3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
128 #define FORCED_DEBUG 1
132 #define FORCED_DEBUG 0
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169 /* Legal flag mask for kmem_cache_create(). */
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 * Bufctl's are used for linking objs within a slab
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
226 unsigned short nodeid;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head;
247 struct kmem_cache *cachep;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount;
267 unsigned int touched;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
273 * [0] is for gcc 2.95. It should really be [].
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
313 * This function must be completely optimized away if
314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
318 static __always_inline int index_of(const size_t size)
320 extern void __bad_size(void);
322 if (__builtin_constant_p(size)) {
330 #include "linux/kmalloc_sizes.h"
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static void kmem_list3_init(struct kmem_list3 *parent)
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 parent->colour_next = 0;
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
379 unsigned int buffer_size;
380 /* 2) touched by every alloc & free from the backend */
381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
386 /* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
388 unsigned int gfporder;
390 /* force GFP flags, e.g. GFP_DMA */
393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
395 struct kmem_cache *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
399 /* constructor func */
400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
402 /* de-constructor func */
403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
405 /* 4) cache creation/removal */
407 struct list_head next;
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
437 #define CFLGS_OFF_SLAB (0x80000000UL)
438 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440 #define BATCHREFILL_LIMIT 16
441 /* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
459 #define STATS_INC_ERR(x) ((x)->errors++)
460 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
461 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
462 #define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
467 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
472 #define STATS_INC_ACTIVE(x) do { } while (0)
473 #define STATS_DEC_ACTIVE(x) do { } while (0)
474 #define STATS_INC_ALLOCED(x) do { } while (0)
475 #define STATS_INC_GROWN(x) do { } while (0)
476 #define STATS_INC_REAPED(x) do { } while (0)
477 #define STATS_SET_HIGH(x) do { } while (0)
478 #define STATS_INC_ERR(x) do { } while (0)
479 #define STATS_INC_NODEALLOCS(x) do { } while (0)
480 #define STATS_INC_NODEFREES(x) do { } while (0)
481 #define STATS_SET_FREEABLE(x, i) \
484 #define STATS_INC_ALLOCHIT(x) do { } while (0)
485 #define STATS_INC_ALLOCMISS(x) do { } while (0)
486 #define STATS_INC_FREEHIT(x) do { } while (0)
487 #define STATS_INC_FREEMISS(x) do { } while (0)
491 /* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
494 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
497 /* ...and for poisoning */
498 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499 #define POISON_FREE 0x6b /* for use-after-free poisoning */
500 #define POISON_END 0xa5 /* end-byte of poisoning */
502 /* memory layout of objects:
504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
513 static int obj_offset(struct kmem_cache *cachep)
515 return cachep->obj_offset;
518 static int obj_size(struct kmem_cache *cachep)
520 return cachep->obj_size;
523 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
529 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
533 return (unsigned long *)(objp + cachep->buffer_size -
535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
538 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546 #define obj_offset(x) 0
547 #define obj_size(cachep) (cachep->buffer_size)
548 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
558 #if defined(CONFIG_LARGE_ALLOCS)
559 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
560 #define MAX_GFP_ORDER 13 /* up to 32Mb */
561 #elif defined(CONFIG_MMU)
562 #define MAX_OBJ_ORDER 5 /* 32 pages */
563 #define MAX_GFP_ORDER 5 /* 32 pages */
565 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
566 #define MAX_GFP_ORDER 8 /* up to 1Mb */
570 * Do not go above this order unless 0 objects fit into the slab.
572 #define BREAK_GFP_ORDER_HI 1
573 #define BREAK_GFP_ORDER_LO 0
574 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
576 /* Functions for storing/retrieving the cachep and or slab from the
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
580 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
582 page->lru.next = (struct list_head *)cache;
585 static inline struct kmem_cache *page_get_cache(struct page *page)
587 return (struct kmem_cache *)page->lru.next;
590 static inline void page_set_slab(struct page *page, struct slab *slab)
592 page->lru.prev = (struct list_head *)slab;
595 static inline struct slab *page_get_slab(struct page *page)
597 return (struct slab *)page->lru.prev;
600 static inline struct kmem_cache *virt_to_cache(const void *obj)
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
606 static inline struct slab *virt_to_slab(const void *obj)
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
612 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
613 struct cache_sizes malloc_sizes[] = {
614 #define CACHE(x) { .cs_size = (x) },
615 #include <linux/kmalloc_sizes.h>
619 EXPORT_SYMBOL(malloc_sizes);
621 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
627 static struct cache_names __initdata cache_names[] = {
628 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
629 #include <linux/kmalloc_sizes.h>
634 static struct arraycache_init initarray_cache __initdata =
635 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
636 static struct arraycache_init initarray_generic =
637 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
639 /* internal cache of cache description objs */
640 static struct kmem_cache cache_cache = {
642 .limit = BOOT_CPUCACHE_ENTRIES,
644 .buffer_size = sizeof(struct kmem_cache),
645 .flags = SLAB_NO_REAP,
646 .spinlock = SPIN_LOCK_UNLOCKED,
647 .name = "kmem_cache",
649 .obj_size = sizeof(struct kmem_cache),
653 /* Guard access to the cache-chain. */
654 static DEFINE_MUTEX(cache_chain_mutex);
655 static struct list_head cache_chain;
658 * vm_enough_memory() looks at this to determine how many
659 * slab-allocated pages are possibly freeable under pressure
661 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
663 atomic_t slab_reclaim_pages;
666 * chicken and egg problem: delay the per-cpu array allocation
667 * until the general caches are up.
676 static DEFINE_PER_CPU(struct work_struct, reap_work);
678 static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
679 static void enable_cpucache(struct kmem_cache *cachep);
680 static void cache_reap(void *unused);
681 static int __node_shrink(struct kmem_cache *cachep, int node);
683 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
685 return cachep->array[smp_processor_id()];
688 static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
690 struct cache_sizes *csizep = malloc_sizes;
693 /* This happens if someone tries to call
694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
697 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
699 while (size > csizep->cs_size)
703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
707 if (unlikely(gfpflags & GFP_DMA))
708 return csizep->cs_dmacachep;
709 return csizep->cs_cachep;
712 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
714 return __find_general_cachep(size, gfpflags);
716 EXPORT_SYMBOL(kmem_find_general_cachep);
718 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
723 /* Calculate the number of objects and left-over bytes for a given
725 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
726 size_t align, int flags, size_t *left_over,
731 size_t slab_size = PAGE_SIZE << gfporder;
734 * The slab management structure can be either off the slab or
735 * on it. For the latter case, the memory allocated for a
739 * - One kmem_bufctl_t for each object
740 * - Padding to respect alignment of @align
741 * - @buffer_size bytes for each object
743 * If the slab management structure is off the slab, then the
744 * alignment will already be calculated into the size. Because
745 * the slabs are all pages aligned, the objects will be at the
746 * correct alignment when allocated.
748 if (flags & CFLGS_OFF_SLAB) {
750 nr_objs = slab_size / buffer_size;
752 if (nr_objs > SLAB_LIMIT)
753 nr_objs = SLAB_LIMIT;
756 * Ignore padding for the initial guess. The padding
757 * is at most @align-1 bytes, and @buffer_size is at
758 * least @align. In the worst case, this result will
759 * be one greater than the number of objects that fit
760 * into the memory allocation when taking the padding
763 nr_objs = (slab_size - sizeof(struct slab)) /
764 (buffer_size + sizeof(kmem_bufctl_t));
767 * This calculated number will be either the right
768 * amount, or one greater than what we want.
770 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
777 mgmt_size = slab_mgmt_size(nr_objs, align);
780 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
783 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
785 static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg);
793 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
794 * via the workqueue/eventd.
795 * Add the CPU number into the expiration time to minimize the possibility of
796 * the CPUs getting into lockstep and contending for the global cache chain
799 static void __devinit start_cpu_timer(int cpu)
801 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
804 * When this gets called from do_initcalls via cpucache_init(),
805 * init_workqueues() has already run, so keventd will be setup
808 if (keventd_up() && reap_work->func == NULL) {
809 INIT_WORK(reap_work, cache_reap, NULL);
810 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
814 static struct array_cache *alloc_arraycache(int node, int entries,
817 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
818 struct array_cache *nc = NULL;
820 nc = kmalloc_node(memsize, GFP_KERNEL, node);
824 nc->batchcount = batchcount;
826 spin_lock_init(&nc->lock);
832 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
834 static struct array_cache **alloc_alien_cache(int node, int limit)
836 struct array_cache **ac_ptr;
837 int memsize = sizeof(void *) * MAX_NUMNODES;
842 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
845 if (i == node || !node_online(i)) {
849 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
851 for (i--; i <= 0; i--)
861 static void free_alien_cache(struct array_cache **ac_ptr)
874 static void __drain_alien_cache(struct kmem_cache *cachep,
875 struct array_cache *ac, int node)
877 struct kmem_list3 *rl3 = cachep->nodelists[node];
880 spin_lock(&rl3->list_lock);
881 free_block(cachep, ac->entry, ac->avail, node);
883 spin_unlock(&rl3->list_lock);
887 static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
890 struct array_cache *ac;
893 for_each_online_node(i) {
896 spin_lock_irqsave(&ac->lock, flags);
897 __drain_alien_cache(cachep, ac, i);
898 spin_unlock_irqrestore(&ac->lock, flags);
904 #define drain_alien_cache(cachep, alien) do { } while (0)
906 static inline struct array_cache **alloc_alien_cache(int node, int limit)
908 return (struct array_cache **) 0x01020304ul;
911 static inline void free_alien_cache(struct array_cache **ac_ptr)
917 static int __devinit cpuup_callback(struct notifier_block *nfb,
918 unsigned long action, void *hcpu)
920 long cpu = (long)hcpu;
921 struct kmem_cache *cachep;
922 struct kmem_list3 *l3 = NULL;
923 int node = cpu_to_node(cpu);
924 int memsize = sizeof(struct kmem_list3);
928 mutex_lock(&cache_chain_mutex);
929 /* we need to do this right in the beginning since
930 * alloc_arraycache's are going to use this list.
931 * kmalloc_node allows us to add the slab to the right
932 * kmem_list3 and not this cpu's kmem_list3
935 list_for_each_entry(cachep, &cache_chain, next) {
936 /* setup the size64 kmemlist for cpu before we can
937 * begin anything. Make sure some other cpu on this
938 * node has not already allocated this
940 if (!cachep->nodelists[node]) {
941 if (!(l3 = kmalloc_node(memsize,
945 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
946 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
949 * The l3s don't come and go as CPUs come and
950 * go. cache_chain_mutex is sufficient
953 cachep->nodelists[node] = l3;
956 spin_lock_irq(&cachep->nodelists[node]->list_lock);
957 cachep->nodelists[node]->free_limit =
958 (1 + nr_cpus_node(node)) *
959 cachep->batchcount + cachep->num;
960 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
963 /* Now we can go ahead with allocating the shared array's
965 list_for_each_entry(cachep, &cache_chain, next) {
966 struct array_cache *nc;
967 struct array_cache *shared;
968 struct array_cache **alien;
970 nc = alloc_arraycache(node, cachep->limit,
974 shared = alloc_arraycache(node,
975 cachep->shared * cachep->batchcount,
980 alien = alloc_alien_cache(node, cachep->limit);
983 cachep->array[cpu] = nc;
985 l3 = cachep->nodelists[node];
988 spin_lock_irq(&l3->list_lock);
991 * We are serialised from CPU_DEAD or
992 * CPU_UP_CANCELLED by the cpucontrol lock
1003 spin_unlock_irq(&l3->list_lock);
1006 free_alien_cache(alien);
1008 mutex_unlock(&cache_chain_mutex);
1011 start_cpu_timer(cpu);
1013 #ifdef CONFIG_HOTPLUG_CPU
1016 * Even if all the cpus of a node are down, we don't free the
1017 * kmem_list3 of any cache. This to avoid a race between
1018 * cpu_down, and a kmalloc allocation from another cpu for
1019 * memory from the node of the cpu going down. The list3
1020 * structure is usually allocated from kmem_cache_create() and
1021 * gets destroyed at kmem_cache_destroy().
1024 case CPU_UP_CANCELED:
1025 mutex_lock(&cache_chain_mutex);
1027 list_for_each_entry(cachep, &cache_chain, next) {
1028 struct array_cache *nc;
1029 struct array_cache *shared;
1030 struct array_cache **alien;
1033 mask = node_to_cpumask(node);
1034 /* cpu is dead; no one can alloc from it. */
1035 nc = cachep->array[cpu];
1036 cachep->array[cpu] = NULL;
1037 l3 = cachep->nodelists[node];
1040 goto free_array_cache;
1042 spin_lock_irq(&l3->list_lock);
1044 /* Free limit for this kmem_list3 */
1045 l3->free_limit -= cachep->batchcount;
1047 free_block(cachep, nc->entry, nc->avail, node);
1049 if (!cpus_empty(mask)) {
1050 spin_unlock_irq(&l3->list_lock);
1051 goto free_array_cache;
1054 shared = l3->shared;
1056 free_block(cachep, l3->shared->entry,
1057 l3->shared->avail, node);
1064 spin_unlock_irq(&l3->list_lock);
1068 drain_alien_cache(cachep, alien);
1069 free_alien_cache(alien);
1075 * In the previous loop, all the objects were freed to
1076 * the respective cache's slabs, now we can go ahead and
1077 * shrink each nodelist to its limit.
1079 list_for_each_entry(cachep, &cache_chain, next) {
1080 l3 = cachep->nodelists[node];
1083 spin_lock_irq(&l3->list_lock);
1084 /* free slabs belonging to this node */
1085 __node_shrink(cachep, node);
1086 spin_unlock_irq(&l3->list_lock);
1088 mutex_unlock(&cache_chain_mutex);
1094 mutex_unlock(&cache_chain_mutex);
1098 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1101 * swap the static kmem_list3 with kmalloced memory
1103 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1105 struct kmem_list3 *ptr;
1107 BUG_ON(cachep->nodelists[nodeid] != list);
1108 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1111 local_irq_disable();
1112 memcpy(ptr, list, sizeof(struct kmem_list3));
1113 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1114 cachep->nodelists[nodeid] = ptr;
1119 * Called after the gfp() functions have been enabled, and before smp_init().
1121 void __init kmem_cache_init(void)
1124 struct cache_sizes *sizes;
1125 struct cache_names *names;
1128 for (i = 0; i < NUM_INIT_LISTS; i++) {
1129 kmem_list3_init(&initkmem_list3[i]);
1130 if (i < MAX_NUMNODES)
1131 cache_cache.nodelists[i] = NULL;
1135 * Fragmentation resistance on low memory - only use bigger
1136 * page orders on machines with more than 32MB of memory.
1138 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1139 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1141 /* Bootstrap is tricky, because several objects are allocated
1142 * from caches that do not exist yet:
1143 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1144 * structures of all caches, except cache_cache itself: cache_cache
1145 * is statically allocated.
1146 * Initially an __init data area is used for the head array and the
1147 * kmem_list3 structures, it's replaced with a kmalloc allocated
1148 * array at the end of the bootstrap.
1149 * 2) Create the first kmalloc cache.
1150 * The struct kmem_cache for the new cache is allocated normally.
1151 * An __init data area is used for the head array.
1152 * 3) Create the remaining kmalloc caches, with minimally sized
1154 * 4) Replace the __init data head arrays for cache_cache and the first
1155 * kmalloc cache with kmalloc allocated arrays.
1156 * 5) Replace the __init data for kmem_list3 for cache_cache and
1157 * the other cache's with kmalloc allocated memory.
1158 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1161 /* 1) create the cache_cache */
1162 INIT_LIST_HEAD(&cache_chain);
1163 list_add(&cache_cache.next, &cache_chain);
1164 cache_cache.colour_off = cache_line_size();
1165 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1166 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1168 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1170 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
1171 &left_over, &cache_cache.num);
1172 if (!cache_cache.num)
1175 cache_cache.colour = left_over / cache_cache.colour_off;
1176 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1177 sizeof(struct slab), cache_line_size());
1179 /* 2+3) create the kmalloc caches */
1180 sizes = malloc_sizes;
1181 names = cache_names;
1183 /* Initialize the caches that provide memory for the array cache
1184 * and the kmem_list3 structures first.
1185 * Without this, further allocations will bug
1188 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1189 sizes[INDEX_AC].cs_size,
1190 ARCH_KMALLOC_MINALIGN,
1191 (ARCH_KMALLOC_FLAGS |
1192 SLAB_PANIC), NULL, NULL);
1194 if (INDEX_AC != INDEX_L3)
1195 sizes[INDEX_L3].cs_cachep =
1196 kmem_cache_create(names[INDEX_L3].name,
1197 sizes[INDEX_L3].cs_size,
1198 ARCH_KMALLOC_MINALIGN,
1199 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1202 while (sizes->cs_size != ULONG_MAX) {
1204 * For performance, all the general caches are L1 aligned.
1205 * This should be particularly beneficial on SMP boxes, as it
1206 * eliminates "false sharing".
1207 * Note for systems short on memory removing the alignment will
1208 * allow tighter packing of the smaller caches.
1210 if (!sizes->cs_cachep)
1211 sizes->cs_cachep = kmem_cache_create(names->name,
1213 ARCH_KMALLOC_MINALIGN,
1218 /* Inc off-slab bufctl limit until the ceiling is hit. */
1219 if (!(OFF_SLAB(sizes->cs_cachep))) {
1220 offslab_limit = sizes->cs_size - sizeof(struct slab);
1221 offslab_limit /= sizeof(kmem_bufctl_t);
1224 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1226 ARCH_KMALLOC_MINALIGN,
1227 (ARCH_KMALLOC_FLAGS |
1235 /* 4) Replace the bootstrap head arrays */
1239 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1241 local_irq_disable();
1242 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1243 memcpy(ptr, cpu_cache_get(&cache_cache),
1244 sizeof(struct arraycache_init));
1245 cache_cache.array[smp_processor_id()] = ptr;
1248 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1250 local_irq_disable();
1251 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1252 != &initarray_generic.cache);
1253 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1254 sizeof(struct arraycache_init));
1255 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1259 /* 5) Replace the bootstrap kmem_list3's */
1262 /* Replace the static kmem_list3 structures for the boot cpu */
1263 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1266 for_each_online_node(node) {
1267 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1268 &initkmem_list3[SIZE_AC + node], node);
1270 if (INDEX_AC != INDEX_L3) {
1271 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1272 &initkmem_list3[SIZE_L3 + node],
1278 /* 6) resize the head arrays to their final sizes */
1280 struct kmem_cache *cachep;
1281 mutex_lock(&cache_chain_mutex);
1282 list_for_each_entry(cachep, &cache_chain, next)
1283 enable_cpucache(cachep);
1284 mutex_unlock(&cache_chain_mutex);
1288 g_cpucache_up = FULL;
1290 /* Register a cpu startup notifier callback
1291 * that initializes cpu_cache_get for all new cpus
1293 register_cpu_notifier(&cpucache_notifier);
1295 /* The reap timers are started later, with a module init call:
1296 * That part of the kernel is not yet operational.
1300 static int __init cpucache_init(void)
1305 * Register the timers that return unneeded
1308 for_each_online_cpu(cpu)
1309 start_cpu_timer(cpu);
1314 __initcall(cpucache_init);
1317 * Interface to system's page allocator. No need to hold the cache-lock.
1319 * If we requested dmaable memory, we will get it. Even if we
1320 * did not request dmaable memory, we might get it, but that
1321 * would be relatively rare and ignorable.
1323 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1329 flags |= cachep->gfpflags;
1330 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1333 addr = page_address(page);
1335 i = (1 << cachep->gfporder);
1336 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1337 atomic_add(i, &slab_reclaim_pages);
1338 add_page_state(nr_slab, i);
1347 * Interface to system's page release.
1349 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1351 unsigned long i = (1 << cachep->gfporder);
1352 struct page *page = virt_to_page(addr);
1353 const unsigned long nr_freed = i;
1356 if (!TestClearPageSlab(page))
1360 sub_page_state(nr_slab, nr_freed);
1361 if (current->reclaim_state)
1362 current->reclaim_state->reclaimed_slab += nr_freed;
1363 free_pages((unsigned long)addr, cachep->gfporder);
1364 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1365 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1368 static void kmem_rcu_free(struct rcu_head *head)
1370 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1371 struct kmem_cache *cachep = slab_rcu->cachep;
1373 kmem_freepages(cachep, slab_rcu->addr);
1374 if (OFF_SLAB(cachep))
1375 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1380 #ifdef CONFIG_DEBUG_PAGEALLOC
1381 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1382 unsigned long caller)
1384 int size = obj_size(cachep);
1386 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1388 if (size < 5 * sizeof(unsigned long))
1391 *addr++ = 0x12345678;
1393 *addr++ = smp_processor_id();
1394 size -= 3 * sizeof(unsigned long);
1396 unsigned long *sptr = &caller;
1397 unsigned long svalue;
1399 while (!kstack_end(sptr)) {
1401 if (kernel_text_address(svalue)) {
1403 size -= sizeof(unsigned long);
1404 if (size <= sizeof(unsigned long))
1410 *addr++ = 0x87654321;
1414 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1416 int size = obj_size(cachep);
1417 addr = &((char *)addr)[obj_offset(cachep)];
1419 memset(addr, val, size);
1420 *(unsigned char *)(addr + size - 1) = POISON_END;
1423 static void dump_line(char *data, int offset, int limit)
1426 printk(KERN_ERR "%03x:", offset);
1427 for (i = 0; i < limit; i++) {
1428 printk(" %02x", (unsigned char)data[offset + i]);
1436 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1441 if (cachep->flags & SLAB_RED_ZONE) {
1442 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1443 *dbg_redzone1(cachep, objp),
1444 *dbg_redzone2(cachep, objp));
1447 if (cachep->flags & SLAB_STORE_USER) {
1448 printk(KERN_ERR "Last user: [<%p>]",
1449 *dbg_userword(cachep, objp));
1450 print_symbol("(%s)",
1451 (unsigned long)*dbg_userword(cachep, objp));
1454 realobj = (char *)objp + obj_offset(cachep);
1455 size = obj_size(cachep);
1456 for (i = 0; i < size && lines; i += 16, lines--) {
1459 if (i + limit > size)
1461 dump_line(realobj, i, limit);
1465 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1471 realobj = (char *)objp + obj_offset(cachep);
1472 size = obj_size(cachep);
1474 for (i = 0; i < size; i++) {
1475 char exp = POISON_FREE;
1478 if (realobj[i] != exp) {
1484 "Slab corruption: start=%p, len=%d\n",
1486 print_objinfo(cachep, objp, 0);
1488 /* Hexdump the affected line */
1491 if (i + limit > size)
1493 dump_line(realobj, i, limit);
1496 /* Limit to 5 lines */
1502 /* Print some data about the neighboring objects, if they
1505 struct slab *slabp = virt_to_slab(objp);
1508 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1510 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1511 realobj = (char *)objp + obj_offset(cachep);
1512 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1514 print_objinfo(cachep, objp, 2);
1516 if (objnr + 1 < cachep->num) {
1517 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1518 realobj = (char *)objp + obj_offset(cachep);
1519 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1521 print_objinfo(cachep, objp, 2);
1529 * slab_destroy_objs - call the registered destructor for each object in
1530 * a slab that is to be destroyed.
1532 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1535 for (i = 0; i < cachep->num; i++) {
1536 void *objp = slabp->s_mem + cachep->buffer_size * i;
1538 if (cachep->flags & SLAB_POISON) {
1539 #ifdef CONFIG_DEBUG_PAGEALLOC
1540 if ((cachep->buffer_size % PAGE_SIZE) == 0
1541 && OFF_SLAB(cachep))
1542 kernel_map_pages(virt_to_page(objp),
1543 cachep->buffer_size / PAGE_SIZE,
1546 check_poison_obj(cachep, objp);
1548 check_poison_obj(cachep, objp);
1551 if (cachep->flags & SLAB_RED_ZONE) {
1552 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1553 slab_error(cachep, "start of a freed object "
1555 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1556 slab_error(cachep, "end of a freed object "
1559 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1560 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1564 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1568 for (i = 0; i < cachep->num; i++) {
1569 void *objp = slabp->s_mem + cachep->buffer_size * i;
1570 (cachep->dtor) (objp, cachep, 0);
1577 * Destroy all the objs in a slab, and release the mem back to the system.
1578 * Before calling the slab must have been unlinked from the cache.
1579 * The cache-lock is not held/needed.
1581 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1583 void *addr = slabp->s_mem - slabp->colouroff;
1585 slab_destroy_objs(cachep, slabp);
1586 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1587 struct slab_rcu *slab_rcu;
1589 slab_rcu = (struct slab_rcu *)slabp;
1590 slab_rcu->cachep = cachep;
1591 slab_rcu->addr = addr;
1592 call_rcu(&slab_rcu->head, kmem_rcu_free);
1594 kmem_freepages(cachep, addr);
1595 if (OFF_SLAB(cachep))
1596 kmem_cache_free(cachep->slabp_cache, slabp);
1600 /* For setting up all the kmem_list3s for cache whose buffer_size is same
1601 as size of kmem_list3. */
1602 static void set_up_list3s(struct kmem_cache *cachep, int index)
1606 for_each_online_node(node) {
1607 cachep->nodelists[node] = &initkmem_list3[index + node];
1608 cachep->nodelists[node]->next_reap = jiffies +
1610 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1615 * calculate_slab_order - calculate size (page order) of slabs
1616 * @cachep: pointer to the cache that is being created
1617 * @size: size of objects to be created in this cache.
1618 * @align: required alignment for the objects.
1619 * @flags: slab allocation flags
1621 * Also calculates the number of objects per slab.
1623 * This could be made much more intelligent. For now, try to avoid using
1624 * high order pages for slabs. When the gfp() functions are more friendly
1625 * towards high-order requests, this should be changed.
1627 static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1628 size_t size, size_t align, unsigned long flags)
1630 size_t left_over = 0;
1632 for (;; cachep->gfporder++) {
1636 if (cachep->gfporder > MAX_GFP_ORDER) {
1641 cache_estimate(cachep->gfporder, size, align, flags,
1645 /* More than offslab_limit objects will cause problems */
1646 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1650 left_over = remainder;
1653 * Large number of objects is good, but very large slabs are
1654 * currently bad for the gfp()s.
1656 if (cachep->gfporder >= slab_break_gfp_order)
1659 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1660 /* Acceptable internal fragmentation */
1667 * kmem_cache_create - Create a cache.
1668 * @name: A string which is used in /proc/slabinfo to identify this cache.
1669 * @size: The size of objects to be created in this cache.
1670 * @align: The required alignment for the objects.
1671 * @flags: SLAB flags
1672 * @ctor: A constructor for the objects.
1673 * @dtor: A destructor for the objects.
1675 * Returns a ptr to the cache on success, NULL on failure.
1676 * Cannot be called within a int, but can be interrupted.
1677 * The @ctor is run when new pages are allocated by the cache
1678 * and the @dtor is run before the pages are handed back.
1680 * @name must be valid until the cache is destroyed. This implies that
1681 * the module calling this has to destroy the cache before getting
1686 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1687 * to catch references to uninitialised memory.
1689 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1690 * for buffer overruns.
1692 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1695 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1696 * cacheline. This can be beneficial if you're counting cycles as closely
1700 kmem_cache_create (const char *name, size_t size, size_t align,
1701 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1702 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1704 size_t left_over, slab_size, ralign;
1705 struct kmem_cache *cachep = NULL;
1706 struct list_head *p;
1709 * Sanity checks... these are all serious usage bugs.
1713 (size < BYTES_PER_WORD) ||
1714 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1715 printk(KERN_ERR "%s: Early error in slab %s\n",
1716 __FUNCTION__, name);
1720 mutex_lock(&cache_chain_mutex);
1722 list_for_each(p, &cache_chain) {
1723 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1724 mm_segment_t old_fs = get_fs();
1729 * This happens when the module gets unloaded and doesn't
1730 * destroy its slab cache and no-one else reuses the vmalloc
1731 * area of the module. Print a warning.
1734 res = __get_user(tmp, pc->name);
1737 printk("SLAB: cache with size %d has lost its name\n",
1742 if (!strcmp(pc->name, name)) {
1743 printk("kmem_cache_create: duplicate cache %s\n", name);
1750 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1751 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1752 /* No constructor, but inital state check requested */
1753 printk(KERN_ERR "%s: No con, but init state check "
1754 "requested - %s\n", __FUNCTION__, name);
1755 flags &= ~SLAB_DEBUG_INITIAL;
1759 * Enable redzoning and last user accounting, except for caches with
1760 * large objects, if the increased size would increase the object size
1761 * above the next power of two: caches with object sizes just above a
1762 * power of two have a significant amount of internal fragmentation.
1765 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1766 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1767 if (!(flags & SLAB_DESTROY_BY_RCU))
1768 flags |= SLAB_POISON;
1770 if (flags & SLAB_DESTROY_BY_RCU)
1771 BUG_ON(flags & SLAB_POISON);
1773 if (flags & SLAB_DESTROY_BY_RCU)
1777 * Always checks flags, a caller might be expecting debug
1778 * support which isn't available.
1780 if (flags & ~CREATE_MASK)
1783 /* Check that size is in terms of words. This is needed to avoid
1784 * unaligned accesses for some archs when redzoning is used, and makes
1785 * sure any on-slab bufctl's are also correctly aligned.
1787 if (size & (BYTES_PER_WORD - 1)) {
1788 size += (BYTES_PER_WORD - 1);
1789 size &= ~(BYTES_PER_WORD - 1);
1792 /* calculate out the final buffer alignment: */
1793 /* 1) arch recommendation: can be overridden for debug */
1794 if (flags & SLAB_HWCACHE_ALIGN) {
1795 /* Default alignment: as specified by the arch code.
1796 * Except if an object is really small, then squeeze multiple
1797 * objects into one cacheline.
1799 ralign = cache_line_size();
1800 while (size <= ralign / 2)
1803 ralign = BYTES_PER_WORD;
1805 /* 2) arch mandated alignment: disables debug if necessary */
1806 if (ralign < ARCH_SLAB_MINALIGN) {
1807 ralign = ARCH_SLAB_MINALIGN;
1808 if (ralign > BYTES_PER_WORD)
1809 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1811 /* 3) caller mandated alignment: disables debug if necessary */
1812 if (ralign < align) {
1814 if (ralign > BYTES_PER_WORD)
1815 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1817 /* 4) Store it. Note that the debug code below can reduce
1818 * the alignment to BYTES_PER_WORD.
1822 /* Get cache's description obj. */
1823 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1826 memset(cachep, 0, sizeof(struct kmem_cache));
1829 cachep->obj_size = size;
1831 if (flags & SLAB_RED_ZONE) {
1832 /* redzoning only works with word aligned caches */
1833 align = BYTES_PER_WORD;
1835 /* add space for red zone words */
1836 cachep->obj_offset += BYTES_PER_WORD;
1837 size += 2 * BYTES_PER_WORD;
1839 if (flags & SLAB_STORE_USER) {
1840 /* user store requires word alignment and
1841 * one word storage behind the end of the real
1844 align = BYTES_PER_WORD;
1845 size += BYTES_PER_WORD;
1847 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1848 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1849 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1850 cachep->obj_offset += PAGE_SIZE - size;
1856 /* Determine if the slab management is 'on' or 'off' slab. */
1857 if (size >= (PAGE_SIZE >> 3))
1859 * Size is large, assume best to place the slab management obj
1860 * off-slab (should allow better packing of objs).
1862 flags |= CFLGS_OFF_SLAB;
1864 size = ALIGN(size, align);
1866 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1868 * A VFS-reclaimable slab tends to have most allocations
1869 * as GFP_NOFS and we really don't want to have to be allocating
1870 * higher-order pages when we are unable to shrink dcache.
1872 cachep->gfporder = 0;
1873 cache_estimate(cachep->gfporder, size, align, flags,
1874 &left_over, &cachep->num);
1876 left_over = calculate_slab_order(cachep, size, align, flags);
1879 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1880 kmem_cache_free(&cache_cache, cachep);
1884 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1885 + sizeof(struct slab), align);
1888 * If the slab has been placed off-slab, and we have enough space then
1889 * move it on-slab. This is at the expense of any extra colouring.
1891 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1892 flags &= ~CFLGS_OFF_SLAB;
1893 left_over -= slab_size;
1896 if (flags & CFLGS_OFF_SLAB) {
1897 /* really off slab. No need for manual alignment */
1899 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1902 cachep->colour_off = cache_line_size();
1903 /* Offset must be a multiple of the alignment. */
1904 if (cachep->colour_off < align)
1905 cachep->colour_off = align;
1906 cachep->colour = left_over / cachep->colour_off;
1907 cachep->slab_size = slab_size;
1908 cachep->flags = flags;
1909 cachep->gfpflags = 0;
1910 if (flags & SLAB_CACHE_DMA)
1911 cachep->gfpflags |= GFP_DMA;
1912 spin_lock_init(&cachep->spinlock);
1913 cachep->buffer_size = size;
1915 if (flags & CFLGS_OFF_SLAB)
1916 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1917 cachep->ctor = ctor;
1918 cachep->dtor = dtor;
1919 cachep->name = name;
1921 /* Don't let CPUs to come and go */
1924 if (g_cpucache_up == FULL) {
1925 enable_cpucache(cachep);
1927 if (g_cpucache_up == NONE) {
1928 /* Note: the first kmem_cache_create must create
1929 * the cache that's used by kmalloc(24), otherwise
1930 * the creation of further caches will BUG().
1932 cachep->array[smp_processor_id()] =
1933 &initarray_generic.cache;
1935 /* If the cache that's used by
1936 * kmalloc(sizeof(kmem_list3)) is the first cache,
1937 * then we need to set up all its list3s, otherwise
1938 * the creation of further caches will BUG().
1940 set_up_list3s(cachep, SIZE_AC);
1941 if (INDEX_AC == INDEX_L3)
1942 g_cpucache_up = PARTIAL_L3;
1944 g_cpucache_up = PARTIAL_AC;
1946 cachep->array[smp_processor_id()] =
1947 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1949 if (g_cpucache_up == PARTIAL_AC) {
1950 set_up_list3s(cachep, SIZE_L3);
1951 g_cpucache_up = PARTIAL_L3;
1954 for_each_online_node(node) {
1956 cachep->nodelists[node] =
1958 (struct kmem_list3),
1960 BUG_ON(!cachep->nodelists[node]);
1961 kmem_list3_init(cachep->
1966 cachep->nodelists[numa_node_id()]->next_reap =
1967 jiffies + REAPTIMEOUT_LIST3 +
1968 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1970 BUG_ON(!cpu_cache_get(cachep));
1971 cpu_cache_get(cachep)->avail = 0;
1972 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1973 cpu_cache_get(cachep)->batchcount = 1;
1974 cpu_cache_get(cachep)->touched = 0;
1975 cachep->batchcount = 1;
1976 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1979 /* cache setup completed, link it into the list */
1980 list_add(&cachep->next, &cache_chain);
1981 unlock_cpu_hotplug();
1983 if (!cachep && (flags & SLAB_PANIC))
1984 panic("kmem_cache_create(): failed to create slab `%s'\n",
1986 mutex_unlock(&cache_chain_mutex);
1989 EXPORT_SYMBOL(kmem_cache_create);
1992 static void check_irq_off(void)
1994 BUG_ON(!irqs_disabled());
1997 static void check_irq_on(void)
1999 BUG_ON(irqs_disabled());
2002 static void check_spinlock_acquired(struct kmem_cache *cachep)
2006 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2010 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2014 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2019 #define check_irq_off() do { } while(0)
2020 #define check_irq_on() do { } while(0)
2021 #define check_spinlock_acquired(x) do { } while(0)
2022 #define check_spinlock_acquired_node(x, y) do { } while(0)
2026 * Waits for all CPUs to execute func().
2028 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2033 local_irq_disable();
2037 if (smp_call_function(func, arg, 1, 1))
2043 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2044 int force, int node);
2046 static void do_drain(void *arg)
2048 struct kmem_cache *cachep = (struct kmem_cache *) arg;
2049 struct array_cache *ac;
2050 int node = numa_node_id();
2053 ac = cpu_cache_get(cachep);
2054 spin_lock(&cachep->nodelists[node]->list_lock);
2055 free_block(cachep, ac->entry, ac->avail, node);
2056 spin_unlock(&cachep->nodelists[node]->list_lock);
2060 static void drain_cpu_caches(struct kmem_cache *cachep)
2062 struct kmem_list3 *l3;
2065 smp_call_function_all_cpus(do_drain, cachep);
2067 for_each_online_node(node) {
2068 l3 = cachep->nodelists[node];
2070 spin_lock_irq(&l3->list_lock);
2071 drain_array_locked(cachep, l3->shared, 1, node);
2072 spin_unlock_irq(&l3->list_lock);
2074 drain_alien_cache(cachep, l3->alien);
2079 static int __node_shrink(struct kmem_cache *cachep, int node)
2082 struct kmem_list3 *l3 = cachep->nodelists[node];
2086 struct list_head *p;
2088 p = l3->slabs_free.prev;
2089 if (p == &l3->slabs_free)
2092 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2097 list_del(&slabp->list);
2099 l3->free_objects -= cachep->num;
2100 spin_unlock_irq(&l3->list_lock);
2101 slab_destroy(cachep, slabp);
2102 spin_lock_irq(&l3->list_lock);
2104 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2108 static int __cache_shrink(struct kmem_cache *cachep)
2111 struct kmem_list3 *l3;
2113 drain_cpu_caches(cachep);
2116 for_each_online_node(i) {
2117 l3 = cachep->nodelists[i];
2119 spin_lock_irq(&l3->list_lock);
2120 ret += __node_shrink(cachep, i);
2121 spin_unlock_irq(&l3->list_lock);
2124 return (ret ? 1 : 0);
2128 * kmem_cache_shrink - Shrink a cache.
2129 * @cachep: The cache to shrink.
2131 * Releases as many slabs as possible for a cache.
2132 * To help debugging, a zero exit status indicates all slabs were released.
2134 int kmem_cache_shrink(struct kmem_cache *cachep)
2136 if (!cachep || in_interrupt())
2139 return __cache_shrink(cachep);
2141 EXPORT_SYMBOL(kmem_cache_shrink);
2144 * kmem_cache_destroy - delete a cache
2145 * @cachep: the cache to destroy
2147 * Remove a struct kmem_cache object from the slab cache.
2148 * Returns 0 on success.
2150 * It is expected this function will be called by a module when it is
2151 * unloaded. This will remove the cache completely, and avoid a duplicate
2152 * cache being allocated each time a module is loaded and unloaded, if the
2153 * module doesn't have persistent in-kernel storage across loads and unloads.
2155 * The cache must be empty before calling this function.
2157 * The caller must guarantee that noone will allocate memory from the cache
2158 * during the kmem_cache_destroy().
2160 int kmem_cache_destroy(struct kmem_cache *cachep)
2163 struct kmem_list3 *l3;
2165 if (!cachep || in_interrupt())
2168 /* Don't let CPUs to come and go */
2171 /* Find the cache in the chain of caches. */
2172 mutex_lock(&cache_chain_mutex);
2174 * the chain is never empty, cache_cache is never destroyed
2176 list_del(&cachep->next);
2177 mutex_unlock(&cache_chain_mutex);
2179 if (__cache_shrink(cachep)) {
2180 slab_error(cachep, "Can't free all objects");
2181 mutex_lock(&cache_chain_mutex);
2182 list_add(&cachep->next, &cache_chain);
2183 mutex_unlock(&cache_chain_mutex);
2184 unlock_cpu_hotplug();
2188 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2191 for_each_online_cpu(i)
2192 kfree(cachep->array[i]);
2194 /* NUMA: free the list3 structures */
2195 for_each_online_node(i) {
2196 if ((l3 = cachep->nodelists[i])) {
2198 free_alien_cache(l3->alien);
2202 kmem_cache_free(&cache_cache, cachep);
2204 unlock_cpu_hotplug();
2208 EXPORT_SYMBOL(kmem_cache_destroy);
2210 /* Get the memory for a slab management obj. */
2211 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2212 int colour_off, gfp_t local_flags)
2216 if (OFF_SLAB(cachep)) {
2217 /* Slab management obj is off-slab. */
2218 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2222 slabp = objp + colour_off;
2223 colour_off += cachep->slab_size;
2226 slabp->colouroff = colour_off;
2227 slabp->s_mem = objp + colour_off;
2232 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2234 return (kmem_bufctl_t *) (slabp + 1);
2237 static void cache_init_objs(struct kmem_cache *cachep,
2238 struct slab *slabp, unsigned long ctor_flags)
2242 for (i = 0; i < cachep->num; i++) {
2243 void *objp = slabp->s_mem + cachep->buffer_size * i;
2245 /* need to poison the objs? */
2246 if (cachep->flags & SLAB_POISON)
2247 poison_obj(cachep, objp, POISON_FREE);
2248 if (cachep->flags & SLAB_STORE_USER)
2249 *dbg_userword(cachep, objp) = NULL;
2251 if (cachep->flags & SLAB_RED_ZONE) {
2252 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2253 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2256 * Constructors are not allowed to allocate memory from
2257 * the same cache which they are a constructor for.
2258 * Otherwise, deadlock. They must also be threaded.
2260 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2261 cachep->ctor(objp + obj_offset(cachep), cachep,
2264 if (cachep->flags & SLAB_RED_ZONE) {
2265 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2266 slab_error(cachep, "constructor overwrote the"
2267 " end of an object");
2268 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2269 slab_error(cachep, "constructor overwrote the"
2270 " start of an object");
2272 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2273 && cachep->flags & SLAB_POISON)
2274 kernel_map_pages(virt_to_page(objp),
2275 cachep->buffer_size / PAGE_SIZE, 0);
2278 cachep->ctor(objp, cachep, ctor_flags);
2280 slab_bufctl(slabp)[i] = i + 1;
2282 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2286 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2288 if (flags & SLAB_DMA) {
2289 if (!(cachep->gfpflags & GFP_DMA))
2292 if (cachep->gfpflags & GFP_DMA)
2297 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2299 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2303 next = slab_bufctl(slabp)[slabp->free];
2305 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2306 WARN_ON(slabp->nodeid != nodeid);
2313 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2316 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2319 /* Verify that the slab belongs to the intended node */
2320 WARN_ON(slabp->nodeid != nodeid);
2322 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2323 printk(KERN_ERR "slab: double free detected in cache "
2324 "'%s', objp %p\n", cachep->name, objp);
2328 slab_bufctl(slabp)[objnr] = slabp->free;
2329 slabp->free = objnr;
2333 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
2338 /* Nasty!!!!!! I hope this is OK. */
2339 i = 1 << cachep->gfporder;
2340 page = virt_to_page(objp);
2342 page_set_cache(page, cachep);
2343 page_set_slab(page, slabp);
2349 * Grow (by 1) the number of slabs within a cache. This is called by
2350 * kmem_cache_alloc() when there are no active objs left in a cache.
2352 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2358 unsigned long ctor_flags;
2359 struct kmem_list3 *l3;
2361 /* Be lazy and only check for valid flags here,
2362 * keeping it out of the critical path in kmem_cache_alloc().
2364 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2366 if (flags & SLAB_NO_GROW)
2369 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2370 local_flags = (flags & SLAB_LEVEL_MASK);
2371 if (!(local_flags & __GFP_WAIT))
2373 * Not allowed to sleep. Need to tell a constructor about
2374 * this - it might need to know...
2376 ctor_flags |= SLAB_CTOR_ATOMIC;
2378 /* Take the l3 list lock to change the colour_next on this node */
2380 l3 = cachep->nodelists[nodeid];
2381 spin_lock(&l3->list_lock);
2383 /* Get colour for the slab, and cal the next value. */
2384 offset = l3->colour_next;
2386 if (l3->colour_next >= cachep->colour)
2387 l3->colour_next = 0;
2388 spin_unlock(&l3->list_lock);
2390 offset *= cachep->colour_off;
2392 if (local_flags & __GFP_WAIT)
2396 * The test for missing atomic flag is performed here, rather than
2397 * the more obvious place, simply to reduce the critical path length
2398 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2399 * will eventually be caught here (where it matters).
2401 kmem_flagcheck(cachep, flags);
2403 /* Get mem for the objs.
2404 * Attempt to allocate a physical page from 'nodeid',
2406 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2409 /* Get slab management. */
2410 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2413 slabp->nodeid = nodeid;
2414 set_slab_attr(cachep, slabp, objp);
2416 cache_init_objs(cachep, slabp, ctor_flags);
2418 if (local_flags & __GFP_WAIT)
2419 local_irq_disable();
2421 spin_lock(&l3->list_lock);
2423 /* Make slab active. */
2424 list_add_tail(&slabp->list, &(l3->slabs_free));
2425 STATS_INC_GROWN(cachep);
2426 l3->free_objects += cachep->num;
2427 spin_unlock(&l3->list_lock);
2430 kmem_freepages(cachep, objp);
2432 if (local_flags & __GFP_WAIT)
2433 local_irq_disable();
2440 * Perform extra freeing checks:
2441 * - detect bad pointers.
2442 * - POISON/RED_ZONE checking
2443 * - destructor calls, for caches with POISON+dtor
2445 static void kfree_debugcheck(const void *objp)
2449 if (!virt_addr_valid(objp)) {
2450 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2451 (unsigned long)objp);
2454 page = virt_to_page(objp);
2455 if (!PageSlab(page)) {
2456 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2457 (unsigned long)objp);
2462 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2469 objp -= obj_offset(cachep);
2470 kfree_debugcheck(objp);
2471 page = virt_to_page(objp);
2473 if (page_get_cache(page) != cachep) {
2475 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2476 page_get_cache(page), cachep);
2477 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2478 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2479 page_get_cache(page)->name);
2482 slabp = page_get_slab(page);
2484 if (cachep->flags & SLAB_RED_ZONE) {
2485 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2486 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2488 "double free, or memory outside"
2489 " object was overwritten");
2491 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2492 objp, *dbg_redzone1(cachep, objp),
2493 *dbg_redzone2(cachep, objp));
2495 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2496 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2498 if (cachep->flags & SLAB_STORE_USER)
2499 *dbg_userword(cachep, objp) = caller;
2501 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2503 BUG_ON(objnr >= cachep->num);
2504 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2506 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2507 /* Need to call the slab's constructor so the
2508 * caller can perform a verify of its state (debugging).
2509 * Called without the cache-lock held.
2511 cachep->ctor(objp + obj_offset(cachep),
2512 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2514 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2515 /* we want to cache poison the object,
2516 * call the destruction callback
2518 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2520 if (cachep->flags & SLAB_POISON) {
2521 #ifdef CONFIG_DEBUG_PAGEALLOC
2522 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2523 store_stackinfo(cachep, objp, (unsigned long)caller);
2524 kernel_map_pages(virt_to_page(objp),
2525 cachep->buffer_size / PAGE_SIZE, 0);
2527 poison_obj(cachep, objp, POISON_FREE);
2530 poison_obj(cachep, objp, POISON_FREE);
2536 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2541 /* Check slab's freelist to see if this obj is there. */
2542 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2544 if (entries > cachep->num || i >= cachep->num)
2547 if (entries != cachep->num - slabp->inuse) {
2550 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2551 cachep->name, cachep->num, slabp, slabp->inuse);
2553 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2556 printk("\n%03x:", i);
2557 printk(" %02x", ((unsigned char *)slabp)[i]);
2564 #define kfree_debugcheck(x) do { } while(0)
2565 #define cache_free_debugcheck(x,objp,z) (objp)
2566 #define check_slabp(x,y) do { } while(0)
2569 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2572 struct kmem_list3 *l3;
2573 struct array_cache *ac;
2576 ac = cpu_cache_get(cachep);
2578 batchcount = ac->batchcount;
2579 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2580 /* if there was little recent activity on this
2581 * cache, then perform only a partial refill.
2582 * Otherwise we could generate refill bouncing.
2584 batchcount = BATCHREFILL_LIMIT;
2586 l3 = cachep->nodelists[numa_node_id()];
2588 BUG_ON(ac->avail > 0 || !l3);
2589 spin_lock(&l3->list_lock);
2592 struct array_cache *shared_array = l3->shared;
2593 if (shared_array->avail) {
2594 if (batchcount > shared_array->avail)
2595 batchcount = shared_array->avail;
2596 shared_array->avail -= batchcount;
2597 ac->avail = batchcount;
2599 &(shared_array->entry[shared_array->avail]),
2600 sizeof(void *) * batchcount);
2601 shared_array->touched = 1;
2605 while (batchcount > 0) {
2606 struct list_head *entry;
2608 /* Get slab alloc is to come from. */
2609 entry = l3->slabs_partial.next;
2610 if (entry == &l3->slabs_partial) {
2611 l3->free_touched = 1;
2612 entry = l3->slabs_free.next;
2613 if (entry == &l3->slabs_free)
2617 slabp = list_entry(entry, struct slab, list);
2618 check_slabp(cachep, slabp);
2619 check_spinlock_acquired(cachep);
2620 while (slabp->inuse < cachep->num && batchcount--) {
2621 STATS_INC_ALLOCED(cachep);
2622 STATS_INC_ACTIVE(cachep);
2623 STATS_SET_HIGH(cachep);
2625 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2628 check_slabp(cachep, slabp);
2630 /* move slabp to correct slabp list: */
2631 list_del(&slabp->list);
2632 if (slabp->free == BUFCTL_END)
2633 list_add(&slabp->list, &l3->slabs_full);
2635 list_add(&slabp->list, &l3->slabs_partial);
2639 l3->free_objects -= ac->avail;
2641 spin_unlock(&l3->list_lock);
2643 if (unlikely(!ac->avail)) {
2645 x = cache_grow(cachep, flags, numa_node_id());
2647 // cache_grow can reenable interrupts, then ac could change.
2648 ac = cpu_cache_get(cachep);
2649 if (!x && ac->avail == 0) // no objects in sight? abort
2652 if (!ac->avail) // objects refilled by interrupt?
2656 return ac->entry[--ac->avail];
2660 cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2662 might_sleep_if(flags & __GFP_WAIT);
2664 kmem_flagcheck(cachep, flags);
2669 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
2670 void *objp, void *caller)
2674 if (cachep->flags & SLAB_POISON) {
2675 #ifdef CONFIG_DEBUG_PAGEALLOC
2676 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2677 kernel_map_pages(virt_to_page(objp),
2678 cachep->buffer_size / PAGE_SIZE, 1);
2680 check_poison_obj(cachep, objp);
2682 check_poison_obj(cachep, objp);
2684 poison_obj(cachep, objp, POISON_INUSE);
2686 if (cachep->flags & SLAB_STORE_USER)
2687 *dbg_userword(cachep, objp) = caller;
2689 if (cachep->flags & SLAB_RED_ZONE) {
2690 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2691 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2693 "double free, or memory outside"
2694 " object was overwritten");
2696 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2697 objp, *dbg_redzone1(cachep, objp),
2698 *dbg_redzone2(cachep, objp));
2700 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2701 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2703 objp += obj_offset(cachep);
2704 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2705 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2707 if (!(flags & __GFP_WAIT))
2708 ctor_flags |= SLAB_CTOR_ATOMIC;
2710 cachep->ctor(objp, cachep, ctor_flags);
2715 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2718 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2721 struct array_cache *ac;
2724 if (unlikely(current->mempolicy && !in_interrupt())) {
2725 int nid = slab_node(current->mempolicy);
2727 if (nid != numa_node_id())
2728 return __cache_alloc_node(cachep, flags, nid);
2733 ac = cpu_cache_get(cachep);
2734 if (likely(ac->avail)) {
2735 STATS_INC_ALLOCHIT(cachep);
2737 objp = ac->entry[--ac->avail];
2739 STATS_INC_ALLOCMISS(cachep);
2740 objp = cache_alloc_refill(cachep, flags);
2745 static __always_inline void *
2746 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2748 unsigned long save_flags;
2751 cache_alloc_debugcheck_before(cachep, flags);
2753 local_irq_save(save_flags);
2754 objp = ____cache_alloc(cachep, flags);
2755 local_irq_restore(save_flags);
2756 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2764 * A interface to enable slab creation on nodeid
2766 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2768 struct list_head *entry;
2770 struct kmem_list3 *l3;
2774 l3 = cachep->nodelists[nodeid];
2779 spin_lock(&l3->list_lock);
2780 entry = l3->slabs_partial.next;
2781 if (entry == &l3->slabs_partial) {
2782 l3->free_touched = 1;
2783 entry = l3->slabs_free.next;
2784 if (entry == &l3->slabs_free)
2788 slabp = list_entry(entry, struct slab, list);
2789 check_spinlock_acquired_node(cachep, nodeid);
2790 check_slabp(cachep, slabp);
2792 STATS_INC_NODEALLOCS(cachep);
2793 STATS_INC_ACTIVE(cachep);
2794 STATS_SET_HIGH(cachep);
2796 BUG_ON(slabp->inuse == cachep->num);
2798 obj = slab_get_obj(cachep, slabp, nodeid);
2799 check_slabp(cachep, slabp);
2801 /* move slabp to correct slabp list: */
2802 list_del(&slabp->list);
2804 if (slabp->free == BUFCTL_END) {
2805 list_add(&slabp->list, &l3->slabs_full);
2807 list_add(&slabp->list, &l3->slabs_partial);
2810 spin_unlock(&l3->list_lock);
2814 spin_unlock(&l3->list_lock);
2815 x = cache_grow(cachep, flags, nodeid);
2827 * Caller needs to acquire correct kmem_list's list_lock
2829 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2833 struct kmem_list3 *l3;
2835 for (i = 0; i < nr_objects; i++) {
2836 void *objp = objpp[i];
2839 slabp = virt_to_slab(objp);
2840 l3 = cachep->nodelists[node];
2841 list_del(&slabp->list);
2842 check_spinlock_acquired_node(cachep, node);
2843 check_slabp(cachep, slabp);
2844 slab_put_obj(cachep, slabp, objp, node);
2845 STATS_DEC_ACTIVE(cachep);
2847 check_slabp(cachep, slabp);
2849 /* fixup slab chains */
2850 if (slabp->inuse == 0) {
2851 if (l3->free_objects > l3->free_limit) {
2852 l3->free_objects -= cachep->num;
2853 slab_destroy(cachep, slabp);
2855 list_add(&slabp->list, &l3->slabs_free);
2858 /* Unconditionally move a slab to the end of the
2859 * partial list on free - maximum time for the
2860 * other objects to be freed, too.
2862 list_add_tail(&slabp->list, &l3->slabs_partial);
2867 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2870 struct kmem_list3 *l3;
2871 int node = numa_node_id();
2873 batchcount = ac->batchcount;
2875 BUG_ON(!batchcount || batchcount > ac->avail);
2878 l3 = cachep->nodelists[node];
2879 spin_lock(&l3->list_lock);
2881 struct array_cache *shared_array = l3->shared;
2882 int max = shared_array->limit - shared_array->avail;
2884 if (batchcount > max)
2886 memcpy(&(shared_array->entry[shared_array->avail]),
2887 ac->entry, sizeof(void *) * batchcount);
2888 shared_array->avail += batchcount;
2893 free_block(cachep, ac->entry, batchcount, node);
2898 struct list_head *p;
2900 p = l3->slabs_free.next;
2901 while (p != &(l3->slabs_free)) {
2904 slabp = list_entry(p, struct slab, list);
2905 BUG_ON(slabp->inuse);
2910 STATS_SET_FREEABLE(cachep, i);
2913 spin_unlock(&l3->list_lock);
2914 ac->avail -= batchcount;
2915 memmove(ac->entry, &(ac->entry[batchcount]),
2916 sizeof(void *) * ac->avail);
2921 * Release an obj back to its cache. If the obj has a constructed
2922 * state, it must be in this state _before_ it is released.
2924 * Called with disabled ints.
2926 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
2928 struct array_cache *ac = cpu_cache_get(cachep);
2931 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2933 /* Make sure we are not freeing a object from another
2934 * node to the array cache on this cpu.
2939 slabp = virt_to_slab(objp);
2940 if (unlikely(slabp->nodeid != numa_node_id())) {
2941 struct array_cache *alien = NULL;
2942 int nodeid = slabp->nodeid;
2943 struct kmem_list3 *l3 =
2944 cachep->nodelists[numa_node_id()];
2946 STATS_INC_NODEFREES(cachep);
2947 if (l3->alien && l3->alien[nodeid]) {
2948 alien = l3->alien[nodeid];
2949 spin_lock(&alien->lock);
2950 if (unlikely(alien->avail == alien->limit))
2951 __drain_alien_cache(cachep,
2953 alien->entry[alien->avail++] = objp;
2954 spin_unlock(&alien->lock);
2956 spin_lock(&(cachep->nodelists[nodeid])->
2958 free_block(cachep, &objp, 1, nodeid);
2959 spin_unlock(&(cachep->nodelists[nodeid])->
2966 if (likely(ac->avail < ac->limit)) {
2967 STATS_INC_FREEHIT(cachep);
2968 ac->entry[ac->avail++] = objp;
2971 STATS_INC_FREEMISS(cachep);
2972 cache_flusharray(cachep, ac);
2973 ac->entry[ac->avail++] = objp;
2978 * kmem_cache_alloc - Allocate an object
2979 * @cachep: The cache to allocate from.
2980 * @flags: See kmalloc().
2982 * Allocate an object from this cache. The flags are only relevant
2983 * if the cache has no available objects.
2985 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2987 return __cache_alloc(cachep, flags, __builtin_return_address(0));
2989 EXPORT_SYMBOL(kmem_cache_alloc);
2992 * kmem_ptr_validate - check if an untrusted pointer might
2994 * @cachep: the cache we're checking against
2995 * @ptr: pointer to validate
2997 * This verifies that the untrusted pointer looks sane:
2998 * it is _not_ a guarantee that the pointer is actually
2999 * part of the slab cache in question, but it at least
3000 * validates that the pointer can be dereferenced and
3001 * looks half-way sane.
3003 * Currently only used for dentry validation.
3005 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3007 unsigned long addr = (unsigned long)ptr;
3008 unsigned long min_addr = PAGE_OFFSET;
3009 unsigned long align_mask = BYTES_PER_WORD - 1;
3010 unsigned long size = cachep->buffer_size;
3013 if (unlikely(addr < min_addr))
3015 if (unlikely(addr > (unsigned long)high_memory - size))
3017 if (unlikely(addr & align_mask))
3019 if (unlikely(!kern_addr_valid(addr)))
3021 if (unlikely(!kern_addr_valid(addr + size - 1)))
3023 page = virt_to_page(ptr);
3024 if (unlikely(!PageSlab(page)))
3026 if (unlikely(page_get_cache(page) != cachep))
3035 * kmem_cache_alloc_node - Allocate an object on the specified node
3036 * @cachep: The cache to allocate from.
3037 * @flags: See kmalloc().
3038 * @nodeid: node number of the target node.
3040 * Identical to kmem_cache_alloc, except that this function is slow
3041 * and can sleep. And it will allocate memory on the given node, which
3042 * can improve the performance for cpu bound structures.
3043 * New and improved: it will now make sure that the object gets
3044 * put on the correct node list so that there is no false sharing.
3046 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3048 unsigned long save_flags;
3051 cache_alloc_debugcheck_before(cachep, flags);
3052 local_irq_save(save_flags);
3054 if (nodeid == -1 || nodeid == numa_node_id() ||
3055 !cachep->nodelists[nodeid])
3056 ptr = ____cache_alloc(cachep, flags);
3058 ptr = __cache_alloc_node(cachep, flags, nodeid);
3059 local_irq_restore(save_flags);
3061 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3062 __builtin_return_address(0));
3066 EXPORT_SYMBOL(kmem_cache_alloc_node);
3068 void *kmalloc_node(size_t size, gfp_t flags, int node)
3070 struct kmem_cache *cachep;
3072 cachep = kmem_find_general_cachep(size, flags);
3073 if (unlikely(cachep == NULL))
3075 return kmem_cache_alloc_node(cachep, flags, node);
3077 EXPORT_SYMBOL(kmalloc_node);
3081 * kmalloc - allocate memory
3082 * @size: how many bytes of memory are required.
3083 * @flags: the type of memory to allocate.
3085 * kmalloc is the normal method of allocating memory
3088 * The @flags argument may be one of:
3090 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3092 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3094 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3096 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3097 * must be suitable for DMA. This can mean different things on different
3098 * platforms. For example, on i386, it means that the memory must come
3099 * from the first 16MB.
3101 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3104 struct kmem_cache *cachep;
3106 /* If you want to save a few bytes .text space: replace
3108 * Then kmalloc uses the uninlined functions instead of the inline
3111 cachep = __find_general_cachep(size, flags);
3112 if (unlikely(cachep == NULL))
3114 return __cache_alloc(cachep, flags, caller);
3117 #ifndef CONFIG_DEBUG_SLAB
3119 void *__kmalloc(size_t size, gfp_t flags)
3121 return __do_kmalloc(size, flags, NULL);
3123 EXPORT_SYMBOL(__kmalloc);
3127 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3129 return __do_kmalloc(size, flags, caller);
3131 EXPORT_SYMBOL(__kmalloc_track_caller);
3137 * __alloc_percpu - allocate one copy of the object for every present
3138 * cpu in the system, zeroing them.
3139 * Objects should be dereferenced using the per_cpu_ptr macro only.
3141 * @size: how many bytes of memory are required.
3143 void *__alloc_percpu(size_t size)
3146 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3152 * Cannot use for_each_online_cpu since a cpu may come online
3153 * and we have no way of figuring out how to fix the array
3154 * that we have allocated then....
3157 int node = cpu_to_node(i);
3159 if (node_online(node))
3160 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3162 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3164 if (!pdata->ptrs[i])
3166 memset(pdata->ptrs[i], 0, size);
3169 /* Catch derefs w/o wrappers */
3170 return (void *)(~(unsigned long)pdata);
3174 if (!cpu_possible(i))
3176 kfree(pdata->ptrs[i]);
3181 EXPORT_SYMBOL(__alloc_percpu);
3185 * kmem_cache_free - Deallocate an object
3186 * @cachep: The cache the allocation was from.
3187 * @objp: The previously allocated object.
3189 * Free an object which was previously allocated from this
3192 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3194 unsigned long flags;
3196 local_irq_save(flags);
3197 __cache_free(cachep, objp);
3198 local_irq_restore(flags);
3200 EXPORT_SYMBOL(kmem_cache_free);
3203 * kfree - free previously allocated memory
3204 * @objp: pointer returned by kmalloc.
3206 * If @objp is NULL, no operation is performed.
3208 * Don't free memory not originally allocated by kmalloc()
3209 * or you will run into trouble.
3211 void kfree(const void *objp)
3213 struct kmem_cache *c;
3214 unsigned long flags;
3216 if (unlikely(!objp))
3218 local_irq_save(flags);
3219 kfree_debugcheck(objp);
3220 c = virt_to_cache(objp);
3221 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3222 __cache_free(c, (void *)objp);
3223 local_irq_restore(flags);
3225 EXPORT_SYMBOL(kfree);
3229 * free_percpu - free previously allocated percpu memory
3230 * @objp: pointer returned by alloc_percpu.
3232 * Don't free memory not originally allocated by alloc_percpu()
3233 * The complemented objp is to check for that.
3235 void free_percpu(const void *objp)
3238 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3241 * We allocate for all cpus so we cannot use for online cpu here.
3247 EXPORT_SYMBOL(free_percpu);
3250 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3252 return obj_size(cachep);
3254 EXPORT_SYMBOL(kmem_cache_size);
3256 const char *kmem_cache_name(struct kmem_cache *cachep)
3258 return cachep->name;
3260 EXPORT_SYMBOL_GPL(kmem_cache_name);
3263 * This initializes kmem_list3 for all nodes.
3265 static int alloc_kmemlist(struct kmem_cache *cachep)
3268 struct kmem_list3 *l3;
3271 for_each_online_node(node) {
3272 struct array_cache *nc = NULL, *new;
3273 struct array_cache **new_alien = NULL;
3275 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3278 if (!(new = alloc_arraycache(node, (cachep->shared *
3279 cachep->batchcount),
3282 if ((l3 = cachep->nodelists[node])) {
3284 spin_lock_irq(&l3->list_lock);
3286 if ((nc = cachep->nodelists[node]->shared))
3287 free_block(cachep, nc->entry, nc->avail, node);
3290 if (!cachep->nodelists[node]->alien) {
3291 l3->alien = new_alien;
3294 l3->free_limit = (1 + nr_cpus_node(node)) *
3295 cachep->batchcount + cachep->num;
3296 spin_unlock_irq(&l3->list_lock);
3298 free_alien_cache(new_alien);
3301 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3305 kmem_list3_init(l3);
3306 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3307 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3309 l3->alien = new_alien;
3310 l3->free_limit = (1 + nr_cpus_node(node)) *
3311 cachep->batchcount + cachep->num;
3312 cachep->nodelists[node] = l3;
3320 struct ccupdate_struct {
3321 struct kmem_cache *cachep;
3322 struct array_cache *new[NR_CPUS];
3325 static void do_ccupdate_local(void *info)
3327 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3328 struct array_cache *old;
3331 old = cpu_cache_get(new->cachep);
3333 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3334 new->new[smp_processor_id()] = old;
3337 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
3340 struct ccupdate_struct new;
3343 memset(&new.new, 0, sizeof(new.new));
3344 for_each_online_cpu(i) {
3346 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3348 for (i--; i >= 0; i--)
3353 new.cachep = cachep;
3355 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3358 spin_lock(&cachep->spinlock);
3359 cachep->batchcount = batchcount;
3360 cachep->limit = limit;
3361 cachep->shared = shared;
3362 spin_unlock(&cachep->spinlock);
3364 for_each_online_cpu(i) {
3365 struct array_cache *ccold = new.new[i];
3368 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3369 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3370 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3374 err = alloc_kmemlist(cachep);
3376 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3377 cachep->name, -err);
3383 static void enable_cpucache(struct kmem_cache *cachep)
3388 /* The head array serves three purposes:
3389 * - create a LIFO ordering, i.e. return objects that are cache-warm
3390 * - reduce the number of spinlock operations.
3391 * - reduce the number of linked list operations on the slab and
3392 * bufctl chains: array operations are cheaper.
3393 * The numbers are guessed, we should auto-tune as described by
3396 if (cachep->buffer_size > 131072)
3398 else if (cachep->buffer_size > PAGE_SIZE)
3400 else if (cachep->buffer_size > 1024)
3402 else if (cachep->buffer_size > 256)
3407 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3408 * allocation behaviour: Most allocs on one cpu, most free operations
3409 * on another cpu. For these cases, an efficient object passing between
3410 * cpus is necessary. This is provided by a shared array. The array
3411 * replaces Bonwick's magazine layer.
3412 * On uniprocessor, it's functionally equivalent (but less efficient)
3413 * to a larger limit. Thus disabled by default.
3417 if (cachep->buffer_size <= PAGE_SIZE)
3422 /* With debugging enabled, large batchcount lead to excessively
3423 * long periods with disabled local interrupts. Limit the
3429 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3431 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3432 cachep->name, -err);
3435 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
3436 int force, int node)
3440 check_spinlock_acquired_node(cachep, node);
3441 if (ac->touched && !force) {
3443 } else if (ac->avail) {
3444 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3445 if (tofree > ac->avail) {
3446 tofree = (ac->avail + 1) / 2;
3448 free_block(cachep, ac->entry, tofree, node);
3449 ac->avail -= tofree;
3450 memmove(ac->entry, &(ac->entry[tofree]),
3451 sizeof(void *) * ac->avail);
3456 * cache_reap - Reclaim memory from caches.
3457 * @unused: unused parameter
3459 * Called from workqueue/eventd every few seconds.
3461 * - clear the per-cpu caches for this CPU.
3462 * - return freeable pages to the main free memory pool.
3464 * If we cannot acquire the cache chain mutex then just give up - we'll
3465 * try again on the next iteration.
3467 static void cache_reap(void *unused)
3469 struct list_head *walk;
3470 struct kmem_list3 *l3;
3472 if (!mutex_trylock(&cache_chain_mutex)) {
3473 /* Give up. Setup the next iteration. */
3474 schedule_delayed_work(&__get_cpu_var(reap_work),
3479 list_for_each(walk, &cache_chain) {
3480 struct kmem_cache *searchp;
3481 struct list_head *p;
3485 searchp = list_entry(walk, struct kmem_cache, next);
3487 if (searchp->flags & SLAB_NO_REAP)
3492 l3 = searchp->nodelists[numa_node_id()];
3494 drain_alien_cache(searchp, l3->alien);
3495 spin_lock_irq(&l3->list_lock);
3497 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3500 if (time_after(l3->next_reap, jiffies))
3503 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3506 drain_array_locked(searchp, l3->shared, 0,
3509 if (l3->free_touched) {
3510 l3->free_touched = 0;
3515 (l3->free_limit + 5 * searchp->num -
3516 1) / (5 * searchp->num);
3518 p = l3->slabs_free.next;
3519 if (p == &(l3->slabs_free))
3522 slabp = list_entry(p, struct slab, list);
3523 BUG_ON(slabp->inuse);
3524 list_del(&slabp->list);
3525 STATS_INC_REAPED(searchp);
3527 /* Safe to drop the lock. The slab is no longer
3528 * linked to the cache.
3529 * searchp cannot disappear, we hold
3532 l3->free_objects -= searchp->num;
3533 spin_unlock_irq(&l3->list_lock);
3534 slab_destroy(searchp, slabp);
3535 spin_lock_irq(&l3->list_lock);
3536 } while (--tofree > 0);
3538 spin_unlock_irq(&l3->list_lock);
3543 mutex_unlock(&cache_chain_mutex);
3544 drain_remote_pages();
3545 /* Setup the next iteration */
3546 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3549 #ifdef CONFIG_PROC_FS
3551 static void print_slabinfo_header(struct seq_file *m)
3554 * Output format version, so at least we can change it
3555 * without _too_ many complaints.
3558 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3560 seq_puts(m, "slabinfo - version: 2.1\n");
3562 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3563 "<objperslab> <pagesperslab>");
3564 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3565 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3567 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3568 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3569 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3574 static void *s_start(struct seq_file *m, loff_t *pos)
3577 struct list_head *p;
3579 mutex_lock(&cache_chain_mutex);
3581 print_slabinfo_header(m);
3582 p = cache_chain.next;
3585 if (p == &cache_chain)
3588 return list_entry(p, struct kmem_cache, next);
3591 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3593 struct kmem_cache *cachep = p;
3595 return cachep->next.next == &cache_chain ? NULL
3596 : list_entry(cachep->next.next, struct kmem_cache, next);
3599 static void s_stop(struct seq_file *m, void *p)
3601 mutex_unlock(&cache_chain_mutex);
3604 static int s_show(struct seq_file *m, void *p)
3606 struct kmem_cache *cachep = p;
3607 struct list_head *q;
3609 unsigned long active_objs;
3610 unsigned long num_objs;
3611 unsigned long active_slabs = 0;
3612 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3616 struct kmem_list3 *l3;
3618 spin_lock(&cachep->spinlock);
3621 for_each_online_node(node) {
3622 l3 = cachep->nodelists[node];
3627 spin_lock_irq(&l3->list_lock);
3629 list_for_each(q, &l3->slabs_full) {
3630 slabp = list_entry(q, struct slab, list);
3631 if (slabp->inuse != cachep->num && !error)
3632 error = "slabs_full accounting error";
3633 active_objs += cachep->num;
3636 list_for_each(q, &l3->slabs_partial) {
3637 slabp = list_entry(q, struct slab, list);
3638 if (slabp->inuse == cachep->num && !error)
3639 error = "slabs_partial inuse accounting error";
3640 if (!slabp->inuse && !error)
3641 error = "slabs_partial/inuse accounting error";
3642 active_objs += slabp->inuse;
3645 list_for_each(q, &l3->slabs_free) {
3646 slabp = list_entry(q, struct slab, list);
3647 if (slabp->inuse && !error)
3648 error = "slabs_free/inuse accounting error";
3651 free_objects += l3->free_objects;
3653 shared_avail += l3->shared->avail;
3655 spin_unlock_irq(&l3->list_lock);
3657 num_slabs += active_slabs;
3658 num_objs = num_slabs * cachep->num;
3659 if (num_objs - active_objs != free_objects && !error)
3660 error = "free_objects accounting error";
3662 name = cachep->name;
3664 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3666 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3667 name, active_objs, num_objs, cachep->buffer_size,
3668 cachep->num, (1 << cachep->gfporder));
3669 seq_printf(m, " : tunables %4u %4u %4u",
3670 cachep->limit, cachep->batchcount, cachep->shared);
3671 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3672 active_slabs, num_slabs, shared_avail);
3675 unsigned long high = cachep->high_mark;
3676 unsigned long allocs = cachep->num_allocations;
3677 unsigned long grown = cachep->grown;
3678 unsigned long reaped = cachep->reaped;
3679 unsigned long errors = cachep->errors;
3680 unsigned long max_freeable = cachep->max_freeable;
3681 unsigned long node_allocs = cachep->node_allocs;
3682 unsigned long node_frees = cachep->node_frees;
3684 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3685 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3689 unsigned long allochit = atomic_read(&cachep->allochit);
3690 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3691 unsigned long freehit = atomic_read(&cachep->freehit);
3692 unsigned long freemiss = atomic_read(&cachep->freemiss);
3694 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3695 allochit, allocmiss, freehit, freemiss);
3699 spin_unlock(&cachep->spinlock);
3704 * slabinfo_op - iterator that generates /proc/slabinfo
3713 * num-pages-per-slab
3714 * + further values on SMP and with statistics enabled
3717 struct seq_operations slabinfo_op = {
3724 #define MAX_SLABINFO_WRITE 128
3726 * slabinfo_write - Tuning for the slab allocator
3728 * @buffer: user buffer
3729 * @count: data length
3732 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3733 size_t count, loff_t *ppos)
3735 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3736 int limit, batchcount, shared, res;
3737 struct list_head *p;
3739 if (count > MAX_SLABINFO_WRITE)
3741 if (copy_from_user(&kbuf, buffer, count))
3743 kbuf[MAX_SLABINFO_WRITE] = '\0';
3745 tmp = strchr(kbuf, ' ');
3750 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3753 /* Find the cache in the chain of caches. */
3754 mutex_lock(&cache_chain_mutex);
3756 list_for_each(p, &cache_chain) {
3757 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3760 if (!strcmp(cachep->name, kbuf)) {
3763 batchcount > limit || shared < 0) {
3766 res = do_tune_cpucache(cachep, limit,
3767 batchcount, shared);
3772 mutex_unlock(&cache_chain_mutex);
3780 * ksize - get the actual amount of memory allocated for a given object
3781 * @objp: Pointer to the object
3783 * kmalloc may internally round up allocations and return more memory
3784 * than requested. ksize() can be used to determine the actual amount of
3785 * memory allocated. The caller may use this additional memory, even though
3786 * a smaller amount of memory was initially specified with the kmalloc call.
3787 * The caller must guarantee that objp points to a valid object previously
3788 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3789 * must not be freed during the duration of the call.
3791 unsigned int ksize(const void *objp)
3793 if (unlikely(objp == NULL))
3796 return obj_size(virt_to_cache(objp));