4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
38 #include "delegation.h"
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 const struct inode_operations nfs_dir_inode_operations = {
73 .symlink = nfs_symlink,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
84 const struct inode_operations nfs3_dir_inode_operations = {
89 .symlink = nfs_symlink,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode *inode, struct file *filp)
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
149 unsigned long page_index;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
157 unsigned long timestamp;
159 } nfs_readdir_descriptor_t;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 spin_lock(&inode->i_lock);
204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 spin_unlock(&inode->i_lock);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode, inode->i_mapping);
219 nfs_zap_caches(inode);
225 int dir_decode(nfs_readdir_descriptor_t *desc)
227 __be32 *p = desc->ptr;
228 p = desc->decode(p, desc->entry, desc->plus);
232 if (desc->timestamp_valid)
233 desc->entry->fattr->time_start = desc->timestamp;
235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
240 void dir_page_release(nfs_readdir_descriptor_t *desc)
243 page_cache_release(desc->page);
249 * Given a pointer to a buffer that has already been filled by a call
250 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
252 * If the end of the buffer has been reached, return -EAGAIN, if not,
253 * return the offset within the buffer of the next entry to be
257 int find_dirent(nfs_readdir_descriptor_t *desc)
259 struct nfs_entry *entry = desc->entry;
263 while((status = dir_decode(desc)) == 0) {
264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265 __FUNCTION__, (unsigned long long)entry->cookie);
266 if (entry->prev_cookie == *desc->dir_cookie)
268 if (loop_count++ > 200) {
277 * Given a pointer to a buffer that has already been filled by a call
278 * to readdir, find the entry at offset 'desc->file->f_pos'.
280 * If the end of the buffer has been reached, return -EAGAIN, if not,
281 * return the offset within the buffer of the next entry to be
285 int find_dirent_index(nfs_readdir_descriptor_t *desc)
287 struct nfs_entry *entry = desc->entry;
292 status = dir_decode(desc);
296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297 (unsigned long long)entry->cookie, desc->current_index);
299 if (desc->file->f_pos == desc->current_index) {
300 *desc->dir_cookie = entry->cookie;
303 desc->current_index++;
304 if (loop_count++ > 200) {
313 * Find the given page, and call find_dirent() or find_dirent_index in
314 * order to try to return the next entry.
317 int find_dirent_page(nfs_readdir_descriptor_t *desc)
319 struct inode *inode = desc->file->f_path.dentry->d_inode;
323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324 __FUNCTION__, desc->page_index,
325 (long long) *desc->dir_cookie);
327 /* If we find the page in the page_cache, we cannot be sure
328 * how fresh the data is, so we will ignore readdir_plus attributes.
330 desc->timestamp_valid = 0;
331 page = read_cache_page(inode->i_mapping, desc->page_index,
332 (filler_t *)nfs_readdir_filler, desc);
334 status = PTR_ERR(page);
338 /* NOTE: Someone else may have changed the READDIRPLUS flag */
340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
341 if (*desc->dir_cookie != 0)
342 status = find_dirent(desc);
344 status = find_dirent_index(desc);
346 dir_page_release(desc);
348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
353 * Recurse through the page cache pages, and return a
354 * filled nfs_entry structure of the next directory entry if possible.
356 * The target for the search is '*desc->dir_cookie' if non-0,
357 * 'desc->file->f_pos' otherwise
360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
365 /* Always search-by-index from the beginning of the cache */
366 if (*desc->dir_cookie == 0) {
367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 (long long)desc->file->f_pos);
369 desc->page_index = 0;
370 desc->entry->cookie = desc->entry->prev_cookie = 0;
371 desc->entry->eof = 0;
372 desc->current_index = 0;
374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 (unsigned long long)*desc->dir_cookie);
378 res = find_dirent_page(desc);
381 /* Align to beginning of next page */
383 if (loop_count++ > 200) {
389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
393 static inline unsigned int dt_type(struct inode *inode)
395 return (inode->i_mode >> 12) & 15;
398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
401 * Once we've found the start of the dirent within a page: fill 'er up...
404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
407 struct file *file = desc->file;
408 struct nfs_entry *entry = desc->entry;
409 struct dentry *dentry = NULL;
410 unsigned long fileid;
414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 (unsigned long long)entry->cookie);
418 unsigned d_type = DT_UNKNOWN;
419 /* Note: entry->prev_cookie contains the cookie for
420 * retrieving the current dirent on the server */
421 fileid = nfs_fileid_to_ino_t(entry->ino);
423 /* Get a dentry if we have one */
426 dentry = nfs_readdir_lookup(desc);
428 /* Use readdirplus info */
429 if (dentry != NULL && dentry->d_inode != NULL) {
430 d_type = dt_type(dentry->d_inode);
431 fileid = dentry->d_inode->i_ino;
434 res = filldir(dirent, entry->name, entry->len,
435 file->f_pos, fileid, d_type);
439 *desc->dir_cookie = entry->cookie;
440 if (dir_decode(desc) != 0) {
444 if (loop_count++ > 200) {
449 dir_page_release(desc);
452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc->dir_cookie, res);
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
473 struct file *file = desc->file;
474 struct inode *inode = file->f_path.dentry->d_inode;
475 struct rpc_cred *cred = nfs_file_cred(file);
476 struct page *page = NULL;
478 unsigned long timestamp;
480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc->dir_cookie);
483 page = alloc_page(GFP_HIGHUSER);
489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
491 NFS_SERVER(inode)->dtsize,
493 spin_lock(&inode->i_lock);
494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495 spin_unlock(&inode->i_lock);
497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
498 if (desc->error >= 0) {
499 desc->timestamp = timestamp;
500 desc->timestamp_valid = 1;
501 if ((status = dir_decode(desc)) == 0)
502 desc->entry->prev_cookie = *desc->dir_cookie;
508 status = nfs_do_filldir(desc, dirent, filldir);
510 /* Reset read descriptor so it searches the page cache from
511 * the start upon the next call to readdir_search_pagecache() */
512 desc->page_index = 0;
513 desc->entry->cookie = desc->entry->prev_cookie = 0;
514 desc->entry->eof = 0;
516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517 __FUNCTION__, status);
520 dir_page_release(desc);
524 /* The file offset position represents the dirent entry number. A
525 last cookie cache takes care of the common case of reading the
528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
530 struct dentry *dentry = filp->f_path.dentry;
531 struct inode *inode = dentry->d_inode;
532 nfs_readdir_descriptor_t my_desc,
534 struct nfs_entry my_entry;
536 struct nfs_fattr fattr;
539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 dentry->d_parent->d_name.name, dentry->d_name.name,
541 (long long)filp->f_pos);
542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
553 * filp->f_pos points to the dirent entry number.
554 * *desc->dir_cookie has the cookie for the next entry. We have
555 * to either find the entry with the appropriate number or
556 * revalidate the cookie.
558 memset(desc, 0, sizeof(*desc));
561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562 desc->decode = NFS_PROTO(inode)->decode_dirent;
563 desc->plus = NFS_USE_READDIRPLUS(inode);
565 my_entry.cookie = my_entry.prev_cookie = 0;
568 my_entry.fattr = &fattr;
569 nfs_fattr_init(&fattr);
570 desc->entry = &my_entry;
572 while(!desc->entry->eof) {
573 res = readdir_search_pagecache(desc);
575 if (res == -EBADCOOKIE) {
576 /* This means either end of directory */
577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578 /* Or that the server has 'lost' a cookie */
579 res = uncached_readdir(desc, dirent, filldir);
586 if (res == -ETOOSMALL && desc->plus) {
587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588 nfs_zap_caches(inode);
590 desc->entry->eof = 0;
596 res = nfs_do_filldir(desc, dirent, filldir);
605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606 dentry->d_parent->d_name.name, dentry->d_name.name,
611 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
616 offset += filp->f_pos;
624 if (offset != filp->f_pos) {
625 filp->f_pos = offset;
626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
634 * All directory operations under NFS are synchronous, so fsync()
635 * is a dummy operation.
637 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 dentry->d_parent->d_name.name, dentry->d_name.name,
647 * A check for whether or not the parent directory has changed.
648 * In the case it has, we assume that the dentries are untrustworthy
649 * and may need to be looked up again.
651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
657 verf = (unsigned long)dentry->d_fsdata;
658 if (nfs_caches_unstable(dir)
659 || verf != NFS_I(dir)->cache_change_attribute)
664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
666 dentry->d_fsdata = (void *)verf;
669 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
671 nfs_set_verifier(dentry, verf);
675 * Whenever an NFS operation succeeds, we know that the dentry
676 * is valid, so we update the revalidation timestamp.
678 static inline void nfs_renew_times(struct dentry * dentry)
680 dentry->d_time = jiffies;
684 * Return the intent data that applies to this particular path component
686 * Note that the current set of intents only apply to the very last
687 * component of the path.
688 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
690 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
692 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
694 return nd->flags & mask;
698 * Inode and filehandle revalidation for lookups.
700 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
701 * or if the intent information indicates that we're about to open this
702 * particular file and the "nocto" mount flag is not set.
706 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
708 struct nfs_server *server = NFS_SERVER(inode);
711 /* VFS wants an on-the-wire revalidation */
712 if (nd->flags & LOOKUP_REVAL)
714 /* This is an open(2) */
715 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
716 !(server->flags & NFS_MOUNT_NOCTO) &&
717 (S_ISREG(inode->i_mode) ||
718 S_ISDIR(inode->i_mode)))
721 return nfs_revalidate_inode(server, inode);
723 return __nfs_revalidate_inode(server, inode);
727 * We judge how long we want to trust negative
728 * dentries by looking at the parent inode mtime.
730 * If parent mtime has changed, we revalidate, else we wait for a
731 * period corresponding to the parent's attribute cache timeout value.
734 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
735 struct nameidata *nd)
737 /* Don't revalidate a negative dentry if we're creating a new file */
738 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
740 return !nfs_check_verifier(dir, dentry);
744 * This is called every time the dcache has a lookup hit,
745 * and we should check whether we can really trust that
748 * NOTE! The hit can be a negative hit too, don't assume
751 * If the parent directory is seen to have changed, we throw out the
752 * cached dentry and do a new lookup.
754 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
758 struct dentry *parent;
760 struct nfs_fh fhandle;
761 struct nfs_fattr fattr;
762 unsigned long verifier;
764 parent = dget_parent(dentry);
766 dir = parent->d_inode;
767 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
768 inode = dentry->d_inode;
770 /* Revalidate parent directory attribute cache */
771 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
775 if (nfs_neg_need_reval(dir, dentry, nd))
780 if (is_bad_inode(inode)) {
781 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
782 __FUNCTION__, dentry->d_parent->d_name.name,
783 dentry->d_name.name);
787 /* Force a full look up iff the parent directory has changed */
788 if (nfs_check_verifier(dir, dentry)) {
789 if (nfs_lookup_verify_inode(inode, nd))
794 if (NFS_STALE(inode))
797 verifier = nfs_save_change_attribute(dir);
798 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
801 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
803 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
806 nfs_renew_times(dentry);
807 nfs_refresh_verifier(dentry, verifier);
811 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
812 __FUNCTION__, dentry->d_parent->d_name.name,
813 dentry->d_name.name);
819 if (inode && S_ISDIR(inode->i_mode)) {
820 /* Purge readdir caches. */
821 nfs_zap_caches(inode);
822 /* If we have submounts, don't unhash ! */
823 if (have_submounts(dentry))
825 shrink_dcache_parent(dentry);
830 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
831 __FUNCTION__, dentry->d_parent->d_name.name,
832 dentry->d_name.name);
837 * This is called from dput() when d_count is going to 0.
839 static int nfs_dentry_delete(struct dentry *dentry)
841 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
842 dentry->d_parent->d_name.name, dentry->d_name.name,
845 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
846 /* Unhash it, so that ->d_iput() would be called */
849 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
850 /* Unhash it, so that ancestors of killed async unlink
851 * files will be cleaned up during umount */
859 * Called when the dentry loses inode.
860 * We use it to clean up silly-renamed files.
862 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
864 nfs_inode_return_delegation(inode);
865 if (S_ISDIR(inode->i_mode))
866 /* drop any readdir cache as it could easily be old */
867 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
869 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
872 nfs_complete_unlink(dentry);
875 /* When creating a negative dentry, we want to renew d_time */
876 nfs_renew_times(dentry);
880 struct dentry_operations nfs_dentry_operations = {
881 .d_revalidate = nfs_lookup_revalidate,
882 .d_delete = nfs_dentry_delete,
883 .d_iput = nfs_dentry_iput,
887 * Use intent information to check whether or not we're going to do
888 * an O_EXCL create using this path component.
891 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
893 if (NFS_PROTO(dir)->version == 2)
895 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
897 return (nd->intent.open.flags & O_EXCL) != 0;
900 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
901 struct nfs_fh *fh, struct nfs_fattr *fattr)
903 struct nfs_server *server = NFS_SERVER(dir);
905 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
906 /* Revalidate fsid on root dir */
907 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
911 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
914 struct inode *inode = NULL;
916 struct nfs_fh fhandle;
917 struct nfs_fattr fattr;
919 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
920 dentry->d_parent->d_name.name, dentry->d_name.name);
921 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
923 res = ERR_PTR(-ENAMETOOLONG);
924 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
927 res = ERR_PTR(-ENOMEM);
928 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
933 * If we're doing an exclusive create, optimize away the lookup
934 * but don't hash the dentry.
936 if (nfs_is_exclusive_create(dir, nd)) {
937 d_instantiate(dentry, NULL);
942 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
943 if (error == -ENOENT)
946 res = ERR_PTR(error);
949 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
951 res = ERR_PTR(error);
954 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
955 res = (struct dentry *)inode;
960 res = d_materialise_unique(dentry, inode);
962 struct dentry *parent;
965 /* Was a directory renamed! */
966 parent = dget_parent(res);
967 if (!IS_ROOT(parent))
968 nfs_mark_for_revalidate(parent->d_inode);
972 nfs_renew_times(dentry);
973 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
981 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
983 struct dentry_operations nfs4_dentry_operations = {
984 .d_revalidate = nfs_open_revalidate,
985 .d_delete = nfs_dentry_delete,
986 .d_iput = nfs_dentry_iput,
990 * Use intent information to determine whether we need to substitute
991 * the NFSv4-style stateful OPEN for the LOOKUP call
993 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
995 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
997 /* NFS does not (yet) have a stateful open for directories */
998 if (nd->flags & LOOKUP_DIRECTORY)
1000 /* Are we trying to write to a read only partition? */
1001 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1006 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1008 struct dentry *res = NULL;
1011 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1012 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1014 /* Check that we are indeed trying to open this file */
1015 if (!is_atomic_open(dir, nd))
1018 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1019 res = ERR_PTR(-ENAMETOOLONG);
1022 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1024 /* Let vfs_create() deal with O_EXCL */
1025 if (nd->intent.open.flags & O_EXCL) {
1026 d_add(dentry, NULL);
1030 /* Open the file on the server */
1032 /* Revalidate parent directory attribute cache */
1033 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1035 res = ERR_PTR(error);
1040 if (nd->intent.open.flags & O_CREAT) {
1041 nfs_begin_data_update(dir);
1042 res = nfs4_atomic_open(dir, dentry, nd);
1043 nfs_end_data_update(dir);
1045 res = nfs4_atomic_open(dir, dentry, nd);
1048 error = PTR_ERR(res);
1050 /* Make a negative dentry */
1054 /* This turned out not to be a regular file */
1059 if (!(nd->intent.open.flags & O_NOFOLLOW))
1065 } else if (res != NULL)
1067 nfs_renew_times(dentry);
1068 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1072 return nfs_lookup(dir, dentry, nd);
1075 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1077 struct dentry *parent = NULL;
1078 struct inode *inode = dentry->d_inode;
1080 unsigned long verifier;
1081 int openflags, ret = 0;
1083 parent = dget_parent(dentry);
1084 dir = parent->d_inode;
1085 if (!is_atomic_open(dir, nd))
1087 /* We can't create new files in nfs_open_revalidate(), so we
1088 * optimize away revalidation of negative dentries.
1092 /* NFS only supports OPEN on regular files */
1093 if (!S_ISREG(inode->i_mode))
1095 openflags = nd->intent.open.flags;
1096 /* We cannot do exclusive creation on a positive dentry */
1097 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1099 /* We can't create new files, or truncate existing ones here */
1100 openflags &= ~(O_CREAT|O_TRUNC);
1103 * Note: we're not holding inode->i_mutex and so may be racing with
1104 * operations that change the directory. We therefore save the
1105 * change attribute *before* we do the RPC call.
1108 verifier = nfs_save_change_attribute(dir);
1109 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1111 nfs_refresh_verifier(dentry, verifier);
1120 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1122 return nfs_lookup_revalidate(dentry, nd);
1124 #endif /* CONFIG_NFSV4 */
1126 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1128 struct dentry *parent = desc->file->f_path.dentry;
1129 struct inode *dir = parent->d_inode;
1130 struct nfs_entry *entry = desc->entry;
1131 struct dentry *dentry, *alias;
1132 struct qstr name = {
1133 .name = entry->name,
1136 struct inode *inode;
1140 if (name.name[0] == '.' && name.name[1] == '.')
1141 return dget_parent(parent);
1144 if (name.name[0] == '.')
1145 return dget(parent);
1147 name.hash = full_name_hash(name.name, name.len);
1148 dentry = d_lookup(parent, &name);
1149 if (dentry != NULL) {
1150 /* Is this a positive dentry that matches the readdir info? */
1151 if (dentry->d_inode != NULL &&
1152 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1153 d_mountpoint(dentry))) {
1154 if (!desc->plus || entry->fh->size == 0)
1156 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1160 /* No, so d_drop to allow one to be created */
1164 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1166 /* Note: caller is already holding the dir->i_mutex! */
1167 dentry = d_alloc(parent, &name);
1170 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1171 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1172 if (IS_ERR(inode)) {
1177 alias = d_materialise_unique(dentry, inode);
1178 if (alias != NULL) {
1185 nfs_renew_times(dentry);
1186 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1189 nfs_renew_times(dentry);
1190 nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1195 * Code common to create, mkdir, and mknod.
1197 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1198 struct nfs_fattr *fattr)
1200 struct inode *inode;
1201 int error = -EACCES;
1203 /* We may have been initialized further down */
1204 if (dentry->d_inode)
1206 if (fhandle->size == 0) {
1207 struct inode *dir = dentry->d_parent->d_inode;
1208 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1212 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1213 struct nfs_server *server = NFS_SB(dentry->d_sb);
1214 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1218 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1219 error = PTR_ERR(inode);
1222 d_instantiate(dentry, inode);
1223 if (d_unhashed(dentry))
1229 * Following a failed create operation, we drop the dentry rather
1230 * than retain a negative dentry. This avoids a problem in the event
1231 * that the operation succeeded on the server, but an error in the
1232 * reply path made it appear to have failed.
1234 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1235 struct nameidata *nd)
1241 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1242 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1244 attr.ia_mode = mode;
1245 attr.ia_valid = ATTR_MODE;
1247 if (nd && (nd->flags & LOOKUP_CREATE))
1248 open_flags = nd->intent.open.flags;
1251 nfs_begin_data_update(dir);
1252 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1253 nfs_end_data_update(dir);
1256 nfs_renew_times(dentry);
1257 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1267 * See comments for nfs_proc_create regarding failed operations.
1270 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1275 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1276 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1278 if (!new_valid_dev(rdev))
1281 attr.ia_mode = mode;
1282 attr.ia_valid = ATTR_MODE;
1285 nfs_begin_data_update(dir);
1286 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1287 nfs_end_data_update(dir);
1290 nfs_renew_times(dentry);
1291 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1301 * See comments for nfs_proc_create regarding failed operations.
1303 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1308 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1309 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1311 attr.ia_valid = ATTR_MODE;
1312 attr.ia_mode = mode | S_IFDIR;
1315 nfs_begin_data_update(dir);
1316 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1317 nfs_end_data_update(dir);
1320 nfs_renew_times(dentry);
1321 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1330 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1334 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1338 nfs_begin_data_update(dir);
1339 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1340 /* Ensure the VFS deletes this inode */
1341 if (error == 0 && dentry->d_inode != NULL)
1342 clear_nlink(dentry->d_inode);
1343 nfs_end_data_update(dir);
1349 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1351 static unsigned int sillycounter;
1352 const int i_inosize = sizeof(dir->i_ino)*2;
1353 const int countersize = sizeof(sillycounter)*2;
1354 const int slen = sizeof(".nfs") + i_inosize + countersize - 1;
1357 struct dentry *sdentry;
1360 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1361 dentry->d_parent->d_name.name, dentry->d_name.name,
1362 atomic_read(&dentry->d_count));
1363 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1366 if (!dentry->d_inode)
1367 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1368 dentry->d_parent->d_name.name, dentry->d_name.name);
1371 * We don't allow a dentry to be silly-renamed twice.
1374 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1377 sprintf(silly, ".nfs%*.*lx",
1378 i_inosize, i_inosize, dentry->d_inode->i_ino);
1380 /* Return delegation in anticipation of the rename */
1381 nfs_inode_return_delegation(dentry->d_inode);
1385 char *suffix = silly + slen - countersize;
1389 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1391 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1392 dentry->d_name.name, silly);
1394 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1396 * N.B. Better to return EBUSY here ... it could be
1397 * dangerous to delete the file while it's in use.
1399 if (IS_ERR(sdentry))
1401 } while(sdentry->d_inode != NULL); /* need negative lookup */
1403 qsilly.name = silly;
1404 qsilly.len = strlen(silly);
1405 nfs_begin_data_update(dir);
1406 if (dentry->d_inode) {
1407 nfs_begin_data_update(dentry->d_inode);
1408 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1410 nfs_mark_for_revalidate(dentry->d_inode);
1411 nfs_end_data_update(dentry->d_inode);
1413 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1415 nfs_end_data_update(dir);
1417 nfs_renew_times(dentry);
1418 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1419 d_move(dentry, sdentry);
1420 error = nfs_async_unlink(dentry);
1421 /* If we return 0 we don't unlink */
1429 * Remove a file after making sure there are no pending writes,
1430 * and after checking that the file has only one user.
1432 * We invalidate the attribute cache and free the inode prior to the operation
1433 * to avoid possible races if the server reuses the inode.
1435 static int nfs_safe_remove(struct dentry *dentry)
1437 struct inode *dir = dentry->d_parent->d_inode;
1438 struct inode *inode = dentry->d_inode;
1441 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1442 dentry->d_parent->d_name.name, dentry->d_name.name);
1444 /* If the dentry was sillyrenamed, we simply call d_delete() */
1445 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1450 nfs_begin_data_update(dir);
1451 if (inode != NULL) {
1452 nfs_inode_return_delegation(inode);
1453 nfs_begin_data_update(inode);
1454 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1455 /* The VFS may want to delete this inode */
1458 nfs_mark_for_revalidate(inode);
1459 nfs_end_data_update(inode);
1461 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1462 nfs_end_data_update(dir);
1467 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1468 * belongs to an active ".nfs..." file and we return -EBUSY.
1470 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1472 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1475 int need_rehash = 0;
1477 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1478 dir->i_ino, dentry->d_name.name);
1481 spin_lock(&dcache_lock);
1482 spin_lock(&dentry->d_lock);
1483 if (atomic_read(&dentry->d_count) > 1) {
1484 spin_unlock(&dentry->d_lock);
1485 spin_unlock(&dcache_lock);
1486 /* Start asynchronous writeout of the inode */
1487 write_inode_now(dentry->d_inode, 0);
1488 error = nfs_sillyrename(dir, dentry);
1492 if (!d_unhashed(dentry)) {
1496 spin_unlock(&dentry->d_lock);
1497 spin_unlock(&dcache_lock);
1498 error = nfs_safe_remove(dentry);
1500 nfs_renew_times(dentry);
1501 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1502 } else if (need_rehash)
1509 * To create a symbolic link, most file systems instantiate a new inode,
1510 * add a page to it containing the path, then write it out to the disk
1511 * using prepare_write/commit_write.
1513 * Unfortunately the NFS client can't create the in-core inode first
1514 * because it needs a file handle to create an in-core inode (see
1515 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1516 * symlink request has completed on the server.
1518 * So instead we allocate a raw page, copy the symname into it, then do
1519 * the SYMLINK request with the page as the buffer. If it succeeds, we
1520 * now have a new file handle and can instantiate an in-core NFS inode
1521 * and move the raw page into its mapping.
1523 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1525 struct pagevec lru_pvec;
1529 unsigned int pathlen = strlen(symname);
1532 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1533 dir->i_ino, dentry->d_name.name, symname);
1535 if (pathlen > PAGE_SIZE)
1536 return -ENAMETOOLONG;
1538 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1539 attr.ia_valid = ATTR_MODE;
1543 page = alloc_page(GFP_KERNEL);
1549 kaddr = kmap_atomic(page, KM_USER0);
1550 memcpy(kaddr, symname, pathlen);
1551 if (pathlen < PAGE_SIZE)
1552 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1553 kunmap_atomic(kaddr, KM_USER0);
1555 nfs_begin_data_update(dir);
1556 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1557 nfs_end_data_update(dir);
1559 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1560 dir->i_sb->s_id, dir->i_ino,
1561 dentry->d_name.name, symname, error);
1569 * No big deal if we can't add this page to the page cache here.
1570 * READLINK will get the missing page from the server if needed.
1572 pagevec_init(&lru_pvec, 0);
1573 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1575 pagevec_add(&lru_pvec, page);
1576 pagevec_lru_add(&lru_pvec);
1577 SetPageUptodate(page);
1587 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1589 struct inode *inode = old_dentry->d_inode;
1592 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1593 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1594 dentry->d_parent->d_name.name, dentry->d_name.name);
1597 nfs_begin_data_update(dir);
1598 nfs_begin_data_update(inode);
1599 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1601 atomic_inc(&inode->i_count);
1602 d_instantiate(dentry, inode);
1604 nfs_end_data_update(inode);
1605 nfs_end_data_update(dir);
1612 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1613 * different file handle for the same inode after a rename (e.g. when
1614 * moving to a different directory). A fail-safe method to do so would
1615 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1616 * rename the old file using the sillyrename stuff. This way, the original
1617 * file in old_dir will go away when the last process iput()s the inode.
1621 * It actually works quite well. One needs to have the possibility for
1622 * at least one ".nfs..." file in each directory the file ever gets
1623 * moved or linked to which happens automagically with the new
1624 * implementation that only depends on the dcache stuff instead of
1625 * using the inode layer
1627 * Unfortunately, things are a little more complicated than indicated
1628 * above. For a cross-directory move, we want to make sure we can get
1629 * rid of the old inode after the operation. This means there must be
1630 * no pending writes (if it's a file), and the use count must be 1.
1631 * If these conditions are met, we can drop the dentries before doing
1634 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1635 struct inode *new_dir, struct dentry *new_dentry)
1637 struct inode *old_inode = old_dentry->d_inode;
1638 struct inode *new_inode = new_dentry->d_inode;
1639 struct dentry *dentry = NULL, *rehash = NULL;
1643 * To prevent any new references to the target during the rename,
1644 * we unhash the dentry and free the inode in advance.
1647 if (!d_unhashed(new_dentry)) {
1649 rehash = new_dentry;
1652 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1653 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1654 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1655 atomic_read(&new_dentry->d_count));
1658 * First check whether the target is busy ... we can't
1659 * safely do _any_ rename if the target is in use.
1661 * For files, make a copy of the dentry and then do a
1662 * silly-rename. If the silly-rename succeeds, the
1663 * copied dentry is hashed and becomes the new target.
1667 if (S_ISDIR(new_inode->i_mode)) {
1669 if (!S_ISDIR(old_inode->i_mode))
1671 } else if (atomic_read(&new_dentry->d_count) > 2) {
1673 /* copy the target dentry's name */
1674 dentry = d_alloc(new_dentry->d_parent,
1675 &new_dentry->d_name);
1679 /* silly-rename the existing target ... */
1680 err = nfs_sillyrename(new_dir, new_dentry);
1682 new_dentry = rehash = dentry;
1684 /* instantiate the replacement target */
1685 d_instantiate(new_dentry, NULL);
1686 } else if (atomic_read(&new_dentry->d_count) > 1) {
1687 /* dentry still busy? */
1689 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1690 new_dentry->d_parent->d_name.name,
1691 new_dentry->d_name.name,
1692 atomic_read(&new_dentry->d_count));
1697 drop_nlink(new_inode);
1701 * ... prune child dentries and writebacks if needed.
1703 if (atomic_read(&old_dentry->d_count) > 1) {
1704 if (S_ISREG(old_inode->i_mode))
1705 nfs_wb_all(old_inode);
1706 shrink_dcache_parent(old_dentry);
1708 nfs_inode_return_delegation(old_inode);
1710 if (new_inode != NULL) {
1711 nfs_inode_return_delegation(new_inode);
1712 d_delete(new_dentry);
1715 nfs_begin_data_update(old_dir);
1716 nfs_begin_data_update(new_dir);
1717 nfs_begin_data_update(old_inode);
1718 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1719 new_dir, &new_dentry->d_name);
1720 nfs_mark_for_revalidate(old_inode);
1721 nfs_end_data_update(old_inode);
1722 nfs_end_data_update(new_dir);
1723 nfs_end_data_update(old_dir);
1728 d_move(old_dentry, new_dentry);
1729 nfs_renew_times(new_dentry);
1730 nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1733 /* new dentry created? */
1740 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1741 static LIST_HEAD(nfs_access_lru_list);
1742 static atomic_long_t nfs_access_nr_entries;
1744 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1746 put_rpccred(entry->cred);
1748 smp_mb__before_atomic_dec();
1749 atomic_long_dec(&nfs_access_nr_entries);
1750 smp_mb__after_atomic_dec();
1753 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1756 struct nfs_inode *nfsi;
1757 struct nfs_access_entry *cache;
1759 spin_lock(&nfs_access_lru_lock);
1761 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1762 struct inode *inode;
1764 if (nr_to_scan-- == 0)
1766 inode = igrab(&nfsi->vfs_inode);
1769 spin_lock(&inode->i_lock);
1770 if (list_empty(&nfsi->access_cache_entry_lru))
1771 goto remove_lru_entry;
1772 cache = list_entry(nfsi->access_cache_entry_lru.next,
1773 struct nfs_access_entry, lru);
1774 list_move(&cache->lru, &head);
1775 rb_erase(&cache->rb_node, &nfsi->access_cache);
1776 if (!list_empty(&nfsi->access_cache_entry_lru))
1777 list_move_tail(&nfsi->access_cache_inode_lru,
1778 &nfs_access_lru_list);
1781 list_del_init(&nfsi->access_cache_inode_lru);
1782 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1784 spin_unlock(&inode->i_lock);
1788 spin_unlock(&nfs_access_lru_lock);
1789 while (!list_empty(&head)) {
1790 cache = list_entry(head.next, struct nfs_access_entry, lru);
1791 list_del(&cache->lru);
1792 nfs_access_free_entry(cache);
1794 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1797 static void __nfs_access_zap_cache(struct inode *inode)
1799 struct nfs_inode *nfsi = NFS_I(inode);
1800 struct rb_root *root_node = &nfsi->access_cache;
1801 struct rb_node *n, *dispose = NULL;
1802 struct nfs_access_entry *entry;
1804 /* Unhook entries from the cache */
1805 while ((n = rb_first(root_node)) != NULL) {
1806 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1807 rb_erase(n, root_node);
1808 list_del(&entry->lru);
1809 n->rb_left = dispose;
1812 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1813 spin_unlock(&inode->i_lock);
1815 /* Now kill them all! */
1816 while (dispose != NULL) {
1818 dispose = n->rb_left;
1819 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1823 void nfs_access_zap_cache(struct inode *inode)
1825 /* Remove from global LRU init */
1826 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1827 spin_lock(&nfs_access_lru_lock);
1828 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1829 spin_unlock(&nfs_access_lru_lock);
1832 spin_lock(&inode->i_lock);
1833 /* This will release the spinlock */
1834 __nfs_access_zap_cache(inode);
1837 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1839 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1840 struct nfs_access_entry *entry;
1843 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1845 if (cred < entry->cred)
1847 else if (cred > entry->cred)
1855 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1857 struct nfs_inode *nfsi = NFS_I(inode);
1858 struct nfs_access_entry *cache;
1861 spin_lock(&inode->i_lock);
1862 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1864 cache = nfs_access_search_rbtree(inode, cred);
1867 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1869 res->jiffies = cache->jiffies;
1870 res->cred = cache->cred;
1871 res->mask = cache->mask;
1872 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1875 spin_unlock(&inode->i_lock);
1878 rb_erase(&cache->rb_node, &nfsi->access_cache);
1879 list_del(&cache->lru);
1880 spin_unlock(&inode->i_lock);
1881 nfs_access_free_entry(cache);
1884 /* This will release the spinlock */
1885 __nfs_access_zap_cache(inode);
1889 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1891 struct nfs_inode *nfsi = NFS_I(inode);
1892 struct rb_root *root_node = &nfsi->access_cache;
1893 struct rb_node **p = &root_node->rb_node;
1894 struct rb_node *parent = NULL;
1895 struct nfs_access_entry *entry;
1897 spin_lock(&inode->i_lock);
1898 while (*p != NULL) {
1900 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1902 if (set->cred < entry->cred)
1903 p = &parent->rb_left;
1904 else if (set->cred > entry->cred)
1905 p = &parent->rb_right;
1909 rb_link_node(&set->rb_node, parent, p);
1910 rb_insert_color(&set->rb_node, root_node);
1911 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1912 spin_unlock(&inode->i_lock);
1915 rb_replace_node(parent, &set->rb_node, root_node);
1916 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1917 list_del(&entry->lru);
1918 spin_unlock(&inode->i_lock);
1919 nfs_access_free_entry(entry);
1922 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1924 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1927 RB_CLEAR_NODE(&cache->rb_node);
1928 cache->jiffies = set->jiffies;
1929 cache->cred = get_rpccred(set->cred);
1930 cache->mask = set->mask;
1932 nfs_access_add_rbtree(inode, cache);
1934 /* Update accounting */
1935 smp_mb__before_atomic_inc();
1936 atomic_long_inc(&nfs_access_nr_entries);
1937 smp_mb__after_atomic_inc();
1939 /* Add inode to global LRU list */
1940 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1941 spin_lock(&nfs_access_lru_lock);
1942 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1943 spin_unlock(&nfs_access_lru_lock);
1947 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1949 struct nfs_access_entry cache;
1952 status = nfs_access_get_cached(inode, cred, &cache);
1956 /* Be clever: ask server to check for all possible rights */
1957 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1959 cache.jiffies = jiffies;
1960 status = NFS_PROTO(inode)->access(inode, &cache);
1963 nfs_access_add_cache(inode, &cache);
1965 if ((cache.mask & mask) == mask)
1970 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1972 struct rpc_cred *cred;
1975 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1979 /* Is this sys_access() ? */
1980 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1983 switch (inode->i_mode & S_IFMT) {
1987 /* NFSv4 has atomic_open... */
1988 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1990 && (nd->flags & LOOKUP_OPEN))
1995 * Optimize away all write operations, since the server
1996 * will check permissions when we perform the op.
1998 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2005 if (!NFS_PROTO(inode)->access)
2008 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
2009 if (!IS_ERR(cred)) {
2010 res = nfs_do_access(inode, cred, mask);
2013 res = PTR_ERR(cred);
2016 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2017 inode->i_sb->s_id, inode->i_ino, mask, res);
2020 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2022 res = generic_permission(inode, mask, NULL);
2029 * version-control: t
2030 * kept-new-versions: 5