %u out of range\n", entry);
2395                 return false;
2396         }
2397
2398         if (mac != NULL) {
2399                 macHi = (mac[5] << 8) | mac[4];
2400                 macLo = (mac[3] << 24) |
2401                         (mac[2] << 16) |
2402                         (mac[1] << 8) |
2403                         mac[0];
2404                 macLo >>= 1;
2405                 macLo |= (macHi & 1) << 31;
2406                 macHi >>= 1;
2407         } else {
2408                 macLo = macHi = 0;
2409         }
2410         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2411         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2412
2413         return true;
2414 }
2415
2416 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2417                                  const struct ath9k_keyval *k,
2418                                  const u8 *mac)
2419 {
2420         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2421         u32 key0, key1, key2, key3, key4;
2422         u32 keyType;
2423
2424         if (entry >= pCap->keycache_size) {
2425                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2426                         "entry %u out of range\n", entry);
2427                 return false;
2428         }
2429
2430         switch (k->kv_type) {
2431         case ATH9K_CIPHER_AES_OCB:
2432                 keyType = AR_KEYTABLE_TYPE_AES;
2433                 break;
2434         case ATH9K_CIPHER_AES_CCM:
2435                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2436                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2437                                 "AES-CCM not supported by mac rev 0x%x\n",
2438                                 ah->hw_version.macRev);
2439                         return false;
2440                 }
2441                 keyType = AR_KEYTABLE_TYPE_CCM;
2442                 break;
2443         case ATH9K_CIPHER_TKIP:
2444                 keyType = AR_KEYTABLE_TYPE_TKIP;
2445                 if (ATH9K_IS_MIC_ENABLED(ah)
2446                     && entry + 64 >= pCap->keycache_size) {
2447                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2448                                 "entry %u inappropriate for TKIP\n", entry);
2449                         return false;
2450                 }
2451                 break;
2452         case ATH9K_CIPHER_WEP:
2453                 if (k->kv_len < LEN_WEP40) {
2454                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2455                                 "WEP key length %u too small\n", k->kv_len);
2456                         return false;
2457                 }
2458                 if (k->kv_len <= LEN_WEP40)
2459                         keyType = AR_KEYTABLE_TYPE_40;
2460                 else if (k->kv_len <= LEN_WEP104)
2461                         keyType = AR_KEYTABLE_TYPE_104;
2462                 else
2463                         keyType = AR_KEYTABLE_TYPE_128;
2464                 break;
2465         case ATH9K_CIPHER_CLR:
2466                 keyType = AR_KEYTABLE_TYPE_CLR;
2467                 break;
2468         default:
2469                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
2470                         "cipher %u not supported\n", k->kv_type);
2471                 return false;
2472         }
2473
2474         key0 = get_unaligned_le32(k->kv_val + 0);
2475         key1 = get_unaligned_le16(k->kv_val + 4);
2476         key2 = get_unaligned_le32(k->kv_val + 6);
2477         key3 = get_unaligned_le16(k->kv_val + 10);
2478         key4 = get_unaligned_le32(k->kv_val + 12);
2479         if (k->kv_len <= LEN_WEP104)
2480                 key4 &= 0xff;
2481
2482         /*
2483          * Note: Key cache registers access special memory area that requires
2484          * two 32-bit writes to actually update the values in the internal
2485          * memory. Consequently, the exact order and pairs used here must be
2486          * maintained.
2487          */
2488
2489         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2490                 u16 micentry = entry + 64;
2491
2492                 /*
2493                  * Write inverted key[47:0] first to avoid Michael MIC errors
2494                  * on frames that could be sent or received at the same time.
2495                  * The correct key will be written in the end once everything
2496                  * else is ready.
2497                  */
2498                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2499                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2500
2501                 /* Write key[95:48] */
2502                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2503                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2504
2505                 /* Write key[127:96] and key type */
2506                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2507                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2508
2509                 /* Write MAC address for the entry */
2510                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2511
2512                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2513                         /*
2514                          * TKIP uses two key cache entries:
2515                          * Michael MIC TX/RX keys in the same key cache entry
2516                          * (idx = main index + 64):
2517                          * key0 [31:0] = RX key [31:0]
2518                          * key1 [15:0] = TX key [31:16]
2519                          * key1 [31:16] = reserved
2520                          * key2 [31:0] = RX key [63:32]
2521                          * key3 [15:0] = TX key [15:0]
2522                          * key3 [31:16] = reserved
2523                          * key4 [31:0] = TX key [63:32]
2524                          */
2525                         u32 mic0, mic1, mic2, mic3, mic4;
2526
2527                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2528                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2529                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2530                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2531                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2532
2533                         /* Write RX[31:0] and TX[31:16] */
2534                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2535                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2536
2537                         /* Write RX[63:32] and TX[15:0] */
2538                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2539                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2540
2541                         /* Write TX[63:32] and keyType(reserved) */
2542                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2543                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2544                                   AR_KEYTABLE_TYPE_CLR);
2545
2546                 } else {
2547                         /*
2548                          * TKIP uses four key cache entries (two for group
2549                          * keys):
2550                          * Michael MIC TX/RX keys are in different key cache
2551                          * entries (idx = main index + 64 for TX and
2552                          * main index + 32 + 96 for RX):
2553                          * key0 [31:0] = TX/RX MIC key [31:0]
2554                          * key1 [31:0] = reserved
2555                          * key2 [31:0] = TX/RX MIC key [63:32]
2556                          * key3 [31:0] = reserved
2557                          * key4 [31:0] = reserved
2558                          *
2559                          * Upper layer code will call this function separately
2560                          * for TX and RX keys when these registers offsets are
2561                          * used.
2562                          */
2563                         u32 mic0, mic2;
2564
2565                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2566                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2567
2568                         /* Write MIC key[31:0] */
2569                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2570                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2571
2572                         /* Write MIC key[63:32] */
2573                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2574                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2575
2576                         /* Write TX[63:32] and keyType(reserved) */
2577                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2578                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2579                                   AR_KEYTABLE_TYPE_CLR);
2580                 }
2581
2582                 /* MAC address registers are reserved for the MIC entry */
2583                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2584                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2585
2586                 /*
2587                  * Write the correct (un-inverted) key[47:0] last to enable
2588                  * TKIP now that all other registers are set with correct
2589                  * values.
2590                  */
2591                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2592                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2593         } else {
2594                 /* Write key[47:0] */
2595                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2596                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2597
2598                 /* Write key[95:48] */
2599                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2600                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2601
2602                 /* Write key[127:96] and key type */
2603                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2604                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2605
2606                 /* Write MAC address for the entry */
2607                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2608         }
2609
2610         return true;
2611 }
2612
2613 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2614 {
2615         if (entry < ah->caps.keycache_size) {
2616                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2617                 if (val & AR_KEYTABLE_VALID)
2618                         return true;
2619         }
2620         return false;
2621 }
2622
2623 /******************************/
2624 /* Power Management (Chipset) */
2625 /******************************/
2626
2627 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2628 {
2629         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2630         if (setChip) {
2631                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2632                             AR_RTC_FORCE_WAKE_EN);
2633                 if (!AR_SREV_9100(ah))
2634                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2635
2636                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2637                             AR_RTC_RESET_EN);
2638         }
2639 }
2640
2641 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2642 {
2643         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2644         if (setChip) {
2645                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2646
2647                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2648                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2649                                   AR_RTC_FORCE_WAKE_ON_INT);
2650                 } else {
2651                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2652                                     AR_RTC_FORCE_WAKE_EN);
2653                 }
2654         }
2655 }
2656
2657 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2658 {
2659         u32 val;
2660         int i;
2661
2662         if (setChip) {
2663                 if ((REG_READ(ah, AR_RTC_STATUS) &
2664                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2665                         if (ath9k_hw_set_reset_reg(ah,
2666                                            ATH9K_RESET_POWER_ON) != true) {
2667                                 return false;
2668                         }
2669                 }
2670                 if (AR_SREV_9100(ah))
2671                         REG_SET_BIT(ah, AR_RTC_RESET,
2672                                     AR_RTC_RESET_EN);
2673
2674                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2675                             AR_RTC_FORCE_WAKE_EN);
2676                 udelay(50);
2677
2678                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2679                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2680                         if (val == AR_RTC_STATUS_ON)
2681                                 break;
2682                         udelay(50);
2683                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2684                                     AR_RTC_FORCE_WAKE_EN);
2685                 }
2686                 if (i == 0) {
2687                         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2688                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2689                         return false;
2690                 }
2691         }
2692
2693         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2694
2695         return true;
2696 }
2697
2698 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2699 {
2700         int status = true, setChip = true;
2701         static const char *modes[] = {
2702                 "AWAKE",
2703                 "FULL-SLEEP",
2704                 "NETWORK SLEEP",
2705                 "UNDEFINED"
2706         };
2707
2708         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
2709                 modes[ah->power_mode], modes[mode],
2710                 setChip ? "set chip " : "");
2711
2712         switch (mode) {
2713         case ATH9K_PM_AWAKE:
2714                 status = ath9k_hw_set_power_awake(ah, setChip);
2715                 break;
2716         case ATH9K_PM_FULL_SLEEP:
2717                 ath9k_set_power_sleep(ah, setChip);
2718                 ah->chip_fullsleep = true;
2719                 break;
2720         case ATH9K_PM_NETWORK_SLEEP:
2721                 ath9k_set_power_network_sleep(ah, setChip);
2722                 break;
2723         default:
2724                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
2725                         "Unknown power mode %u\n", mode);
2726                 return false;
2727         }
2728         ah->power_mode = mode;
2729
2730         return status;
2731 }
2732
2733 /*
2734  * Helper for ASPM support.
2735  *
2736  * Disable PLL when in L0s as well as receiver clock when in L1.
2737  * This power saving option must be enabled through the SerDes.
2738  *
2739  * Programming the SerDes must go through the same 288 bit serial shift
2740  * register as the other analog registers.  Hence the 9 writes.
2741  */
2742 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2743 {
2744         u8 i;
2745
2746         if (ah->is_pciexpress != true)
2747                 return;
2748
2749         /* Do not touch SerDes registers */
2750         if (ah->config.pcie_powersave_enable == 2)
2751                 return;
2752
2753         /* Nothing to do on restore for 11N */
2754         if (restore)
2755                 return;
2756
2757         if (AR_SREV_9280_20_OR_LATER(ah)) {
2758                 /*
2759                  * AR9280 2.0 or later chips use SerDes values from the
2760                  * initvals.h initialized depending on chipset during
2761                  * ath9k_hw_do_attach()
2762                  */
2763                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2764                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2765                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2766                 }
2767         } else if (AR_SREV_9280(ah) &&
2768                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2769                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2770                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2771
2772                 /* RX shut off when elecidle is asserted */
2773                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2774                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2775                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2776
2777                 /* Shut off CLKREQ active in L1 */
2778                 if (ah->config.pcie_clock_req)
2779                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2780                 else
2781                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2782
2783                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2784                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2785                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2786
2787                 /* Load the new settings */
2788                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2789
2790         } else {
2791                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2792                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2793
2794                 /* RX shut off when elecidle is asserted */
2795                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2796                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2797                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2798
2799                 /*
2800                  * Ignore ah->ah_config.pcie_clock_req setting for
2801                  * pre-AR9280 11n
2802                  */
2803                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2804
2805                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2806                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2807                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2808
2809                 /* Load the new settings */
2810                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2811         }
2812
2813         udelay(1000);
2814
2815         /* set bit 19 to allow forcing of pcie core into L1 state */
2816         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2817
2818         /* Several PCIe massages to ensure proper behaviour */
2819         if (ah->config.pcie_waen) {
2820                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2821         } else {
2822                 if (AR_SREV_9285(ah))
2823                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2824                 /*
2825                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2826                  * otherwise card may disappear.
2827                  */
2828                 else if (AR_SREV_9280(ah))
2829                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2830                 else
2831                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2832         }
2833 }
2834
2835 /**********************/
2836 /* Interrupt Handling */
2837 /**********************/
2838
2839 bool ath9k_hw_intrpend(struct ath_hw *ah)
2840 {
2841         u32 host_isr;
2842
2843         if (AR_SREV_9100(ah))
2844                 return true;
2845
2846         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2847         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2848                 return true;
2849
2850         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2851         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2852             && (host_isr != AR_INTR_SPURIOUS))
2853                 return true;
2854
2855         return false;
2856 }
2857
2858 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2859 {
2860         u32 isr = 0;
2861         u32 mask2 = 0;
2862         struct ath9k_hw_capabilities *pCap = &ah->caps;
2863         u32 sync_cause = 0;
2864         bool fatal_int = false;
2865
2866         if (!AR_SREV_9100(ah)) {
2867                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2868                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2869                             == AR_RTC_STATUS_ON) {
2870                                 isr = REG_READ(ah, AR_ISR);
2871                         }
2872                 }
2873
2874                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2875                         AR_INTR_SYNC_DEFAULT;
2876
2877                 *masked = 0;
2878
2879                 if (!isr && !sync_cause)
2880                         return false;
2881         } else {
2882                 *masked = 0;
2883                 isr = REG_READ(ah, AR_ISR);
2884         }
2885
2886         if (isr) {
2887                 if (isr & AR_ISR_BCNMISC) {
2888                         u32 isr2;
2889                         isr2 = REG_READ(ah, AR_ISR_S2);
2890                         if (isr2 & AR_ISR_S2_TIM)
2891                                 mask2 |= ATH9K_INT_TIM;
2892                         if (isr2 & AR_ISR_S2_DTIM)
2893                                 mask2 |= ATH9K_INT_DTIM;
2894                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2895                                 mask2 |= ATH9K_INT_DTIMSYNC;
2896                         if (isr2 & (AR_ISR_S2_CABEND))
2897                                 mask2 |= ATH9K_INT_CABEND;
2898                         if (isr2 & AR_ISR_S2_GTT)
2899                                 mask2 |= ATH9K_INT_GTT;
2900                         if (isr2 & AR_ISR_S2_CST)
2901                                 mask2 |= ATH9K_INT_CST;
2902                         if (isr2 & AR_ISR_S2_TSFOOR)
2903                                 mask2 |= ATH9K_INT_TSFOOR;
2904                 }
2905
2906                 isr = REG_READ(ah, AR_ISR_RAC);
2907                 if (isr == 0xffffffff) {
2908                         *masked = 0;
2909                         return false;
2910                 }
2911
2912                 *masked = isr & ATH9K_INT_COMMON;
2913
2914                 if (ah->intr_mitigation) {
2915                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2916                                 *masked |= ATH9K_INT_RX;
2917                 }
2918
2919                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2920                         *masked |= ATH9K_INT_RX;
2921                 if (isr &
2922                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2923                      AR_ISR_TXEOL)) {
2924                         u32 s0_s, s1_s;
2925
2926                         *masked |= ATH9K_INT_TX;
2927
2928                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2929                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2930                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2931
2932                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2933                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2934                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2935                 }
2936
2937                 if (isr & AR_ISR_RXORN) {
2938                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2939                                 "receive FIFO overrun interrupt\n");
2940                 }
2941
2942                 if (!AR_SREV_9100(ah)) {
2943                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2944                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2945                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2946                                         *masked |= ATH9K_INT_TIM_TIMER;
2947                         }
2948                 }
2949
2950                 *masked |= mask2;
2951         }
2952
2953         if (AR_SREV_9100(ah))
2954                 return true;
2955
2956         if (sync_cause) {
2957                 fatal_int =
2958                         (sync_cause &
2959                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2960                         ? true : false;
2961
2962                 if (fatal_int) {
2963                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2964                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2965                                         "received PCI FATAL interrupt\n");
2966                         }
2967                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2968                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2969                                         "received PCI PERR interrupt\n");
2970                         }
2971                 }
2972                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2973                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2974                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2975                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2976                         REG_WRITE(ah, AR_RC, 0);
2977                         *masked |= ATH9K_INT_FATAL;
2978                 }
2979                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2980                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2981                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2982                 }
2983
2984                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2985                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2986         }
2987
2988         return true;
2989 }
2990
2991 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
2992 {
2993         return ah->mask_reg;
2994 }
2995
2996 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2997 {
2998         u32 omask = ah->mask_reg;
2999         u32 mask, mask2;
3000         struct ath9k_hw_capabilities *pCap = &ah->caps;
3001
3002         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3003
3004         if (omask & ATH9K_INT_GLOBAL) {
3005                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3006                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3007                 (void) REG_READ(ah, AR_IER);
3008                 if (!AR_SREV_9100(ah)) {
3009                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3010                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3011
3012                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3013                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3014                 }
3015         }
3016
3017         mask = ints & ATH9K_INT_COMMON;
3018         mask2 = 0;
3019
3020         if (ints & ATH9K_INT_TX) {
3021                 if (ah->txok_interrupt_mask)
3022                         mask |= AR_IMR_TXOK;
3023                 if (ah->txdesc_interrupt_mask)
3024                         mask |= AR_IMR_TXDESC;
3025                 if (ah->txerr_interrupt_mask)
3026                         mask |= AR_IMR_TXERR;
3027                 if (ah->txeol_interrupt_mask)
3028                         mask |= AR_IMR_TXEOL;
3029         }
3030         if (ints & ATH9K_INT_RX) {
3031                 mask |= AR_IMR_RXERR;
3032                 if (ah->intr_mitigation)
3033                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3034                 else
3035                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3036                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3037                         mask |= AR_IMR_GENTMR;
3038         }
3039
3040         if (ints & (ATH9K_INT_BMISC)) {
3041                 mask |= AR_IMR_BCNMISC;
3042                 if (ints & ATH9K_INT_TIM)
3043                         mask2 |= AR_IMR_S2_TIM;
3044                 if (ints & ATH9K_INT_DTIM)
3045                         mask2 |= AR_IMR_S2_DTIM;
3046                 if (ints & ATH9K_INT_DTIMSYNC)
3047                         mask2 |= AR_IMR_S2_DTIMSYNC;
3048                 if (ints & ATH9K_INT_CABEND)
3049                         mask2 |= AR_IMR_S2_CABEND;
3050                 if (ints & ATH9K_INT_TSFOOR)
3051                         mask2 |= AR_IMR_S2_TSFOOR;
3052         }
3053
3054         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3055                 mask |= AR_IMR_BCNMISC;
3056                 if (ints & ATH9K_INT_GTT)
3057                         mask2 |= AR_IMR_S2_GTT;
3058                 if (ints & ATH9K_INT_CST)
3059                         mask2 |= AR_IMR_S2_CST;
3060         }
3061
3062         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3063         REG_WRITE(ah, AR_IMR, mask);
3064         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3065                                            AR_IMR_S2_DTIM |
3066                                            AR_IMR_S2_DTIMSYNC |
3067                                            AR_IMR_S2_CABEND |
3068                                            AR_IMR_S2_CABTO |
3069                                            AR_IMR_S2_TSFOOR |
3070                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3071         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3072         ah->mask_reg = ints;
3073
3074         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3075                 if (ints & ATH9K_INT_TIM_TIMER)
3076                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3077                 else
3078                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3079         }
3080
3081         if (ints & ATH9K_INT_GLOBAL) {
3082                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3083                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3084                 if (!AR_SREV_9100(ah)) {
3085                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3086                                   AR_INTR_MAC_IRQ);
3087                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3088
3089
3090                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3091                                   AR_INTR_SYNC_DEFAULT);
3092                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3093                                   AR_INTR_SYNC_DEFAULT);
3094                 }
3095                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3096                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3097         }
3098
3099         return omask;
3100 }
3101
3102 /*******************/
3103 /* Beacon Handling */
3104 /*******************/
3105
3106 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3107 {
3108         int flags = 0;
3109
3110         ah->beacon_interval = beacon_period;
3111
3112         switch (ah->opmode) {
3113         case NL80211_IFTYPE_STATION:
3114         case NL80211_IFTYPE_MONITOR:
3115                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3116                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3117                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3118                 flags |= AR_TBTT_TIMER_EN;
3119                 break;
3120         case NL80211_IFTYPE_ADHOC:
3121                 REG_SET_BIT(ah, AR_TXCFG,
3122                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3123                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3124                           TU_TO_USEC(next_beacon +
3125                                      (ah->atim_window ? ah->
3126                                       atim_window : 1)));
3127                 flags |= AR_NDP_TIMER_EN;
3128         case NL80211_IFTYPE_AP:
3129                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3130                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3131                           TU_TO_USEC(next_beacon -
3132                                      ah->config.
3133                                      dma_beacon_response_time));
3134                 REG_WRITE(ah, AR_NEXT_SWBA,
3135                           TU_TO_USEC(next_beacon -
3136                                      ah->config.
3137                                      sw_beacon_response_time));
3138                 flags |=
3139                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3140                 break;
3141         default:
3142                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3143                         "%s: unsupported opmode: %d\n",
3144                         __func__, ah->opmode);
3145                 return;
3146                 break;
3147         }
3148
3149         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3150         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3151         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3152         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3153
3154         beacon_period &= ~ATH9K_BEACON_ENA;
3155         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3156                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3157                 ath9k_hw_reset_tsf(ah);
3158         }
3159
3160         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3161 }
3162
3163 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3164                                     const struct ath9k_beacon_state *bs)
3165 {
3166         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3167         struct ath9k_hw_capabilities *pCap = &ah->caps;
3168
3169         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3170
3171         REG_WRITE(ah, AR_BEACON_PERIOD,
3172                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3173         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3174                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3175
3176         REG_RMW_FIELD(ah, AR_RSSI_THR,
3177                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3178
3179         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3180
3181         if (bs->bs_sleepduration > beaconintval)
3182                 beaconintval = bs->bs_sleepduration;
3183
3184         dtimperiod = bs->bs_dtimperiod;
3185         if (bs->bs_sleepduration > dtimperiod)
3186                 dtimperiod = bs->bs_sleepduration;
3187
3188         if (beaconintval == dtimperiod)
3189                 nextTbtt = bs->bs_nextdtim;
3190         else
3191                 nextTbtt = bs->bs_nexttbtt;
3192
3193         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3194         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3195         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3196         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3197
3198         REG_WRITE(ah, AR_NEXT_DTIM,
3199                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3200         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3201
3202         REG_WRITE(ah, AR_SLEEP1,
3203                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3204                   | AR_SLEEP1_ASSUME_DTIM);
3205
3206         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3207                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3208         else
3209                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3210
3211         REG_WRITE(ah, AR_SLEEP2,
3212                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3213
3214         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3215         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3216
3217         REG_SET_BIT(ah, AR_TIMER_MODE,
3218                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3219                     AR_DTIM_TIMER_EN);
3220
3221         /* TSF Out of Range Threshold */
3222         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3223 }
3224
3225 /*******************/
3226 /* HW Capabilities */
3227 /*******************/
3228
3229 bool ath9k_hw_fill_cap_info(struct ath_hw *ah)
3230 {
3231         struct ath9k_hw_capabilities *pCap = &ah->caps;
3232         u16 capField = 0, eeval;
3233
3234         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3235         ah->regulatory.current_rd = eeval;
3236
3237         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3238         if (AR_SREV_9285_10_OR_LATER(ah))
3239                 eeval |= AR9285_RDEXT_DEFAULT;
3240         ah->regulatory.current_rd_ext = eeval;
3241
3242         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3243
3244         if (ah->opmode != NL80211_IFTYPE_AP &&
3245             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3246                 if (ah->regulatory.current_rd == 0x64 ||
3247                     ah->regulatory.current_rd == 0x65)
3248                         ah->regulatory.current_rd += 5;
3249                 else if (ah->regulatory.current_rd == 0x41)
3250                         ah->regulatory.current_rd = 0x43;
3251                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3252                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3253         }
3254
3255         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3256         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3257
3258         if (eeval & AR5416_OPFLAGS_11A) {
3259                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3260                 if (ah->config.ht_enable) {
3261                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3262                                 set_bit(ATH9K_MODE_11NA_HT20,
3263                                         pCap->wireless_modes);
3264                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3265                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3266                                         pCap->wireless_modes);
3267                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3268                                         pCap->wireless_modes);
3269                         }
3270                 }
3271         }
3272
3273         if (eeval & AR5416_OPFLAGS_11G) {
3274                 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3275                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3276                 if (ah->config.ht_enable) {
3277                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3278                                 set_bit(ATH9K_MODE_11NG_HT20,
3279                                         pCap->wireless_modes);
3280                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3281                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3282                                         pCap->wireless_modes);
3283                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3284                                         pCap->wireless_modes);
3285                         }
3286                 }
3287         }
3288
3289         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3290         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3291             !(eeval & AR5416_OPFLAGS_11A))
3292                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3293         else
3294                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3295
3296         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3297                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3298
3299         pCap->low_2ghz_chan = 2312;
3300         pCap->high_2ghz_chan = 2732;
3301
3302         pCap->low_5ghz_chan = 4920;
3303         pCap->high_5ghz_chan = 6100;
3304
3305         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3306         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3307         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3308
3309         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3310         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3311         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3312
3313         pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3314
3315         if (ah->config.ht_enable)
3316                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3317         else
3318                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3319
3320         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3321         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3322         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3323         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3324
3325         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3326                 pCap->total_queues =
3327                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3328         else
3329                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3330
3331         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3332                 pCap->keycache_size =
3333                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3334         else
3335                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3336
3337         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3338         pCap->num_mr_retries = 4;
3339         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3340
3341         if (AR_SREV_9285_10_OR_LATER(ah))
3342                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3343         else if (AR_SREV_9280_10_OR_LATER(ah))
3344                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3345         else
3346                 pCap->num_gpio_pins = AR_NUM_GPIO;
3347
3348         if (AR_SREV_9280_10_OR_LATER(ah)) {
3349                 pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3350                 pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3351         } else {
3352                 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3353                 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3354         }
3355
3356         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3357                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3358                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3359         } else {
3360                 pCap->rts_aggr_limit = (8 * 1024);
3361         }
3362
3363         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3364
3365 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3366         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3367         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3368                 ah->rfkill_gpio =
3369                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3370                 ah->rfkill_polarity =
3371                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3372
3373                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3374         }
3375 #endif
3376
3377         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3378             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3379             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3380             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3381             (ah->hw_version.macVersion == AR_SREV_VERSION_9280))
3382                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3383         else
3384                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3385
3386         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3387                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3388         else
3389                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3390
3391         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3392                 pCap->reg_cap =
3393                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3394                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3395                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3396                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3397         } else {
3398                 pCap->reg_cap =
3399                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3400                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3401         }
3402
3403         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3404
3405         pCap->num_antcfg_5ghz =
3406                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3407         pCap->num_antcfg_2ghz =
3408                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3409
3410         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3411                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3412                 ah->btactive_gpio = 6;
3413                 ah->wlanactive_gpio = 5;
3414         }
3415
3416         return true;
3417 }
3418
3419 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3420                             u32 capability, u32 *result)
3421 {
3422         switch (type) {
3423         case ATH9K_CAP_CIPHER:
3424                 switch (capability) {
3425                 case ATH9K_CIPHER_AES_CCM:
3426                 case ATH9K_CIPHER_AES_OCB:
3427                 case ATH9K_CIPHER_TKIP:
3428                 case ATH9K_CIPHER_WEP:
3429                 case ATH9K_CIPHER_MIC:
3430                 case ATH9K_CIPHER_CLR:
3431                         return true;
3432                 default:
3433                         return false;
3434                 }
3435         case ATH9K_CAP_TKIP_MIC:
3436                 switch (capability) {
3437                 case 0:
3438                         return true;
3439                 case 1:
3440                         return (ah->sta_id1_defaults &
3441                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3442                         false;
3443                 }
3444         case ATH9K_CAP_TKIP_SPLIT:
3445                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3446                         false : true;
3447         case ATH9K_CAP_DIVERSITY:
3448                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3449                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3450                         true : false;
3451         case ATH9K_CAP_MCAST_KEYSRCH:
3452                 switch (capability) {
3453                 case 0:
3454                         return true;
3455                 case 1:
3456                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3457                                 return false;
3458                         } else {
3459                                 return (ah->sta_id1_defaults &
3460                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3461                                         false;
3462                         }
3463                 }
3464                 return false;
3465         case ATH9K_CAP_TXPOW:
3466                 switch (capability) {
3467                 case 0:
3468                         return 0;
3469                 case 1:
3470                         *result = ah->regulatory.power_limit;
3471                         return 0;
3472                 case 2:
3473                         *result = ah->regulatory.max_power_level;
3474                         return 0;
3475                 case 3:
3476                         *result = ah->regulatory.tp_scale;
3477                         return 0;
3478                 }
3479                 return false;
3480         case ATH9K_CAP_DS:
3481                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3482                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3483                         ? false : true;
3484         default:
3485                 return false;
3486         }
3487 }
3488
3489 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3490                             u32 capability, u32 setting, int *status)
3491 {
3492         u32 v;
3493
3494         switch (type) {
3495         case ATH9K_CAP_TKIP_MIC:
3496                 if (setting)
3497                         ah->sta_id1_defaults |=
3498                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3499                 else
3500                         ah->sta_id1_defaults &=
3501                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3502                 return true;
3503         case ATH9K_CAP_DIVERSITY:
3504                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3505                 if (setting)
3506                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3507                 else
3508                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3509                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3510                 return true;
3511         case ATH9K_CAP_MCAST_KEYSRCH:
3512                 if (setting)
3513                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3514                 else
3515                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3516                 return true;
3517         default:
3518                 return false;
3519         }
3520 }
3521
3522 /****************************/
3523 /* GPIO / RFKILL / Antennae */
3524 /****************************/
3525
3526 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3527                                          u32 gpio, u32 type)
3528 {
3529         int addr;
3530         u32 gpio_shift, tmp;
3531
3532         if (gpio > 11)
3533                 addr = AR_GPIO_OUTPUT_MUX3;
3534         else if (gpio > 5)
3535                 addr = AR_GPIO_OUTPUT_MUX2;
3536         else
3537                 addr = AR_GPIO_OUTPUT_MUX1;
3538
3539         gpio_shift = (gpio % 6) * 5;
3540
3541         if (AR_SREV_9280_20_OR_LATER(ah)
3542             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3543                 REG_RMW(ah, addr, (type << gpio_shift),
3544                         (0x1f << gpio_shift));
3545         } else {
3546                 tmp = REG_READ(ah, addr);
3547                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3548                 tmp &= ~(0x1f << gpio_shift);
3549                 tmp |= (type << gpio_shift);
3550                 REG_WRITE(ah, addr, tmp);
3551         }
3552 }
3553
3554 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3555 {
3556         u32 gpio_shift;
3557
3558         ASSERT(gpio < ah->caps.num_gpio_pins);
3559
3560         gpio_shift = gpio << 1;
3561
3562         REG_RMW(ah,
3563                 AR_GPIO_OE_OUT,
3564                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3565                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3566 }
3567
3568 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3569 {
3570 #define MS_REG_READ(x, y) \
3571         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3572
3573         if (gpio >= ah->caps.num_gpio_pins)
3574                 return 0xffffffff;
3575
3576         if (AR_SREV_9285_10_OR_LATER(ah))
3577                 return MS_REG_READ(AR9285, gpio) != 0;
3578         else if (AR_SREV_9280_10_OR_LATER(ah))
3579                 return MS_REG_READ(AR928X, gpio) != 0;
3580         else
3581                 return MS_REG_READ(AR, gpio) != 0;
3582 }
3583
3584 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3585                          u32 ah_signal_type)
3586 {
3587         u32 gpio_shift;
3588
3589         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3590
3591         gpio_shift = 2 * gpio;
3592
3593         REG_RMW(ah,
3594                 AR_GPIO_OE_OUT,
3595                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3596                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3597 }
3598
3599 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3600 {
3601         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3602                 AR_GPIO_BIT(gpio));
3603 }
3604
3605 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3606 void ath9k_enable_rfkill(struct ath_hw *ah)
3607 {
3608         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3609                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3610
3611         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3612                     AR_GPIO_INPUT_MUX2_RFSILENT);
3613
3614         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3615         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3616 }
3617 #endif
3618
3619 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3620 {
3621         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3622 }
3623
3624 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3625 {
3626         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3627 }
3628
3629 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3630                                enum ath9k_ant_setting settings,
3631                                struct ath9k_channel *chan,
3632                                u8 *tx_chainmask,
3633                                u8 *rx_chainmask,
3634                                u8 *antenna_cfgd)
3635 {
3636         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3637
3638         if (AR_SREV_9280(ah)) {
3639                 if (!tx_chainmask_cfg) {
3640
3641                         tx_chainmask_cfg = *tx_chainmask;
3642                         rx_chainmask_cfg = *rx_chainmask;
3643                 }
3644
3645                 switch (settings) {
3646                 case ATH9K_ANT_FIXED_A:
3647                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3648                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3649                         *antenna_cfgd = true;
3650                         break;
3651                 case ATH9K_ANT_FIXED_B:
3652                         if (ah->caps.tx_chainmask >
3653                             ATH9K_ANTENNA1_CHAINMASK) {
3654                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3655                         }
3656                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3657                         *antenna_cfgd = true;
3658                         break;
3659                 case ATH9K_ANT_VARIABLE:
3660                         *tx_chainmask = tx_chainmask_cfg;
3661                         *rx_chainmask = rx_chainmask_cfg;
3662                         *antenna_cfgd = true;
3663                         break;
3664                 default:
3665                         break;
3666                 }
3667         } else {
3668                 ah->diversity_control = settings;
3669         }
3670
3671         return true;
3672 }
3673
3674 /*********************/
3675 /* General Operation */
3676 /*********************/
3677
3678 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3679 {
3680         u32 bits = REG_READ(ah, AR_RX_FILTER);
3681         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3682
3683         if (phybits & AR_PHY_ERR_RADAR)
3684                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3685         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3686                 bits |= ATH9K_RX_FILTER_PHYERR;
3687
3688         return bits;
3689 }
3690
3691 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3692 {
3693         u32 phybits;
3694
3695         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3696         phybits = 0;
3697         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3698                 phybits |= AR_PHY_ERR_RADAR;
3699         if (bits & ATH9K_RX_FILTER_PHYERR)
3700                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3701         REG_WRITE(ah, AR_PHY_ERR, phybits);
3702
3703         if (phybits)
3704                 REG_WRITE(ah, AR_RXCFG,
3705                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3706         else
3707                 REG_WRITE(ah, AR_RXCFG,
3708                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3709 }
3710
3711 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3712 {
3713         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3714 }
3715
3716 bool ath9k_hw_disable(struct ath_hw *ah)
3717 {
3718         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3719                 return false;
3720
3721         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3722 }
3723
3724 bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3725 {
3726         struct ath9k_channel *chan = ah->curchan;
3727         struct ieee80211_channel *channel = chan->chan;
3728
3729         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3730
3731         if (ah->eep_ops->set_txpower(ah, chan,
3732                              ath9k_regd_get_ctl(ah, chan),
3733                              channel->max_antenna_gain * 2,
3734                              channel->max_power * 2,
3735                              min((u32) MAX_RATE_POWER,
3736                                  (u32) ah->regulatory.power_limit)) != 0)
3737                 return false;
3738
3739         return true;
3740 }
3741
3742 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3743 {
3744         memcpy(ah->macaddr, mac, ETH_ALEN);
3745 }
3746
3747 void ath9k_hw_setopmode(struct ath_hw *ah)
3748 {
3749         ath9k_hw_set_operating_mode(ah, ah->opmode);
3750 }
3751
3752 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3753 {
3754         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3755         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3756 }
3757
3758 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3759 {
3760         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3761         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3762 }
3763
3764 void ath9k_hw_write_associd(struct ath_softc *sc)
3765 {
3766         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3767         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3768                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3769 }
3770
3771 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3772 {
3773         u64 tsf;
3774
3775         tsf = REG_READ(ah, AR_TSF_U32);
3776         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3777
3778         return tsf;
3779 }
3780
3781 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3782 {
3783         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3784         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3785 }
3786
3787 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3788 {
3789         int count;
3790
3791         count = 0;
3792         while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3793                 count++;
3794                 if (count > 10) {
3795                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3796                                 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3797                         break;
3798                 }
3799                 udelay(10);
3800         }
3801         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3802 }
3803
3804 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3805 {
3806         if (setting)
3807                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3808         else
3809                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3810
3811         return true;
3812 }
3813
3814 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3815 {
3816         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3817                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3818                 ah->slottime = (u32) -1;
3819                 return false;
3820         } else {
3821                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3822                 ah->slottime = us;
3823                 return true;
3824         }
3825 }
3826
3827 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3828 {
3829         u32 macmode;
3830
3831         if (mode == ATH9K_HT_MACMODE_2040 &&
3832             !ah->config.cwm_ignore_extcca)
3833                 macmode = AR_2040_JOINED_RX_CLEAR;
3834         else
3835                 macmode = 0;
3836
3837         REG_WRITE(ah, AR_2040_MODE, macmode);
3838 }
3839
3840 /***************************/
3841 /*  Bluetooth Coexistence  */
3842 /***************************/
3843
3844 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3845 {
3846         /* connect bt_active to baseband */
3847         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3848                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3849                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3850
3851         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3852                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3853
3854         /* Set input mux for bt_active to gpio pin */
3855         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3856                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3857                         ah->btactive_gpio);
3858
3859         /* Configure the desired gpio port for input */
3860         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3861
3862         /* Configure the desired GPIO port for TX_FRAME output */
3863         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3864                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3865 }