2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
94 .lhash_users = ATOMIC_INIT(0),
95 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
100 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101 inet_csk_bind_conflict);
104 static void tcp_v4_hash(struct sock *sk)
106 inet_hash(&tcp_hashinfo, sk);
109 void tcp_unhash(struct sock *sk)
111 inet_unhash(&tcp_hashinfo, sk);
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
116 return secure_tcp_sequence_number(skb->nh.iph->daddr,
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
124 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125 struct tcp_sock *tp = tcp_sk(sk);
127 /* With PAWS, it is safe from the viewpoint
128 of data integrity. Even without PAWS it is safe provided sequence
129 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
131 Actually, the idea is close to VJ's one, only timestamp cache is
132 held not per host, but per port pair and TW bucket is used as state
135 If TW bucket has been already destroyed we fall back to VJ's scheme
136 and use initial timestamp retrieved from peer table.
138 if (tcptw->tw_ts_recent_stamp &&
139 (twp == NULL || (sysctl_tcp_tw_reuse &&
140 xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142 if (tp->write_seq == 0)
144 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
145 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
158 struct inet_sock *inet = inet_sk(sk);
159 struct tcp_sock *tp = tcp_sk(sk);
160 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
166 if (addr_len < sizeof(struct sockaddr_in))
169 if (usin->sin_family != AF_INET)
170 return -EAFNOSUPPORT;
172 nexthop = daddr = usin->sin_addr.s_addr;
173 if (inet->opt && inet->opt->srr) {
176 nexthop = inet->opt->faddr;
179 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 inet->sport, usin->sin_port, sk);
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
191 if (!inet->opt || !inet->opt->srr)
195 inet->saddr = rt->rt_src;
196 inet->rcv_saddr = inet->saddr;
198 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
205 if (tcp_death_row.sysctl_tw_recycle &&
206 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207 struct inet_peer *peer = rt_get_peer(rt);
209 /* VJ's idea. We save last timestamp seen from
210 * the destination in peer table, when entering state TIME-WAIT
211 * and initialize rx_opt.ts_recent from it, when trying new connection.
214 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216 tp->rx_opt.ts_recent = peer->tcp_ts;
220 inet->dport = usin->sin_port;
223 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227 tp->rx_opt.mss_clamp = 536;
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
234 tcp_set_state(sk, TCP_SYN_SENT);
235 err = inet_hash_connect(&tcp_death_row, sk);
239 err = ip_route_newports(&rt, IPPROTO_TCP, inet->sport, inet->dport, sk);
243 /* OK, now commit destination to socket. */
244 sk->sk_gso_type = SKB_GSO_TCPV4;
245 sk_setup_caps(sk, &rt->u.dst);
248 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
253 inet->id = tp->write_seq ^ jiffies;
255 err = tcp_connect(sk);
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk, TCP_CLOSE);
266 sk->sk_route_caps = 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk->sk_state == TCP_LISTEN)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 dst->ops->update_pmtu(dst, mtu);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339 struct inet_sock *inet;
340 int type = skb->h.icmph->type;
341 int code = skb->h.icmph->code;
346 if (skb->len < (iph->ihl << 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
351 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
352 th->source, inet_iif(skb));
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
357 if (sk->sk_state == TCP_TIME_WAIT) {
358 inet_twsk_put((struct inet_timewait_sock *)sk);
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
366 if (sock_owned_by_user(sk))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
369 if (sk->sk_state == TCP_CLOSE)
373 seq = ntohl(th->seq);
374 if (sk->sk_state != TCP_LISTEN &&
375 !between(seq, tp->snd_una, tp->snd_nxt)) {
376 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
381 case ICMP_SOURCE_QUENCH:
382 /* Just silently ignore these. */
384 case ICMP_PARAMETERPROB:
387 case ICMP_DEST_UNREACH:
388 if (code > NR_ICMP_UNREACH)
391 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk))
393 do_pmtu_discovery(sk, iph, info);
397 err = icmp_err_convert[code].errno;
399 case ICMP_TIME_EXCEEDED:
406 switch (sk->sk_state) {
407 struct request_sock *req, **prev;
409 if (sock_owned_by_user(sk))
412 req = inet_csk_search_req(sk, &prev, th->dest,
413 iph->daddr, iph->saddr);
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
422 if (seq != tcp_rsk(req)->snt_isn) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
433 inet_csk_reqsk_queue_drop(sk, req, prev);
437 case TCP_SYN_RECV: /* Cannot happen.
438 It can f.e. if SYNs crossed.
440 if (!sock_owned_by_user(sk)) {
441 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
444 sk->sk_error_report(sk);
448 sk->sk_err_soft = err;
453 /* If we've already connected we will keep trying
454 * until we time out, or the user gives up.
456 * rfc1122 4.2.3.9 allows to consider as hard errors
457 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 * but it is obsoleted by pmtu discovery).
460 * Note, that in modern internet, where routing is unreliable
461 * and in each dark corner broken firewalls sit, sending random
462 * errors ordered by their masters even this two messages finally lose
463 * their original sense (even Linux sends invalid PORT_UNREACHs)
465 * Now we are in compliance with RFCs.
470 if (!sock_owned_by_user(sk) && inet->recverr) {
472 sk->sk_error_report(sk);
473 } else { /* Only an error on timeout */
474 sk->sk_err_soft = err;
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
485 struct inet_sock *inet = inet_sk(sk);
486 struct tcphdr *th = skb->h.th;
488 if (skb->ip_summed == CHECKSUM_HW) {
489 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
490 skb->csum = offsetof(struct tcphdr, check);
492 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
493 csum_partial((char *)th,
499 int tcp_v4_gso_send_check(struct sk_buff *skb)
504 if (!pskb_may_pull(skb, sizeof(*th)))
511 th->check = ~tcp_v4_check(th, skb->len, iph->saddr, iph->daddr, 0);
512 skb->csum = offsetof(struct tcphdr, check);
513 skb->ip_summed = CHECKSUM_HW;
518 * This routine will send an RST to the other tcp.
520 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
522 * Answer: if a packet caused RST, it is not for a socket
523 * existing in our system, if it is matched to a socket,
524 * it is just duplicate segment or bug in other side's TCP.
525 * So that we build reply only basing on parameters
526 * arrived with segment.
527 * Exception: precedence violation. We do not implement it in any case.
530 static void tcp_v4_send_reset(struct sk_buff *skb)
532 struct tcphdr *th = skb->h.th;
534 struct ip_reply_arg arg;
536 /* Never send a reset in response to a reset. */
540 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
543 /* Swap the send and the receive. */
544 memset(&rth, 0, sizeof(struct tcphdr));
545 rth.dest = th->source;
546 rth.source = th->dest;
547 rth.doff = sizeof(struct tcphdr) / 4;
551 rth.seq = th->ack_seq;
554 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
555 skb->len - (th->doff << 2));
558 memset(&arg, 0, sizeof arg);
559 arg.iov[0].iov_base = (unsigned char *)&rth;
560 arg.iov[0].iov_len = sizeof rth;
561 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
562 skb->nh.iph->saddr, /*XXX*/
563 sizeof(struct tcphdr), IPPROTO_TCP, 0);
564 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
566 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
568 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
569 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
572 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
573 outside socket context is ugly, certainly. What can I do?
576 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
579 struct tcphdr *th = skb->h.th;
584 struct ip_reply_arg arg;
586 memset(&rep.th, 0, sizeof(struct tcphdr));
587 memset(&arg, 0, sizeof arg);
589 arg.iov[0].iov_base = (unsigned char *)&rep;
590 arg.iov[0].iov_len = sizeof(rep.th);
592 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
593 (TCPOPT_TIMESTAMP << 8) |
595 rep.tsopt[1] = htonl(tcp_time_stamp);
596 rep.tsopt[2] = htonl(ts);
597 arg.iov[0].iov_len = sizeof(rep);
600 /* Swap the send and the receive. */
601 rep.th.dest = th->source;
602 rep.th.source = th->dest;
603 rep.th.doff = arg.iov[0].iov_len / 4;
604 rep.th.seq = htonl(seq);
605 rep.th.ack_seq = htonl(ack);
607 rep.th.window = htons(win);
609 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
610 skb->nh.iph->saddr, /*XXX*/
611 arg.iov[0].iov_len, IPPROTO_TCP, 0);
612 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
614 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
616 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
619 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
621 struct inet_timewait_sock *tw = inet_twsk(sk);
622 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
624 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
625 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
630 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
632 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
637 * Send a SYN-ACK after having received an ACK.
638 * This still operates on a request_sock only, not on a big
641 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
642 struct dst_entry *dst)
644 const struct inet_request_sock *ireq = inet_rsk(req);
646 struct sk_buff * skb;
648 /* First, grab a route. */
649 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
652 skb = tcp_make_synack(sk, dst, req);
655 struct tcphdr *th = skb->h.th;
657 th->check = tcp_v4_check(th, skb->len,
660 csum_partial((char *)th, skb->len,
663 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
666 if (err == NET_XMIT_CN)
676 * IPv4 request_sock destructor.
678 static void tcp_v4_reqsk_destructor(struct request_sock *req)
680 kfree(inet_rsk(req)->opt);
683 #ifdef CONFIG_SYN_COOKIES
684 static void syn_flood_warning(struct sk_buff *skb)
686 static unsigned long warntime;
688 if (time_after(jiffies, (warntime + HZ * 60))) {
691 "possible SYN flooding on port %d. Sending cookies.\n",
692 ntohs(skb->h.th->dest));
698 * Save and compile IPv4 options into the request_sock if needed.
700 static struct ip_options *tcp_v4_save_options(struct sock *sk,
703 struct ip_options *opt = &(IPCB(skb)->opt);
704 struct ip_options *dopt = NULL;
706 if (opt && opt->optlen) {
707 int opt_size = optlength(opt);
708 dopt = kmalloc(opt_size, GFP_ATOMIC);
710 if (ip_options_echo(dopt, skb)) {
719 struct request_sock_ops tcp_request_sock_ops = {
721 .obj_size = sizeof(struct tcp_request_sock),
722 .rtx_syn_ack = tcp_v4_send_synack,
723 .send_ack = tcp_v4_reqsk_send_ack,
724 .destructor = tcp_v4_reqsk_destructor,
725 .send_reset = tcp_v4_send_reset,
728 static struct timewait_sock_ops tcp_timewait_sock_ops = {
729 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
730 .twsk_unique = tcp_twsk_unique,
733 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
735 struct inet_request_sock *ireq;
736 struct tcp_options_received tmp_opt;
737 struct request_sock *req;
738 __u32 saddr = skb->nh.iph->saddr;
739 __u32 daddr = skb->nh.iph->daddr;
740 __u32 isn = TCP_SKB_CB(skb)->when;
741 struct dst_entry *dst = NULL;
742 #ifdef CONFIG_SYN_COOKIES
745 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
748 /* Never answer to SYNs send to broadcast or multicast */
749 if (((struct rtable *)skb->dst)->rt_flags &
750 (RTCF_BROADCAST | RTCF_MULTICAST))
753 /* TW buckets are converted to open requests without
754 * limitations, they conserve resources and peer is
755 * evidently real one.
757 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
758 #ifdef CONFIG_SYN_COOKIES
759 if (sysctl_tcp_syncookies) {
766 /* Accept backlog is full. If we have already queued enough
767 * of warm entries in syn queue, drop request. It is better than
768 * clogging syn queue with openreqs with exponentially increasing
771 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
774 req = reqsk_alloc(&tcp_request_sock_ops);
778 tcp_clear_options(&tmp_opt);
779 tmp_opt.mss_clamp = 536;
780 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
782 tcp_parse_options(skb, &tmp_opt, 0);
785 tcp_clear_options(&tmp_opt);
786 tmp_opt.saw_tstamp = 0;
789 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
790 /* Some OSes (unknown ones, but I see them on web server, which
791 * contains information interesting only for windows'
792 * users) do not send their stamp in SYN. It is easy case.
793 * We simply do not advertise TS support.
795 tmp_opt.saw_tstamp = 0;
796 tmp_opt.tstamp_ok = 0;
798 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
800 tcp_openreq_init(req, &tmp_opt, skb);
802 ireq = inet_rsk(req);
803 ireq->loc_addr = daddr;
804 ireq->rmt_addr = saddr;
805 ireq->opt = tcp_v4_save_options(sk, skb);
807 TCP_ECN_create_request(req, skb->h.th);
810 #ifdef CONFIG_SYN_COOKIES
811 syn_flood_warning(skb);
813 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
815 struct inet_peer *peer = NULL;
817 /* VJ's idea. We save last timestamp seen
818 * from the destination in peer table, when entering
819 * state TIME-WAIT, and check against it before
820 * accepting new connection request.
822 * If "isn" is not zero, this request hit alive
823 * timewait bucket, so that all the necessary checks
824 * are made in the function processing timewait state.
826 if (tmp_opt.saw_tstamp &&
827 tcp_death_row.sysctl_tw_recycle &&
828 (dst = inet_csk_route_req(sk, req)) != NULL &&
829 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
830 peer->v4daddr == saddr) {
831 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
832 (s32)(peer->tcp_ts - req->ts_recent) >
834 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
839 /* Kill the following clause, if you dislike this way. */
840 else if (!sysctl_tcp_syncookies &&
841 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
842 (sysctl_max_syn_backlog >> 2)) &&
843 (!peer || !peer->tcp_ts_stamp) &&
844 (!dst || !dst_metric(dst, RTAX_RTT))) {
845 /* Without syncookies last quarter of
846 * backlog is filled with destinations,
847 * proven to be alive.
848 * It means that we continue to communicate
849 * to destinations, already remembered
850 * to the moment of synflood.
852 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
853 "request from %u.%u.%u.%u/%u\n",
855 ntohs(skb->h.th->source));
860 isn = tcp_v4_init_sequence(sk, skb);
862 tcp_rsk(req)->snt_isn = isn;
864 if (tcp_v4_send_synack(sk, req, dst))
870 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
877 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
883 * The three way handshake has completed - we got a valid synack -
884 * now create the new socket.
886 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
887 struct request_sock *req,
888 struct dst_entry *dst)
890 struct inet_request_sock *ireq;
891 struct inet_sock *newinet;
892 struct tcp_sock *newtp;
895 if (sk_acceptq_is_full(sk))
898 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
901 newsk = tcp_create_openreq_child(sk, req, skb);
905 newsk->sk_gso_type = SKB_GSO_TCPV4;
906 sk_setup_caps(newsk, dst);
908 newtp = tcp_sk(newsk);
909 newinet = inet_sk(newsk);
910 ireq = inet_rsk(req);
911 newinet->daddr = ireq->rmt_addr;
912 newinet->rcv_saddr = ireq->loc_addr;
913 newinet->saddr = ireq->loc_addr;
914 newinet->opt = ireq->opt;
916 newinet->mc_index = inet_iif(skb);
917 newinet->mc_ttl = skb->nh.iph->ttl;
918 inet_csk(newsk)->icsk_ext_hdr_len = 0;
920 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
921 newinet->id = newtp->write_seq ^ jiffies;
923 tcp_mtup_init(newsk);
924 tcp_sync_mss(newsk, dst_mtu(dst));
925 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
926 tcp_initialize_rcv_mss(newsk);
928 __inet_hash(&tcp_hashinfo, newsk, 0);
929 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
934 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
936 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
941 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
943 struct tcphdr *th = skb->h.th;
944 struct iphdr *iph = skb->nh.iph;
946 struct request_sock **prev;
947 /* Find possible connection requests. */
948 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
949 iph->saddr, iph->daddr);
951 return tcp_check_req(sk, skb, req, prev);
953 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
954 th->source, skb->nh.iph->daddr,
955 ntohs(th->dest), inet_iif(skb));
958 if (nsk->sk_state != TCP_TIME_WAIT) {
962 inet_twsk_put((struct inet_timewait_sock *)nsk);
966 #ifdef CONFIG_SYN_COOKIES
967 if (!th->rst && !th->syn && th->ack)
968 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
973 static int tcp_v4_checksum_init(struct sk_buff *skb)
975 if (skb->ip_summed == CHECKSUM_HW) {
976 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
977 skb->nh.iph->daddr, skb->csum)) {
978 skb->ip_summed = CHECKSUM_UNNECESSARY;
983 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
984 skb->len, IPPROTO_TCP, 0);
986 if (skb->len <= 76) {
987 return __skb_checksum_complete(skb);
993 /* The socket must have it's spinlock held when we get
996 * We have a potential double-lock case here, so even when
997 * doing backlog processing we use the BH locking scheme.
998 * This is because we cannot sleep with the original spinlock
1001 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1003 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1004 TCP_CHECK_TIMER(sk);
1005 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1007 TCP_CHECK_TIMER(sk);
1011 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1014 if (sk->sk_state == TCP_LISTEN) {
1015 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1020 if (tcp_child_process(sk, nsk, skb))
1026 TCP_CHECK_TIMER(sk);
1027 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1029 TCP_CHECK_TIMER(sk);
1033 tcp_v4_send_reset(skb);
1036 /* Be careful here. If this function gets more complicated and
1037 * gcc suffers from register pressure on the x86, sk (in %ebx)
1038 * might be destroyed here. This current version compiles correctly,
1039 * but you have been warned.
1044 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1052 int tcp_v4_rcv(struct sk_buff *skb)
1058 if (skb->pkt_type != PACKET_HOST)
1061 /* Count it even if it's bad */
1062 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1064 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1069 if (th->doff < sizeof(struct tcphdr) / 4)
1071 if (!pskb_may_pull(skb, th->doff * 4))
1074 /* An explanation is required here, I think.
1075 * Packet length and doff are validated by header prediction,
1076 * provided case of th->doff==0 is eliminated.
1077 * So, we defer the checks. */
1078 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1079 tcp_v4_checksum_init(skb)))
1083 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1084 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1085 skb->len - th->doff * 4);
1086 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1087 TCP_SKB_CB(skb)->when = 0;
1088 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1089 TCP_SKB_CB(skb)->sacked = 0;
1091 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1092 skb->nh.iph->daddr, ntohs(th->dest),
1099 if (sk->sk_state == TCP_TIME_WAIT)
1102 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1103 goto discard_and_relse;
1106 if (sk_filter(sk, skb, 0))
1107 goto discard_and_relse;
1111 bh_lock_sock_nested(sk);
1113 if (!sock_owned_by_user(sk)) {
1114 #ifdef CONFIG_NET_DMA
1115 struct tcp_sock *tp = tcp_sk(sk);
1116 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1117 tp->ucopy.dma_chan = get_softnet_dma();
1118 if (tp->ucopy.dma_chan)
1119 ret = tcp_v4_do_rcv(sk, skb);
1123 if (!tcp_prequeue(sk, skb))
1124 ret = tcp_v4_do_rcv(sk, skb);
1127 sk_add_backlog(sk, skb);
1135 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1138 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1140 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1142 tcp_v4_send_reset(skb);
1146 /* Discard frame. */
1155 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1156 inet_twsk_put((struct inet_timewait_sock *) sk);
1160 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1161 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1162 inet_twsk_put((struct inet_timewait_sock *) sk);
1165 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1168 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1173 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1175 inet_twsk_put((struct inet_timewait_sock *)sk);
1179 /* Fall through to ACK */
1182 tcp_v4_timewait_ack(sk, skb);
1186 case TCP_TW_SUCCESS:;
1191 /* VJ's idea. Save last timestamp seen from this destination
1192 * and hold it at least for normal timewait interval to use for duplicate
1193 * segment detection in subsequent connections, before they enter synchronized
1197 int tcp_v4_remember_stamp(struct sock *sk)
1199 struct inet_sock *inet = inet_sk(sk);
1200 struct tcp_sock *tp = tcp_sk(sk);
1201 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1202 struct inet_peer *peer = NULL;
1205 if (!rt || rt->rt_dst != inet->daddr) {
1206 peer = inet_getpeer(inet->daddr, 1);
1210 rt_bind_peer(rt, 1);
1215 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1216 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1217 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1218 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1219 peer->tcp_ts = tp->rx_opt.ts_recent;
1229 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1231 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1234 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1236 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1237 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1238 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1239 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1240 peer->tcp_ts = tcptw->tw_ts_recent;
1249 struct inet_connection_sock_af_ops ipv4_specific = {
1250 .queue_xmit = ip_queue_xmit,
1251 .send_check = tcp_v4_send_check,
1252 .rebuild_header = inet_sk_rebuild_header,
1253 .conn_request = tcp_v4_conn_request,
1254 .syn_recv_sock = tcp_v4_syn_recv_sock,
1255 .remember_stamp = tcp_v4_remember_stamp,
1256 .net_header_len = sizeof(struct iphdr),
1257 .setsockopt = ip_setsockopt,
1258 .getsockopt = ip_getsockopt,
1259 .addr2sockaddr = inet_csk_addr2sockaddr,
1260 .sockaddr_len = sizeof(struct sockaddr_in),
1261 #ifdef CONFIG_COMPAT
1262 .compat_setsockopt = compat_ip_setsockopt,
1263 .compat_getsockopt = compat_ip_getsockopt,
1267 /* NOTE: A lot of things set to zero explicitly by call to
1268 * sk_alloc() so need not be done here.
1270 static int tcp_v4_init_sock(struct sock *sk)
1272 struct inet_connection_sock *icsk = inet_csk(sk);
1273 struct tcp_sock *tp = tcp_sk(sk);
1275 skb_queue_head_init(&tp->out_of_order_queue);
1276 tcp_init_xmit_timers(sk);
1277 tcp_prequeue_init(tp);
1279 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1280 tp->mdev = TCP_TIMEOUT_INIT;
1282 /* So many TCP implementations out there (incorrectly) count the
1283 * initial SYN frame in their delayed-ACK and congestion control
1284 * algorithms that we must have the following bandaid to talk
1285 * efficiently to them. -DaveM
1289 /* See draft-stevens-tcpca-spec-01 for discussion of the
1290 * initialization of these values.
1292 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1293 tp->snd_cwnd_clamp = ~0;
1294 tp->mss_cache = 536;
1296 tp->reordering = sysctl_tcp_reordering;
1297 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1299 sk->sk_state = TCP_CLOSE;
1301 sk->sk_write_space = sk_stream_write_space;
1302 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1304 icsk->icsk_af_ops = &ipv4_specific;
1305 icsk->icsk_sync_mss = tcp_sync_mss;
1307 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1308 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1310 atomic_inc(&tcp_sockets_allocated);
1315 int tcp_v4_destroy_sock(struct sock *sk)
1317 struct tcp_sock *tp = tcp_sk(sk);
1319 tcp_clear_xmit_timers(sk);
1321 tcp_cleanup_congestion_control(sk);
1323 /* Cleanup up the write buffer. */
1324 sk_stream_writequeue_purge(sk);
1326 /* Cleans up our, hopefully empty, out_of_order_queue. */
1327 __skb_queue_purge(&tp->out_of_order_queue);
1329 #ifdef CONFIG_NET_DMA
1330 /* Cleans up our sk_async_wait_queue */
1331 __skb_queue_purge(&sk->sk_async_wait_queue);
1334 /* Clean prequeue, it must be empty really */
1335 __skb_queue_purge(&tp->ucopy.prequeue);
1337 /* Clean up a referenced TCP bind bucket. */
1338 if (inet_csk(sk)->icsk_bind_hash)
1339 inet_put_port(&tcp_hashinfo, sk);
1342 * If sendmsg cached page exists, toss it.
1344 if (sk->sk_sndmsg_page) {
1345 __free_page(sk->sk_sndmsg_page);
1346 sk->sk_sndmsg_page = NULL;
1349 atomic_dec(&tcp_sockets_allocated);
1354 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1356 #ifdef CONFIG_PROC_FS
1357 /* Proc filesystem TCP sock list dumping. */
1359 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1361 return hlist_empty(head) ? NULL :
1362 list_entry(head->first, struct inet_timewait_sock, tw_node);
1365 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1367 return tw->tw_node.next ?
1368 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1371 static void *listening_get_next(struct seq_file *seq, void *cur)
1373 struct inet_connection_sock *icsk;
1374 struct hlist_node *node;
1375 struct sock *sk = cur;
1376 struct tcp_iter_state* st = seq->private;
1380 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1386 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1387 struct request_sock *req = cur;
1389 icsk = inet_csk(st->syn_wait_sk);
1393 if (req->rsk_ops->family == st->family) {
1399 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1402 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1404 sk = sk_next(st->syn_wait_sk);
1405 st->state = TCP_SEQ_STATE_LISTENING;
1406 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1408 icsk = inet_csk(sk);
1409 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1410 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1412 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1416 sk_for_each_from(sk, node) {
1417 if (sk->sk_family == st->family) {
1421 icsk = inet_csk(sk);
1422 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1423 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1425 st->uid = sock_i_uid(sk);
1426 st->syn_wait_sk = sk;
1427 st->state = TCP_SEQ_STATE_OPENREQ;
1431 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1433 if (++st->bucket < INET_LHTABLE_SIZE) {
1434 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1442 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1444 void *rc = listening_get_next(seq, NULL);
1446 while (rc && *pos) {
1447 rc = listening_get_next(seq, rc);
1453 static void *established_get_first(struct seq_file *seq)
1455 struct tcp_iter_state* st = seq->private;
1458 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1460 struct hlist_node *node;
1461 struct inet_timewait_sock *tw;
1463 /* We can reschedule _before_ having picked the target: */
1464 cond_resched_softirq();
1466 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1467 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1468 if (sk->sk_family != st->family) {
1474 st->state = TCP_SEQ_STATE_TIME_WAIT;
1475 inet_twsk_for_each(tw, node,
1476 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1477 if (tw->tw_family != st->family) {
1483 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1484 st->state = TCP_SEQ_STATE_ESTABLISHED;
1490 static void *established_get_next(struct seq_file *seq, void *cur)
1492 struct sock *sk = cur;
1493 struct inet_timewait_sock *tw;
1494 struct hlist_node *node;
1495 struct tcp_iter_state* st = seq->private;
1499 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1503 while (tw && tw->tw_family != st->family) {
1510 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1511 st->state = TCP_SEQ_STATE_ESTABLISHED;
1513 /* We can reschedule between buckets: */
1514 cond_resched_softirq();
1516 if (++st->bucket < tcp_hashinfo.ehash_size) {
1517 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1518 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1526 sk_for_each_from(sk, node) {
1527 if (sk->sk_family == st->family)
1531 st->state = TCP_SEQ_STATE_TIME_WAIT;
1532 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1540 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1542 void *rc = established_get_first(seq);
1545 rc = established_get_next(seq, rc);
1551 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1554 struct tcp_iter_state* st = seq->private;
1556 inet_listen_lock(&tcp_hashinfo);
1557 st->state = TCP_SEQ_STATE_LISTENING;
1558 rc = listening_get_idx(seq, &pos);
1561 inet_listen_unlock(&tcp_hashinfo);
1563 st->state = TCP_SEQ_STATE_ESTABLISHED;
1564 rc = established_get_idx(seq, pos);
1570 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1572 struct tcp_iter_state* st = seq->private;
1573 st->state = TCP_SEQ_STATE_LISTENING;
1575 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1578 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1581 struct tcp_iter_state* st;
1583 if (v == SEQ_START_TOKEN) {
1584 rc = tcp_get_idx(seq, 0);
1589 switch (st->state) {
1590 case TCP_SEQ_STATE_OPENREQ:
1591 case TCP_SEQ_STATE_LISTENING:
1592 rc = listening_get_next(seq, v);
1594 inet_listen_unlock(&tcp_hashinfo);
1596 st->state = TCP_SEQ_STATE_ESTABLISHED;
1597 rc = established_get_first(seq);
1600 case TCP_SEQ_STATE_ESTABLISHED:
1601 case TCP_SEQ_STATE_TIME_WAIT:
1602 rc = established_get_next(seq, v);
1610 static void tcp_seq_stop(struct seq_file *seq, void *v)
1612 struct tcp_iter_state* st = seq->private;
1614 switch (st->state) {
1615 case TCP_SEQ_STATE_OPENREQ:
1617 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1618 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1620 case TCP_SEQ_STATE_LISTENING:
1621 if (v != SEQ_START_TOKEN)
1622 inet_listen_unlock(&tcp_hashinfo);
1624 case TCP_SEQ_STATE_TIME_WAIT:
1625 case TCP_SEQ_STATE_ESTABLISHED:
1627 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1633 static int tcp_seq_open(struct inode *inode, struct file *file)
1635 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1636 struct seq_file *seq;
1637 struct tcp_iter_state *s;
1640 if (unlikely(afinfo == NULL))
1643 s = kzalloc(sizeof(*s), GFP_KERNEL);
1646 s->family = afinfo->family;
1647 s->seq_ops.start = tcp_seq_start;
1648 s->seq_ops.next = tcp_seq_next;
1649 s->seq_ops.show = afinfo->seq_show;
1650 s->seq_ops.stop = tcp_seq_stop;
1652 rc = seq_open(file, &s->seq_ops);
1655 seq = file->private_data;
1664 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1667 struct proc_dir_entry *p;
1671 afinfo->seq_fops->owner = afinfo->owner;
1672 afinfo->seq_fops->open = tcp_seq_open;
1673 afinfo->seq_fops->read = seq_read;
1674 afinfo->seq_fops->llseek = seq_lseek;
1675 afinfo->seq_fops->release = seq_release_private;
1677 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1685 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1689 proc_net_remove(afinfo->name);
1690 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1693 static void get_openreq4(struct sock *sk, struct request_sock *req,
1694 char *tmpbuf, int i, int uid)
1696 const struct inet_request_sock *ireq = inet_rsk(req);
1697 int ttd = req->expires - jiffies;
1699 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1700 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1703 ntohs(inet_sk(sk)->sport),
1705 ntohs(ireq->rmt_port),
1707 0, 0, /* could print option size, but that is af dependent. */
1708 1, /* timers active (only the expire timer) */
1709 jiffies_to_clock_t(ttd),
1712 0, /* non standard timer */
1713 0, /* open_requests have no inode */
1714 atomic_read(&sk->sk_refcnt),
1718 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1721 unsigned long timer_expires;
1722 struct tcp_sock *tp = tcp_sk(sp);
1723 const struct inet_connection_sock *icsk = inet_csk(sp);
1724 struct inet_sock *inet = inet_sk(sp);
1725 unsigned int dest = inet->daddr;
1726 unsigned int src = inet->rcv_saddr;
1727 __u16 destp = ntohs(inet->dport);
1728 __u16 srcp = ntohs(inet->sport);
1730 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1732 timer_expires = icsk->icsk_timeout;
1733 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1735 timer_expires = icsk->icsk_timeout;
1736 } else if (timer_pending(&sp->sk_timer)) {
1738 timer_expires = sp->sk_timer.expires;
1741 timer_expires = jiffies;
1744 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1745 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1746 i, src, srcp, dest, destp, sp->sk_state,
1747 tp->write_seq - tp->snd_una,
1748 (sp->sk_state == TCP_LISTEN) ? sp->sk_ack_backlog : (tp->rcv_nxt - tp->copied_seq),
1750 jiffies_to_clock_t(timer_expires - jiffies),
1751 icsk->icsk_retransmits,
1753 icsk->icsk_probes_out,
1755 atomic_read(&sp->sk_refcnt), sp,
1758 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1760 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1763 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1765 unsigned int dest, src;
1767 int ttd = tw->tw_ttd - jiffies;
1772 dest = tw->tw_daddr;
1773 src = tw->tw_rcv_saddr;
1774 destp = ntohs(tw->tw_dport);
1775 srcp = ntohs(tw->tw_sport);
1777 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1778 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1779 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1780 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1781 atomic_read(&tw->tw_refcnt), tw);
1786 static int tcp4_seq_show(struct seq_file *seq, void *v)
1788 struct tcp_iter_state* st;
1789 char tmpbuf[TMPSZ + 1];
1791 if (v == SEQ_START_TOKEN) {
1792 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1793 " sl local_address rem_address st tx_queue "
1794 "rx_queue tr tm->when retrnsmt uid timeout "
1800 switch (st->state) {
1801 case TCP_SEQ_STATE_LISTENING:
1802 case TCP_SEQ_STATE_ESTABLISHED:
1803 get_tcp4_sock(v, tmpbuf, st->num);
1805 case TCP_SEQ_STATE_OPENREQ:
1806 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1808 case TCP_SEQ_STATE_TIME_WAIT:
1809 get_timewait4_sock(v, tmpbuf, st->num);
1812 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1817 static struct file_operations tcp4_seq_fops;
1818 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1819 .owner = THIS_MODULE,
1822 .seq_show = tcp4_seq_show,
1823 .seq_fops = &tcp4_seq_fops,
1826 int __init tcp4_proc_init(void)
1828 return tcp_proc_register(&tcp4_seq_afinfo);
1831 void tcp4_proc_exit(void)
1833 tcp_proc_unregister(&tcp4_seq_afinfo);
1835 #endif /* CONFIG_PROC_FS */
1837 struct proto tcp_prot = {
1839 .owner = THIS_MODULE,
1841 .connect = tcp_v4_connect,
1842 .disconnect = tcp_disconnect,
1843 .accept = inet_csk_accept,
1845 .init = tcp_v4_init_sock,
1846 .destroy = tcp_v4_destroy_sock,
1847 .shutdown = tcp_shutdown,
1848 .setsockopt = tcp_setsockopt,
1849 .getsockopt = tcp_getsockopt,
1850 .sendmsg = tcp_sendmsg,
1851 .recvmsg = tcp_recvmsg,
1852 .backlog_rcv = tcp_v4_do_rcv,
1853 .hash = tcp_v4_hash,
1854 .unhash = tcp_unhash,
1855 .get_port = tcp_v4_get_port,
1856 .enter_memory_pressure = tcp_enter_memory_pressure,
1857 .sockets_allocated = &tcp_sockets_allocated,
1858 .orphan_count = &tcp_orphan_count,
1859 .memory_allocated = &tcp_memory_allocated,
1860 .memory_pressure = &tcp_memory_pressure,
1861 .sysctl_mem = sysctl_tcp_mem,
1862 .sysctl_wmem = sysctl_tcp_wmem,
1863 .sysctl_rmem = sysctl_tcp_rmem,
1864 .max_header = MAX_TCP_HEADER,
1865 .obj_size = sizeof(struct tcp_sock),
1866 .twsk_prot = &tcp_timewait_sock_ops,
1867 .rsk_prot = &tcp_request_sock_ops,
1868 #ifdef CONFIG_COMPAT
1869 .compat_setsockopt = compat_tcp_setsockopt,
1870 .compat_getsockopt = compat_tcp_getsockopt,
1874 void __init tcp_v4_init(struct net_proto_family *ops)
1876 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, IPPROTO_TCP) < 0)
1877 panic("Failed to create the TCP control socket.\n");
1880 EXPORT_SYMBOL(ipv4_specific);
1881 EXPORT_SYMBOL(tcp_hashinfo);
1882 EXPORT_SYMBOL(tcp_prot);
1883 EXPORT_SYMBOL(tcp_unhash);
1884 EXPORT_SYMBOL(tcp_v4_conn_request);
1885 EXPORT_SYMBOL(tcp_v4_connect);
1886 EXPORT_SYMBOL(tcp_v4_do_rcv);
1887 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1888 EXPORT_SYMBOL(tcp_v4_send_check);
1889 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1891 #ifdef CONFIG_PROC_FS
1892 EXPORT_SYMBOL(tcp_proc_register);
1893 EXPORT_SYMBOL(tcp_proc_unregister);
1895 EXPORT_SYMBOL(sysctl_local_port_range);
1896 EXPORT_SYMBOL(sysctl_tcp_low_latency);