[SPARC64]: Implement rest of generic interrupt hypervisor calls.
[linux-2.6] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2  * pci_sabre.c: Sabre specific PCI controller support.
3  *
4  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
6  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22
23 #include "pci_impl.h"
24 #include "iommu_common.h"
25
26 /* All SABRE registers are 64-bits.  The following accessor
27  * routines are how they are accessed.  The REG parameter
28  * is a physical address.
29  */
30 #define sabre_read(__reg) \
31 ({      u64 __ret; \
32         __asm__ __volatile__("ldxa [%1] %2, %0" \
33                              : "=r" (__ret) \
34                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
35                              : "memory"); \
36         __ret; \
37 })
38 #define sabre_write(__reg, __val) \
39         __asm__ __volatile__("stxa %0, [%1] %2" \
40                              : /* no outputs */ \
41                              : "r" (__val), "r" (__reg), \
42                                "i" (ASI_PHYS_BYPASS_EC_E) \
43                              : "memory")
44
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR           0x0030UL
47 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
48 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
49 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
50 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
51 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
52 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
53 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
54 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
55 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
56 #define SABRE_UECE_AFAR         0x0038UL
57 #define SABRE_CE_AFSR           0x0040UL
58 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
59 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
60 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
61 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
62 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
63 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
64 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
65 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL     0x0200UL
68 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
69 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
70 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
71 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
72 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
73 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
74 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
75 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
76 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
77 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
78 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
79 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
80 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
82 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
83 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE     0x0208UL
85 #define SABRE_IOMMU_FLUSH       0x0210UL
86 #define SABRE_IMAP_A_SLOT0      0x0c00UL
87 #define SABRE_IMAP_B_SLOT0      0x0c20UL
88 #define SABRE_IMAP_SCSI         0x1000UL
89 #define SABRE_IMAP_ETH          0x1008UL
90 #define SABRE_IMAP_BPP          0x1010UL
91 #define SABRE_IMAP_AU_REC       0x1018UL
92 #define SABRE_IMAP_AU_PLAY      0x1020UL
93 #define SABRE_IMAP_PFAIL        0x1028UL
94 #define SABRE_IMAP_KMS          0x1030UL
95 #define SABRE_IMAP_FLPY         0x1038UL
96 #define SABRE_IMAP_SHW          0x1040UL
97 #define SABRE_IMAP_KBD          0x1048UL
98 #define SABRE_IMAP_MS           0x1050UL
99 #define SABRE_IMAP_SER          0x1058UL
100 #define SABRE_IMAP_UE           0x1070UL
101 #define SABRE_IMAP_CE           0x1078UL
102 #define SABRE_IMAP_PCIERR       0x1080UL
103 #define SABRE_IMAP_GFX          0x1098UL
104 #define SABRE_IMAP_EUPA         0x10a0UL
105 #define SABRE_ICLR_A_SLOT0      0x1400UL
106 #define SABRE_ICLR_B_SLOT0      0x1480UL
107 #define SABRE_ICLR_SCSI         0x1800UL
108 #define SABRE_ICLR_ETH          0x1808UL
109 #define SABRE_ICLR_BPP          0x1810UL
110 #define SABRE_ICLR_AU_REC       0x1818UL
111 #define SABRE_ICLR_AU_PLAY      0x1820UL
112 #define SABRE_ICLR_PFAIL        0x1828UL
113 #define SABRE_ICLR_KMS          0x1830UL
114 #define SABRE_ICLR_FLPY         0x1838UL
115 #define SABRE_ICLR_SHW          0x1840UL
116 #define SABRE_ICLR_KBD          0x1848UL
117 #define SABRE_ICLR_MS           0x1850UL
118 #define SABRE_ICLR_SER          0x1858UL
119 #define SABRE_ICLR_UE           0x1870UL
120 #define SABRE_ICLR_CE           0x1878UL
121 #define SABRE_ICLR_PCIERR       0x1880UL
122 #define SABRE_WRSYNC            0x1c20UL
123 #define SABRE_PCICTRL           0x2000UL
124 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
125 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
126 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
128 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
129 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
130 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR           0x2010UL
133 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
134 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
135 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
136 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
137 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
138 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
139 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
140 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
141 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
142 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
143 #define SABRE_PIOAFAR           0x2018UL
144 #define SABRE_PCIDIAG           0x2020UL
145 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
146 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
147 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
148 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
149 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
150 #define SABRE_PCITASR           0x2028UL
151 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
152 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
153 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
154 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
155 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
156 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
157 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
158 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG       0x5000UL
160 #define SABRE_DMABUF_DIAGLO     0x5100UL
161 #define SABRE_DMABUF_DIAGHI     0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG      0xa400UL
165 #define SABRE_IOMMU_TCDIAG      0xa408UL
166 #define SABRE_IOMMU_TAG         0xa580UL
167 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
168 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
169 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
170 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
171 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
172 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA        0xa600UL
174 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
175 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE      0xa800UL
179 #define SABRE_OBIO_IRQSTATE     0xa808UL
180 #define SABRE_FFBCFG            0xf000UL
181 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
182 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0           0xf010UL
184 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
185 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
186 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
187 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
188 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
189 #define SABRE_MCCTRL1           0xf018UL
190 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
191 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
192 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
193 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
194 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
195 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
196 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
197 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
198 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
199 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL         0xf020UL
201
202 #define SABRE_CONFIGSPACE       0x001000000UL
203 #define SABRE_IOSPACE           0x002000000UL
204 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
205 #define SABRE_MEMSPACE          0x100000000UL
206 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
207
208 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
209  * configuration space address format:
210  * 
211  *  32             24 23 16 15    11 10       8 7   2  1 0
212  * ---------------------------------------------------------
213  * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214  * ---------------------------------------------------------
215  */
216 #define SABRE_CONFIG_BASE(PBM)  \
217         ((PBM)->config_space | (1UL << 24))
218 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
219         (((unsigned long)(BUS)   << 16) |       \
220          ((unsigned long)(DEVFN) << 8)  |       \
221          ((unsigned long)(REG)))
222
223 static int hummingbird_p;
224 static struct pci_bus *sabre_root_bus;
225
226 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
227                                      unsigned char bus,
228                                      unsigned int devfn,
229                                      int where)
230 {
231         if (!pbm)
232                 return NULL;
233         return (void *)
234                 (SABRE_CONFIG_BASE(pbm) |
235                  SABRE_CONFIG_ENCODE(bus, devfn, where));
236 }
237
238 static int sabre_out_of_range(unsigned char devfn)
239 {
240         if (hummingbird_p)
241                 return 0;
242
243         return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
244                 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
245                 (PCI_SLOT(devfn) > 1));
246 }
247
248 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
249                                 unsigned char bus,
250                                 unsigned char devfn)
251 {
252         if (hummingbird_p)
253                 return 0;
254
255         return ((pbm->parent == 0) ||
256                 ((pbm == &pbm->parent->pbm_B) &&
257                  (bus == pbm->pci_first_busno) &&
258                  PCI_SLOT(devfn) > 8) ||
259                 ((pbm == &pbm->parent->pbm_A) &&
260                  (bus == pbm->pci_first_busno) &&
261                  PCI_SLOT(devfn) > 8));
262 }
263
264 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
265                                 int where, int size, u32 *value)
266 {
267         struct pci_pbm_info *pbm = bus_dev->sysdata;
268         unsigned char bus = bus_dev->number;
269         u32 *addr;
270         u16 tmp16;
271         u8 tmp8;
272
273         switch (size) {
274         case 1:
275                 *value = 0xff;
276                 break;
277         case 2:
278                 *value = 0xffff;
279                 break;
280         case 4:
281                 *value = 0xffffffff;
282                 break;
283         }
284
285         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
286         if (!addr)
287                 return PCIBIOS_SUCCESSFUL;
288
289         if (__sabre_out_of_range(pbm, bus, devfn))
290                 return PCIBIOS_SUCCESSFUL;
291
292         switch (size) {
293         case 1:
294                 pci_config_read8((u8 *) addr, &tmp8);
295                 *value = tmp8;
296                 break;
297
298         case 2:
299                 if (where & 0x01) {
300                         printk("pci_read_config_word: misaligned reg [%x]\n",
301                                where);
302                         return PCIBIOS_SUCCESSFUL;
303                 }
304                 pci_config_read16((u16 *) addr, &tmp16);
305                 *value = tmp16;
306                 break;
307
308         case 4:
309                 if (where & 0x03) {
310                         printk("pci_read_config_dword: misaligned reg [%x]\n",
311                                where);
312                         return PCIBIOS_SUCCESSFUL;
313                 }
314                 pci_config_read32(addr, value);
315                 break;
316         }
317
318         return PCIBIOS_SUCCESSFUL;
319 }
320
321 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
322                               int where, int size, u32 *value)
323 {
324         if (!bus->number && sabre_out_of_range(devfn)) {
325                 switch (size) {
326                 case 1:
327                         *value = 0xff;
328                         break;
329                 case 2:
330                         *value = 0xffff;
331                         break;
332                 case 4:
333                         *value = 0xffffffff;
334                         break;
335                 }
336                 return PCIBIOS_SUCCESSFUL;
337         }
338
339         if (bus->number || PCI_SLOT(devfn))
340                 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
341
342         /* When accessing PCI config space of the PCI controller itself (bus
343          * 0, device slot 0, function 0) there are restrictions.  Each
344          * register must be accessed as it's natural size.  Thus, for example
345          * the Vendor ID must be accessed as a 16-bit quantity.
346          */
347
348         switch (size) {
349         case 1:
350                 if (where < 8) {
351                         u32 tmp32;
352                         u16 tmp16;
353
354                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
355                         tmp16 = (u16) tmp32;
356                         if (where & 1)
357                                 *value = tmp16 >> 8;
358                         else
359                                 *value = tmp16 & 0xff;
360                 } else
361                         return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
362                 break;
363
364         case 2:
365                 if (where < 8)
366                         return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
367                 else {
368                         u32 tmp32;
369                         u8 tmp8;
370
371                         __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
372                         tmp8 = (u8) tmp32;
373                         *value = tmp8;
374                         __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
375                         tmp8 = (u8) tmp32;
376                         *value |= tmp8 << 8;
377                 }
378                 break;
379
380         case 4: {
381                 u32 tmp32;
382                 u16 tmp16;
383
384                 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
385                 tmp16 = (u16) tmp32;
386                 *value = tmp16;
387                 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
388                 tmp16 = (u16) tmp32;
389                 *value |= tmp16 << 16;
390                 break;
391         }
392         }
393         return PCIBIOS_SUCCESSFUL;
394 }
395
396 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
397                                  int where, int size, u32 value)
398 {
399         struct pci_pbm_info *pbm = bus_dev->sysdata;
400         unsigned char bus = bus_dev->number;
401         u32 *addr;
402
403         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
404         if (!addr)
405                 return PCIBIOS_SUCCESSFUL;
406
407         if (__sabre_out_of_range(pbm, bus, devfn))
408                 return PCIBIOS_SUCCESSFUL;
409
410         switch (size) {
411         case 1:
412                 pci_config_write8((u8 *) addr, value);
413                 break;
414
415         case 2:
416                 if (where & 0x01) {
417                         printk("pci_write_config_word: misaligned reg [%x]\n",
418                                where);
419                         return PCIBIOS_SUCCESSFUL;
420                 }
421                 pci_config_write16((u16 *) addr, value);
422                 break;
423
424         case 4:
425                 if (where & 0x03) {
426                         printk("pci_write_config_dword: misaligned reg [%x]\n",
427                                where);
428                         return PCIBIOS_SUCCESSFUL;
429                 }
430                 pci_config_write32(addr, value);
431                 break;
432         }
433
434         return PCIBIOS_SUCCESSFUL;
435 }
436
437 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
438                                int where, int size, u32 value)
439 {
440         if (bus->number)
441                 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
442
443         if (sabre_out_of_range(devfn))
444                 return PCIBIOS_SUCCESSFUL;
445
446         switch (size) {
447         case 1:
448                 if (where < 8) {
449                         u32 tmp32;
450                         u16 tmp16;
451
452                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
453                         tmp16 = (u16) tmp32;
454                         if (where & 1) {
455                                 value &= 0x00ff;
456                                 value |= tmp16 << 8;
457                         } else {
458                                 value &= 0xff00;
459                                 value |= tmp16;
460                         }
461                         tmp32 = (u32) tmp16;
462                         return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
463                 } else
464                         return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
465                 break;
466         case 2:
467                 if (where < 8)
468                         return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
469                 else {
470                         __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
471                         __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
472                 }
473                 break;
474         case 4:
475                 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
476                 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
477                 break;
478         }
479         return PCIBIOS_SUCCESSFUL;
480 }
481
482 static struct pci_ops sabre_ops = {
483         .read =         sabre_read_pci_cfg,
484         .write =        sabre_write_pci_cfg,
485 };
486
487 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
488 {
489         unsigned int bus =  (ino & 0x10) >> 4;
490         unsigned int slot = (ino & 0x0c) >> 2;
491
492         if (bus == 0)
493                 return SABRE_IMAP_A_SLOT0 + (slot * 8);
494         else
495                 return SABRE_IMAP_B_SLOT0 + (slot * 8);
496 }
497
498 static unsigned long __onboard_imap_off[] = {
499 /*0x20*/        SABRE_IMAP_SCSI,
500 /*0x21*/        SABRE_IMAP_ETH,
501 /*0x22*/        SABRE_IMAP_BPP,
502 /*0x23*/        SABRE_IMAP_AU_REC,
503 /*0x24*/        SABRE_IMAP_AU_PLAY,
504 /*0x25*/        SABRE_IMAP_PFAIL,
505 /*0x26*/        SABRE_IMAP_KMS,
506 /*0x27*/        SABRE_IMAP_FLPY,
507 /*0x28*/        SABRE_IMAP_SHW,
508 /*0x29*/        SABRE_IMAP_KBD,
509 /*0x2a*/        SABRE_IMAP_MS,
510 /*0x2b*/        SABRE_IMAP_SER,
511 /*0x2c*/        0 /* reserved */,
512 /*0x2d*/        0 /* reserved */,
513 /*0x2e*/        SABRE_IMAP_UE,
514 /*0x2f*/        SABRE_IMAP_CE,
515 /*0x30*/        SABRE_IMAP_PCIERR,
516 };
517 #define SABRE_ONBOARD_IRQ_BASE          0x20
518 #define SABRE_ONBOARD_IRQ_LAST          0x30
519 #define sabre_onboard_imap_offset(__ino) \
520         __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
521
522 #define sabre_iclr_offset(ino)                                        \
523         ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
524                         (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
525
526 /* PCI SABRE INO number to Sparc PIL level. */
527 static unsigned char sabre_pil_table[] = {
528 /*0x00*/0, 0, 0, 0,     /* PCI A slot 0  Int A, B, C, D */
529 /*0x04*/0, 0, 0, 0,     /* PCI A slot 1  Int A, B, C, D */
530 /*0x08*/0, 0, 0, 0,     /* PCI A slot 2  Int A, B, C, D */
531 /*0x0c*/0, 0, 0, 0,     /* PCI A slot 3  Int A, B, C, D */
532 /*0x10*/0, 0, 0, 0,     /* PCI B slot 0  Int A, B, C, D */
533 /*0x14*/0, 0, 0, 0,     /* PCI B slot 1  Int A, B, C, D */
534 /*0x18*/0, 0, 0, 0,     /* PCI B slot 2  Int A, B, C, D */
535 /*0x1c*/0, 0, 0, 0,     /* PCI B slot 3  Int A, B, C, D */
536 /*0x20*/4,              /* SCSI                         */
537 /*0x21*/5,              /* Ethernet                     */
538 /*0x22*/8,              /* Parallel Port                */
539 /*0x23*/13,             /* Audio Record                 */
540 /*0x24*/14,             /* Audio Playback               */
541 /*0x25*/15,             /* PowerFail                    */
542 /*0x26*/4,              /* second SCSI                  */
543 /*0x27*/11,             /* Floppy                       */
544 /*0x28*/4,              /* Spare Hardware               */
545 /*0x29*/9,              /* Keyboard                     */
546 /*0x2a*/4,              /* Mouse                        */
547 /*0x2b*/12,             /* Serial                       */
548 /*0x2c*/10,             /* Timer 0                      */
549 /*0x2d*/11,             /* Timer 1                      */
550 /*0x2e*/15,             /* Uncorrectable ECC            */
551 /*0x2f*/15,             /* Correctable ECC              */
552 /*0x30*/15,             /* PCI Bus A Error              */
553 /*0x31*/15,             /* PCI Bus B Error              */
554 /*0x32*/15,             /* Power Management             */
555 };
556
557 static int sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino)
558 {
559         int ret;
560
561         if (pdev &&
562             pdev->vendor == PCI_VENDOR_ID_SUN &&
563             pdev->device == PCI_DEVICE_ID_SUN_RIO_USB)
564                 return 9;
565
566         ret = sabre_pil_table[ino];
567         if (ret == 0 && pdev == NULL) {
568                 ret = 4;
569         } else if (ret == 0) {
570                 switch ((pdev->class >> 16) & 0xff) {
571                 case PCI_BASE_CLASS_STORAGE:
572                         ret = 4;
573                         break;
574
575                 case PCI_BASE_CLASS_NETWORK:
576                         ret = 6;
577                         break;
578
579                 case PCI_BASE_CLASS_DISPLAY:
580                         ret = 9;
581                         break;
582
583                 case PCI_BASE_CLASS_MULTIMEDIA:
584                 case PCI_BASE_CLASS_MEMORY:
585                 case PCI_BASE_CLASS_BRIDGE:
586                 case PCI_BASE_CLASS_SERIAL:
587                         ret = 10;
588                         break;
589
590                 default:
591                         ret = 4;
592                         break;
593                 };
594         }
595         return ret;
596 }
597
598 /* When a device lives behind a bridge deeper in the PCI bus topology
599  * than APB, a special sequence must run to make sure all pending DMA
600  * transfers at the time of IRQ delivery are visible in the coherency
601  * domain by the cpu.  This sequence is to perform a read on the far
602  * side of the non-APB bridge, then perform a read of Sabre's DMA
603  * write-sync register.
604  */
605 static void sabre_wsync_handler(struct ino_bucket *bucket, void *_arg1, void *_arg2)
606 {
607         struct pci_dev *pdev = _arg1;
608         unsigned long sync_reg = (unsigned long) _arg2;
609         u16 _unused;
610
611         pci_read_config_word(pdev, PCI_VENDOR_ID, &_unused);
612         sabre_read(sync_reg);
613 }
614
615 static unsigned int sabre_irq_build(struct pci_pbm_info *pbm,
616                                     struct pci_dev *pdev,
617                                     unsigned int ino)
618 {
619         struct ino_bucket *bucket;
620         unsigned long imap, iclr;
621         unsigned long imap_off, iclr_off;
622         int pil, inofixup = 0;
623
624         ino &= PCI_IRQ_INO;
625         if (ino < SABRE_ONBOARD_IRQ_BASE) {
626                 /* PCI slot */
627                 imap_off = sabre_pcislot_imap_offset(ino);
628         } else {
629                 /* onboard device */
630                 if (ino > SABRE_ONBOARD_IRQ_LAST) {
631                         prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
632                         prom_halt();
633                 }
634                 imap_off = sabre_onboard_imap_offset(ino);
635         }
636
637         /* Now build the IRQ bucket. */
638         pil = sabre_ino_to_pil(pdev, ino);
639
640         if (PIL_RESERVED(pil))
641                 BUG();
642
643         imap = pbm->controller_regs + imap_off;
644         imap += 4;
645
646         iclr_off = sabre_iclr_offset(ino);
647         iclr = pbm->controller_regs + iclr_off;
648         iclr += 4;
649
650         if ((ino & 0x20) == 0)
651                 inofixup = ino & 0x03;
652
653         bucket = __bucket(build_irq(pil, inofixup, iclr, imap));
654         bucket->flags |= IBF_PCI;
655
656         if (pdev) {
657                 struct pcidev_cookie *pcp = pdev->sysdata;
658
659                 if (pdev->bus->number != pcp->pbm->pci_first_busno) {
660                         struct pci_controller_info *p = pcp->pbm->parent;
661                         struct irq_desc *d = bucket->irq_info;
662
663                         d->pre_handler = sabre_wsync_handler;
664                         d->pre_handler_arg1 = pdev;
665                         d->pre_handler_arg2 = (void *)
666                                 p->pbm_A.controller_regs + SABRE_WRSYNC;
667                 }
668         }
669         return __irq(bucket);
670 }
671
672 /* SABRE error handling support. */
673 static void sabre_check_iommu_error(struct pci_controller_info *p,
674                                     unsigned long afsr,
675                                     unsigned long afar)
676 {
677         struct pci_iommu *iommu = p->pbm_A.iommu;
678         unsigned long iommu_tag[16];
679         unsigned long iommu_data[16];
680         unsigned long flags;
681         u64 control;
682         int i;
683
684         spin_lock_irqsave(&iommu->lock, flags);
685         control = sabre_read(iommu->iommu_control);
686         if (control & SABRE_IOMMUCTRL_ERR) {
687                 char *type_string;
688
689                 /* Clear the error encountered bit.
690                  * NOTE: On Sabre this is write 1 to clear,
691                  *       which is different from Psycho.
692                  */
693                 sabre_write(iommu->iommu_control, control);
694                 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
695                 case 1:
696                         type_string = "Invalid Error";
697                         break;
698                 case 3:
699                         type_string = "ECC Error";
700                         break;
701                 default:
702                         type_string = "Unknown";
703                         break;
704                 };
705                 printk("SABRE%d: IOMMU Error, type[%s]\n",
706                        p->index, type_string);
707
708                 /* Enter diagnostic mode and probe for error'd
709                  * entries in the IOTLB.
710                  */
711                 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
712                 sabre_write(iommu->iommu_control,
713                             (control | SABRE_IOMMUCTRL_DENAB));
714                 for (i = 0; i < 16; i++) {
715                         unsigned long base = p->pbm_A.controller_regs;
716
717                         iommu_tag[i] =
718                                 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
719                         iommu_data[i] =
720                                 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
721                         sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
722                         sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
723                 }
724                 sabre_write(iommu->iommu_control, control);
725
726                 for (i = 0; i < 16; i++) {
727                         unsigned long tag, data;
728
729                         tag = iommu_tag[i];
730                         if (!(tag & SABRE_IOMMUTAG_ERR))
731                                 continue;
732
733                         data = iommu_data[i];
734                         switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
735                         case 1:
736                                 type_string = "Invalid Error";
737                                 break;
738                         case 3:
739                                 type_string = "ECC Error";
740                                 break;
741                         default:
742                                 type_string = "Unknown";
743                                 break;
744                         };
745                         printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
746                                p->index, i, tag, type_string,
747                                ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
748                                ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
749                                ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
750                         printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
751                                p->index, i, data,
752                                ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
753                                ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
754                                ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
755                                ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
756                 }
757         }
758         spin_unlock_irqrestore(&iommu->lock, flags);
759 }
760
761 static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
762 {
763         struct pci_controller_info *p = dev_id;
764         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
765         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
766         unsigned long afsr, afar, error_bits;
767         int reported;
768
769         /* Latch uncorrectable error status. */
770         afar = sabre_read(afar_reg);
771         afsr = sabre_read(afsr_reg);
772
773         /* Clear the primary/secondary error status bits. */
774         error_bits = afsr &
775                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
776                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
777                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
778         if (!error_bits)
779                 return IRQ_NONE;
780         sabre_write(afsr_reg, error_bits);
781
782         /* Log the error. */
783         printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
784                p->index,
785                ((error_bits & SABRE_UEAFSR_PDRD) ?
786                 "DMA Read" :
787                 ((error_bits & SABRE_UEAFSR_PDWR) ?
788                  "DMA Write" : "???")),
789                ((error_bits & SABRE_UEAFSR_PDTE) ?
790                 ":Translation Error" : ""));
791         printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
792                p->index,
793                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
794                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
795                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
796         printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
797         printk("SABRE%d: UE Secondary errors [", p->index);
798         reported = 0;
799         if (afsr & SABRE_UEAFSR_SDRD) {
800                 reported++;
801                 printk("(DMA Read)");
802         }
803         if (afsr & SABRE_UEAFSR_SDWR) {
804                 reported++;
805                 printk("(DMA Write)");
806         }
807         if (afsr & SABRE_UEAFSR_SDTE) {
808                 reported++;
809                 printk("(Translation Error)");
810         }
811         if (!reported)
812                 printk("(none)");
813         printk("]\n");
814
815         /* Interrogate IOMMU for error status. */
816         sabre_check_iommu_error(p, afsr, afar);
817
818         return IRQ_HANDLED;
819 }
820
821 static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
822 {
823         struct pci_controller_info *p = dev_id;
824         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
825         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
826         unsigned long afsr, afar, error_bits;
827         int reported;
828
829         /* Latch error status. */
830         afar = sabre_read(afar_reg);
831         afsr = sabre_read(afsr_reg);
832
833         /* Clear primary/secondary error status bits. */
834         error_bits = afsr &
835                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
836                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
837         if (!error_bits)
838                 return IRQ_NONE;
839         sabre_write(afsr_reg, error_bits);
840
841         /* Log the error. */
842         printk("SABRE%d: Correctable Error, primary error type[%s]\n",
843                p->index,
844                ((error_bits & SABRE_CEAFSR_PDRD) ?
845                 "DMA Read" :
846                 ((error_bits & SABRE_CEAFSR_PDWR) ?
847                  "DMA Write" : "???")));
848
849         /* XXX Use syndrome and afar to print out module string just like
850          * XXX UDB CE trap handler does... -DaveM
851          */
852         printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
853                "was_block(%d)\n",
854                p->index,
855                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
856                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
857                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
858                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
859         printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
860         printk("SABRE%d: CE Secondary errors [", p->index);
861         reported = 0;
862         if (afsr & SABRE_CEAFSR_SDRD) {
863                 reported++;
864                 printk("(DMA Read)");
865         }
866         if (afsr & SABRE_CEAFSR_SDWR) {
867                 reported++;
868                 printk("(DMA Write)");
869         }
870         if (!reported)
871                 printk("(none)");
872         printk("]\n");
873
874         return IRQ_HANDLED;
875 }
876
877 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
878 {
879         unsigned long csr_reg, csr, csr_error_bits;
880         irqreturn_t ret = IRQ_NONE;
881         u16 stat;
882
883         csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
884         csr = sabre_read(csr_reg);
885         csr_error_bits =
886                 csr & SABRE_PCICTRL_SERR;
887         if (csr_error_bits) {
888                 /* Clear the errors.  */
889                 sabre_write(csr_reg, csr);
890
891                 /* Log 'em.  */
892                 if (csr_error_bits & SABRE_PCICTRL_SERR)
893                         printk("SABRE%d: PCI SERR signal asserted.\n",
894                                p->index);
895                 ret = IRQ_HANDLED;
896         }
897         pci_read_config_word(sabre_root_bus->self,
898                              PCI_STATUS, &stat);
899         if (stat & (PCI_STATUS_PARITY |
900                     PCI_STATUS_SIG_TARGET_ABORT |
901                     PCI_STATUS_REC_TARGET_ABORT |
902                     PCI_STATUS_REC_MASTER_ABORT |
903                     PCI_STATUS_SIG_SYSTEM_ERROR)) {
904                 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
905                        p->index, stat);
906                 pci_write_config_word(sabre_root_bus->self,
907                                       PCI_STATUS, 0xffff);
908                 ret = IRQ_HANDLED;
909         }
910         return ret;
911 }
912
913 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
914 {
915         struct pci_controller_info *p = dev_id;
916         unsigned long afsr_reg, afar_reg;
917         unsigned long afsr, afar, error_bits;
918         int reported;
919
920         afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
921         afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
922
923         /* Latch error status. */
924         afar = sabre_read(afar_reg);
925         afsr = sabre_read(afsr_reg);
926
927         /* Clear primary/secondary error status bits. */
928         error_bits = afsr &
929                 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
930                  SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
931                  SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
932                  SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
933         if (!error_bits)
934                 return sabre_pcierr_intr_other(p);
935         sabre_write(afsr_reg, error_bits);
936
937         /* Log the error. */
938         printk("SABRE%d: PCI Error, primary error type[%s]\n",
939                p->index,
940                (((error_bits & SABRE_PIOAFSR_PMA) ?
941                  "Master Abort" :
942                  ((error_bits & SABRE_PIOAFSR_PTA) ?
943                   "Target Abort" :
944                   ((error_bits & SABRE_PIOAFSR_PRTRY) ?
945                    "Excessive Retries" :
946                    ((error_bits & SABRE_PIOAFSR_PPERR) ?
947                     "Parity Error" : "???"))))));
948         printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
949                p->index,
950                (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
951                (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
952         printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
953         printk("SABRE%d: PCI Secondary errors [", p->index);
954         reported = 0;
955         if (afsr & SABRE_PIOAFSR_SMA) {
956                 reported++;
957                 printk("(Master Abort)");
958         }
959         if (afsr & SABRE_PIOAFSR_STA) {
960                 reported++;
961                 printk("(Target Abort)");
962         }
963         if (afsr & SABRE_PIOAFSR_SRTRY) {
964                 reported++;
965                 printk("(Excessive Retries)");
966         }
967         if (afsr & SABRE_PIOAFSR_SPERR) {
968                 reported++;
969                 printk("(Parity Error)");
970         }
971         if (!reported)
972                 printk("(none)");
973         printk("]\n");
974
975         /* For the error types shown, scan both PCI buses for devices
976          * which have logged that error type.
977          */
978
979         /* If we see a Target Abort, this could be the result of an
980          * IOMMU translation error of some sort.  It is extremely
981          * useful to log this information as usually it indicates
982          * a bug in the IOMMU support code or a PCI device driver.
983          */
984         if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
985                 sabre_check_iommu_error(p, afsr, afar);
986                 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
987                 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
988         }
989         if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
990                 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
991                 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
992         }
993         /* For excessive retries, SABRE/PBM will abort the device
994          * and there is no way to specifically check for excessive
995          * retries in the config space status registers.  So what
996          * we hope is that we'll catch it via the master/target
997          * abort events.
998          */
999
1000         if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
1001                 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
1002                 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
1003         }
1004
1005         return IRQ_HANDLED;
1006 }
1007
1008 /* XXX What about PowerFail/PowerManagement??? -DaveM */
1009 #define SABRE_UE_INO            0x2e
1010 #define SABRE_CE_INO            0x2f
1011 #define SABRE_PCIERR_INO        0x30
1012 static void sabre_register_error_handlers(struct pci_controller_info *p)
1013 {
1014         struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
1015         unsigned long base = pbm->controller_regs;
1016         unsigned long irq, portid = pbm->portid;
1017         u64 tmp;
1018
1019         /* We clear the error bits in the appropriate AFSR before
1020          * registering the handler so that we don't get spurious
1021          * interrupts.
1022          */
1023         sabre_write(base + SABRE_UE_AFSR,
1024                     (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
1025                      SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
1026                      SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
1027         irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO);
1028         if (request_irq(irq, sabre_ue_intr,
1029                         SA_SHIRQ, "SABRE UE", p) < 0) {
1030                 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
1031                             p->index);
1032                 prom_halt();
1033         }
1034
1035         sabre_write(base + SABRE_CE_AFSR,
1036                     (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
1037                      SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
1038         irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO);
1039         if (request_irq(irq, sabre_ce_intr,
1040                         SA_SHIRQ, "SABRE CE", p) < 0) {
1041                 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
1042                             p->index);
1043                 prom_halt();
1044         }
1045
1046         irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO);
1047         if (request_irq(irq, sabre_pcierr_intr,
1048                         SA_SHIRQ, "SABRE PCIERR", p) < 0) {
1049                 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
1050                             p->index);
1051                 prom_halt();
1052         }
1053
1054         tmp = sabre_read(base + SABRE_PCICTRL);
1055         tmp |= SABRE_PCICTRL_ERREN;
1056         sabre_write(base + SABRE_PCICTRL, tmp);
1057 }
1058
1059 static void sabre_resource_adjust(struct pci_dev *pdev,
1060                                   struct resource *res,
1061                                   struct resource *root)
1062 {
1063         struct pci_pbm_info *pbm = pdev->bus->sysdata;
1064         unsigned long base;
1065
1066         if (res->flags & IORESOURCE_IO)
1067                 base = pbm->controller_regs + SABRE_IOSPACE;
1068         else
1069                 base = pbm->controller_regs + SABRE_MEMSPACE;
1070
1071         res->start += base;
1072         res->end += base;
1073 }
1074
1075 static void sabre_base_address_update(struct pci_dev *pdev, int resource)
1076 {
1077         struct pcidev_cookie *pcp = pdev->sysdata;
1078         struct pci_pbm_info *pbm = pcp->pbm;
1079         struct resource *res;
1080         unsigned long base;
1081         u32 reg;
1082         int where, size, is_64bit;
1083
1084         res = &pdev->resource[resource];
1085         if (resource < 6) {
1086                 where = PCI_BASE_ADDRESS_0 + (resource * 4);
1087         } else if (resource == PCI_ROM_RESOURCE) {
1088                 where = pdev->rom_base_reg;
1089         } else {
1090                 /* Somebody might have asked allocation of a non-standard resource */
1091                 return;
1092         }
1093
1094         is_64bit = 0;
1095         if (res->flags & IORESOURCE_IO)
1096                 base = pbm->controller_regs + SABRE_IOSPACE;
1097         else {
1098                 base = pbm->controller_regs + SABRE_MEMSPACE;
1099                 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
1100                     == PCI_BASE_ADDRESS_MEM_TYPE_64)
1101                         is_64bit = 1;
1102         }
1103
1104         size = res->end - res->start;
1105         pci_read_config_dword(pdev, where, &reg);
1106         reg = ((reg & size) |
1107                (((u32)(res->start - base)) & ~size));
1108         if (resource == PCI_ROM_RESOURCE) {
1109                 reg |= PCI_ROM_ADDRESS_ENABLE;
1110                 res->flags |= IORESOURCE_ROM_ENABLE;
1111         }
1112         pci_write_config_dword(pdev, where, reg);
1113
1114         /* This knows that the upper 32-bits of the address
1115          * must be zero.  Our PCI common layer enforces this.
1116          */
1117         if (is_64bit)
1118                 pci_write_config_dword(pdev, where + 4, 0);
1119 }
1120
1121 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
1122 {
1123         struct pci_dev *pdev;
1124
1125         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
1126
1127                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1128                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
1129                         u32 word32;
1130                         u16 word16;
1131
1132                         sabre_read_pci_cfg(pdev->bus, pdev->devfn,
1133                                            PCI_COMMAND, 2, &word32);
1134                         word16 = (u16) word32;
1135                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
1136                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
1137                                 PCI_COMMAND_IO;
1138                         word32 = (u32) word16;
1139                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1140                                             PCI_COMMAND, 2, word32);
1141
1142                         /* Status register bits are "write 1 to clear". */
1143                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1144                                             PCI_STATUS, 2, 0xffff);
1145                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1146                                             PCI_SEC_STATUS, 2, 0xffff);
1147
1148                         /* Use a primary/seconday latency timer value
1149                          * of 64.
1150                          */
1151                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1152                                             PCI_LATENCY_TIMER, 1, 64);
1153                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1154                                             PCI_SEC_LATENCY_TIMER, 1, 64);
1155
1156                         /* Enable reporting/forwarding of master aborts,
1157                          * parity, and SERR.
1158                          */
1159                         sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1160                                             PCI_BRIDGE_CONTROL, 1,
1161                                             (PCI_BRIDGE_CTL_PARITY |
1162                                              PCI_BRIDGE_CTL_SERR |
1163                                              PCI_BRIDGE_CTL_MASTER_ABORT));
1164                 }
1165         }
1166 }
1167
1168 static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
1169 {
1170         struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL);
1171
1172         if (!cookie) {
1173                 prom_printf("SABRE: Critical allocation failure.\n");
1174                 prom_halt();
1175         }
1176
1177         /* All we care about is the PBM. */
1178         memset(cookie, 0, sizeof(*cookie));
1179         cookie->pbm = pbm;
1180
1181         return cookie;
1182 }
1183
1184 static void sabre_scan_bus(struct pci_controller_info *p)
1185 {
1186         static int once;
1187         struct pci_bus *sabre_bus, *pbus;
1188         struct pci_pbm_info *pbm;
1189         struct pcidev_cookie *cookie;
1190         int sabres_scanned;
1191
1192         /* The APB bridge speaks to the Sabre host PCI bridge
1193          * at 66Mhz, but the front side of APB runs at 33Mhz
1194          * for both segments.
1195          */
1196         p->pbm_A.is_66mhz_capable = 0;
1197         p->pbm_B.is_66mhz_capable = 0;
1198
1199         /* This driver has not been verified to handle
1200          * multiple SABREs yet, so trap this.
1201          *
1202          * Also note that the SABRE host bridge is hardwired
1203          * to live at bus 0.
1204          */
1205         if (once != 0) {
1206                 prom_printf("SABRE: Multiple controllers unsupported.\n");
1207                 prom_halt();
1208         }
1209         once++;
1210
1211         cookie = alloc_bridge_cookie(&p->pbm_A);
1212
1213         sabre_bus = pci_scan_bus(p->pci_first_busno,
1214                                  p->pci_ops,
1215                                  &p->pbm_A);
1216         pci_fixup_host_bridge_self(sabre_bus);
1217         sabre_bus->self->sysdata = cookie;
1218
1219         sabre_root_bus = sabre_bus;
1220
1221         apb_init(p, sabre_bus);
1222
1223         sabres_scanned = 0;
1224
1225         list_for_each_entry(pbus, &sabre_bus->children, node) {
1226
1227                 if (pbus->number == p->pbm_A.pci_first_busno) {
1228                         pbm = &p->pbm_A;
1229                 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1230                         pbm = &p->pbm_B;
1231                 } else
1232                         continue;
1233
1234                 cookie = alloc_bridge_cookie(pbm);
1235                 pbus->self->sysdata = cookie;
1236
1237                 sabres_scanned++;
1238
1239                 pbus->sysdata = pbm;
1240                 pbm->pci_bus = pbus;
1241                 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
1242                 pci_record_assignments(pbm, pbus);
1243                 pci_assign_unassigned(pbm, pbus);
1244                 pci_fixup_irq(pbm, pbus);
1245                 pci_determine_66mhz_disposition(pbm, pbus);
1246                 pci_setup_busmastering(pbm, pbus);
1247         }
1248
1249         if (!sabres_scanned) {
1250                 /* Hummingbird, no APBs. */
1251                 pbm = &p->pbm_A;
1252                 sabre_bus->sysdata = pbm;
1253                 pbm->pci_bus = sabre_bus;
1254                 pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
1255                 pci_record_assignments(pbm, sabre_bus);
1256                 pci_assign_unassigned(pbm, sabre_bus);
1257                 pci_fixup_irq(pbm, sabre_bus);
1258                 pci_determine_66mhz_disposition(pbm, sabre_bus);
1259                 pci_setup_busmastering(pbm, sabre_bus);
1260         }
1261
1262         sabre_register_error_handlers(p);
1263 }
1264
1265 static void sabre_iommu_init(struct pci_controller_info *p,
1266                              int tsbsize, unsigned long dvma_offset,
1267                              u32 dma_mask)
1268 {
1269         struct pci_iommu *iommu = p->pbm_A.iommu;
1270         unsigned long i;
1271         u64 control;
1272
1273         /* Register addresses. */
1274         iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1275         iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1276         iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1277         iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1278         /* Sabre's IOMMU lacks ctx flushing. */
1279         iommu->iommu_ctxflush = 0;
1280                                         
1281         /* Invalidate TLB Entries. */
1282         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1283         control |= SABRE_IOMMUCTRL_DENAB;
1284         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1285
1286         for(i = 0; i < 16; i++) {
1287                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1288                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1289         }
1290
1291         /* Leave diag mode enabled for full-flushing done
1292          * in pci_iommu.c
1293          */
1294         pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1295
1296         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1297                     __pa(iommu->page_table));
1298
1299         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1300         control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1301         control |= SABRE_IOMMUCTRL_ENAB;
1302         switch(tsbsize) {
1303         case 64:
1304                 control |= SABRE_IOMMU_TSBSZ_64K;
1305                 break;
1306         case 128:
1307                 control |= SABRE_IOMMU_TSBSZ_128K;
1308                 break;
1309         default:
1310                 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1311                 prom_halt();
1312                 break;
1313         }
1314         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1315 }
1316
1317 static void pbm_register_toplevel_resources(struct pci_controller_info *p,
1318                                             struct pci_pbm_info *pbm)
1319 {
1320         char *name = pbm->name;
1321         unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
1322         unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1323         unsigned int devfn;
1324         unsigned long first, last, i;
1325         u8 *addr, map;
1326
1327         sprintf(name, "SABRE%d PBM%c",
1328                 p->index,
1329                 (pbm == &p->pbm_A ? 'A' : 'B'));
1330         pbm->io_space.name = pbm->mem_space.name = name;
1331
1332         devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1333         addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1334         map = 0;
1335         pci_config_read8(addr, &map);
1336
1337         first = 8;
1338         last = 0;
1339         for (i = 0; i < 8; i++) {
1340                 if ((map & (1 << i)) != 0) {
1341                         if (first > i)
1342                                 first = i;
1343                         if (last < i)
1344                                 last = i;
1345                 }
1346         }
1347         pbm->io_space.start = ibase + (first << 21UL);
1348         pbm->io_space.end   = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1349         pbm->io_space.flags = IORESOURCE_IO;
1350
1351         addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1352         map = 0;
1353         pci_config_read8(addr, &map);
1354
1355         first = 8;
1356         last = 0;
1357         for (i = 0; i < 8; i++) {
1358                 if ((map & (1 << i)) != 0) {
1359                         if (first > i)
1360                                 first = i;
1361                         if (last < i)
1362                                 last = i;
1363                 }
1364         }
1365         pbm->mem_space.start = mbase + (first << 29UL);
1366         pbm->mem_space.end   = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1367         pbm->mem_space.flags = IORESOURCE_MEM;
1368
1369         if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1370                 prom_printf("Cannot register PBM-%c's IO space.\n",
1371                             (pbm == &p->pbm_A ? 'A' : 'B'));
1372                 prom_halt();
1373         }
1374         if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1375                 prom_printf("Cannot register PBM-%c's MEM space.\n",
1376                             (pbm == &p->pbm_A ? 'A' : 'B'));
1377                 prom_halt();
1378         }
1379
1380         /* Register legacy regions if this PBM covers that area. */
1381         if (pbm->io_space.start == ibase &&
1382             pbm->mem_space.start == mbase)
1383                 pci_register_legacy_regions(&pbm->io_space,
1384                                             &pbm->mem_space);
1385 }
1386
1387 static void sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin)
1388 {
1389         struct pci_pbm_info *pbm;
1390         char namebuf[128];
1391         u32 busrange[2];
1392         int node, simbas_found;
1393
1394         simbas_found = 0;
1395         node = prom_getchild(sabre_node);
1396         while ((node = prom_searchsiblings(node, "pci")) != 0) {
1397                 int err;
1398
1399                 err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
1400                 if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
1401                         goto next_pci;
1402
1403                 err = prom_getproperty(node, "bus-range",
1404                                        (char *)&busrange[0], sizeof(busrange));
1405                 if (err == 0 || err == -1) {
1406                         prom_printf("APB: Error, cannot get PCI bus-range.\n");
1407                         prom_halt();
1408                 }
1409
1410                 simbas_found++;
1411                 if (busrange[0] == 1)
1412                         pbm = &p->pbm_B;
1413                 else
1414                         pbm = &p->pbm_A;
1415                 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1416                 pbm->parent = p;
1417                 pbm->prom_node = node;
1418                 pbm->pci_first_slot = 1;
1419                 pbm->pci_first_busno = busrange[0];
1420                 pbm->pci_last_busno = busrange[1];
1421
1422                 prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
1423                 err = prom_getproperty(node, "ranges",
1424                                        (char *)pbm->pbm_ranges,
1425                                        sizeof(pbm->pbm_ranges));
1426                 if (err != -1)
1427                         pbm->num_pbm_ranges =
1428                                 (err / sizeof(struct linux_prom_pci_ranges));
1429                 else
1430                         pbm->num_pbm_ranges = 0;
1431
1432                 err = prom_getproperty(node, "interrupt-map",
1433                                        (char *)pbm->pbm_intmap,
1434                                        sizeof(pbm->pbm_intmap));
1435                 if (err != -1) {
1436                         pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
1437                         err = prom_getproperty(node, "interrupt-map-mask",
1438                                                (char *)&pbm->pbm_intmask,
1439                                                sizeof(pbm->pbm_intmask));
1440                         if (err == -1) {
1441                                 prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
1442                                 prom_halt();
1443                         }
1444                 } else {
1445                         pbm->num_pbm_intmap = 0;
1446                         memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
1447                 }
1448
1449                 pbm_register_toplevel_resources(p, pbm);
1450
1451         next_pci:
1452                 node = prom_getsibling(node);
1453                 if (!node)
1454                         break;
1455         }
1456         if (simbas_found == 0) {
1457                 int err;
1458
1459                 /* No APBs underneath, probably this is a hummingbird
1460                  * system.
1461                  */
1462                 pbm = &p->pbm_A;
1463                 pbm->parent = p;
1464                 pbm->prom_node = sabre_node;
1465                 pbm->pci_first_busno = p->pci_first_busno;
1466                 pbm->pci_last_busno = p->pci_last_busno;
1467
1468                 prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name));
1469                 err = prom_getproperty(sabre_node, "ranges",
1470                                        (char *) pbm->pbm_ranges,
1471                                        sizeof(pbm->pbm_ranges));
1472                 if (err != -1)
1473                         pbm->num_pbm_ranges =
1474                                 (err / sizeof(struct linux_prom_pci_ranges));
1475                 else
1476                         pbm->num_pbm_ranges = 0;
1477
1478                 err = prom_getproperty(sabre_node, "interrupt-map",
1479                                        (char *) pbm->pbm_intmap,
1480                                        sizeof(pbm->pbm_intmap));
1481
1482                 if (err != -1) {
1483                         pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
1484                         err = prom_getproperty(sabre_node, "interrupt-map-mask",
1485                                                (char *)&pbm->pbm_intmask,
1486                                                sizeof(pbm->pbm_intmask));
1487                         if (err == -1) {
1488                                 prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n");
1489                                 prom_halt();
1490                         }
1491                 } else {
1492                         pbm->num_pbm_intmap = 0;
1493                         memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
1494                 }
1495
1496
1497                 sprintf(pbm->name, "SABRE%d PBM%c", p->index,
1498                         (pbm == &p->pbm_A ? 'A' : 'B'));
1499                 pbm->io_space.name = pbm->mem_space.name = pbm->name;
1500
1501                 /* Hack up top-level resources. */
1502                 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1503                 pbm->io_space.end   = pbm->io_space.start + (1UL << 24) - 1UL;
1504                 pbm->io_space.flags = IORESOURCE_IO;
1505
1506                 pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1507                 pbm->mem_space.end   = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
1508                 pbm->mem_space.flags = IORESOURCE_MEM;
1509
1510                 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1511                         prom_printf("Cannot register Hummingbird's IO space.\n");
1512                         prom_halt();
1513                 }
1514                 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1515                         prom_printf("Cannot register Hummingbird's MEM space.\n");
1516                         prom_halt();
1517                 }
1518
1519                 pci_register_legacy_regions(&pbm->io_space,
1520                                             &pbm->mem_space);
1521         }
1522 }
1523
1524 void sabre_init(int pnode, char *model_name)
1525 {
1526         struct linux_prom64_registers pr_regs[2];
1527         struct pci_controller_info *p;
1528         struct pci_iommu *iommu;
1529         int tsbsize, err;
1530         u32 busrange[2];
1531         u32 vdma[2];
1532         u32 upa_portid, dma_mask;
1533         u64 clear_irq;
1534
1535         hummingbird_p = 0;
1536         if (!strcmp(model_name, "pci108e,a001"))
1537                 hummingbird_p = 1;
1538         else if (!strcmp(model_name, "SUNW,sabre")) {
1539                 char compat[64];
1540
1541                 if (prom_getproperty(pnode, "compatible",
1542                                      compat, sizeof(compat)) > 0 &&
1543                     !strcmp(compat, "pci108e,a001")) {
1544                         hummingbird_p = 1;
1545                 } else {
1546                         int cpu_node;
1547
1548                         /* Of course, Sun has to encode things a thousand
1549                          * different ways, inconsistently.
1550                          */
1551                         cpu_find_by_instance(0, &cpu_node, NULL);
1552                         if (prom_getproperty(cpu_node, "name",
1553                                              compat, sizeof(compat)) > 0 &&
1554                             !strcmp(compat, "SUNW,UltraSPARC-IIe"))
1555                                 hummingbird_p = 1;
1556                 }
1557         }
1558
1559         p = kmalloc(sizeof(*p), GFP_ATOMIC);
1560         if (!p) {
1561                 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1562                 prom_halt();
1563         }
1564         memset(p, 0, sizeof(*p));
1565
1566         iommu = kmalloc(sizeof(*iommu), GFP_ATOMIC);
1567         if (!iommu) {
1568                 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1569                 prom_halt();
1570         }
1571         memset(iommu, 0, sizeof(*iommu));
1572         p->pbm_A.iommu = p->pbm_B.iommu = iommu;
1573
1574         upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
1575
1576         p->next = pci_controller_root;
1577         pci_controller_root = p;
1578
1579         p->pbm_A.portid = upa_portid;
1580         p->pbm_B.portid = upa_portid;
1581         p->index = pci_num_controllers++;
1582         p->pbms_same_domain = 1;
1583         p->scan_bus = sabre_scan_bus;
1584         p->irq_build = sabre_irq_build;
1585         p->base_address_update = sabre_base_address_update;
1586         p->resource_adjust = sabre_resource_adjust;
1587         p->pci_ops = &sabre_ops;
1588
1589         /*
1590          * Map in SABRE register set and report the presence of this SABRE.
1591          */
1592         err = prom_getproperty(pnode, "reg",
1593                                (char *)&pr_regs[0], sizeof(pr_regs));
1594         if(err == 0 || err == -1) {
1595                 prom_printf("SABRE: Error, cannot get U2P registers "
1596                             "from PROM.\n");
1597                 prom_halt();
1598         }
1599
1600         /*
1601          * First REG in property is base of entire SABRE register space.
1602          */
1603         p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1604         p->pbm_B.controller_regs = pr_regs[0].phys_addr;
1605
1606         printk("PCI: Found SABRE, main regs at %016lx\n",
1607                p->pbm_A.controller_regs);
1608
1609         /* Clear interrupts */
1610
1611         /* PCI first */
1612         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1613                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1614
1615         /* Then OBIO */
1616         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1617                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1618
1619         /* Error interrupts are enabled later after the bus scan. */
1620         sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1621                     (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
1622                      SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1623
1624         /* Now map in PCI config space for entire SABRE. */
1625         p->pbm_A.config_space = p->pbm_B.config_space =
1626                 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1627         printk("SABRE: Shared PCI config space at %016lx\n",
1628                p->pbm_A.config_space);
1629
1630         err = prom_getproperty(pnode, "virtual-dma",
1631                                (char *)&vdma[0], sizeof(vdma));
1632         if(err == 0 || err == -1) {
1633                 prom_printf("SABRE: Error, cannot get virtual-dma property "
1634                             "from PROM.\n");
1635                 prom_halt();
1636         }
1637
1638         dma_mask = vdma[0];
1639         switch(vdma[1]) {
1640                 case 0x20000000:
1641                         dma_mask |= 0x1fffffff;
1642                         tsbsize = 64;
1643                         break;
1644                 case 0x40000000:
1645                         dma_mask |= 0x3fffffff;
1646                         tsbsize = 128;
1647                         break;
1648
1649                 case 0x80000000:
1650                         dma_mask |= 0x7fffffff;
1651                         tsbsize = 128;
1652                         break;
1653                 default:
1654                         prom_printf("SABRE: strange virtual-dma size.\n");
1655                         prom_halt();
1656         }
1657
1658         sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1659
1660         printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
1661
1662         err = prom_getproperty(pnode, "bus-range",
1663                                        (char *)&busrange[0], sizeof(busrange));
1664         if(err == 0 || err == -1) {
1665                 prom_printf("SABRE: Error, cannot get PCI bus-range "
1666                             " from PROM.\n");
1667                 prom_halt();
1668         }
1669
1670         p->pci_first_busno = busrange[0];
1671         p->pci_last_busno = busrange[1];
1672
1673         /*
1674          * Look for APB underneath.
1675          */
1676         sabre_pbm_init(p, pnode, vdma[0]);
1677 }