Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[linux-2.6] / arch / s390 / kernel / ptrace.c
1 /*
2  *  arch/s390/kernel/ptrace.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Based on PowerPC version 
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  *
12  *  Derived from "arch/m68k/kernel/ptrace.c"
13  *  Copyright (C) 1994 by Hamish Macdonald
14  *  Taken from linux/kernel/ptrace.c and modified for M680x0.
15  *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
16  *
17  * Modified by Cort Dougan (cort@cs.nmt.edu) 
18  *
19  *
20  * This file is subject to the terms and conditions of the GNU General
21  * Public License.  See the file README.legal in the main directory of
22  * this archive for more details.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/mm.h>
28 #include <linux/smp.h>
29 #include <linux/smp_lock.h>
30 #include <linux/errno.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/security.h>
34 #include <linux/audit.h>
35 #include <linux/signal.h>
36 #include <linux/elf.h>
37 #include <linux/regset.h>
38
39 #include <asm/segment.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include "entry.h"
47
48 #ifdef CONFIG_COMPAT
49 #include "compat_ptrace.h"
50 #endif
51
52 enum s390_regset {
53         REGSET_GENERAL,
54         REGSET_FP,
55 };
56
57 static void
58 FixPerRegisters(struct task_struct *task)
59 {
60         struct pt_regs *regs;
61         per_struct *per_info;
62
63         regs = task_pt_regs(task);
64         per_info = (per_struct *) &task->thread.per_info;
65         per_info->control_regs.bits.em_instruction_fetch =
66                 per_info->single_step | per_info->instruction_fetch;
67         
68         if (per_info->single_step) {
69                 per_info->control_regs.bits.starting_addr = 0;
70 #ifdef CONFIG_COMPAT
71                 if (test_thread_flag(TIF_31BIT))
72                         per_info->control_regs.bits.ending_addr = 0x7fffffffUL;
73                 else
74 #endif
75                         per_info->control_regs.bits.ending_addr = PSW_ADDR_INSN;
76         } else {
77                 per_info->control_regs.bits.starting_addr =
78                         per_info->starting_addr;
79                 per_info->control_regs.bits.ending_addr =
80                         per_info->ending_addr;
81         }
82         /*
83          * if any of the control reg tracing bits are on 
84          * we switch on per in the psw
85          */
86         if (per_info->control_regs.words.cr[0] & PER_EM_MASK)
87                 regs->psw.mask |= PSW_MASK_PER;
88         else
89                 regs->psw.mask &= ~PSW_MASK_PER;
90
91         if (per_info->control_regs.bits.em_storage_alteration)
92                 per_info->control_regs.bits.storage_alt_space_ctl = 1;
93         else
94                 per_info->control_regs.bits.storage_alt_space_ctl = 0;
95 }
96
97 void user_enable_single_step(struct task_struct *task)
98 {
99         task->thread.per_info.single_step = 1;
100         FixPerRegisters(task);
101 }
102
103 void user_disable_single_step(struct task_struct *task)
104 {
105         task->thread.per_info.single_step = 0;
106         FixPerRegisters(task);
107 }
108
109 /*
110  * Called by kernel/ptrace.c when detaching..
111  *
112  * Make sure single step bits etc are not set.
113  */
114 void
115 ptrace_disable(struct task_struct *child)
116 {
117         /* make sure the single step bit is not set. */
118         user_disable_single_step(child);
119 }
120
121 #ifndef CONFIG_64BIT
122 # define __ADDR_MASK 3
123 #else
124 # define __ADDR_MASK 7
125 #endif
126
127 /*
128  * Read the word at offset addr from the user area of a process. The
129  * trouble here is that the information is littered over different
130  * locations. The process registers are found on the kernel stack,
131  * the floating point stuff and the trace settings are stored in
132  * the task structure. In addition the different structures in
133  * struct user contain pad bytes that should be read as zeroes.
134  * Lovely...
135  */
136 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
137 {
138         struct user *dummy = NULL;
139         addr_t offset, tmp;
140
141         if (addr < (addr_t) &dummy->regs.acrs) {
142                 /*
143                  * psw and gprs are stored on the stack
144                  */
145                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
146                 if (addr == (addr_t) &dummy->regs.psw.mask)
147                         /* Remove per bit from user psw. */
148                         tmp &= ~PSW_MASK_PER;
149
150         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
151                 /*
152                  * access registers are stored in the thread structure
153                  */
154                 offset = addr - (addr_t) &dummy->regs.acrs;
155 #ifdef CONFIG_64BIT
156                 /*
157                  * Very special case: old & broken 64 bit gdb reading
158                  * from acrs[15]. Result is a 64 bit value. Read the
159                  * 32 bit acrs[15] value and shift it by 32. Sick...
160                  */
161                 if (addr == (addr_t) &dummy->regs.acrs[15])
162                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
163                 else
164 #endif
165                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
166
167         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
168                 /*
169                  * orig_gpr2 is stored on the kernel stack
170                  */
171                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
172
173         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
174                 /* 
175                  * floating point regs. are stored in the thread structure
176                  */
177                 offset = addr - (addr_t) &dummy->regs.fp_regs;
178                 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
179                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
180                         tmp &= (unsigned long) FPC_VALID_MASK
181                                 << (BITS_PER_LONG - 32);
182
183         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
184                 /*
185                  * per_info is found in the thread structure
186                  */
187                 offset = addr - (addr_t) &dummy->regs.per_info;
188                 tmp = *(addr_t *)((addr_t) &child->thread.per_info + offset);
189
190         } else
191                 tmp = 0;
192
193         return tmp;
194 }
195
196 static int
197 peek_user(struct task_struct *child, addr_t addr, addr_t data)
198 {
199         struct user *dummy = NULL;
200         addr_t tmp, mask;
201
202         /*
203          * Stupid gdb peeks/pokes the access registers in 64 bit with
204          * an alignment of 4. Programmers from hell...
205          */
206         mask = __ADDR_MASK;
207 #ifdef CONFIG_64BIT
208         if (addr >= (addr_t) &dummy->regs.acrs &&
209             addr < (addr_t) &dummy->regs.orig_gpr2)
210                 mask = 3;
211 #endif
212         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
213                 return -EIO;
214
215         tmp = __peek_user(child, addr);
216         return put_user(tmp, (addr_t __user *) data);
217 }
218
219 /*
220  * Write a word to the user area of a process at location addr. This
221  * operation does have an additional problem compared to peek_user.
222  * Stores to the program status word and on the floating point
223  * control register needs to get checked for validity.
224  */
225 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
226 {
227         struct user *dummy = NULL;
228         addr_t offset;
229
230         if (addr < (addr_t) &dummy->regs.acrs) {
231                 /*
232                  * psw and gprs are stored on the stack
233                  */
234                 if (addr == (addr_t) &dummy->regs.psw.mask &&
235 #ifdef CONFIG_COMPAT
236                     data != PSW_MASK_MERGE(psw_user32_bits, data) &&
237 #endif
238                     data != PSW_MASK_MERGE(psw_user_bits, data))
239                         /* Invalid psw mask. */
240                         return -EINVAL;
241 #ifndef CONFIG_64BIT
242                 if (addr == (addr_t) &dummy->regs.psw.addr)
243                         /* I'd like to reject addresses without the
244                            high order bit but older gdb's rely on it */
245                         data |= PSW_ADDR_AMODE;
246 #endif
247                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
248
249         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
250                 /*
251                  * access registers are stored in the thread structure
252                  */
253                 offset = addr - (addr_t) &dummy->regs.acrs;
254 #ifdef CONFIG_64BIT
255                 /*
256                  * Very special case: old & broken 64 bit gdb writing
257                  * to acrs[15] with a 64 bit value. Ignore the lower
258                  * half of the value and write the upper 32 bit to
259                  * acrs[15]. Sick...
260                  */
261                 if (addr == (addr_t) &dummy->regs.acrs[15])
262                         child->thread.acrs[15] = (unsigned int) (data >> 32);
263                 else
264 #endif
265                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
266
267         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
268                 /*
269                  * orig_gpr2 is stored on the kernel stack
270                  */
271                 task_pt_regs(child)->orig_gpr2 = data;
272
273         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
274                 /*
275                  * floating point regs. are stored in the thread structure
276                  */
277                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
278                     (data & ~((unsigned long) FPC_VALID_MASK
279                               << (BITS_PER_LONG - 32))) != 0)
280                         return -EINVAL;
281                 offset = addr - (addr_t) &dummy->regs.fp_regs;
282                 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
283
284         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
285                 /*
286                  * per_info is found in the thread structure 
287                  */
288                 offset = addr - (addr_t) &dummy->regs.per_info;
289                 *(addr_t *)((addr_t) &child->thread.per_info + offset) = data;
290
291         }
292
293         FixPerRegisters(child);
294         return 0;
295 }
296
297 static int
298 poke_user(struct task_struct *child, addr_t addr, addr_t data)
299 {
300         struct user *dummy = NULL;
301         addr_t mask;
302
303         /*
304          * Stupid gdb peeks/pokes the access registers in 64 bit with
305          * an alignment of 4. Programmers from hell indeed...
306          */
307         mask = __ADDR_MASK;
308 #ifdef CONFIG_64BIT
309         if (addr >= (addr_t) &dummy->regs.acrs &&
310             addr < (addr_t) &dummy->regs.orig_gpr2)
311                 mask = 3;
312 #endif
313         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
314                 return -EIO;
315
316         return __poke_user(child, addr, data);
317 }
318
319 long arch_ptrace(struct task_struct *child, long request, long addr, long data)
320 {
321         ptrace_area parea; 
322         int copied, ret;
323
324         switch (request) {
325         case PTRACE_PEEKTEXT:
326         case PTRACE_PEEKDATA:
327                 /* Remove high order bit from address (only for 31 bit). */
328                 addr &= PSW_ADDR_INSN;
329                 /* read word at location addr. */
330                 return generic_ptrace_peekdata(child, addr, data);
331
332         case PTRACE_PEEKUSR:
333                 /* read the word at location addr in the USER area. */
334                 return peek_user(child, addr, data);
335
336         case PTRACE_POKETEXT:
337         case PTRACE_POKEDATA:
338                 /* Remove high order bit from address (only for 31 bit). */
339                 addr &= PSW_ADDR_INSN;
340                 /* write the word at location addr. */
341                 return generic_ptrace_pokedata(child, addr, data);
342
343         case PTRACE_POKEUSR:
344                 /* write the word at location addr in the USER area */
345                 return poke_user(child, addr, data);
346
347         case PTRACE_PEEKUSR_AREA:
348         case PTRACE_POKEUSR_AREA:
349                 if (copy_from_user(&parea, (void __force __user *) addr,
350                                                         sizeof(parea)))
351                         return -EFAULT;
352                 addr = parea.kernel_addr;
353                 data = parea.process_addr;
354                 copied = 0;
355                 while (copied < parea.len) {
356                         if (request == PTRACE_PEEKUSR_AREA)
357                                 ret = peek_user(child, addr, data);
358                         else {
359                                 addr_t utmp;
360                                 if (get_user(utmp,
361                                              (addr_t __force __user *) data))
362                                         return -EFAULT;
363                                 ret = poke_user(child, addr, utmp);
364                         }
365                         if (ret)
366                                 return ret;
367                         addr += sizeof(unsigned long);
368                         data += sizeof(unsigned long);
369                         copied += sizeof(unsigned long);
370                 }
371                 return 0;
372         }
373         return ptrace_request(child, request, addr, data);
374 }
375
376 #ifdef CONFIG_COMPAT
377 /*
378  * Now the fun part starts... a 31 bit program running in the
379  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
380  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
381  * to handle, the difference to the 64 bit versions of the requests
382  * is that the access is done in multiples of 4 byte instead of
383  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
384  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
385  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
386  * is a 31 bit program too, the content of struct user can be
387  * emulated. A 31 bit program peeking into the struct user of
388  * a 64 bit program is a no-no.
389  */
390
391 /*
392  * Same as peek_user but for a 31 bit program.
393  */
394 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
395 {
396         struct user32 *dummy32 = NULL;
397         per_struct32 *dummy_per32 = NULL;
398         addr_t offset;
399         __u32 tmp;
400
401         if (addr < (addr_t) &dummy32->regs.acrs) {
402                 /*
403                  * psw and gprs are stored on the stack
404                  */
405                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
406                         /* Fake a 31 bit psw mask. */
407                         tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
408                         tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
409                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
410                         /* Fake a 31 bit psw address. */
411                         tmp = (__u32) task_pt_regs(child)->psw.addr |
412                                 PSW32_ADDR_AMODE31;
413                 } else {
414                         /* gpr 0-15 */
415                         tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
416                                          addr*2 + 4);
417                 }
418         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
419                 /*
420                  * access registers are stored in the thread structure
421                  */
422                 offset = addr - (addr_t) &dummy32->regs.acrs;
423                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
424
425         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
426                 /*
427                  * orig_gpr2 is stored on the kernel stack
428                  */
429                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
430
431         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
432                 /*
433                  * floating point regs. are stored in the thread structure 
434                  */
435                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
436                 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
437
438         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
439                 /*
440                  * per_info is found in the thread structure
441                  */
442                 offset = addr - (addr_t) &dummy32->regs.per_info;
443                 /* This is magic. See per_struct and per_struct32. */
444                 if ((offset >= (addr_t) &dummy_per32->control_regs &&
445                      offset < (addr_t) (&dummy_per32->control_regs + 1)) ||
446                     (offset >= (addr_t) &dummy_per32->starting_addr &&
447                      offset <= (addr_t) &dummy_per32->ending_addr) ||
448                     offset == (addr_t) &dummy_per32->lowcore.words.address)
449                         offset = offset*2 + 4;
450                 else
451                         offset = offset*2;
452                 tmp = *(__u32 *)((addr_t) &child->thread.per_info + offset);
453
454         } else
455                 tmp = 0;
456
457         return tmp;
458 }
459
460 static int peek_user_compat(struct task_struct *child,
461                             addr_t addr, addr_t data)
462 {
463         __u32 tmp;
464
465         if (!test_thread_flag(TIF_31BIT) ||
466             (addr & 3) || addr > sizeof(struct user) - 3)
467                 return -EIO;
468
469         tmp = __peek_user_compat(child, addr);
470         return put_user(tmp, (__u32 __user *) data);
471 }
472
473 /*
474  * Same as poke_user but for a 31 bit program.
475  */
476 static int __poke_user_compat(struct task_struct *child,
477                               addr_t addr, addr_t data)
478 {
479         struct user32 *dummy32 = NULL;
480         per_struct32 *dummy_per32 = NULL;
481         __u32 tmp = (__u32) data;
482         addr_t offset;
483
484         if (addr < (addr_t) &dummy32->regs.acrs) {
485                 /*
486                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
487                  */
488                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
489                         /* Build a 64 bit psw mask from 31 bit mask. */
490                         if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
491                                 /* Invalid psw mask. */
492                                 return -EINVAL;
493                         task_pt_regs(child)->psw.mask =
494                                 PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
495                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
496                         /* Build a 64 bit psw address from 31 bit address. */
497                         task_pt_regs(child)->psw.addr =
498                                 (__u64) tmp & PSW32_ADDR_INSN;
499                 } else {
500                         /* gpr 0-15 */
501                         *(__u32*)((addr_t) &task_pt_regs(child)->psw
502                                   + addr*2 + 4) = tmp;
503                 }
504         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
505                 /*
506                  * access registers are stored in the thread structure
507                  */
508                 offset = addr - (addr_t) &dummy32->regs.acrs;
509                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
510
511         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
512                 /*
513                  * orig_gpr2 is stored on the kernel stack
514                  */
515                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
516
517         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
518                 /*
519                  * floating point regs. are stored in the thread structure 
520                  */
521                 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
522                     (tmp & ~FPC_VALID_MASK) != 0)
523                         /* Invalid floating point control. */
524                         return -EINVAL;
525                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
526                 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
527
528         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
529                 /*
530                  * per_info is found in the thread structure.
531                  */
532                 offset = addr - (addr_t) &dummy32->regs.per_info;
533                 /*
534                  * This is magic. See per_struct and per_struct32.
535                  * By incident the offsets in per_struct are exactly
536                  * twice the offsets in per_struct32 for all fields.
537                  * The 8 byte fields need special handling though,
538                  * because the second half (bytes 4-7) is needed and
539                  * not the first half.
540                  */
541                 if ((offset >= (addr_t) &dummy_per32->control_regs &&
542                      offset < (addr_t) (&dummy_per32->control_regs + 1)) ||
543                     (offset >= (addr_t) &dummy_per32->starting_addr &&
544                      offset <= (addr_t) &dummy_per32->ending_addr) ||
545                     offset == (addr_t) &dummy_per32->lowcore.words.address)
546                         offset = offset*2 + 4;
547                 else
548                         offset = offset*2;
549                 *(__u32 *)((addr_t) &child->thread.per_info + offset) = tmp;
550
551         }
552
553         FixPerRegisters(child);
554         return 0;
555 }
556
557 static int poke_user_compat(struct task_struct *child,
558                             addr_t addr, addr_t data)
559 {
560         if (!test_thread_flag(TIF_31BIT) ||
561             (addr & 3) || addr > sizeof(struct user32) - 3)
562                 return -EIO;
563
564         return __poke_user_compat(child, addr, data);
565 }
566
567 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
568                         compat_ulong_t caddr, compat_ulong_t cdata)
569 {
570         unsigned long addr = caddr;
571         unsigned long data = cdata;
572         ptrace_area_emu31 parea; 
573         int copied, ret;
574
575         switch (request) {
576         case PTRACE_PEEKUSR:
577                 /* read the word at location addr in the USER area. */
578                 return peek_user_compat(child, addr, data);
579
580         case PTRACE_POKEUSR:
581                 /* write the word at location addr in the USER area */
582                 return poke_user_compat(child, addr, data);
583
584         case PTRACE_PEEKUSR_AREA:
585         case PTRACE_POKEUSR_AREA:
586                 if (copy_from_user(&parea, (void __force __user *) addr,
587                                                         sizeof(parea)))
588                         return -EFAULT;
589                 addr = parea.kernel_addr;
590                 data = parea.process_addr;
591                 copied = 0;
592                 while (copied < parea.len) {
593                         if (request == PTRACE_PEEKUSR_AREA)
594                                 ret = peek_user_compat(child, addr, data);
595                         else {
596                                 __u32 utmp;
597                                 if (get_user(utmp,
598                                              (__u32 __force __user *) data))
599                                         return -EFAULT;
600                                 ret = poke_user_compat(child, addr, utmp);
601                         }
602                         if (ret)
603                                 return ret;
604                         addr += sizeof(unsigned int);
605                         data += sizeof(unsigned int);
606                         copied += sizeof(unsigned int);
607                 }
608                 return 0;
609         }
610         return compat_ptrace_request(child, request, addr, data);
611 }
612 #endif
613
614 asmlinkage void
615 syscall_trace(struct pt_regs *regs, int entryexit)
616 {
617         if (unlikely(current->audit_context) && entryexit)
618                 audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]), regs->gprs[2]);
619
620         if (!test_thread_flag(TIF_SYSCALL_TRACE))
621                 goto out;
622         if (!(current->ptrace & PT_PTRACED))
623                 goto out;
624         ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
625                                  ? 0x80 : 0));
626
627         /*
628          * If the debuffer has set an invalid system call number,
629          * we prepare to skip the system call restart handling.
630          */
631         if (!entryexit && regs->gprs[2] >= NR_syscalls)
632                 regs->trap = -1;
633
634         /*
635          * this isn't the same as continuing with a signal, but it will do
636          * for normal use.  strace only continues with a signal if the
637          * stopping signal is not SIGTRAP.  -brl
638          */
639         if (current->exit_code) {
640                 send_sig(current->exit_code, current, 1);
641                 current->exit_code = 0;
642         }
643  out:
644         if (unlikely(current->audit_context) && !entryexit)
645                 audit_syscall_entry(test_thread_flag(TIF_31BIT)?AUDIT_ARCH_S390:AUDIT_ARCH_S390X,
646                                     regs->gprs[2], regs->orig_gpr2, regs->gprs[3],
647                                     regs->gprs[4], regs->gprs[5]);
648 }
649
650 /*
651  * user_regset definitions.
652  */
653
654 static int s390_regs_get(struct task_struct *target,
655                          const struct user_regset *regset,
656                          unsigned int pos, unsigned int count,
657                          void *kbuf, void __user *ubuf)
658 {
659         if (target == current)
660                 save_access_regs(target->thread.acrs);
661
662         if (kbuf) {
663                 unsigned long *k = kbuf;
664                 while (count > 0) {
665                         *k++ = __peek_user(target, pos);
666                         count -= sizeof(*k);
667                         pos += sizeof(*k);
668                 }
669         } else {
670                 unsigned long __user *u = ubuf;
671                 while (count > 0) {
672                         if (__put_user(__peek_user(target, pos), u++))
673                                 return -EFAULT;
674                         count -= sizeof(*u);
675                         pos += sizeof(*u);
676                 }
677         }
678         return 0;
679 }
680
681 static int s390_regs_set(struct task_struct *target,
682                          const struct user_regset *regset,
683                          unsigned int pos, unsigned int count,
684                          const void *kbuf, const void __user *ubuf)
685 {
686         int rc = 0;
687
688         if (target == current)
689                 save_access_regs(target->thread.acrs);
690
691         if (kbuf) {
692                 const unsigned long *k = kbuf;
693                 while (count > 0 && !rc) {
694                         rc = __poke_user(target, pos, *k++);
695                         count -= sizeof(*k);
696                         pos += sizeof(*k);
697                 }
698         } else {
699                 const unsigned long  __user *u = ubuf;
700                 while (count > 0 && !rc) {
701                         unsigned long word;
702                         rc = __get_user(word, u++);
703                         if (rc)
704                                 break;
705                         rc = __poke_user(target, pos, word);
706                         count -= sizeof(*u);
707                         pos += sizeof(*u);
708                 }
709         }
710
711         if (rc == 0 && target == current)
712                 restore_access_regs(target->thread.acrs);
713
714         return rc;
715 }
716
717 static int s390_fpregs_get(struct task_struct *target,
718                            const struct user_regset *regset, unsigned int pos,
719                            unsigned int count, void *kbuf, void __user *ubuf)
720 {
721         if (target == current)
722                 save_fp_regs(&target->thread.fp_regs);
723
724         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
725                                    &target->thread.fp_regs, 0, -1);
726 }
727
728 static int s390_fpregs_set(struct task_struct *target,
729                            const struct user_regset *regset, unsigned int pos,
730                            unsigned int count, const void *kbuf,
731                            const void __user *ubuf)
732 {
733         int rc = 0;
734
735         if (target == current)
736                 save_fp_regs(&target->thread.fp_regs);
737
738         /* If setting FPC, must validate it first. */
739         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
740                 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
741                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
742                                         0, offsetof(s390_fp_regs, fprs));
743                 if (rc)
744                         return rc;
745                 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
746                         return -EINVAL;
747                 target->thread.fp_regs.fpc = fpc[0];
748         }
749
750         if (rc == 0 && count > 0)
751                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
752                                         target->thread.fp_regs.fprs,
753                                         offsetof(s390_fp_regs, fprs), -1);
754
755         if (rc == 0 && target == current)
756                 restore_fp_regs(&target->thread.fp_regs);
757
758         return rc;
759 }
760
761 static const struct user_regset s390_regsets[] = {
762         [REGSET_GENERAL] = {
763                 .core_note_type = NT_PRSTATUS,
764                 .n = sizeof(s390_regs) / sizeof(long),
765                 .size = sizeof(long),
766                 .align = sizeof(long),
767                 .get = s390_regs_get,
768                 .set = s390_regs_set,
769         },
770         [REGSET_FP] = {
771                 .core_note_type = NT_PRFPREG,
772                 .n = sizeof(s390_fp_regs) / sizeof(long),
773                 .size = sizeof(long),
774                 .align = sizeof(long),
775                 .get = s390_fpregs_get,
776                 .set = s390_fpregs_set,
777         },
778 };
779
780 static const struct user_regset_view user_s390_view = {
781         .name = UTS_MACHINE,
782         .e_machine = EM_S390,
783         .regsets = s390_regsets,
784         .n = ARRAY_SIZE(s390_regsets)
785 };
786
787 #ifdef CONFIG_COMPAT
788 static int s390_compat_regs_get(struct task_struct *target,
789                                 const struct user_regset *regset,
790                                 unsigned int pos, unsigned int count,
791                                 void *kbuf, void __user *ubuf)
792 {
793         if (target == current)
794                 save_access_regs(target->thread.acrs);
795
796         if (kbuf) {
797                 compat_ulong_t *k = kbuf;
798                 while (count > 0) {
799                         *k++ = __peek_user_compat(target, pos);
800                         count -= sizeof(*k);
801                         pos += sizeof(*k);
802                 }
803         } else {
804                 compat_ulong_t __user *u = ubuf;
805                 while (count > 0) {
806                         if (__put_user(__peek_user_compat(target, pos), u++))
807                                 return -EFAULT;
808                         count -= sizeof(*u);
809                         pos += sizeof(*u);
810                 }
811         }
812         return 0;
813 }
814
815 static int s390_compat_regs_set(struct task_struct *target,
816                                 const struct user_regset *regset,
817                                 unsigned int pos, unsigned int count,
818                                 const void *kbuf, const void __user *ubuf)
819 {
820         int rc = 0;
821
822         if (target == current)
823                 save_access_regs(target->thread.acrs);
824
825         if (kbuf) {
826                 const compat_ulong_t *k = kbuf;
827                 while (count > 0 && !rc) {
828                         rc = __poke_user_compat(target, pos, *k++);
829                         count -= sizeof(*k);
830                         pos += sizeof(*k);
831                 }
832         } else {
833                 const compat_ulong_t  __user *u = ubuf;
834                 while (count > 0 && !rc) {
835                         compat_ulong_t word;
836                         rc = __get_user(word, u++);
837                         if (rc)
838                                 break;
839                         rc = __poke_user_compat(target, pos, word);
840                         count -= sizeof(*u);
841                         pos += sizeof(*u);
842                 }
843         }
844
845         if (rc == 0 && target == current)
846                 restore_access_regs(target->thread.acrs);
847
848         return rc;
849 }
850
851 static const struct user_regset s390_compat_regsets[] = {
852         [REGSET_GENERAL] = {
853                 .core_note_type = NT_PRSTATUS,
854                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
855                 .size = sizeof(compat_long_t),
856                 .align = sizeof(compat_long_t),
857                 .get = s390_compat_regs_get,
858                 .set = s390_compat_regs_set,
859         },
860         [REGSET_FP] = {
861                 .core_note_type = NT_PRFPREG,
862                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
863                 .size = sizeof(compat_long_t),
864                 .align = sizeof(compat_long_t),
865                 .get = s390_fpregs_get,
866                 .set = s390_fpregs_set,
867         },
868 };
869
870 static const struct user_regset_view user_s390_compat_view = {
871         .name = "s390",
872         .e_machine = EM_S390,
873         .regsets = s390_compat_regsets,
874         .n = ARRAY_SIZE(s390_compat_regsets)
875 };
876 #endif
877
878 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
879 {
880 #ifdef CONFIG_COMPAT
881         if (test_tsk_thread_flag(task, TIF_31BIT))
882                 return &user_s390_compat_view;
883 #endif
884         return &user_s390_view;
885 }