2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
37 #include <asm/atomic.h>
39 #include <asm/byteorder.h>
41 #include "ambassador.h"
43 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
44 #define description_string "Madge ATM Ambassador driver"
45 #define version_string "1.2.4"
47 static inline void __init show_version (void) {
48 printk ("%s version %s\n", description_string, version_string);
55 I Hardware, detection, initialisation and shutdown.
59 This driver is for the PCI ATMizer-based Ambassador card (except
60 very early versions). It is not suitable for the similar EISA "TR7"
61 card. Commercially, both cards are known as Collage Server ATM
64 The loader supports image transfer to the card, image start and few
65 other miscellaneous commands.
67 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
69 The cards are big-endian.
73 Standard PCI stuff, the early cards are detected and rejected.
77 The cards are reset and the self-test results are checked. The
78 microcode image is then transferred and started. This waits for a
79 pointer to a descriptor containing details of the host-based queues
80 and buffers and various parameters etc. Once they are processed
81 normal operations may begin. The BIA is read using a microcode
86 This may be accomplished either by a card reset or via the microcode
87 shutdown command. Further investigation required.
91 The card reset does not affect PCI configuration (good) or the
92 contents of several other "shared run-time registers" (bad) which
93 include doorbell and interrupt control as well as EEPROM and PCI
94 control. The driver must be careful when modifying these registers
95 not to touch bits it does not use and to undo any changes at exit.
101 The adapter is quite intelligent (fast) and has a simple interface
102 (few features). VPI is always zero, 1024 VCIs are supported. There
103 is limited cell rate support. UBR channels can be capped and ABR
104 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
107 1. Driver <-> Adapter Communication
109 Apart from the basic loader commands, the driver communicates
110 through three entities: the command queue (CQ), the transmit queue
111 pair (TXQ) and the receive queue pairs (RXQ). These three entities
112 are set up by the host and passed to the microcode just after it has
115 All queues are host-based circular queues. They are contiguous and
116 (due to hardware limitations) have some restrictions as to their
117 locations in (bus) memory. They are of the "full means the same as
118 empty so don't do that" variety since the adapter uses pointers
121 The queue pairs work as follows: one queue is for supply to the
122 adapter, items in it are pending and are owned by the adapter; the
123 other is the queue for return from the adapter, items in it have
124 been dealt with by the adapter. The host adds items to the supply
125 (TX descriptors and free RX buffer descriptors) and removes items
126 from the return (TX and RX completions). The adapter deals with out
127 of order completions.
129 Interrupts (card to host) and the doorbell (host to card) are used
134 This is to communicate "open VC", "close VC", "get stats" etc. to
135 the adapter. At most one command is retired every millisecond by the
136 card. There is no out of order completion or notification. The
137 driver needs to check the return code of the command, waiting as
142 TX supply items are of variable length (scatter gather support) and
143 so the queue items are (more or less) pointers to the real thing.
144 Each TX supply item contains a unique, host-supplied handle (the skb
145 bus address seems most sensible as this works for Alphas as well,
146 there is no need to do any endian conversions on the handles).
148 TX return items consist of just the handles above.
150 3. RXQ (up to 4 of these with different lengths and buffer sizes)
152 RX supply items consist of a unique, host-supplied handle (the skb
153 bus address again) and a pointer to the buffer data area.
155 RX return items consist of the handle above, the VC, length and a
156 status word. This just screams "oh so easy" doesn't it?
158 Note on RX pool sizes:
160 Each pool should have enough buffers to handle a back-to-back stream
161 of minimum sized frames on a single VC. For example:
163 frame spacing = 3us (about right)
165 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
167 min number of buffers for one VC = 1 + delay/spacing (buffers)
169 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
171 The 20us delay assumes that there is no need to sleep; if we need to
172 sleep to get buffers we are going to drop frames anyway.
174 In fact, each pool should have enough buffers to support the
175 simultaneous reassembly of a separate frame on each VC and cope with
176 the case in which frames complete in round robin cell fashion on
179 Only one frame can complete at each cell arrival, so if "n" VCs are
180 open, the worst case is to have them all complete frames together
181 followed by all starting new frames together.
183 desired number of buffers = n + delay/spacing
185 These are the extreme requirements, however, they are "n+k" for some
186 "k" so we have only the constant to choose. This is the argument
187 rx_lats which current defaults to 7.
189 Actually, "n ? n+k : 0" is better and this is what is implemented,
190 subject to the limit given by the pool size.
194 Simple spinlocks are used around the TX and RX queue mechanisms.
195 Anyone with a faster, working method is welcome to implement it.
197 The adapter command queue is protected with a spinlock. We always
198 wait for commands to complete.
200 A more complex form of locking is used around parts of the VC open
201 and close functions. There are three reasons for a lock: 1. we need
202 to do atomic rate reservation and release (not used yet), 2. Opening
203 sometimes involves two adapter commands which must not be separated
204 by another command on the same VC, 3. the changes to RX pool size
205 must be atomic. The lock needs to work over context switches, so we
208 III Hardware Features and Microcode Bugs
212 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
216 All structures that are not accessed using DMA must be 4-byte
217 aligned (not a problem) and must not cross 4MB boundaries.
219 There is a DMA memory hole at E0000000-E00000FF (groan).
221 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
222 but for a hardware bug).
224 RX buffers (DMA write) must not cross 16MB boundaries and must
225 include spare trailing bytes up to the next 4-byte boundary; they
226 will be written with rubbish.
228 The PLX likes to prefetch; if reading up to 4 u32 past the end of
229 each TX fragment is not a problem, then TX can be made to go a
230 little faster by passing a flag at init that disables a prefetch
231 workaround. We do not pass this flag. (new microcode only)
234 . Note that alloc_skb rounds up size to a 16byte boundary.
235 . Ensure all areas do not traverse 4MB boundaries.
236 . Ensure all areas do not start at a E00000xx bus address.
237 (I cannot be certain, but this may always hold with Linux)
238 . Make all failures cause a loud message.
239 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
240 . Discard non-conforming TX fragment descriptors (the TX fails).
241 In the future we could:
242 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
243 . Segment TX areas into some/more fragments, when necessary.
244 . Relax checks for non-DMA items (ignore hole).
245 . Give scatter-gather (iovec) requirements using ???. (?)
247 3. VC close is broken (only for new microcode)
249 The VC close adapter microcode command fails to do anything if any
250 frames have been received on the VC but none have been transmitted.
251 Frames continue to be reassembled and passed (with IRQ) to the
258 . Timer code may be broken.
260 . Deal with buggy VC close (somehow) in microcode 12.
262 . Handle interrupted and/or non-blocking writes - is this a job for
265 . Add code to break up TX fragments when they span 4MB boundaries.
267 . Add SUNI phy layer (need to know where SUNI lives on card).
269 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
270 leave extra headroom space for Ambassador TX descriptors.
272 . Understand these elements of struct atm_vcc: recvq (proto?),
273 sleep, callback, listenq, backlog_quota, reply and user_back.
275 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
277 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
279 . Decide whether RX buffer recycling is or can be made completely safe;
280 turn it back on. It looks like Werner is going to axe this.
282 . Implement QoS changes on open VCs (involves extracting parts of VC open
283 and close into separate functions and using them to make changes).
285 . Hack on command queue so that someone can issue multiple commands and wait
286 on the last one (OR only "no-op" or "wait" commands are waited for).
288 . Eliminate need for while-schedule around do_command.
292 /********** microcode **********/
294 #ifdef AMB_NEW_MICROCODE
295 #define UCODE(x) UCODE2(atmsar12.x)
297 #define UCODE(x) UCODE2(atmsar11.x)
301 static u32 __devinitdata ucode_start =
302 #include UCODE(start)
305 static region __devinitdata ucode_regions[] = {
306 #include UCODE(regions)
310 static u32 __devinitdata ucode_data[] = {
315 static void do_housekeeping (unsigned long arg);
316 /********** globals **********/
318 static unsigned short debug = 0;
319 static unsigned int cmds = 8;
320 static unsigned int txs = 32;
321 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
322 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
323 static unsigned int rx_lats = 7;
324 static unsigned char pci_lat = 0;
326 static const unsigned long onegigmask = -1 << 30;
328 /********** access to adapter **********/
330 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
331 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
333 dev->membase[addr / sizeof(u32)] = data;
335 outl (data, dev->iobase + addr);
339 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
341 u32 data = dev->membase[addr / sizeof(u32)];
343 u32 data = inl (dev->iobase + addr);
345 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
349 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
350 __be32 be = cpu_to_be32 (data);
351 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
353 dev->membase[addr / sizeof(u32)] = be;
355 outl (be, dev->iobase + addr);
359 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
361 __be32 be = dev->membase[addr / sizeof(u32)];
363 __be32 be = inl (dev->iobase + addr);
365 u32 data = be32_to_cpu (be);
366 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
370 /********** dump routines **********/
372 static inline void dump_registers (const amb_dev * dev) {
373 #ifdef DEBUG_AMBASSADOR
374 if (debug & DBG_REGS) {
376 PRINTD (DBG_REGS, "reading PLX control: ");
377 for (i = 0x00; i < 0x30; i += sizeof(u32))
379 PRINTD (DBG_REGS, "reading mailboxes: ");
380 for (i = 0x40; i < 0x60; i += sizeof(u32))
382 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
383 for (i = 0x60; i < 0x70; i += sizeof(u32))
392 static inline void dump_loader_block (volatile loader_block * lb) {
393 #ifdef DEBUG_AMBASSADOR
395 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
396 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
397 for (i = 0; i < MAX_COMMAND_DATA; ++i)
398 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
399 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
406 static inline void dump_command (command * cmd) {
407 #ifdef DEBUG_AMBASSADOR
409 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
410 cmd, /*be32_to_cpu*/ (cmd->request));
411 for (i = 0; i < 3; ++i)
412 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
413 PRINTDE (DBG_CMD, "");
420 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
421 #ifdef DEBUG_AMBASSADOR
423 unsigned char * data = skb->data;
424 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
425 for (i=0; i<skb->len && i < 256;i++)
426 PRINTDM (DBG_DATA, "%02x ", data[i]);
427 PRINTDE (DBG_DATA,"");
436 /********** check memory areas for use by Ambassador **********/
438 /* see limitations under Hardware Features */
440 static inline int check_area (void * start, size_t length) {
441 // assumes length > 0
442 const u32 fourmegmask = -1 << 22;
443 const u32 twofivesixmask = -1 << 8;
444 const u32 starthole = 0xE0000000;
445 u32 startaddress = virt_to_bus (start);
446 u32 lastaddress = startaddress+length-1;
447 if ((startaddress ^ lastaddress) & fourmegmask ||
448 (startaddress & twofivesixmask) == starthole) {
449 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
450 startaddress, lastaddress);
457 /********** free an skb (as per ATM device driver documentation) **********/
459 static inline void amb_kfree_skb (struct sk_buff * skb) {
460 if (ATM_SKB(skb)->vcc->pop) {
461 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
463 dev_kfree_skb_any (skb);
467 /********** TX completion **********/
469 static inline void tx_complete (amb_dev * dev, tx_out * tx) {
470 tx_simple * tx_descr = bus_to_virt (tx->handle);
471 struct sk_buff * skb = tx_descr->skb;
473 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
476 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
478 // free the descriptor
488 /********** RX completion **********/
490 static void rx_complete (amb_dev * dev, rx_out * rx) {
491 struct sk_buff * skb = bus_to_virt (rx->handle);
492 u16 vc = be16_to_cpu (rx->vc);
493 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
494 u16 status = be16_to_cpu (rx->status);
495 u16 rx_len = be16_to_cpu (rx->length);
497 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
499 // XXX move this in and add to VC stats ???
501 struct atm_vcc * atm_vcc = dev->rxer[vc];
506 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
508 if (atm_charge (atm_vcc, skb->truesize)) {
510 // prepare socket buffer
511 ATM_SKB(skb)->vcc = atm_vcc;
512 skb_put (skb, rx_len);
514 dump_skb ("<<<", vc, skb);
517 atomic_inc(&atm_vcc->stats->rx);
518 __net_timestamp(skb);
519 // end of our responsability
520 atm_vcc->push (atm_vcc, skb);
524 // someone fix this (message), please!
525 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
526 // drop stats incremented in atm_charge
530 PRINTK (KERN_INFO, "dropped over-size frame");
531 // should we count this?
532 atomic_inc(&atm_vcc->stats->rx_drop);
536 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
537 // this is an adapter bug, only in new version of microcode
541 dev->stats.rx.error++;
542 if (status & CRC_ERR)
543 dev->stats.rx.badcrc++;
544 if (status & LEN_ERR)
545 dev->stats.rx.toolong++;
546 if (status & ABORT_ERR)
547 dev->stats.rx.aborted++;
548 if (status & UNUSED_ERR)
549 dev->stats.rx.unused++;
552 dev_kfree_skb_any (skb);
558 Note on queue handling.
560 Here "give" and "take" refer to queue entries and a queue (pair)
561 rather than frames to or from the host or adapter. Empty frame
562 buffers are given to the RX queue pair and returned unused or
563 containing RX frames. TX frames (well, pointers to TX fragment
564 lists) are given to the TX queue pair, completions are returned.
568 /********** command queue **********/
570 // I really don't like this, but it's the best I can do at the moment
572 // also, the callers are responsible for byte order as the microcode
573 // sometimes does 16-bit accesses (yuk yuk yuk)
575 static int command_do (amb_dev * dev, command * cmd) {
576 amb_cq * cq = &dev->cq;
577 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
580 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
582 if (test_bit (dead, &dev->flags))
585 spin_lock (&cq->lock);
588 if (cq->pending < cq->maximum) {
589 // remember my slot for later
591 PRINTD (DBG_CMD, "command in slot %p", my_slot);
598 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
601 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
603 if (cq->pending > cq->high)
604 cq->high = cq->pending;
605 spin_unlock (&cq->lock);
607 // these comments were in a while-loop before, msleep removes the loop
609 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
612 // wait for my slot to be reached (all waiters are here or above, until...)
613 while (ptrs->out != my_slot) {
614 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
615 set_current_state(TASK_UNINTERRUPTIBLE);
619 // wait on my slot (... one gets to its slot, and... )
620 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
621 PRINTD (DBG_CMD, "wait: command slot completion");
622 set_current_state(TASK_UNINTERRUPTIBLE);
626 PRINTD (DBG_CMD, "command complete");
627 // update queue (... moves the queue along to the next slot)
628 spin_lock (&cq->lock);
632 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
633 spin_unlock (&cq->lock);
638 spin_unlock (&cq->lock);
644 /********** TX queue pair **********/
646 static inline int tx_give (amb_dev * dev, tx_in * tx) {
647 amb_txq * txq = &dev->txq;
650 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
652 if (test_bit (dead, &dev->flags))
655 spin_lock_irqsave (&txq->lock, flags);
657 if (txq->pending < txq->maximum) {
658 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
662 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
663 // hand over the TX and ring the bell
664 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
665 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
667 if (txq->pending > txq->high)
668 txq->high = txq->pending;
669 spin_unlock_irqrestore (&txq->lock, flags);
673 spin_unlock_irqrestore (&txq->lock, flags);
678 static inline int tx_take (amb_dev * dev) {
679 amb_txq * txq = &dev->txq;
682 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
684 spin_lock_irqsave (&txq->lock, flags);
686 if (txq->pending && txq->out.ptr->handle) {
687 // deal with TX completion
688 tx_complete (dev, txq->out.ptr);
690 txq->out.ptr->handle = 0;
693 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
695 spin_unlock_irqrestore (&txq->lock, flags);
699 spin_unlock_irqrestore (&txq->lock, flags);
704 /********** RX queue pairs **********/
706 static inline int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
707 amb_rxq * rxq = &dev->rxq[pool];
710 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
712 spin_lock_irqsave (&rxq->lock, flags);
714 if (rxq->pending < rxq->maximum) {
715 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
719 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
720 // hand over the RX buffer
721 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
723 spin_unlock_irqrestore (&rxq->lock, flags);
726 spin_unlock_irqrestore (&rxq->lock, flags);
731 static inline int rx_take (amb_dev * dev, unsigned char pool) {
732 amb_rxq * rxq = &dev->rxq[pool];
735 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
737 spin_lock_irqsave (&rxq->lock, flags);
739 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
740 // deal with RX completion
741 rx_complete (dev, rxq->out.ptr);
743 rxq->out.ptr->status = 0;
744 rxq->out.ptr->length = 0;
747 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
749 if (rxq->pending < rxq->low)
750 rxq->low = rxq->pending;
751 spin_unlock_irqrestore (&rxq->lock, flags);
754 if (!rxq->pending && rxq->buffers_wanted)
756 spin_unlock_irqrestore (&rxq->lock, flags);
761 /********** RX Pool handling **********/
763 /* pre: buffers_wanted = 0, post: pending = 0 */
764 static inline void drain_rx_pool (amb_dev * dev, unsigned char pool) {
765 amb_rxq * rxq = &dev->rxq[pool];
767 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
769 if (test_bit (dead, &dev->flags))
772 /* we are not quite like the fill pool routines as we cannot just
773 remove one buffer, we have to remove all of them, but we might as
775 if (rxq->pending > rxq->buffers_wanted) {
777 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
778 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
779 while (command_do (dev, &cmd))
781 /* the pool may also be emptied via the interrupt handler */
782 while (rxq->pending > rxq->buffers_wanted)
783 if (rx_take (dev, pool))
790 static void drain_rx_pools (amb_dev * dev) {
793 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
795 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
796 drain_rx_pool (dev, pool);
799 static inline void fill_rx_pool (amb_dev * dev, unsigned char pool,
805 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
807 if (test_bit (dead, &dev->flags))
810 rxq = &dev->rxq[pool];
811 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
813 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
815 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
818 if (check_area (skb->data, skb->truesize)) {
819 dev_kfree_skb_any (skb);
822 // cast needed as there is no %? for pointer differences
823 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
824 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
825 rx.handle = virt_to_bus (skb);
826 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
827 if (rx_give (dev, &rx, pool))
828 dev_kfree_skb_any (skb);
835 // top up all RX pools (can also be called as a bottom half)
836 static void fill_rx_pools (amb_dev * dev) {
839 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
841 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
842 fill_rx_pool (dev, pool, GFP_ATOMIC);
847 /********** enable host interrupts **********/
849 static inline void interrupts_on (amb_dev * dev) {
850 wr_plain (dev, offsetof(amb_mem, interrupt_control),
851 rd_plain (dev, offsetof(amb_mem, interrupt_control))
852 | AMB_INTERRUPT_BITS);
855 /********** disable host interrupts **********/
857 static inline void interrupts_off (amb_dev * dev) {
858 wr_plain (dev, offsetof(amb_mem, interrupt_control),
859 rd_plain (dev, offsetof(amb_mem, interrupt_control))
860 &~ AMB_INTERRUPT_BITS);
863 /********** interrupt handling **********/
865 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
866 amb_dev * dev = dev_id;
868 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
871 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
873 // for us or someone else sharing the same interrupt
875 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
880 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
881 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
885 unsigned int irq_work = 0;
887 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
888 while (!rx_take (dev, pool))
890 while (!tx_take (dev))
894 #ifdef FILL_RX_POOLS_IN_BH
895 schedule_work (&dev->bh);
900 PRINTD (DBG_IRQ, "work done: %u", irq_work);
902 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
906 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
910 /********** make rate (not quite as much fun as Horizon) **********/
912 static int make_rate (unsigned int rate, rounding r,
913 u16 * bits, unsigned int * actual) {
914 unsigned char exp = -1; // hush gcc
915 unsigned int man = -1; // hush gcc
917 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
919 // rates in cells per second, ITU format (nasty 16-bit floating-point)
920 // given 5-bit e and 9-bit m:
921 // rate = EITHER (1+m/2^9)*2^e OR 0
922 // bits = EITHER 1<<14 | e<<9 | m OR 0
923 // (bit 15 is "reserved", bit 14 "non-zero")
924 // smallest rate is 0 (special representation)
925 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
926 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
928 // find position of top bit, this gives e
929 // remove top bit and shift (rounding if feeling clever) by 9-e
931 // ucode bug: please don't set bit 14! so 0 rate not representable
933 if (rate > 0xffc00000U) {
934 // larger than largest representable rate
944 // representable rate
949 // invariant: rate = man*2^(exp-31)
950 while (!(man & (1<<31))) {
955 // man has top bit set
956 // rate = (2^31+(man-2^31))*2^(exp-31)
957 // rate = (1+(man-2^31)/2^31)*2^exp
959 man &= 0xffffffffU; // a nop on 32-bit systems
960 // rate = (1+man/2^32)*2^exp
962 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
963 // time to lose significance... we want m in the range 0 to 2^9-1
964 // rounding presents a minor problem... we first decide which way
965 // we are rounding (based on given rounding direction and possibly
966 // the bits of the mantissa that are to be discarded).
975 // check all bits that we are discarding
976 if (man & (~0U>>9)) {
977 man = (man>>(32-9)) + 1;
979 // no need to check for round up outside of range
988 case round_nearest: {
989 // check msb that we are discarding
990 if (man & (1<<(32-9-1))) {
991 man = (man>>(32-9)) + 1;
993 // no need to check for round up outside of range
1005 // zero rate - not representable
1007 if (r == round_down) {
1016 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1019 *bits = /* (1<<14) | */ (exp<<9) | man;
1022 *actual = (exp >= 9)
1023 ? (1 << exp) + (man << (exp-9))
1024 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1029 /********** Linux ATM Operations **********/
1031 // some are not yet implemented while others do not make sense for
1034 /********** Open a VC **********/
1036 static int amb_open (struct atm_vcc * atm_vcc)
1040 struct atm_qos * qos;
1041 struct atm_trafprm * txtp;
1042 struct atm_trafprm * rxtp;
1044 u16 tx_vc_bits = -1; // hush gcc
1045 u16 tx_frame_bits = -1; // hush gcc
1047 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1049 unsigned char pool = -1; // hush gcc
1050 short vpi = atm_vcc->vpi;
1051 int vci = atm_vcc->vci;
1053 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1055 #ifdef ATM_VPI_UNSPEC
1056 // UNSPEC is deprecated, remove this code eventually
1057 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1058 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1063 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1064 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1065 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1069 qos = &atm_vcc->qos;
1071 if (qos->aal != ATM_AAL5) {
1072 PRINTD (DBG_QOS, "AAL not supported");
1076 // traffic parameters
1078 PRINTD (DBG_QOS, "TX:");
1080 if (txtp->traffic_class != ATM_NONE) {
1081 switch (txtp->traffic_class) {
1083 // we take "the PCR" as a rate-cap
1084 int pcr = atm_pcr_goal (txtp);
1088 tx_vc_bits = TX_UBR;
1089 tx_frame_bits = TX_FRAME_NOTCAP;
1098 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1099 tx_vc_bits = TX_UBR_CAPPED;
1100 tx_frame_bits = TX_FRAME_CAPPED;
1106 pcr = atm_pcr_goal (txtp);
1107 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1112 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1113 PRINTD (DBG_QOS, "request for non-UBR denied");
1117 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1118 tx_rate_bits, tx_vc_bits);
1121 PRINTD (DBG_QOS, "RX:");
1123 if (rxtp->traffic_class == ATM_NONE) {
1126 // choose an RX pool (arranged in increasing size)
1127 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1128 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1129 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1130 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1133 if (pool == NUM_RX_POOLS) {
1134 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1135 "no pool suitable for VC (RX max_sdu %d is too large)",
1140 switch (rxtp->traffic_class) {
1146 pcr = atm_pcr_goal (rxtp);
1147 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1152 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1153 PRINTD (DBG_QOS, "request for non-UBR denied");
1159 // get space for our vcc stuff
1160 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1162 PRINTK (KERN_ERR, "out of memory!");
1165 atm_vcc->dev_data = (void *) vcc;
1167 // no failures beyond this point
1169 // we are not really "immediately before allocating the connection
1170 // identifier in hardware", but it will just have to do!
1171 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1173 if (txtp->traffic_class != ATM_NONE) {
1176 vcc->tx_frame_bits = tx_frame_bits;
1178 down (&dev->vcc_sf);
1179 if (dev->rxer[vci]) {
1180 // RXer on the channel already, just modify rate...
1181 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1182 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1183 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1184 while (command_do (dev, &cmd))
1186 // ... and TX flags, preserving the RX pool
1187 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1188 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1189 cmd.args.modify_flags.flags = cpu_to_be32
1190 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1191 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1192 while (command_do (dev, &cmd))
1195 // no RXer on the channel, just open (with pool zero)
1196 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1197 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1198 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1199 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1200 while (command_do (dev, &cmd))
1203 dev->txer[vci].tx_present = 1;
1207 if (rxtp->traffic_class != ATM_NONE) {
1210 vcc->rx_info.pool = pool;
1212 down (&dev->vcc_sf);
1213 /* grow RX buffer pool */
1214 if (!dev->rxq[pool].buffers_wanted)
1215 dev->rxq[pool].buffers_wanted = rx_lats;
1216 dev->rxq[pool].buffers_wanted += 1;
1217 fill_rx_pool (dev, pool, GFP_KERNEL);
1219 if (dev->txer[vci].tx_present) {
1220 // TXer on the channel already
1221 // switch (from pool zero) to this pool, preserving the TX bits
1222 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1223 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1224 cmd.args.modify_flags.flags = cpu_to_be32
1225 ( (pool << SRB_POOL_SHIFT)
1226 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1228 // no TXer on the channel, open the VC (with no rate info)
1229 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1230 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1231 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1232 cmd.args.open.rate = cpu_to_be32 (0);
1234 while (command_do (dev, &cmd))
1236 // this link allows RX frames through
1237 dev->rxer[vci] = atm_vcc;
1241 // indicate readiness
1242 set_bit(ATM_VF_READY,&atm_vcc->flags);
1247 /********** Close a VC **********/
1249 static void amb_close (struct atm_vcc * atm_vcc) {
1250 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1251 amb_vcc * vcc = AMB_VCC (atm_vcc);
1252 u16 vci = atm_vcc->vci;
1254 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1256 // indicate unreadiness
1257 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1260 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1263 down (&dev->vcc_sf);
1264 if (dev->rxer[vci]) {
1265 // RXer still on the channel, just modify rate... XXX not really needed
1266 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1267 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1268 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1269 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1271 // no RXer on the channel, close channel
1272 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1273 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1275 dev->txer[vci].tx_present = 0;
1276 while (command_do (dev, &cmd))
1282 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1285 // this is (the?) one reason why we need the amb_vcc struct
1286 unsigned char pool = vcc->rx_info.pool;
1288 down (&dev->vcc_sf);
1289 if (dev->txer[vci].tx_present) {
1290 // TXer still on the channel, just go to pool zero XXX not really needed
1291 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1292 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1293 cmd.args.modify_flags.flags = cpu_to_be32
1294 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1296 // no TXer on the channel, close the VC
1297 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1298 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1300 // forget the rxer - no more skbs will be pushed
1301 if (atm_vcc != dev->rxer[vci])
1302 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1303 "arghhh! we're going to die!",
1304 vcc, dev->rxer[vci]);
1305 dev->rxer[vci] = NULL;
1306 while (command_do (dev, &cmd))
1309 /* shrink RX buffer pool */
1310 dev->rxq[pool].buffers_wanted -= 1;
1311 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1312 dev->rxq[pool].buffers_wanted = 0;
1313 drain_rx_pool (dev, pool);
1318 // free our structure
1321 // say the VPI/VCI is free again
1322 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1327 /********** Set socket options for a VC **********/
1329 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1331 /********** Set socket options for a VC **********/
1333 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1335 /********** Send **********/
1337 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1338 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1339 amb_vcc * vcc = AMB_VCC(atm_vcc);
1340 u16 vc = atm_vcc->vci;
1341 unsigned int tx_len = skb->len;
1342 unsigned char * tx_data = skb->data;
1343 tx_simple * tx_descr;
1346 if (test_bit (dead, &dev->flags))
1349 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1350 vc, tx_data, tx_len);
1352 dump_skb (">>>", vc, skb);
1354 if (!dev->txer[vc].tx_present) {
1355 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1359 // this is a driver private field so we have to set it ourselves,
1360 // despite the fact that we are _required_ to use it to check for a
1362 ATM_SKB(skb)->vcc = atm_vcc;
1364 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1365 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1369 if (check_area (skb->data, skb->len)) {
1370 atomic_inc(&atm_vcc->stats->tx_err);
1371 return -ENOMEM; // ?
1374 // allocate memory for fragments
1375 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1377 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1380 if (check_area (tx_descr, sizeof(tx_simple))) {
1384 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1386 tx_descr->skb = skb;
1388 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1389 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1391 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1392 tx_descr->tx_frag_end.vc = 0;
1393 tx_descr->tx_frag_end.next_descriptor_length = 0;
1394 tx_descr->tx_frag_end.next_descriptor = 0;
1395 #ifdef AMB_NEW_MICROCODE
1396 tx_descr->tx_frag_end.cpcs_uu = 0;
1397 tx_descr->tx_frag_end.cpi = 0;
1398 tx_descr->tx_frag_end.pad = 0;
1401 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1402 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1403 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1405 while (tx_give (dev, &tx))
1410 /********** Change QoS on a VC **********/
1412 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1414 /********** Free RX Socket Buffer **********/
1417 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1418 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1419 amb_vcc * vcc = AMB_VCC (atm_vcc);
1420 unsigned char pool = vcc->rx_info.pool;
1423 // This may be unsafe for various reasons that I cannot really guess
1424 // at. However, I note that the ATM layer calls kfree_skb rather
1425 // than dev_kfree_skb at this point so we are least covered as far
1426 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1428 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1431 rx.handle = virt_to_bus (skb);
1432 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1434 skb->data = skb->head;
1435 skb->tail = skb->head;
1438 if (!rx_give (dev, &rx, pool)) {
1440 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1444 // just do what the ATM layer would have done
1445 dev_kfree_skb_any (skb);
1451 /********** Proc File Output **********/
1453 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1454 amb_dev * dev = AMB_DEV (atm_dev);
1458 PRINTD (DBG_FLOW, "amb_proc_read");
1460 /* more diagnostics here? */
1463 amb_stats * s = &dev->stats;
1464 return sprintf (page,
1465 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1466 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1467 s->tx_ok, s->rx.ok, s->rx.error,
1468 s->rx.badcrc, s->rx.toolong,
1469 s->rx.aborted, s->rx.unused);
1473 amb_cq * c = &dev->cq;
1474 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1475 c->pending, c->high, c->maximum);
1479 amb_txq * t = &dev->txq;
1480 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1481 t->pending, t->maximum, t->high, t->filled);
1485 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1486 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1487 amb_rxq * r = &dev->rxq[pool];
1488 count += sprintf (page+count, " %u/%u/%u %u %u",
1489 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1491 count += sprintf (page+count, ".\n");
1496 unsigned int count = sprintf (page, "RX buffer sizes:");
1497 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1498 amb_rxq * r = &dev->rxq[pool];
1499 count += sprintf (page+count, " %u", r->buffer_size);
1501 count += sprintf (page+count, ".\n");
1514 /********** Operation Structure **********/
1516 static const struct atmdev_ops amb_ops = {
1520 .proc_read = amb_proc_read,
1521 .owner = THIS_MODULE,
1524 /********** housekeeping **********/
1525 static void do_housekeeping (unsigned long arg) {
1526 amb_dev * dev = (amb_dev *) arg;
1528 // could collect device-specific (not driver/atm-linux) stats here
1530 // last resort refill once every ten seconds
1531 fill_rx_pools (dev);
1532 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1537 /********** creation of communication queues **********/
1539 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1540 unsigned int txs, unsigned int * rxs,
1541 unsigned int * rx_buffer_sizes) {
1547 PRINTD (DBG_FLOW, "create_queues %p", dev);
1549 total += cmds * sizeof(command);
1551 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1553 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1554 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1556 memory = kmalloc (total, GFP_KERNEL);
1558 PRINTK (KERN_ERR, "could not allocate queues");
1561 if (check_area (memory, total)) {
1562 PRINTK (KERN_ERR, "queues allocated in nasty area");
1567 limit = memory + total;
1568 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1570 PRINTD (DBG_CMD, "command queue at %p", memory);
1573 command * cmd = memory;
1574 amb_cq * cq = &dev->cq;
1578 cq->maximum = cmds - 1;
1580 cq->ptrs.start = cmd;
1583 cq->ptrs.limit = cmd + cmds;
1585 memory = cq->ptrs.limit;
1588 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1591 tx_in * in = memory;
1593 amb_txq * txq = &dev->txq;
1598 txq->maximum = txs - 1;
1602 txq->in.limit = in + txs;
1604 memory = txq->in.limit;
1607 txq->out.start = out;
1609 txq->out.limit = out + txs;
1611 memory = txq->out.limit;
1614 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1616 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1617 rx_in * in = memory;
1619 amb_rxq * rxq = &dev->rxq[pool];
1621 rxq->buffer_size = rx_buffer_sizes[pool];
1622 rxq->buffers_wanted = 0;
1625 rxq->low = rxs[pool] - 1;
1627 rxq->maximum = rxs[pool] - 1;
1631 rxq->in.limit = in + rxs[pool];
1633 memory = rxq->in.limit;
1636 rxq->out.start = out;
1638 rxq->out.limit = out + rxs[pool];
1640 memory = rxq->out.limit;
1643 if (memory == limit) {
1646 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1647 kfree (limit - total);
1653 /********** destruction of communication queues **********/
1655 static void destroy_queues (amb_dev * dev) {
1656 // all queues assumed empty
1657 void * memory = dev->cq.ptrs.start;
1658 // includes txq.in, txq.out, rxq[].in and rxq[].out
1660 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1662 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1668 /********** basic loader commands and error handling **********/
1669 // centisecond timeouts - guessing away here
1670 static unsigned int command_timeouts [] = {
1671 [host_memory_test] = 15,
1672 [read_adapter_memory] = 2,
1673 [write_adapter_memory] = 2,
1674 [adapter_start] = 50,
1675 [get_version_number] = 10,
1676 [interrupt_host] = 1,
1677 [flash_erase_sector] = 1,
1678 [adap_download_block] = 1,
1679 [adap_erase_flash] = 1,
1680 [adap_run_in_iram] = 1,
1681 [adap_end_download] = 1
1685 static unsigned int command_successes [] = {
1686 [host_memory_test] = COMMAND_PASSED_TEST,
1687 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1688 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1689 [adapter_start] = COMMAND_COMPLETE,
1690 [get_version_number] = COMMAND_COMPLETE,
1691 [interrupt_host] = COMMAND_COMPLETE,
1692 [flash_erase_sector] = COMMAND_COMPLETE,
1693 [adap_download_block] = COMMAND_COMPLETE,
1694 [adap_erase_flash] = COMMAND_COMPLETE,
1695 [adap_run_in_iram] = COMMAND_COMPLETE,
1696 [adap_end_download] = COMMAND_COMPLETE
1699 static int decode_loader_result (loader_command cmd, u32 result)
1704 if (result == command_successes[cmd])
1710 msg = "bad command";
1712 case COMMAND_IN_PROGRESS:
1714 msg = "command in progress";
1716 case COMMAND_PASSED_TEST:
1718 msg = "command passed test";
1720 case COMMAND_FAILED_TEST:
1722 msg = "command failed test";
1724 case COMMAND_READ_DATA_OK:
1726 msg = "command read data ok";
1728 case COMMAND_READ_BAD_ADDRESS:
1730 msg = "command read bad address";
1732 case COMMAND_WRITE_DATA_OK:
1734 msg = "command write data ok";
1736 case COMMAND_WRITE_BAD_ADDRESS:
1738 msg = "command write bad address";
1740 case COMMAND_WRITE_FLASH_FAILURE:
1742 msg = "command write flash failure";
1744 case COMMAND_COMPLETE:
1746 msg = "command complete";
1748 case COMMAND_FLASH_ERASE_FAILURE:
1750 msg = "command flash erase failure";
1752 case COMMAND_WRITE_BAD_DATA:
1754 msg = "command write bad data";
1758 msg = "unknown error";
1759 PRINTD (DBG_LOAD|DBG_ERR,
1760 "decode_loader_result got %d=%x !",
1765 PRINTK (KERN_ERR, "%s", msg);
1769 static int __devinit do_loader_command (volatile loader_block * lb,
1770 const amb_dev * dev, loader_command cmd) {
1772 unsigned long timeout;
1774 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1778 Set the return value to zero, set the command type and set the
1779 valid entry to the right magic value. The payload is already
1780 correctly byte-ordered so we leave it alone. Hit the doorbell
1781 with the bus address of this structure.
1786 lb->command = cpu_to_be32 (cmd);
1787 lb->valid = cpu_to_be32 (DMA_VALID);
1788 // dump_registers (dev);
1789 // dump_loader_block (lb);
1790 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1792 timeout = command_timeouts[cmd] * 10;
1794 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1796 timeout = msleep_interruptible(timeout);
1798 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1799 dump_registers (dev);
1800 dump_loader_block (lb);
1804 if (cmd == adapter_start) {
1805 // wait for start command to acknowledge...
1807 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1809 timeout = msleep_interruptible(timeout);
1811 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1812 be32_to_cpu (lb->result));
1813 dump_registers (dev);
1818 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1823 /* loader: determine loader version */
1825 static int __devinit get_loader_version (loader_block * lb,
1826 const amb_dev * dev, u32 * version) {
1829 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1831 res = do_loader_command (lb, dev, get_version_number);
1835 *version = be32_to_cpu (lb->payload.version);
1839 /* loader: write memory data blocks */
1841 static int __devinit loader_write (loader_block * lb,
1842 const amb_dev * dev, const u32 * data,
1843 u32 address, unsigned int count) {
1845 transfer_block * tb = &lb->payload.transfer;
1847 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1849 if (count > MAX_TRANSFER_DATA)
1851 tb->address = cpu_to_be32 (address);
1852 tb->count = cpu_to_be32 (count);
1853 for (i = 0; i < count; ++i)
1854 tb->data[i] = cpu_to_be32 (data[i]);
1855 return do_loader_command (lb, dev, write_adapter_memory);
1858 /* loader: verify memory data blocks */
1860 static int __devinit loader_verify (loader_block * lb,
1861 const amb_dev * dev, const u32 * data,
1862 u32 address, unsigned int count) {
1864 transfer_block * tb = &lb->payload.transfer;
1867 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1869 if (count > MAX_TRANSFER_DATA)
1871 tb->address = cpu_to_be32 (address);
1872 tb->count = cpu_to_be32 (count);
1873 res = do_loader_command (lb, dev, read_adapter_memory);
1875 for (i = 0; i < count; ++i)
1876 if (tb->data[i] != cpu_to_be32 (data[i])) {
1883 /* loader: start microcode */
1885 static int __devinit loader_start (loader_block * lb,
1886 const amb_dev * dev, u32 address) {
1887 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1889 lb->payload.start = cpu_to_be32 (address);
1890 return do_loader_command (lb, dev, adapter_start);
1893 /********** reset card **********/
1895 static inline void sf (const char * msg)
1897 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1900 static int amb_reset (amb_dev * dev, int diags) {
1903 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1905 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1906 // put card into reset state
1907 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1908 // wait a short while
1911 // put card into known good state
1912 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1913 // clear all interrupts just in case
1914 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1916 // clear self-test done flag
1917 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1918 // take card out of reset state
1919 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1922 unsigned long timeout;
1925 // half second time-out
1927 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1929 timeout = msleep_interruptible(timeout);
1931 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1935 // get results of self-test
1936 // XXX double check byte-order
1937 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1938 if (word & SELF_TEST_FAILURE) {
1939 if (word & GPINT_TST_FAILURE)
1941 if (word & SUNI_DATA_PATTERN_FAILURE)
1942 sf ("SUNI data pattern");
1943 if (word & SUNI_DATA_BITS_FAILURE)
1944 sf ("SUNI data bits");
1945 if (word & SUNI_UTOPIA_FAILURE)
1946 sf ("SUNI UTOPIA interface");
1947 if (word & SUNI_FIFO_FAILURE)
1948 sf ("SUNI cell buffer FIFO");
1949 if (word & SRAM_FAILURE)
1951 // better return value?
1959 /********** transfer and start the microcode **********/
1961 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1963 unsigned int total = 0;
1964 const u32 * pointer = ucode_data;
1969 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1971 while (address = ucode_regions[i].start,
1972 count = ucode_regions[i].count) {
1973 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1976 if (count <= MAX_TRANSFER_DATA)
1979 words = MAX_TRANSFER_DATA;
1981 res = loader_write (lb, dev, pointer, address, words);
1984 res = loader_verify (lb, dev, pointer, address, words);
1988 address += sizeof(u32) * words;
1993 if (*pointer == ATM_POISON) {
1994 return loader_start (lb, dev, ucode_start);
1996 // cast needed as there is no %? for pointer differnces
1997 PRINTD (DBG_LOAD|DBG_ERR,
1998 "offset=%li, *pointer=%x, address=%x, total=%u",
1999 (long) (pointer - ucode_data), *pointer, address, total);
2000 PRINTK (KERN_ERR, "incorrect microcode data");
2005 /********** give adapter parameters **********/
2007 static inline __be32 bus_addr(void * addr) {
2008 return cpu_to_be32 (virt_to_bus (addr));
2011 static int __devinit amb_talk (amb_dev * dev) {
2014 unsigned long timeout;
2016 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2018 a.command_start = bus_addr (dev->cq.ptrs.start);
2019 a.command_end = bus_addr (dev->cq.ptrs.limit);
2020 a.tx_start = bus_addr (dev->txq.in.start);
2021 a.tx_end = bus_addr (dev->txq.in.limit);
2022 a.txcom_start = bus_addr (dev->txq.out.start);
2023 a.txcom_end = bus_addr (dev->txq.out.limit);
2025 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2026 // the other "a" items are set up by the adapter
2027 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2028 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2029 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2030 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2031 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2034 #ifdef AMB_NEW_MICROCODE
2035 // disable fast PLX prefetching
2039 // pass the structure
2040 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2042 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2044 // give the adapter another half second?
2046 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2048 timeout = msleep_interruptible(timeout);
2050 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2057 // get microcode version
2058 static void __devinit amb_ucode_version (amb_dev * dev) {
2062 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2063 while (command_do (dev, &cmd)) {
2064 set_current_state(TASK_UNINTERRUPTIBLE);
2067 major = be32_to_cpu (cmd.args.version.major);
2068 minor = be32_to_cpu (cmd.args.version.minor);
2069 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2072 // get end station address
2073 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2078 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2079 while (command_do (dev, &cmd)) {
2080 set_current_state(TASK_UNINTERRUPTIBLE);
2083 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2084 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2085 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2090 PRINTDB (DBG_INIT, "ESI:");
2091 for (i = 0; i < ESI_LEN; ++i) {
2093 esi[i] = bitrev8(lower4>>(8*i));
2095 esi[i] = bitrev8(upper2>>(8*(i-4)));
2096 PRINTDM (DBG_INIT, " %02x", esi[i]);
2099 PRINTDE (DBG_INIT, "");
2105 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2107 // fix up the PLX-mapped window base address to match the block
2110 blb = virt_to_bus(lb);
2111 // the kernel stack had better not ever cross a 1Gb boundary!
2112 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2113 mapreg &= ~onegigmask;
2114 mapreg |= blb & onegigmask;
2115 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2119 static int __devinit amb_init (amb_dev * dev)
2125 if (amb_reset (dev, 1)) {
2126 PRINTK (KERN_ERR, "card reset failed!");
2128 fixup_plx_window (dev, &lb);
2130 if (get_loader_version (&lb, dev, &version)) {
2131 PRINTK (KERN_INFO, "failed to get loader version");
2133 PRINTK (KERN_INFO, "loader version is %08x", version);
2135 if (ucode_init (&lb, dev)) {
2136 PRINTK (KERN_ERR, "microcode failure");
2137 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2138 PRINTK (KERN_ERR, "failed to get memory for queues");
2141 if (amb_talk (dev)) {
2142 PRINTK (KERN_ERR, "adapter did not accept queues");
2145 amb_ucode_version (dev);
2150 destroy_queues (dev);
2151 } /* create_queues, ucode_init */
2154 } /* get_loader_version */
2161 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2164 memset (dev, 0, sizeof(amb_dev));
2166 // set up known dev items straight away
2167 dev->pci_dev = pci_dev;
2168 pci_set_drvdata(pci_dev, dev);
2170 dev->iobase = pci_resource_start (pci_dev, 1);
2171 dev->irq = pci_dev->irq;
2172 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2174 // flags (currently only dead)
2177 // Allocate cell rates (fibre)
2178 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2179 // to be really pedantic, this should be ATM_OC3c_PCR
2180 dev->tx_avail = ATM_OC3_PCR;
2181 dev->rx_avail = ATM_OC3_PCR;
2183 #ifdef FILL_RX_POOLS_IN_BH
2184 // initialise bottom half
2185 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2188 // semaphore for txer/rxer modifications - we cannot use a
2189 // spinlock as the critical region needs to switch processes
2190 init_MUTEX (&dev->vcc_sf);
2191 // queue manipulation spinlocks; we want atomic reads and
2192 // writes to the queue descriptors (handles IRQ and SMP)
2193 // consider replacing "int pending" -> "atomic_t available"
2194 // => problem related to who gets to move queue pointers
2195 spin_lock_init (&dev->cq.lock);
2196 spin_lock_init (&dev->txq.lock);
2197 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2198 spin_lock_init (&dev->rxq[pool].lock);
2201 static void setup_pci_dev(struct pci_dev *pci_dev)
2205 // enable bus master accesses
2206 pci_set_master(pci_dev);
2208 // frobnicate latency (upwards, usually)
2209 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2212 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2214 if (lat != pci_lat) {
2215 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2217 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2221 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2227 err = pci_enable_device(pci_dev);
2229 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2233 // read resources from PCI configuration space
2236 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2237 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2242 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2243 " IO %llx, IRQ %u, MEM %p",
2244 (unsigned long long)pci_resource_start(pci_dev, 1),
2245 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2248 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2250 PRINTK (KERN_ERR, "IO range already in use!");
2254 dev = kmalloc (sizeof(amb_dev), GFP_KERNEL);
2256 PRINTK (KERN_ERR, "out of memory!");
2261 setup_dev(dev, pci_dev);
2263 err = amb_init(dev);
2265 PRINTK (KERN_ERR, "adapter initialisation failure");
2269 setup_pci_dev(pci_dev);
2271 // grab (but share) IRQ and install handler
2272 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2274 PRINTK (KERN_ERR, "request IRQ failed!");
2278 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2279 if (!dev->atm_dev) {
2280 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2285 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2286 dev->atm_dev->number, dev, dev->atm_dev);
2287 dev->atm_dev->dev_data = (void *) dev;
2289 // register our address
2290 amb_esi (dev, dev->atm_dev->esi);
2292 // 0 bits for vpi, 10 bits for vci
2293 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2294 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2296 init_timer(&dev->housekeeping);
2297 dev->housekeeping.function = do_housekeeping;
2298 dev->housekeeping.data = (unsigned long) dev;
2299 mod_timer(&dev->housekeeping, jiffies);
2301 // enable host interrupts
2302 interrupts_on (dev);
2314 pci_release_region(pci_dev, 1);
2316 pci_disable_device(pci_dev);
2321 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2323 struct amb_dev *dev;
2325 dev = pci_get_drvdata(pci_dev);
2327 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2328 del_timer_sync(&dev->housekeeping);
2329 // the drain should not be necessary
2330 drain_rx_pools(dev);
2331 interrupts_off(dev);
2333 free_irq(dev->irq, dev);
2334 pci_disable_device(pci_dev);
2335 destroy_queues(dev);
2336 atm_dev_deregister(dev->atm_dev);
2338 pci_release_region(pci_dev, 1);
2341 static void __init amb_check_args (void) {
2343 unsigned int max_rx_size;
2345 #ifdef DEBUG_AMBASSADOR
2346 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2349 PRINTK (KERN_NOTICE, "no debugging support");
2352 if (cmds < MIN_QUEUE_SIZE)
2353 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2354 cmds = MIN_QUEUE_SIZE);
2356 if (txs < MIN_QUEUE_SIZE)
2357 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2358 txs = MIN_QUEUE_SIZE);
2360 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2361 if (rxs[pool] < MIN_QUEUE_SIZE)
2362 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2363 pool, rxs[pool] = MIN_QUEUE_SIZE);
2365 // buffers sizes should be greater than zero and strictly increasing
2367 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2368 if (rxs_bs[pool] <= max_rx_size)
2369 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2370 pool, rxs_bs[pool]);
2372 max_rx_size = rxs_bs[pool];
2374 if (rx_lats < MIN_RX_BUFFERS)
2375 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2376 rx_lats = MIN_RX_BUFFERS);
2381 /********** module stuff **********/
2383 MODULE_AUTHOR(maintainer_string);
2384 MODULE_DESCRIPTION(description_string);
2385 MODULE_LICENSE("GPL");
2386 module_param(debug, ushort, 0644);
2387 module_param(cmds, uint, 0);
2388 module_param(txs, uint, 0);
2389 module_param_array(rxs, uint, NULL, 0);
2390 module_param_array(rxs_bs, uint, NULL, 0);
2391 module_param(rx_lats, uint, 0);
2392 module_param(pci_lat, byte, 0);
2393 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2394 MODULE_PARM_DESC(cmds, "number of command queue entries");
2395 MODULE_PARM_DESC(txs, "number of TX queue entries");
2396 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2397 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2398 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2399 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2401 /********** module entry **********/
2403 static struct pci_device_id amb_pci_tbl[] = {
2404 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2406 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2411 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2413 static struct pci_driver amb_driver = {
2416 .remove = __devexit_p(amb_remove_one),
2417 .id_table = amb_pci_tbl,
2420 static int __init amb_module_init (void)
2422 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2424 // sanity check - cast needed as printk does not support %Zu
2425 if (sizeof(amb_mem) != 4*16 + 4*12) {
2426 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2427 (unsigned long) sizeof(amb_mem));
2436 return pci_register_driver(&amb_driver);
2439 /********** module exit **********/
2441 static void __exit amb_module_exit (void)
2443 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2445 pci_unregister_driver(&amb_driver);
2448 module_init(amb_module_init);
2449 module_exit(amb_module_exit);