[PATCH] sched: correct smp_nice_bias
[linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666         rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671         rq->prio_bias -= MAX_PRIO - prio;
672 }
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int prio)
675 {
676 }
677
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
679 {
680 }
681 #endif
682
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 {
685         rq->nr_running++;
686         if (rt_task(p))
687                 inc_prio_bias(rq, p->prio);
688         else
689                 inc_prio_bias(rq, p->static_prio);
690 }
691
692 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
693 {
694         rq->nr_running--;
695         if (rt_task(p))
696                 dec_prio_bias(rq, p->prio);
697         else
698                 dec_prio_bias(rq, p->static_prio);
699 }
700
701 /*
702  * __activate_task - move a task to the runqueue.
703  */
704 static inline void __activate_task(task_t *p, runqueue_t *rq)
705 {
706         enqueue_task(p, rq->active);
707         inc_nr_running(p, rq);
708 }
709
710 /*
711  * __activate_idle_task - move idle task to the _front_ of runqueue.
712  */
713 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
714 {
715         enqueue_task_head(p, rq->active);
716         inc_nr_running(p, rq);
717 }
718
719 static int recalc_task_prio(task_t *p, unsigned long long now)
720 {
721         /* Caller must always ensure 'now >= p->timestamp' */
722         unsigned long long __sleep_time = now - p->timestamp;
723         unsigned long sleep_time;
724
725         if (__sleep_time > NS_MAX_SLEEP_AVG)
726                 sleep_time = NS_MAX_SLEEP_AVG;
727         else
728                 sleep_time = (unsigned long)__sleep_time;
729
730         if (likely(sleep_time > 0)) {
731                 /*
732                  * User tasks that sleep a long time are categorised as
733                  * idle and will get just interactive status to stay active &
734                  * prevent them suddenly becoming cpu hogs and starving
735                  * other processes.
736                  */
737                 if (p->mm && p->activated != -1 &&
738                         sleep_time > INTERACTIVE_SLEEP(p)) {
739                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
740                                                 DEF_TIMESLICE);
741                 } else {
742                         /*
743                          * The lower the sleep avg a task has the more
744                          * rapidly it will rise with sleep time.
745                          */
746                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
747
748                         /*
749                          * Tasks waking from uninterruptible sleep are
750                          * limited in their sleep_avg rise as they
751                          * are likely to be waiting on I/O
752                          */
753                         if (p->activated == -1 && p->mm) {
754                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
755                                         sleep_time = 0;
756                                 else if (p->sleep_avg + sleep_time >=
757                                                 INTERACTIVE_SLEEP(p)) {
758                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
759                                         sleep_time = 0;
760                                 }
761                         }
762
763                         /*
764                          * This code gives a bonus to interactive tasks.
765                          *
766                          * The boost works by updating the 'average sleep time'
767                          * value here, based on ->timestamp. The more time a
768                          * task spends sleeping, the higher the average gets -
769                          * and the higher the priority boost gets as well.
770                          */
771                         p->sleep_avg += sleep_time;
772
773                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
775                 }
776         }
777
778         return effective_prio(p);
779 }
780
781 /*
782  * activate_task - move a task to the runqueue and do priority recalculation
783  *
784  * Update all the scheduling statistics stuff. (sleep average
785  * calculation, priority modifiers, etc.)
786  */
787 static void activate_task(task_t *p, runqueue_t *rq, int local)
788 {
789         unsigned long long now;
790
791         now = sched_clock();
792 #ifdef CONFIG_SMP
793         if (!local) {
794                 /* Compensate for drifting sched_clock */
795                 runqueue_t *this_rq = this_rq();
796                 now = (now - this_rq->timestamp_last_tick)
797                         + rq->timestamp_last_tick;
798         }
799 #endif
800
801         p->prio = recalc_task_prio(p, now);
802
803         /*
804          * This checks to make sure it's not an uninterruptible task
805          * that is now waking up.
806          */
807         if (!p->activated) {
808                 /*
809                  * Tasks which were woken up by interrupts (ie. hw events)
810                  * are most likely of interactive nature. So we give them
811                  * the credit of extending their sleep time to the period
812                  * of time they spend on the runqueue, waiting for execution
813                  * on a CPU, first time around:
814                  */
815                 if (in_interrupt())
816                         p->activated = 2;
817                 else {
818                         /*
819                          * Normal first-time wakeups get a credit too for
820                          * on-runqueue time, but it will be weighted down:
821                          */
822                         p->activated = 1;
823                 }
824         }
825         p->timestamp = now;
826
827         __activate_task(p, rq);
828 }
829
830 /*
831  * deactivate_task - remove a task from the runqueue.
832  */
833 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
834 {
835         dec_nr_running(p, rq);
836         dequeue_task(p, p->array);
837         p->array = NULL;
838 }
839
840 /*
841  * resched_task - mark a task 'to be rescheduled now'.
842  *
843  * On UP this means the setting of the need_resched flag, on SMP it
844  * might also involve a cross-CPU call to trigger the scheduler on
845  * the target CPU.
846  */
847 #ifdef CONFIG_SMP
848 static void resched_task(task_t *p)
849 {
850         int need_resched, nrpolling;
851
852         assert_spin_locked(&task_rq(p)->lock);
853
854         /* minimise the chance of sending an interrupt to poll_idle() */
855         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
858
859         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860                 smp_send_reschedule(task_cpu(p));
861 }
862 #else
863 static inline void resched_task(task_t *p)
864 {
865         set_tsk_need_resched(p);
866 }
867 #endif
868
869 /**
870  * task_curr - is this task currently executing on a CPU?
871  * @p: the task in question.
872  */
873 inline int task_curr(const task_t *p)
874 {
875         return cpu_curr(task_cpu(p)) == p;
876 }
877
878 #ifdef CONFIG_SMP
879 typedef struct {
880         struct list_head list;
881
882         task_t *task;
883         int dest_cpu;
884
885         struct completion done;
886 } migration_req_t;
887
888 /*
889  * The task's runqueue lock must be held.
890  * Returns true if you have to wait for migration thread.
891  */
892 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
893 {
894         runqueue_t *rq = task_rq(p);
895
896         /*
897          * If the task is not on a runqueue (and not running), then
898          * it is sufficient to simply update the task's cpu field.
899          */
900         if (!p->array && !task_running(rq, p)) {
901                 set_task_cpu(p, dest_cpu);
902                 return 0;
903         }
904
905         init_completion(&req->done);
906         req->task = p;
907         req->dest_cpu = dest_cpu;
908         list_add(&req->list, &rq->migration_queue);
909         return 1;
910 }
911
912 /*
913  * wait_task_inactive - wait for a thread to unschedule.
914  *
915  * The caller must ensure that the task *will* unschedule sometime soon,
916  * else this function might spin for a *long* time. This function can't
917  * be called with interrupts off, or it may introduce deadlock with
918  * smp_call_function() if an IPI is sent by the same process we are
919  * waiting to become inactive.
920  */
921 void wait_task_inactive(task_t *p)
922 {
923         unsigned long flags;
924         runqueue_t *rq;
925         int preempted;
926
927 repeat:
928         rq = task_rq_lock(p, &flags);
929         /* Must be off runqueue entirely, not preempted. */
930         if (unlikely(p->array || task_running(rq, p))) {
931                 /* If it's preempted, we yield.  It could be a while. */
932                 preempted = !task_running(rq, p);
933                 task_rq_unlock(rq, &flags);
934                 cpu_relax();
935                 if (preempted)
936                         yield();
937                 goto repeat;
938         }
939         task_rq_unlock(rq, &flags);
940 }
941
942 /***
943  * kick_process - kick a running thread to enter/exit the kernel
944  * @p: the to-be-kicked thread
945  *
946  * Cause a process which is running on another CPU to enter
947  * kernel-mode, without any delay. (to get signals handled.)
948  *
949  * NOTE: this function doesnt have to take the runqueue lock,
950  * because all it wants to ensure is that the remote task enters
951  * the kernel. If the IPI races and the task has been migrated
952  * to another CPU then no harm is done and the purpose has been
953  * achieved as well.
954  */
955 void kick_process(task_t *p)
956 {
957         int cpu;
958
959         preempt_disable();
960         cpu = task_cpu(p);
961         if ((cpu != smp_processor_id()) && task_curr(p))
962                 smp_send_reschedule(cpu);
963         preempt_enable();
964 }
965
966 /*
967  * Return a low guess at the load of a migration-source cpu.
968  *
969  * We want to under-estimate the load of migration sources, to
970  * balance conservatively.
971  */
972 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
973 {
974         runqueue_t *rq = cpu_rq(cpu);
975         unsigned long running = rq->nr_running;
976         unsigned long source_load, cpu_load = rq->cpu_load[type-1],
977                 load_now = running * SCHED_LOAD_SCALE;
978
979         if (type == 0)
980                 source_load = load_now;
981         else
982                 source_load = min(cpu_load, load_now);
983
984         if (running > 1 || (idle == NOT_IDLE && running))
985                 /*
986                  * If we are busy rebalancing the load is biased by
987                  * priority to create 'nice' support across cpus. When
988                  * idle rebalancing we should only bias the source_load if
989                  * there is more than one task running on that queue to
990                  * prevent idle rebalance from trying to pull tasks from a
991                  * queue with only one running task.
992                  */
993                 source_load = source_load * rq->prio_bias / running;
994
995         return source_load;
996 }
997
998 static inline unsigned long source_load(int cpu, int type)
999 {
1000         return __source_load(cpu, type, NOT_IDLE);
1001 }
1002
1003 /*
1004  * Return a high guess at the load of a migration-target cpu
1005  */
1006 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1007 {
1008         runqueue_t *rq = cpu_rq(cpu);
1009         unsigned long running = rq->nr_running;
1010         unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1011                 load_now = running * SCHED_LOAD_SCALE;
1012
1013         if (type == 0)
1014                 target_load = load_now;
1015         else
1016                 target_load = max(cpu_load, load_now);
1017
1018         if (running > 1 || (idle == NOT_IDLE && running))
1019                 target_load = target_load * rq->prio_bias / running;
1020
1021         return target_load;
1022 }
1023
1024 static inline unsigned long target_load(int cpu, int type)
1025 {
1026         return __target_load(cpu, type, NOT_IDLE);
1027 }
1028
1029 /*
1030  * find_idlest_group finds and returns the least busy CPU group within the
1031  * domain.
1032  */
1033 static struct sched_group *
1034 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1035 {
1036         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1037         unsigned long min_load = ULONG_MAX, this_load = 0;
1038         int load_idx = sd->forkexec_idx;
1039         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1040
1041         do {
1042                 unsigned long load, avg_load;
1043                 int local_group;
1044                 int i;
1045
1046                 /* Skip over this group if it has no CPUs allowed */
1047                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1048                         goto nextgroup;
1049
1050                 local_group = cpu_isset(this_cpu, group->cpumask);
1051
1052                 /* Tally up the load of all CPUs in the group */
1053                 avg_load = 0;
1054
1055                 for_each_cpu_mask(i, group->cpumask) {
1056                         /* Bias balancing toward cpus of our domain */
1057                         if (local_group)
1058                                 load = source_load(i, load_idx);
1059                         else
1060                                 load = target_load(i, load_idx);
1061
1062                         avg_load += load;
1063                 }
1064
1065                 /* Adjust by relative CPU power of the group */
1066                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1067
1068                 if (local_group) {
1069                         this_load = avg_load;
1070                         this = group;
1071                 } else if (avg_load < min_load) {
1072                         min_load = avg_load;
1073                         idlest = group;
1074                 }
1075 nextgroup:
1076                 group = group->next;
1077         } while (group != sd->groups);
1078
1079         if (!idlest || 100*this_load < imbalance*min_load)
1080                 return NULL;
1081         return idlest;
1082 }
1083
1084 /*
1085  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1086  */
1087 static int
1088 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1089 {
1090         cpumask_t tmp;
1091         unsigned long load, min_load = ULONG_MAX;
1092         int idlest = -1;
1093         int i;
1094
1095         /* Traverse only the allowed CPUs */
1096         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1097
1098         for_each_cpu_mask(i, tmp) {
1099                 load = source_load(i, 0);
1100
1101                 if (load < min_load || (load == min_load && i == this_cpu)) {
1102                         min_load = load;
1103                         idlest = i;
1104                 }
1105         }
1106
1107         return idlest;
1108 }
1109
1110 /*
1111  * sched_balance_self: balance the current task (running on cpu) in domains
1112  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1113  * SD_BALANCE_EXEC.
1114  *
1115  * Balance, ie. select the least loaded group.
1116  *
1117  * Returns the target CPU number, or the same CPU if no balancing is needed.
1118  *
1119  * preempt must be disabled.
1120  */
1121 static int sched_balance_self(int cpu, int flag)
1122 {
1123         struct task_struct *t = current;
1124         struct sched_domain *tmp, *sd = NULL;
1125
1126         for_each_domain(cpu, tmp)
1127                 if (tmp->flags & flag)
1128                         sd = tmp;
1129
1130         while (sd) {
1131                 cpumask_t span;
1132                 struct sched_group *group;
1133                 int new_cpu;
1134                 int weight;
1135
1136                 span = sd->span;
1137                 group = find_idlest_group(sd, t, cpu);
1138                 if (!group)
1139                         goto nextlevel;
1140
1141                 new_cpu = find_idlest_cpu(group, t, cpu);
1142                 if (new_cpu == -1 || new_cpu == cpu)
1143                         goto nextlevel;
1144
1145                 /* Now try balancing at a lower domain level */
1146                 cpu = new_cpu;
1147 nextlevel:
1148                 sd = NULL;
1149                 weight = cpus_weight(span);
1150                 for_each_domain(cpu, tmp) {
1151                         if (weight <= cpus_weight(tmp->span))
1152                                 break;
1153                         if (tmp->flags & flag)
1154                                 sd = tmp;
1155                 }
1156                 /* while loop will break here if sd == NULL */
1157         }
1158
1159         return cpu;
1160 }
1161
1162 #endif /* CONFIG_SMP */
1163
1164 /*
1165  * wake_idle() will wake a task on an idle cpu if task->cpu is
1166  * not idle and an idle cpu is available.  The span of cpus to
1167  * search starts with cpus closest then further out as needed,
1168  * so we always favor a closer, idle cpu.
1169  *
1170  * Returns the CPU we should wake onto.
1171  */
1172 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1173 static int wake_idle(int cpu, task_t *p)
1174 {
1175         cpumask_t tmp;
1176         struct sched_domain *sd;
1177         int i;
1178
1179         if (idle_cpu(cpu))
1180                 return cpu;
1181
1182         for_each_domain(cpu, sd) {
1183                 if (sd->flags & SD_WAKE_IDLE) {
1184                         cpus_and(tmp, sd->span, p->cpus_allowed);
1185                         for_each_cpu_mask(i, tmp) {
1186                                 if (idle_cpu(i))
1187                                         return i;
1188                         }
1189                 }
1190                 else
1191                         break;
1192         }
1193         return cpu;
1194 }
1195 #else
1196 static inline int wake_idle(int cpu, task_t *p)
1197 {
1198         return cpu;
1199 }
1200 #endif
1201
1202 /***
1203  * try_to_wake_up - wake up a thread
1204  * @p: the to-be-woken-up thread
1205  * @state: the mask of task states that can be woken
1206  * @sync: do a synchronous wakeup?
1207  *
1208  * Put it on the run-queue if it's not already there. The "current"
1209  * thread is always on the run-queue (except when the actual
1210  * re-schedule is in progress), and as such you're allowed to do
1211  * the simpler "current->state = TASK_RUNNING" to mark yourself
1212  * runnable without the overhead of this.
1213  *
1214  * returns failure only if the task is already active.
1215  */
1216 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1217 {
1218         int cpu, this_cpu, success = 0;
1219         unsigned long flags;
1220         long old_state;
1221         runqueue_t *rq;
1222 #ifdef CONFIG_SMP
1223         unsigned long load, this_load;
1224         struct sched_domain *sd, *this_sd = NULL;
1225         int new_cpu;
1226 #endif
1227
1228         rq = task_rq_lock(p, &flags);
1229         old_state = p->state;
1230         if (!(old_state & state))
1231                 goto out;
1232
1233         if (p->array)
1234                 goto out_running;
1235
1236         cpu = task_cpu(p);
1237         this_cpu = smp_processor_id();
1238
1239 #ifdef CONFIG_SMP
1240         if (unlikely(task_running(rq, p)))
1241                 goto out_activate;
1242
1243         new_cpu = cpu;
1244
1245         schedstat_inc(rq, ttwu_cnt);
1246         if (cpu == this_cpu) {
1247                 schedstat_inc(rq, ttwu_local);
1248                 goto out_set_cpu;
1249         }
1250
1251         for_each_domain(this_cpu, sd) {
1252                 if (cpu_isset(cpu, sd->span)) {
1253                         schedstat_inc(sd, ttwu_wake_remote);
1254                         this_sd = sd;
1255                         break;
1256                 }
1257         }
1258
1259         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1260                 goto out_set_cpu;
1261
1262         /*
1263          * Check for affine wakeup and passive balancing possibilities.
1264          */
1265         if (this_sd) {
1266                 int idx = this_sd->wake_idx;
1267                 unsigned int imbalance;
1268
1269                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1270
1271                 load = source_load(cpu, idx);
1272                 this_load = target_load(this_cpu, idx);
1273
1274                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1275
1276                 if (this_sd->flags & SD_WAKE_AFFINE) {
1277                         unsigned long tl = this_load;
1278                         /*
1279                          * If sync wakeup then subtract the (maximum possible)
1280                          * effect of the currently running task from the load
1281                          * of the current CPU:
1282                          */
1283                         if (sync)
1284                                 tl -= SCHED_LOAD_SCALE;
1285
1286                         if ((tl <= load &&
1287                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1288                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1289                                 /*
1290                                  * This domain has SD_WAKE_AFFINE and
1291                                  * p is cache cold in this domain, and
1292                                  * there is no bad imbalance.
1293                                  */
1294                                 schedstat_inc(this_sd, ttwu_move_affine);
1295                                 goto out_set_cpu;
1296                         }
1297                 }
1298
1299                 /*
1300                  * Start passive balancing when half the imbalance_pct
1301                  * limit is reached.
1302                  */
1303                 if (this_sd->flags & SD_WAKE_BALANCE) {
1304                         if (imbalance*this_load <= 100*load) {
1305                                 schedstat_inc(this_sd, ttwu_move_balance);
1306                                 goto out_set_cpu;
1307                         }
1308                 }
1309         }
1310
1311         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1312 out_set_cpu:
1313         new_cpu = wake_idle(new_cpu, p);
1314         if (new_cpu != cpu) {
1315                 set_task_cpu(p, new_cpu);
1316                 task_rq_unlock(rq, &flags);
1317                 /* might preempt at this point */
1318                 rq = task_rq_lock(p, &flags);
1319                 old_state = p->state;
1320                 if (!(old_state & state))
1321                         goto out;
1322                 if (p->array)
1323                         goto out_running;
1324
1325                 this_cpu = smp_processor_id();
1326                 cpu = task_cpu(p);
1327         }
1328
1329 out_activate:
1330 #endif /* CONFIG_SMP */
1331         if (old_state == TASK_UNINTERRUPTIBLE) {
1332                 rq->nr_uninterruptible--;
1333                 /*
1334                  * Tasks on involuntary sleep don't earn
1335                  * sleep_avg beyond just interactive state.
1336                  */
1337                 p->activated = -1;
1338         }
1339
1340         /*
1341          * Tasks that have marked their sleep as noninteractive get
1342          * woken up without updating their sleep average. (i.e. their
1343          * sleep is handled in a priority-neutral manner, no priority
1344          * boost and no penalty.)
1345          */
1346         if (old_state & TASK_NONINTERACTIVE)
1347                 __activate_task(p, rq);
1348         else
1349                 activate_task(p, rq, cpu == this_cpu);
1350         /*
1351          * Sync wakeups (i.e. those types of wakeups where the waker
1352          * has indicated that it will leave the CPU in short order)
1353          * don't trigger a preemption, if the woken up task will run on
1354          * this cpu. (in this case the 'I will reschedule' promise of
1355          * the waker guarantees that the freshly woken up task is going
1356          * to be considered on this CPU.)
1357          */
1358         if (!sync || cpu != this_cpu) {
1359                 if (TASK_PREEMPTS_CURR(p, rq))
1360                         resched_task(rq->curr);
1361         }
1362         success = 1;
1363
1364 out_running:
1365         p->state = TASK_RUNNING;
1366 out:
1367         task_rq_unlock(rq, &flags);
1368
1369         return success;
1370 }
1371
1372 int fastcall wake_up_process(task_t *p)
1373 {
1374         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1375                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1376 }
1377
1378 EXPORT_SYMBOL(wake_up_process);
1379
1380 int fastcall wake_up_state(task_t *p, unsigned int state)
1381 {
1382         return try_to_wake_up(p, state, 0);
1383 }
1384
1385 /*
1386  * Perform scheduler related setup for a newly forked process p.
1387  * p is forked by current.
1388  */
1389 void fastcall sched_fork(task_t *p, int clone_flags)
1390 {
1391         int cpu = get_cpu();
1392
1393 #ifdef CONFIG_SMP
1394         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1395 #endif
1396         set_task_cpu(p, cpu);
1397
1398         /*
1399          * We mark the process as running here, but have not actually
1400          * inserted it onto the runqueue yet. This guarantees that
1401          * nobody will actually run it, and a signal or other external
1402          * event cannot wake it up and insert it on the runqueue either.
1403          */
1404         p->state = TASK_RUNNING;
1405         INIT_LIST_HEAD(&p->run_list);
1406         p->array = NULL;
1407 #ifdef CONFIG_SCHEDSTATS
1408         memset(&p->sched_info, 0, sizeof(p->sched_info));
1409 #endif
1410 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1411         p->oncpu = 0;
1412 #endif
1413 #ifdef CONFIG_PREEMPT
1414         /* Want to start with kernel preemption disabled. */
1415         p->thread_info->preempt_count = 1;
1416 #endif
1417         /*
1418          * Share the timeslice between parent and child, thus the
1419          * total amount of pending timeslices in the system doesn't change,
1420          * resulting in more scheduling fairness.
1421          */
1422         local_irq_disable();
1423         p->time_slice = (current->time_slice + 1) >> 1;
1424         /*
1425          * The remainder of the first timeslice might be recovered by
1426          * the parent if the child exits early enough.
1427          */
1428         p->first_time_slice = 1;
1429         current->time_slice >>= 1;
1430         p->timestamp = sched_clock();
1431         if (unlikely(!current->time_slice)) {
1432                 /*
1433                  * This case is rare, it happens when the parent has only
1434                  * a single jiffy left from its timeslice. Taking the
1435                  * runqueue lock is not a problem.
1436                  */
1437                 current->time_slice = 1;
1438                 scheduler_tick();
1439         }
1440         local_irq_enable();
1441         put_cpu();
1442 }
1443
1444 /*
1445  * wake_up_new_task - wake up a newly created task for the first time.
1446  *
1447  * This function will do some initial scheduler statistics housekeeping
1448  * that must be done for every newly created context, then puts the task
1449  * on the runqueue and wakes it.
1450  */
1451 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1452 {
1453         unsigned long flags;
1454         int this_cpu, cpu;
1455         runqueue_t *rq, *this_rq;
1456
1457         rq = task_rq_lock(p, &flags);
1458         BUG_ON(p->state != TASK_RUNNING);
1459         this_cpu = smp_processor_id();
1460         cpu = task_cpu(p);
1461
1462         /*
1463          * We decrease the sleep average of forking parents
1464          * and children as well, to keep max-interactive tasks
1465          * from forking tasks that are max-interactive. The parent
1466          * (current) is done further down, under its lock.
1467          */
1468         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1469                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1470
1471         p->prio = effective_prio(p);
1472
1473         if (likely(cpu == this_cpu)) {
1474                 if (!(clone_flags & CLONE_VM)) {
1475                         /*
1476                          * The VM isn't cloned, so we're in a good position to
1477                          * do child-runs-first in anticipation of an exec. This
1478                          * usually avoids a lot of COW overhead.
1479                          */
1480                         if (unlikely(!current->array))
1481                                 __activate_task(p, rq);
1482                         else {
1483                                 p->prio = current->prio;
1484                                 list_add_tail(&p->run_list, &current->run_list);
1485                                 p->array = current->array;
1486                                 p->array->nr_active++;
1487                                 inc_nr_running(p, rq);
1488                         }
1489                         set_need_resched();
1490                 } else
1491                         /* Run child last */
1492                         __activate_task(p, rq);
1493                 /*
1494                  * We skip the following code due to cpu == this_cpu
1495                  *
1496                  *   task_rq_unlock(rq, &flags);
1497                  *   this_rq = task_rq_lock(current, &flags);
1498                  */
1499                 this_rq = rq;
1500         } else {
1501                 this_rq = cpu_rq(this_cpu);
1502
1503                 /*
1504                  * Not the local CPU - must adjust timestamp. This should
1505                  * get optimised away in the !CONFIG_SMP case.
1506                  */
1507                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1508                                         + rq->timestamp_last_tick;
1509                 __activate_task(p, rq);
1510                 if (TASK_PREEMPTS_CURR(p, rq))
1511                         resched_task(rq->curr);
1512
1513                 /*
1514                  * Parent and child are on different CPUs, now get the
1515                  * parent runqueue to update the parent's ->sleep_avg:
1516                  */
1517                 task_rq_unlock(rq, &flags);
1518                 this_rq = task_rq_lock(current, &flags);
1519         }
1520         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1521                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1522         task_rq_unlock(this_rq, &flags);
1523 }
1524
1525 /*
1526  * Potentially available exiting-child timeslices are
1527  * retrieved here - this way the parent does not get
1528  * penalized for creating too many threads.
1529  *
1530  * (this cannot be used to 'generate' timeslices
1531  * artificially, because any timeslice recovered here
1532  * was given away by the parent in the first place.)
1533  */
1534 void fastcall sched_exit(task_t *p)
1535 {
1536         unsigned long flags;
1537         runqueue_t *rq;
1538
1539         /*
1540          * If the child was a (relative-) CPU hog then decrease
1541          * the sleep_avg of the parent as well.
1542          */
1543         rq = task_rq_lock(p->parent, &flags);
1544         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1545                 p->parent->time_slice += p->time_slice;
1546                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1547                         p->parent->time_slice = task_timeslice(p);
1548         }
1549         if (p->sleep_avg < p->parent->sleep_avg)
1550                 p->parent->sleep_avg = p->parent->sleep_avg /
1551                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1552                 (EXIT_WEIGHT + 1);
1553         task_rq_unlock(rq, &flags);
1554 }
1555
1556 /**
1557  * prepare_task_switch - prepare to switch tasks
1558  * @rq: the runqueue preparing to switch
1559  * @next: the task we are going to switch to.
1560  *
1561  * This is called with the rq lock held and interrupts off. It must
1562  * be paired with a subsequent finish_task_switch after the context
1563  * switch.
1564  *
1565  * prepare_task_switch sets up locking and calls architecture specific
1566  * hooks.
1567  */
1568 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1569 {
1570         prepare_lock_switch(rq, next);
1571         prepare_arch_switch(next);
1572 }
1573
1574 /**
1575  * finish_task_switch - clean up after a task-switch
1576  * @rq: runqueue associated with task-switch
1577  * @prev: the thread we just switched away from.
1578  *
1579  * finish_task_switch must be called after the context switch, paired
1580  * with a prepare_task_switch call before the context switch.
1581  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1582  * and do any other architecture-specific cleanup actions.
1583  *
1584  * Note that we may have delayed dropping an mm in context_switch(). If
1585  * so, we finish that here outside of the runqueue lock.  (Doing it
1586  * with the lock held can cause deadlocks; see schedule() for
1587  * details.)
1588  */
1589 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1590         __releases(rq->lock)
1591 {
1592         struct mm_struct *mm = rq->prev_mm;
1593         unsigned long prev_task_flags;
1594
1595         rq->prev_mm = NULL;
1596
1597         /*
1598          * A task struct has one reference for the use as "current".
1599          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1600          * calls schedule one last time. The schedule call will never return,
1601          * and the scheduled task must drop that reference.
1602          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1603          * still held, otherwise prev could be scheduled on another cpu, die
1604          * there before we look at prev->state, and then the reference would
1605          * be dropped twice.
1606          *              Manfred Spraul <manfred@colorfullife.com>
1607          */
1608         prev_task_flags = prev->flags;
1609         finish_arch_switch(prev);
1610         finish_lock_switch(rq, prev);
1611         if (mm)
1612                 mmdrop(mm);
1613         if (unlikely(prev_task_flags & PF_DEAD))
1614                 put_task_struct(prev);
1615 }
1616
1617 /**
1618  * schedule_tail - first thing a freshly forked thread must call.
1619  * @prev: the thread we just switched away from.
1620  */
1621 asmlinkage void schedule_tail(task_t *prev)
1622         __releases(rq->lock)
1623 {
1624         runqueue_t *rq = this_rq();
1625         finish_task_switch(rq, prev);
1626 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1627         /* In this case, finish_task_switch does not reenable preemption */
1628         preempt_enable();
1629 #endif
1630         if (current->set_child_tid)
1631                 put_user(current->pid, current->set_child_tid);
1632 }
1633
1634 /*
1635  * context_switch - switch to the new MM and the new
1636  * thread's register state.
1637  */
1638 static inline
1639 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1640 {
1641         struct mm_struct *mm = next->mm;
1642         struct mm_struct *oldmm = prev->active_mm;
1643
1644         if (unlikely(!mm)) {
1645                 next->active_mm = oldmm;
1646                 atomic_inc(&oldmm->mm_count);
1647                 enter_lazy_tlb(oldmm, next);
1648         } else
1649                 switch_mm(oldmm, mm, next);
1650
1651         if (unlikely(!prev->mm)) {
1652                 prev->active_mm = NULL;
1653                 WARN_ON(rq->prev_mm);
1654                 rq->prev_mm = oldmm;
1655         }
1656
1657         /* Here we just switch the register state and the stack. */
1658         switch_to(prev, next, prev);
1659
1660         return prev;
1661 }
1662
1663 /*
1664  * nr_running, nr_uninterruptible and nr_context_switches:
1665  *
1666  * externally visible scheduler statistics: current number of runnable
1667  * threads, current number of uninterruptible-sleeping threads, total
1668  * number of context switches performed since bootup.
1669  */
1670 unsigned long nr_running(void)
1671 {
1672         unsigned long i, sum = 0;
1673
1674         for_each_online_cpu(i)
1675                 sum += cpu_rq(i)->nr_running;
1676
1677         return sum;
1678 }
1679
1680 unsigned long nr_uninterruptible(void)
1681 {
1682         unsigned long i, sum = 0;
1683
1684         for_each_cpu(i)
1685                 sum += cpu_rq(i)->nr_uninterruptible;
1686
1687         /*
1688          * Since we read the counters lockless, it might be slightly
1689          * inaccurate. Do not allow it to go below zero though:
1690          */
1691         if (unlikely((long)sum < 0))
1692                 sum = 0;
1693
1694         return sum;
1695 }
1696
1697 unsigned long long nr_context_switches(void)
1698 {
1699         unsigned long long i, sum = 0;
1700
1701         for_each_cpu(i)
1702                 sum += cpu_rq(i)->nr_switches;
1703
1704         return sum;
1705 }
1706
1707 unsigned long nr_iowait(void)
1708 {
1709         unsigned long i, sum = 0;
1710
1711         for_each_cpu(i)
1712                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1713
1714         return sum;
1715 }
1716
1717 #ifdef CONFIG_SMP
1718
1719 /*
1720  * double_rq_lock - safely lock two runqueues
1721  *
1722  * Note this does not disable interrupts like task_rq_lock,
1723  * you need to do so manually before calling.
1724  */
1725 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1726         __acquires(rq1->lock)
1727         __acquires(rq2->lock)
1728 {
1729         if (rq1 == rq2) {
1730                 spin_lock(&rq1->lock);
1731                 __acquire(rq2->lock);   /* Fake it out ;) */
1732         } else {
1733                 if (rq1 < rq2) {
1734                         spin_lock(&rq1->lock);
1735                         spin_lock(&rq2->lock);
1736                 } else {
1737                         spin_lock(&rq2->lock);
1738                         spin_lock(&rq1->lock);
1739                 }
1740         }
1741 }
1742
1743 /*
1744  * double_rq_unlock - safely unlock two runqueues
1745  *
1746  * Note this does not restore interrupts like task_rq_unlock,
1747  * you need to do so manually after calling.
1748  */
1749 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1750         __releases(rq1->lock)
1751         __releases(rq2->lock)
1752 {
1753         spin_unlock(&rq1->lock);
1754         if (rq1 != rq2)
1755                 spin_unlock(&rq2->lock);
1756         else
1757                 __release(rq2->lock);
1758 }
1759
1760 /*
1761  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1762  */
1763 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1764         __releases(this_rq->lock)
1765         __acquires(busiest->lock)
1766         __acquires(this_rq->lock)
1767 {
1768         if (unlikely(!spin_trylock(&busiest->lock))) {
1769                 if (busiest < this_rq) {
1770                         spin_unlock(&this_rq->lock);
1771                         spin_lock(&busiest->lock);
1772                         spin_lock(&this_rq->lock);
1773                 } else
1774                         spin_lock(&busiest->lock);
1775         }
1776 }
1777
1778 /*
1779  * If dest_cpu is allowed for this process, migrate the task to it.
1780  * This is accomplished by forcing the cpu_allowed mask to only
1781  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1782  * the cpu_allowed mask is restored.
1783  */
1784 static void sched_migrate_task(task_t *p, int dest_cpu)
1785 {
1786         migration_req_t req;
1787         runqueue_t *rq;
1788         unsigned long flags;
1789
1790         rq = task_rq_lock(p, &flags);
1791         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1792             || unlikely(cpu_is_offline(dest_cpu)))
1793                 goto out;
1794
1795         /* force the process onto the specified CPU */
1796         if (migrate_task(p, dest_cpu, &req)) {
1797                 /* Need to wait for migration thread (might exit: take ref). */
1798                 struct task_struct *mt = rq->migration_thread;
1799                 get_task_struct(mt);
1800                 task_rq_unlock(rq, &flags);
1801                 wake_up_process(mt);
1802                 put_task_struct(mt);
1803                 wait_for_completion(&req.done);
1804                 return;
1805         }
1806 out:
1807         task_rq_unlock(rq, &flags);
1808 }
1809
1810 /*
1811  * sched_exec - execve() is a valuable balancing opportunity, because at
1812  * this point the task has the smallest effective memory and cache footprint.
1813  */
1814 void sched_exec(void)
1815 {
1816         int new_cpu, this_cpu = get_cpu();
1817         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1818         put_cpu();
1819         if (new_cpu != this_cpu)
1820                 sched_migrate_task(current, new_cpu);
1821 }
1822
1823 /*
1824  * pull_task - move a task from a remote runqueue to the local runqueue.
1825  * Both runqueues must be locked.
1826  */
1827 static inline
1828 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1829                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1830 {
1831         dequeue_task(p, src_array);
1832         dec_nr_running(p, src_rq);
1833         set_task_cpu(p, this_cpu);
1834         inc_nr_running(p, this_rq);
1835         enqueue_task(p, this_array);
1836         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1837                                 + this_rq->timestamp_last_tick;
1838         /*
1839          * Note that idle threads have a prio of MAX_PRIO, for this test
1840          * to be always true for them.
1841          */
1842         if (TASK_PREEMPTS_CURR(p, this_rq))
1843                 resched_task(this_rq->curr);
1844 }
1845
1846 /*
1847  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1848  */
1849 static inline
1850 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1851                      struct sched_domain *sd, enum idle_type idle,
1852                      int *all_pinned)
1853 {
1854         /*
1855          * We do not migrate tasks that are:
1856          * 1) running (obviously), or
1857          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1858          * 3) are cache-hot on their current CPU.
1859          */
1860         if (!cpu_isset(this_cpu, p->cpus_allowed))
1861                 return 0;
1862         *all_pinned = 0;
1863
1864         if (task_running(rq, p))
1865                 return 0;
1866
1867         /*
1868          * Aggressive migration if:
1869          * 1) task is cache cold, or
1870          * 2) too many balance attempts have failed.
1871          */
1872
1873         if (sd->nr_balance_failed > sd->cache_nice_tries)
1874                 return 1;
1875
1876         if (task_hot(p, rq->timestamp_last_tick, sd))
1877                 return 0;
1878         return 1;
1879 }
1880
1881 /*
1882  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1883  * as part of a balancing operation within "domain". Returns the number of
1884  * tasks moved.
1885  *
1886  * Called with both runqueues locked.
1887  */
1888 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1889                       unsigned long max_nr_move, struct sched_domain *sd,
1890                       enum idle_type idle, int *all_pinned)
1891 {
1892         prio_array_t *array, *dst_array;
1893         struct list_head *head, *curr;
1894         int idx, pulled = 0, pinned = 0;
1895         task_t *tmp;
1896
1897         if (max_nr_move == 0)
1898                 goto out;
1899
1900         pinned = 1;
1901
1902         /*
1903          * We first consider expired tasks. Those will likely not be
1904          * executed in the near future, and they are most likely to
1905          * be cache-cold, thus switching CPUs has the least effect
1906          * on them.
1907          */
1908         if (busiest->expired->nr_active) {
1909                 array = busiest->expired;
1910                 dst_array = this_rq->expired;
1911         } else {
1912                 array = busiest->active;
1913                 dst_array = this_rq->active;
1914         }
1915
1916 new_array:
1917         /* Start searching at priority 0: */
1918         idx = 0;
1919 skip_bitmap:
1920         if (!idx)
1921                 idx = sched_find_first_bit(array->bitmap);
1922         else
1923                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1924         if (idx >= MAX_PRIO) {
1925                 if (array == busiest->expired && busiest->active->nr_active) {
1926                         array = busiest->active;
1927                         dst_array = this_rq->active;
1928                         goto new_array;
1929                 }
1930                 goto out;
1931         }
1932
1933         head = array->queue + idx;
1934         curr = head->prev;
1935 skip_queue:
1936         tmp = list_entry(curr, task_t, run_list);
1937
1938         curr = curr->prev;
1939
1940         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1941                 if (curr != head)
1942                         goto skip_queue;
1943                 idx++;
1944                 goto skip_bitmap;
1945         }
1946
1947 #ifdef CONFIG_SCHEDSTATS
1948         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1949                 schedstat_inc(sd, lb_hot_gained[idle]);
1950 #endif
1951
1952         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1953         pulled++;
1954
1955         /* We only want to steal up to the prescribed number of tasks. */
1956         if (pulled < max_nr_move) {
1957                 if (curr != head)
1958                         goto skip_queue;
1959                 idx++;
1960                 goto skip_bitmap;
1961         }
1962 out:
1963         /*
1964          * Right now, this is the only place pull_task() is called,
1965          * so we can safely collect pull_task() stats here rather than
1966          * inside pull_task().
1967          */
1968         schedstat_add(sd, lb_gained[idle], pulled);
1969
1970         if (all_pinned)
1971                 *all_pinned = pinned;
1972         return pulled;
1973 }
1974
1975 /*
1976  * find_busiest_group finds and returns the busiest CPU group within the
1977  * domain. It calculates and returns the number of tasks which should be
1978  * moved to restore balance via the imbalance parameter.
1979  */
1980 static struct sched_group *
1981 find_busiest_group(struct sched_domain *sd, int this_cpu,
1982                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1983 {
1984         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1985         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1986         unsigned long max_pull;
1987         int load_idx;
1988
1989         max_load = this_load = total_load = total_pwr = 0;
1990         if (idle == NOT_IDLE)
1991                 load_idx = sd->busy_idx;
1992         else if (idle == NEWLY_IDLE)
1993                 load_idx = sd->newidle_idx;
1994         else
1995                 load_idx = sd->idle_idx;
1996
1997         do {
1998                 unsigned long load;
1999                 int local_group;
2000                 int i;
2001
2002                 local_group = cpu_isset(this_cpu, group->cpumask);
2003
2004                 /* Tally up the load of all CPUs in the group */
2005                 avg_load = 0;
2006
2007                 for_each_cpu_mask(i, group->cpumask) {
2008                         if (*sd_idle && !idle_cpu(i))
2009                                 *sd_idle = 0;
2010
2011                         /* Bias balancing toward cpus of our domain */
2012                         if (local_group)
2013                                 load = __target_load(i, load_idx, idle);
2014                         else
2015                                 load = __source_load(i, load_idx, idle);
2016
2017                         avg_load += load;
2018                 }
2019
2020                 total_load += avg_load;
2021                 total_pwr += group->cpu_power;
2022
2023                 /* Adjust by relative CPU power of the group */
2024                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2025
2026                 if (local_group) {
2027                         this_load = avg_load;
2028                         this = group;
2029                 } else if (avg_load > max_load) {
2030                         max_load = avg_load;
2031                         busiest = group;
2032                 }
2033                 group = group->next;
2034         } while (group != sd->groups);
2035
2036         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2037                 goto out_balanced;
2038
2039         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2040
2041         if (this_load >= avg_load ||
2042                         100*max_load <= sd->imbalance_pct*this_load)
2043                 goto out_balanced;
2044
2045         /*
2046          * We're trying to get all the cpus to the average_load, so we don't
2047          * want to push ourselves above the average load, nor do we wish to
2048          * reduce the max loaded cpu below the average load, as either of these
2049          * actions would just result in more rebalancing later, and ping-pong
2050          * tasks around. Thus we look for the minimum possible imbalance.
2051          * Negative imbalances (*we* are more loaded than anyone else) will
2052          * be counted as no imbalance for these purposes -- we can't fix that
2053          * by pulling tasks to us.  Be careful of negative numbers as they'll
2054          * appear as very large values with unsigned longs.
2055          */
2056
2057         /* Don't want to pull so many tasks that a group would go idle */
2058         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2059
2060         /* How much load to actually move to equalise the imbalance */
2061         *imbalance = min(max_pull * busiest->cpu_power,
2062                                 (avg_load - this_load) * this->cpu_power)
2063                         / SCHED_LOAD_SCALE;
2064
2065         if (*imbalance < SCHED_LOAD_SCALE) {
2066                 unsigned long pwr_now = 0, pwr_move = 0;
2067                 unsigned long tmp;
2068
2069                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2070                         *imbalance = 1;
2071                         return busiest;
2072                 }
2073
2074                 /*
2075                  * OK, we don't have enough imbalance to justify moving tasks,
2076                  * however we may be able to increase total CPU power used by
2077                  * moving them.
2078                  */
2079
2080                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2081                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2082                 pwr_now /= SCHED_LOAD_SCALE;
2083
2084                 /* Amount of load we'd subtract */
2085                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2086                 if (max_load > tmp)
2087                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2088                                                         max_load - tmp);
2089
2090                 /* Amount of load we'd add */
2091                 if (max_load*busiest->cpu_power <
2092                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2093                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2094                 else
2095                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2096                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2097                 pwr_move /= SCHED_LOAD_SCALE;
2098
2099                 /* Move if we gain throughput */
2100                 if (pwr_move <= pwr_now)
2101                         goto out_balanced;
2102
2103                 *imbalance = 1;
2104                 return busiest;
2105         }
2106
2107         /* Get rid of the scaling factor, rounding down as we divide */
2108         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2109         return busiest;
2110
2111 out_balanced:
2112
2113         *imbalance = 0;
2114         return NULL;
2115 }
2116
2117 /*
2118  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2119  */
2120 static runqueue_t *find_busiest_queue(struct sched_group *group,
2121         enum idle_type idle)
2122 {
2123         unsigned long load, max_load = 0;
2124         runqueue_t *busiest = NULL;
2125         int i;
2126
2127         for_each_cpu_mask(i, group->cpumask) {
2128                 load = __source_load(i, 0, idle);
2129
2130                 if (load > max_load) {
2131                         max_load = load;
2132                         busiest = cpu_rq(i);
2133                 }
2134         }
2135
2136         return busiest;
2137 }
2138
2139 /*
2140  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2141  * so long as it is large enough.
2142  */
2143 #define MAX_PINNED_INTERVAL     512
2144
2145 /*
2146  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2147  * tasks if there is an imbalance.
2148  *
2149  * Called with this_rq unlocked.
2150  */
2151 static int load_balance(int this_cpu, runqueue_t *this_rq,
2152                         struct sched_domain *sd, enum idle_type idle)
2153 {
2154         struct sched_group *group;
2155         runqueue_t *busiest;
2156         unsigned long imbalance;
2157         int nr_moved, all_pinned = 0;
2158         int active_balance = 0;
2159         int sd_idle = 0;
2160
2161         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2162                 sd_idle = 1;
2163
2164         schedstat_inc(sd, lb_cnt[idle]);
2165
2166         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2167         if (!group) {
2168                 schedstat_inc(sd, lb_nobusyg[idle]);
2169                 goto out_balanced;
2170         }
2171
2172         busiest = find_busiest_queue(group, idle);
2173         if (!busiest) {
2174                 schedstat_inc(sd, lb_nobusyq[idle]);
2175                 goto out_balanced;
2176         }
2177
2178         BUG_ON(busiest == this_rq);
2179
2180         schedstat_add(sd, lb_imbalance[idle], imbalance);
2181
2182         nr_moved = 0;
2183         if (busiest->nr_running > 1) {
2184                 /*
2185                  * Attempt to move tasks. If find_busiest_group has found
2186                  * an imbalance but busiest->nr_running <= 1, the group is
2187                  * still unbalanced. nr_moved simply stays zero, so it is
2188                  * correctly treated as an imbalance.
2189                  */
2190                 double_rq_lock(this_rq, busiest);
2191                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2192                                         imbalance, sd, idle, &all_pinned);
2193                 double_rq_unlock(this_rq, busiest);
2194
2195                 /* All tasks on this runqueue were pinned by CPU affinity */
2196                 if (unlikely(all_pinned))
2197                         goto out_balanced;
2198         }
2199
2200         if (!nr_moved) {
2201                 schedstat_inc(sd, lb_failed[idle]);
2202                 sd->nr_balance_failed++;
2203
2204                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2205
2206                         spin_lock(&busiest->lock);
2207
2208                         /* don't kick the migration_thread, if the curr
2209                          * task on busiest cpu can't be moved to this_cpu
2210                          */
2211                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2212                                 spin_unlock(&busiest->lock);
2213                                 all_pinned = 1;
2214                                 goto out_one_pinned;
2215                         }
2216
2217                         if (!busiest->active_balance) {
2218                                 busiest->active_balance = 1;
2219                                 busiest->push_cpu = this_cpu;
2220                                 active_balance = 1;
2221                         }
2222                         spin_unlock(&busiest->lock);
2223                         if (active_balance)
2224                                 wake_up_process(busiest->migration_thread);
2225
2226                         /*
2227                          * We've kicked active balancing, reset the failure
2228                          * counter.
2229                          */
2230                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2231                 }
2232         } else
2233                 sd->nr_balance_failed = 0;
2234
2235         if (likely(!active_balance)) {
2236                 /* We were unbalanced, so reset the balancing interval */
2237                 sd->balance_interval = sd->min_interval;
2238         } else {
2239                 /*
2240                  * If we've begun active balancing, start to back off. This
2241                  * case may not be covered by the all_pinned logic if there
2242                  * is only 1 task on the busy runqueue (because we don't call
2243                  * move_tasks).
2244                  */
2245                 if (sd->balance_interval < sd->max_interval)
2246                         sd->balance_interval *= 2;
2247         }
2248
2249         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2250                 return -1;
2251         return nr_moved;
2252
2253 out_balanced:
2254         schedstat_inc(sd, lb_balanced[idle]);
2255
2256         sd->nr_balance_failed = 0;
2257
2258 out_one_pinned:
2259         /* tune up the balancing interval */
2260         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2261                         (sd->balance_interval < sd->max_interval))
2262                 sd->balance_interval *= 2;
2263
2264         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2265                 return -1;
2266         return 0;
2267 }
2268
2269 /*
2270  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2271  * tasks if there is an imbalance.
2272  *
2273  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2274  * this_rq is locked.
2275  */
2276 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2277                                 struct sched_domain *sd)
2278 {
2279         struct sched_group *group;
2280         runqueue_t *busiest = NULL;
2281         unsigned long imbalance;
2282         int nr_moved = 0;
2283         int sd_idle = 0;
2284
2285         if (sd->flags & SD_SHARE_CPUPOWER)
2286                 sd_idle = 1;
2287
2288         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2289         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2290         if (!group) {
2291                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2292                 goto out_balanced;
2293         }
2294
2295         busiest = find_busiest_queue(group, NEWLY_IDLE);
2296         if (!busiest) {
2297                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2298                 goto out_balanced;
2299         }
2300
2301         BUG_ON(busiest == this_rq);
2302
2303         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2304
2305         nr_moved = 0;
2306         if (busiest->nr_running > 1) {
2307                 /* Attempt to move tasks */
2308                 double_lock_balance(this_rq, busiest);
2309                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2310                                         imbalance, sd, NEWLY_IDLE, NULL);
2311                 spin_unlock(&busiest->lock);
2312         }
2313
2314         if (!nr_moved) {
2315                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2316                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2317                         return -1;
2318         } else
2319                 sd->nr_balance_failed = 0;
2320
2321         return nr_moved;
2322
2323 out_balanced:
2324         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2325         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2326                 return -1;
2327         sd->nr_balance_failed = 0;
2328         return 0;
2329 }
2330
2331 /*
2332  * idle_balance is called by schedule() if this_cpu is about to become
2333  * idle. Attempts to pull tasks from other CPUs.
2334  */
2335 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2336 {
2337         struct sched_domain *sd;
2338
2339         for_each_domain(this_cpu, sd) {
2340                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2341                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2342                                 /* We've pulled tasks over so stop searching */
2343                                 break;
2344                         }
2345                 }
2346         }
2347 }
2348
2349 /*
2350  * active_load_balance is run by migration threads. It pushes running tasks
2351  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2352  * running on each physical CPU where possible, and avoids physical /
2353  * logical imbalances.
2354  *
2355  * Called with busiest_rq locked.
2356  */
2357 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2358 {
2359         struct sched_domain *sd;
2360         runqueue_t *target_rq;
2361         int target_cpu = busiest_rq->push_cpu;
2362
2363         if (busiest_rq->nr_running <= 1)
2364                 /* no task to move */
2365                 return;
2366
2367         target_rq = cpu_rq(target_cpu);
2368
2369         /*
2370          * This condition is "impossible", if it occurs
2371          * we need to fix it.  Originally reported by
2372          * Bjorn Helgaas on a 128-cpu setup.
2373          */
2374         BUG_ON(busiest_rq == target_rq);
2375
2376         /* move a task from busiest_rq to target_rq */
2377         double_lock_balance(busiest_rq, target_rq);
2378
2379         /* Search for an sd spanning us and the target CPU. */
2380         for_each_domain(target_cpu, sd)
2381                 if ((sd->flags & SD_LOAD_BALANCE) &&
2382                         cpu_isset(busiest_cpu, sd->span))
2383                                 break;
2384
2385         if (unlikely(sd == NULL))
2386                 goto out;
2387
2388         schedstat_inc(sd, alb_cnt);
2389
2390         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2391                 schedstat_inc(sd, alb_pushed);
2392         else
2393                 schedstat_inc(sd, alb_failed);
2394 out:
2395         spin_unlock(&target_rq->lock);
2396 }
2397
2398 /*
2399  * rebalance_tick will get called every timer tick, on every CPU.
2400  *
2401  * It checks each scheduling domain to see if it is due to be balanced,
2402  * and initiates a balancing operation if so.
2403  *
2404  * Balancing parameters are set up in arch_init_sched_domains.
2405  */
2406
2407 /* Don't have all balancing operations going off at once */
2408 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2409
2410 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2411                            enum idle_type idle)
2412 {
2413         unsigned long old_load, this_load;
2414         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2415         struct sched_domain *sd;
2416         int i;
2417
2418         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2419         /* Update our load */
2420         for (i = 0; i < 3; i++) {
2421                 unsigned long new_load = this_load;
2422                 int scale = 1 << i;
2423                 old_load = this_rq->cpu_load[i];
2424                 /*
2425                  * Round up the averaging division if load is increasing. This
2426                  * prevents us from getting stuck on 9 if the load is 10, for
2427                  * example.
2428                  */
2429                 if (new_load > old_load)
2430                         new_load += scale-1;
2431                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2432         }
2433
2434         for_each_domain(this_cpu, sd) {
2435                 unsigned long interval;
2436
2437                 if (!(sd->flags & SD_LOAD_BALANCE))
2438                         continue;
2439
2440                 interval = sd->balance_interval;
2441                 if (idle != SCHED_IDLE)
2442                         interval *= sd->busy_factor;
2443
2444                 /* scale ms to jiffies */
2445                 interval = msecs_to_jiffies(interval);
2446                 if (unlikely(!interval))
2447                         interval = 1;
2448
2449                 if (j - sd->last_balance >= interval) {
2450                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2451                                 /*
2452                                  * We've pulled tasks over so either we're no
2453                                  * longer idle, or one of our SMT siblings is
2454                                  * not idle.
2455                                  */
2456                                 idle = NOT_IDLE;
2457                         }
2458                         sd->last_balance += interval;
2459                 }
2460         }
2461 }
2462 #else
2463 /*
2464  * on UP we do not need to balance between CPUs:
2465  */
2466 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2467 {
2468 }
2469 static inline void idle_balance(int cpu, runqueue_t *rq)
2470 {
2471 }
2472 #endif
2473
2474 static inline int wake_priority_sleeper(runqueue_t *rq)
2475 {
2476         int ret = 0;
2477 #ifdef CONFIG_SCHED_SMT
2478         spin_lock(&rq->lock);
2479         /*
2480          * If an SMT sibling task has been put to sleep for priority
2481          * reasons reschedule the idle task to see if it can now run.
2482          */
2483         if (rq->nr_running) {
2484                 resched_task(rq->idle);
2485                 ret = 1;
2486         }
2487         spin_unlock(&rq->lock);
2488 #endif
2489         return ret;
2490 }
2491
2492 DEFINE_PER_CPU(struct kernel_stat, kstat);
2493
2494 EXPORT_PER_CPU_SYMBOL(kstat);
2495
2496 /*
2497  * This is called on clock ticks and on context switches.
2498  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2499  */
2500 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2501                                     unsigned long long now)
2502 {
2503         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2504         p->sched_time += now - last;
2505 }
2506
2507 /*
2508  * Return current->sched_time plus any more ns on the sched_clock
2509  * that have not yet been banked.
2510  */
2511 unsigned long long current_sched_time(const task_t *tsk)
2512 {
2513         unsigned long long ns;
2514         unsigned long flags;
2515         local_irq_save(flags);
2516         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2517         ns = tsk->sched_time + (sched_clock() - ns);
2518         local_irq_restore(flags);
2519         return ns;
2520 }
2521
2522 /*
2523  * We place interactive tasks back into the active array, if possible.
2524  *
2525  * To guarantee that this does not starve expired tasks we ignore the
2526  * interactivity of a task if the first expired task had to wait more
2527  * than a 'reasonable' amount of time. This deadline timeout is
2528  * load-dependent, as the frequency of array switched decreases with
2529  * increasing number of running tasks. We also ignore the interactivity
2530  * if a better static_prio task has expired:
2531  */
2532 #define EXPIRED_STARVING(rq) \
2533         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2534                 (jiffies - (rq)->expired_timestamp >= \
2535                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2536                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2537
2538 /*
2539  * Account user cpu time to a process.
2540  * @p: the process that the cpu time gets accounted to
2541  * @hardirq_offset: the offset to subtract from hardirq_count()
2542  * @cputime: the cpu time spent in user space since the last update
2543  */
2544 void account_user_time(struct task_struct *p, cputime_t cputime)
2545 {
2546         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2547         cputime64_t tmp;
2548
2549         p->utime = cputime_add(p->utime, cputime);
2550
2551         /* Add user time to cpustat. */
2552         tmp = cputime_to_cputime64(cputime);
2553         if (TASK_NICE(p) > 0)
2554                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2555         else
2556                 cpustat->user = cputime64_add(cpustat->user, tmp);
2557 }
2558
2559 /*
2560  * Account system cpu time to a process.
2561  * @p: the process that the cpu time gets accounted to
2562  * @hardirq_offset: the offset to subtract from hardirq_count()
2563  * @cputime: the cpu time spent in kernel space since the last update
2564  */
2565 void account_system_time(struct task_struct *p, int hardirq_offset,
2566                          cputime_t cputime)
2567 {
2568         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2569         runqueue_t *rq = this_rq();
2570         cputime64_t tmp;
2571
2572         p->stime = cputime_add(p->stime, cputime);
2573
2574         /* Add system time to cpustat. */
2575         tmp = cputime_to_cputime64(cputime);
2576         if (hardirq_count() - hardirq_offset)
2577                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2578         else if (softirq_count())
2579                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2580         else if (p != rq->idle)
2581                 cpustat->system = cputime64_add(cpustat->system, tmp);
2582         else if (atomic_read(&rq->nr_iowait) > 0)
2583                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2584         else
2585                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2586         /* Account for system time used */
2587         acct_update_integrals(p);
2588 }
2589
2590 /*
2591  * Account for involuntary wait time.
2592  * @p: the process from which the cpu time has been stolen
2593  * @steal: the cpu time spent in involuntary wait
2594  */
2595 void account_steal_time(struct task_struct *p, cputime_t steal)
2596 {
2597         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2598         cputime64_t tmp = cputime_to_cputime64(steal);
2599         runqueue_t *rq = this_rq();
2600
2601         if (p == rq->idle) {
2602                 p->stime = cputime_add(p->stime, steal);
2603                 if (atomic_read(&rq->nr_iowait) > 0)
2604                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2605                 else
2606                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2607         } else
2608                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2609 }
2610
2611 /*
2612  * This function gets called by the timer code, with HZ frequency.
2613  * We call it with interrupts disabled.
2614  *
2615  * It also gets called by the fork code, when changing the parent's
2616  * timeslices.
2617  */
2618 void scheduler_tick(void)
2619 {
2620         int cpu = smp_processor_id();
2621         runqueue_t *rq = this_rq();
2622         task_t *p = current;
2623         unsigned long long now = sched_clock();
2624
2625         update_cpu_clock(p, rq, now);
2626
2627         rq->timestamp_last_tick = now;
2628
2629         if (p == rq->idle) {
2630                 if (wake_priority_sleeper(rq))
2631                         goto out;
2632                 rebalance_tick(cpu, rq, SCHED_IDLE);
2633                 return;
2634         }
2635
2636         /* Task might have expired already, but not scheduled off yet */
2637         if (p->array != rq->active) {
2638                 set_tsk_need_resched(p);
2639                 goto out;
2640         }
2641         spin_lock(&rq->lock);
2642         /*
2643          * The task was running during this tick - update the
2644          * time slice counter. Note: we do not update a thread's
2645          * priority until it either goes to sleep or uses up its
2646          * timeslice. This makes it possible for interactive tasks
2647          * to use up their timeslices at their highest priority levels.
2648          */
2649         if (rt_task(p)) {
2650                 /*
2651                  * RR tasks need a special form of timeslice management.
2652                  * FIFO tasks have no timeslices.
2653                  */
2654                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2655                         p->time_slice = task_timeslice(p);
2656                         p->first_time_slice = 0;
2657                         set_tsk_need_resched(p);
2658
2659                         /* put it at the end of the queue: */
2660                         requeue_task(p, rq->active);
2661                 }
2662                 goto out_unlock;
2663         }
2664         if (!--p->time_slice) {
2665                 dequeue_task(p, rq->active);
2666                 set_tsk_need_resched(p);
2667                 p->prio = effective_prio(p);
2668                 p->time_slice = task_timeslice(p);
2669                 p->first_time_slice = 0;
2670
2671                 if (!rq->expired_timestamp)
2672                         rq->expired_timestamp = jiffies;
2673                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2674                         enqueue_task(p, rq->expired);
2675                         if (p->static_prio < rq->best_expired_prio)
2676                                 rq->best_expired_prio = p->static_prio;
2677                 } else
2678                         enqueue_task(p, rq->active);
2679         } else {
2680                 /*
2681                  * Prevent a too long timeslice allowing a task to monopolize
2682                  * the CPU. We do this by splitting up the timeslice into
2683                  * smaller pieces.
2684                  *
2685                  * Note: this does not mean the task's timeslices expire or
2686                  * get lost in any way, they just might be preempted by
2687                  * another task of equal priority. (one with higher
2688                  * priority would have preempted this task already.) We
2689                  * requeue this task to the end of the list on this priority
2690                  * level, which is in essence a round-robin of tasks with
2691                  * equal priority.
2692                  *
2693                  * This only applies to tasks in the interactive
2694                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2695                  */
2696                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2697                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2698                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2699                         (p->array == rq->active)) {
2700
2701                         requeue_task(p, rq->active);
2702                         set_tsk_need_resched(p);
2703                 }
2704         }
2705 out_unlock:
2706         spin_unlock(&rq->lock);
2707 out:
2708         rebalance_tick(cpu, rq, NOT_IDLE);
2709 }
2710
2711 #ifdef CONFIG_SCHED_SMT
2712 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2713 {
2714         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2715         if (rq->curr == rq->idle && rq->nr_running)
2716                 resched_task(rq->idle);
2717 }
2718
2719 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2720 {
2721         struct sched_domain *tmp, *sd = NULL;
2722         cpumask_t sibling_map;
2723         int i;
2724
2725         for_each_domain(this_cpu, tmp)
2726                 if (tmp->flags & SD_SHARE_CPUPOWER)
2727                         sd = tmp;
2728
2729         if (!sd)
2730                 return;
2731
2732         /*
2733          * Unlock the current runqueue because we have to lock in
2734          * CPU order to avoid deadlocks. Caller knows that we might
2735          * unlock. We keep IRQs disabled.
2736          */
2737         spin_unlock(&this_rq->lock);
2738
2739         sibling_map = sd->span;
2740
2741         for_each_cpu_mask(i, sibling_map)
2742                 spin_lock(&cpu_rq(i)->lock);
2743         /*
2744          * We clear this CPU from the mask. This both simplifies the
2745          * inner loop and keps this_rq locked when we exit:
2746          */
2747         cpu_clear(this_cpu, sibling_map);
2748
2749         for_each_cpu_mask(i, sibling_map) {
2750                 runqueue_t *smt_rq = cpu_rq(i);
2751
2752                 wakeup_busy_runqueue(smt_rq);
2753         }
2754
2755         for_each_cpu_mask(i, sibling_map)
2756                 spin_unlock(&cpu_rq(i)->lock);
2757         /*
2758          * We exit with this_cpu's rq still held and IRQs
2759          * still disabled:
2760          */
2761 }
2762
2763 /*
2764  * number of 'lost' timeslices this task wont be able to fully
2765  * utilize, if another task runs on a sibling. This models the
2766  * slowdown effect of other tasks running on siblings:
2767  */
2768 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2769 {
2770         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2771 }
2772
2773 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2774 {
2775         struct sched_domain *tmp, *sd = NULL;
2776         cpumask_t sibling_map;
2777         prio_array_t *array;
2778         int ret = 0, i;
2779         task_t *p;
2780
2781         for_each_domain(this_cpu, tmp)
2782                 if (tmp->flags & SD_SHARE_CPUPOWER)
2783                         sd = tmp;
2784
2785         if (!sd)
2786                 return 0;
2787
2788         /*
2789          * The same locking rules and details apply as for
2790          * wake_sleeping_dependent():
2791          */
2792         spin_unlock(&this_rq->lock);
2793         sibling_map = sd->span;
2794         for_each_cpu_mask(i, sibling_map)
2795                 spin_lock(&cpu_rq(i)->lock);
2796         cpu_clear(this_cpu, sibling_map);
2797
2798         /*
2799          * Establish next task to be run - it might have gone away because
2800          * we released the runqueue lock above:
2801          */
2802         if (!this_rq->nr_running)
2803                 goto out_unlock;
2804         array = this_rq->active;
2805         if (!array->nr_active)
2806                 array = this_rq->expired;
2807         BUG_ON(!array->nr_active);
2808
2809         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2810                 task_t, run_list);
2811
2812         for_each_cpu_mask(i, sibling_map) {
2813                 runqueue_t *smt_rq = cpu_rq(i);
2814                 task_t *smt_curr = smt_rq->curr;
2815
2816                 /* Kernel threads do not participate in dependent sleeping */
2817                 if (!p->mm || !smt_curr->mm || rt_task(p))
2818                         goto check_smt_task;
2819
2820                 /*
2821                  * If a user task with lower static priority than the
2822                  * running task on the SMT sibling is trying to schedule,
2823                  * delay it till there is proportionately less timeslice
2824                  * left of the sibling task to prevent a lower priority
2825                  * task from using an unfair proportion of the
2826                  * physical cpu's resources. -ck
2827                  */
2828                 if (rt_task(smt_curr)) {
2829                         /*
2830                          * With real time tasks we run non-rt tasks only
2831                          * per_cpu_gain% of the time.
2832                          */
2833                         if ((jiffies % DEF_TIMESLICE) >
2834                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2835                                         ret = 1;
2836                 } else
2837                         if (smt_curr->static_prio < p->static_prio &&
2838                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2839                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2840                                         ret = 1;
2841
2842 check_smt_task:
2843                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2844                         rt_task(smt_curr))
2845                                 continue;
2846                 if (!p->mm) {
2847                         wakeup_busy_runqueue(smt_rq);
2848                         continue;
2849                 }
2850
2851                 /*
2852                  * Reschedule a lower priority task on the SMT sibling for
2853                  * it to be put to sleep, or wake it up if it has been put to
2854                  * sleep for priority reasons to see if it should run now.
2855                  */
2856                 if (rt_task(p)) {
2857                         if ((jiffies % DEF_TIMESLICE) >
2858                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2859                                         resched_task(smt_curr);
2860                 } else {
2861                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2862                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2863                                         resched_task(smt_curr);
2864                         else
2865                                 wakeup_busy_runqueue(smt_rq);
2866                 }
2867         }
2868 out_unlock:
2869         for_each_cpu_mask(i, sibling_map)
2870                 spin_unlock(&cpu_rq(i)->lock);
2871         return ret;
2872 }
2873 #else
2874 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2875 {
2876 }
2877
2878 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2879 {
2880         return 0;
2881 }
2882 #endif
2883
2884 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2885
2886 void fastcall add_preempt_count(int val)
2887 {
2888         /*
2889          * Underflow?
2890          */
2891         BUG_ON((preempt_count() < 0));
2892         preempt_count() += val;
2893         /*
2894          * Spinlock count overflowing soon?
2895          */
2896         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2897 }
2898 EXPORT_SYMBOL(add_preempt_count);
2899
2900 void fastcall sub_preempt_count(int val)
2901 {
2902         /*
2903          * Underflow?
2904          */
2905         BUG_ON(val > preempt_count());
2906         /*
2907          * Is the spinlock portion underflowing?
2908          */
2909         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2910         preempt_count() -= val;
2911 }
2912 EXPORT_SYMBOL(sub_preempt_count);
2913
2914 #endif
2915
2916 /*
2917  * schedule() is the main scheduler function.
2918  */
2919 asmlinkage void __sched schedule(void)
2920 {
2921         long *switch_count;
2922         task_t *prev, *next;
2923         runqueue_t *rq;
2924         prio_array_t *array;
2925         struct list_head *queue;
2926         unsigned long long now;
2927         unsigned long run_time;
2928         int cpu, idx, new_prio;
2929
2930         /*
2931          * Test if we are atomic.  Since do_exit() needs to call into
2932          * schedule() atomically, we ignore that path for now.
2933          * Otherwise, whine if we are scheduling when we should not be.
2934          */
2935         if (likely(!current->exit_state)) {
2936                 if (unlikely(in_atomic())) {
2937                         printk(KERN_ERR "scheduling while atomic: "
2938                                 "%s/0x%08x/%d\n",
2939                                 current->comm, preempt_count(), current->pid);
2940                         dump_stack();
2941                 }
2942         }
2943         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2944
2945 need_resched:
2946         preempt_disable();
2947         prev = current;
2948         release_kernel_lock(prev);
2949 need_resched_nonpreemptible:
2950         rq = this_rq();
2951
2952         /*
2953          * The idle thread is not allowed to schedule!
2954          * Remove this check after it has been exercised a bit.
2955          */
2956         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2957                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2958                 dump_stack();
2959         }
2960
2961         schedstat_inc(rq, sched_cnt);
2962         now = sched_clock();
2963         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2964                 run_time = now - prev->timestamp;
2965                 if (unlikely((long long)(now - prev->timestamp) < 0))
2966                         run_time = 0;
2967         } else
2968                 run_time = NS_MAX_SLEEP_AVG;
2969
2970         /*
2971          * Tasks charged proportionately less run_time at high sleep_avg to
2972          * delay them losing their interactive status
2973          */
2974         run_time /= (CURRENT_BONUS(prev) ? : 1);
2975
2976         spin_lock_irq(&rq->lock);
2977
2978         if (unlikely(prev->flags & PF_DEAD))
2979                 prev->state = EXIT_DEAD;
2980
2981         switch_count = &prev->nivcsw;
2982         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2983                 switch_count = &prev->nvcsw;
2984                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2985                                 unlikely(signal_pending(prev))))
2986                         prev->state = TASK_RUNNING;
2987                 else {
2988                         if (prev->state == TASK_UNINTERRUPTIBLE)
2989                                 rq->nr_uninterruptible++;
2990                         deactivate_task(prev, rq);
2991                 }
2992         }
2993
2994         cpu = smp_processor_id();
2995         if (unlikely(!rq->nr_running)) {
2996 go_idle:
2997                 idle_balance(cpu, rq);
2998                 if (!rq->nr_running) {
2999                         next = rq->idle;
3000                         rq->expired_timestamp = 0;
3001                         wake_sleeping_dependent(cpu, rq);
3002                         /*
3003                          * wake_sleeping_dependent() might have released
3004                          * the runqueue, so break out if we got new
3005                          * tasks meanwhile:
3006                          */
3007                         if (!rq->nr_running)
3008                                 goto switch_tasks;
3009                 }
3010         } else {
3011                 if (dependent_sleeper(cpu, rq)) {
3012                         next = rq->idle;
3013                         goto switch_tasks;
3014                 }
3015                 /*
3016                  * dependent_sleeper() releases and reacquires the runqueue
3017                  * lock, hence go into the idle loop if the rq went
3018                  * empty meanwhile:
3019                  */
3020                 if (unlikely(!rq->nr_running))
3021                         goto go_idle;
3022         }
3023
3024         array = rq->active;
3025         if (unlikely(!array->nr_active)) {
3026                 /*
3027                  * Switch the active and expired arrays.
3028                  */
3029                 schedstat_inc(rq, sched_switch);
3030                 rq->active = rq->expired;
3031                 rq->expired = array;
3032                 array = rq->active;
3033                 rq->expired_timestamp = 0;
3034                 rq->best_expired_prio = MAX_PRIO;
3035         }
3036
3037         idx = sched_find_first_bit(array->bitmap);
3038         queue = array->queue + idx;
3039         next = list_entry(queue->next, task_t, run_list);
3040
3041         if (!rt_task(next) && next->activated > 0) {
3042                 unsigned long long delta = now - next->timestamp;
3043                 if (unlikely((long long)(now - next->timestamp) < 0))
3044                         delta = 0;
3045
3046                 if (next->activated == 1)
3047                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3048
3049                 array = next->array;
3050                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3051
3052                 if (unlikely(next->prio != new_prio)) {
3053                         dequeue_task(next, array);
3054                         next->prio = new_prio;
3055                         enqueue_task(next, array);
3056                 } else
3057                         requeue_task(next, array);
3058         }
3059         next->activated = 0;
3060 switch_tasks:
3061         if (next == rq->idle)
3062                 schedstat_inc(rq, sched_goidle);
3063         prefetch(next);
3064         prefetch_stack(next);
3065         clear_tsk_need_resched(prev);
3066         rcu_qsctr_inc(task_cpu(prev));
3067
3068         update_cpu_clock(prev, rq, now);
3069
3070         prev->sleep_avg -= run_time;
3071         if ((long)prev->sleep_avg <= 0)
3072                 prev->sleep_avg = 0;
3073         prev->timestamp = prev->last_ran = now;
3074
3075         sched_info_switch(prev, next);
3076         if (likely(prev != next)) {
3077                 next->timestamp = now;
3078                 rq->nr_switches++;
3079                 rq->curr = next;
3080                 ++*switch_count;
3081
3082                 prepare_task_switch(rq, next);
3083                 prev = context_switch(rq, prev, next);
3084                 barrier();
3085                 /*
3086                  * this_rq must be evaluated again because prev may have moved
3087                  * CPUs since it called schedule(), thus the 'rq' on its stack
3088                  * frame will be invalid.
3089                  */
3090                 finish_task_switch(this_rq(), prev);
3091         } else
3092                 spin_unlock_irq(&rq->lock);
3093
3094         prev = current;
3095         if (unlikely(reacquire_kernel_lock(prev) < 0))
3096                 goto need_resched_nonpreemptible;
3097         preempt_enable_no_resched();
3098         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3099                 goto need_resched;
3100 }
3101
3102 EXPORT_SYMBOL(schedule);
3103
3104 #ifdef CONFIG_PREEMPT
3105 /*
3106  * this is is the entry point to schedule() from in-kernel preemption
3107  * off of preempt_enable.  Kernel preemptions off return from interrupt
3108  * occur there and call schedule directly.
3109  */
3110 asmlinkage void __sched preempt_schedule(void)
3111 {
3112         struct thread_info *ti = current_thread_info();
3113 #ifdef CONFIG_PREEMPT_BKL
3114         struct task_struct *task = current;
3115         int saved_lock_depth;
3116 #endif
3117         /*
3118          * If there is a non-zero preempt_count or interrupts are disabled,
3119          * we do not want to preempt the current task.  Just return..
3120          */
3121         if (unlikely(ti->preempt_count || irqs_disabled()))
3122                 return;
3123
3124 need_resched:
3125         add_preempt_count(PREEMPT_ACTIVE);
3126         /*
3127          * We keep the big kernel semaphore locked, but we
3128          * clear ->lock_depth so that schedule() doesnt
3129          * auto-release the semaphore:
3130          */
3131 #ifdef CONFIG_PREEMPT_BKL
3132         saved_lock_depth = task->lock_depth;
3133         task->lock_depth = -1;
3134 #endif
3135         schedule();
3136 #ifdef CONFIG_PREEMPT_BKL
3137         task->lock_depth = saved_lock_depth;
3138 #endif
3139         sub_preempt_count(PREEMPT_ACTIVE);
3140
3141         /* we could miss a preemption opportunity between schedule and now */
3142         barrier();
3143         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3144                 goto need_resched;
3145 }
3146
3147 EXPORT_SYMBOL(preempt_schedule);
3148
3149 /*
3150  * this is is the entry point to schedule() from kernel preemption
3151  * off of irq context.
3152  * Note, that this is called and return with irqs disabled. This will
3153  * protect us against recursive calling from irq.
3154  */
3155 asmlinkage void __sched preempt_schedule_irq(void)
3156 {
3157         struct thread_info *ti = current_thread_info();
3158 #ifdef CONFIG_PREEMPT_BKL
3159         struct task_struct *task = current;
3160         int saved_lock_depth;
3161 #endif
3162         /* Catch callers which need to be fixed*/
3163         BUG_ON(ti->preempt_count || !irqs_disabled());
3164
3165 need_resched:
3166         add_preempt_count(PREEMPT_ACTIVE);
3167         /*
3168          * We keep the big kernel semaphore locked, but we
3169          * clear ->lock_depth so that schedule() doesnt
3170          * auto-release the semaphore:
3171          */
3172 #ifdef CONFIG_PREEMPT_BKL
3173         saved_lock_depth = task->lock_depth;
3174         task->lock_depth = -1;
3175 #endif
3176         local_irq_enable();
3177         schedule();
3178         local_irq_disable();
3179 #ifdef CONFIG_PREEMPT_BKL
3180         task->lock_depth = saved_lock_depth;
3181 #endif
3182         sub_preempt_count(PREEMPT_ACTIVE);
3183
3184         /* we could miss a preemption opportunity between schedule and now */
3185         barrier();
3186         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3187                 goto need_resched;
3188 }
3189
3190 #endif /* CONFIG_PREEMPT */
3191
3192 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3193                           void *key)
3194 {
3195         task_t *p = curr->private;
3196         return try_to_wake_up(p, mode, sync);
3197 }
3198
3199 EXPORT_SYMBOL(default_wake_function);
3200
3201 /*
3202  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3203  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3204  * number) then we wake all the non-exclusive tasks and one exclusive task.
3205  *
3206  * There are circumstances in which we can try to wake a task which has already
3207  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3208  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3209  */
3210 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3211                              int nr_exclusive, int sync, void *key)
3212 {
3213         struct list_head *tmp, *next;
3214
3215         list_for_each_safe(tmp, next, &q->task_list) {
3216                 wait_queue_t *curr;
3217                 unsigned flags;
3218                 curr = list_entry(tmp, wait_queue_t, task_list);
3219                 flags = curr->flags;
3220                 if (curr->func(curr, mode, sync, key) &&
3221                     (flags & WQ_FLAG_EXCLUSIVE) &&
3222                     !--nr_exclusive)
3223                         break;
3224         }
3225 }
3226
3227 /**
3228  * __wake_up - wake up threads blocked on a waitqueue.
3229  * @q: the waitqueue
3230  * @mode: which threads
3231  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3232  * @key: is directly passed to the wakeup function
3233  */
3234 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3235                         int nr_exclusive, void *key)
3236 {
3237         unsigned long flags;
3238
3239         spin_lock_irqsave(&q->lock, flags);
3240         __wake_up_common(q, mode, nr_exclusive, 0, key);
3241         spin_unlock_irqrestore(&q->lock, flags);
3242 }
3243
3244 EXPORT_SYMBOL(__wake_up);
3245
3246 /*
3247  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3248  */
3249 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3250 {
3251         __wake_up_common(q, mode, 1, 0, NULL);
3252 }
3253
3254 /**
3255  * __wake_up_sync - wake up threads blocked on a waitqueue.
3256  * @q: the waitqueue
3257  * @mode: which threads
3258  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3259  *
3260  * The sync wakeup differs that the waker knows that it will schedule
3261  * away soon, so while the target thread will be woken up, it will not
3262  * be migrated to another CPU - ie. the two threads are 'synchronized'
3263  * with each other. This can prevent needless bouncing between CPUs.
3264  *
3265  * On UP it can prevent extra preemption.
3266  */
3267 void fastcall
3268 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3269 {
3270         unsigned long flags;
3271         int sync = 1;
3272
3273         if (unlikely(!q))
3274                 return;
3275
3276         if (unlikely(!nr_exclusive))
3277                 sync = 0;
3278
3279         spin_lock_irqsave(&q->lock, flags);
3280         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3281         spin_unlock_irqrestore(&q->lock, flags);
3282 }
3283 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3284
3285 void fastcall complete(struct completion *x)
3286 {
3287         unsigned long flags;
3288
3289         spin_lock_irqsave(&x->wait.lock, flags);
3290         x->done++;
3291         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3292                          1, 0, NULL);
3293         spin_unlock_irqrestore(&x->wait.lock, flags);
3294 }
3295 EXPORT_SYMBOL(complete);
3296
3297 void fastcall complete_all(struct completion *x)
3298 {
3299         unsigned long flags;
3300
3301         spin_lock_irqsave(&x->wait.lock, flags);
3302         x->done += UINT_MAX/2;
3303         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3304                          0, 0, NULL);
3305         spin_unlock_irqrestore(&x->wait.lock, flags);
3306 }
3307 EXPORT_SYMBOL(complete_all);
3308
3309 void fastcall __sched wait_for_completion(struct completion *x)
3310 {
3311         might_sleep();
3312         spin_lock_irq(&x->wait.lock);
3313         if (!x->done) {
3314                 DECLARE_WAITQUEUE(wait, current);
3315
3316                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3317                 __add_wait_queue_tail(&x->wait, &wait);
3318                 do {
3319                         __set_current_state(TASK_UNINTERRUPTIBLE);
3320                         spin_unlock_irq(&x->wait.lock);
3321                         schedule();
3322                         spin_lock_irq(&x->wait.lock);
3323                 } while (!x->done);
3324                 __remove_wait_queue(&x->wait, &wait);
3325         }
3326         x->done--;
3327         spin_unlock_irq(&x->wait.lock);
3328 }
3329 EXPORT_SYMBOL(wait_for_completion);
3330
3331 unsigned long fastcall __sched
3332 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3333 {
3334         might_sleep();
3335
3336         spin_lock_irq(&x->wait.lock);
3337         if (!x->done) {
3338                 DECLARE_WAITQUEUE(wait, current);
3339
3340                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341                 __add_wait_queue_tail(&x->wait, &wait);
3342                 do {
3343                         __set_current_state(TASK_UNINTERRUPTIBLE);
3344                         spin_unlock_irq(&x->wait.lock);
3345                         timeout = schedule_timeout(timeout);
3346                         spin_lock_irq(&x->wait.lock);
3347                         if (!timeout) {
3348                                 __remove_wait_queue(&x->wait, &wait);
3349                                 goto out;
3350                         }
3351                 } while (!x->done);
3352                 __remove_wait_queue(&x->wait, &wait);
3353         }
3354         x->done--;
3355 out:
3356         spin_unlock_irq(&x->wait.lock);
3357         return timeout;
3358 }
3359 EXPORT_SYMBOL(wait_for_completion_timeout);
3360
3361 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3362 {
3363         int ret = 0;
3364
3365         might_sleep();
3366
3367         spin_lock_irq(&x->wait.lock);
3368         if (!x->done) {
3369                 DECLARE_WAITQUEUE(wait, current);
3370
3371                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3372                 __add_wait_queue_tail(&x->wait, &wait);
3373                 do {
3374                         if (signal_pending(current)) {
3375                                 ret = -ERESTARTSYS;
3376                                 __remove_wait_queue(&x->wait, &wait);
3377                                 goto out;
3378                         }
3379                         __set_current_state(TASK_INTERRUPTIBLE);
3380                         spin_unlock_irq(&x->wait.lock);
3381                         schedule();
3382                         spin_lock_irq(&x->wait.lock);
3383                 } while (!x->done);
3384                 __remove_wait_queue(&x->wait, &wait);
3385         }
3386         x->done--;
3387 out:
3388         spin_unlock_irq(&x->wait.lock);
3389
3390         return ret;
3391 }
3392 EXPORT_SYMBOL(wait_for_completion_interruptible);
3393
3394 unsigned long fastcall __sched
3395 wait_for_completion_interruptible_timeout(struct completion *x,
3396                                           unsigned long timeout)
3397 {
3398         might_sleep();
3399
3400         spin_lock_irq(&x->wait.lock);
3401         if (!x->done) {
3402                 DECLARE_WAITQUEUE(wait, current);
3403
3404                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3405                 __add_wait_queue_tail(&x->wait, &wait);
3406                 do {
3407                         if (signal_pending(current)) {
3408                                 timeout = -ERESTARTSYS;
3409                                 __remove_wait_queue(&x->wait, &wait);
3410                                 goto out;
3411                         }
3412                         __set_current_state(TASK_INTERRUPTIBLE);
3413                         spin_unlock_irq(&x->wait.lock);
3414                         timeout = schedule_timeout(timeout);
3415                         spin_lock_irq(&x->wait.lock);
3416                         if (!timeout) {
3417                                 __remove_wait_queue(&x->wait, &wait);
3418                                 goto out;
3419                         }
3420                 } while (!x->done);
3421                 __remove_wait_queue(&x->wait, &wait);
3422         }
3423         x->done--;
3424 out:
3425         spin_unlock_irq(&x->wait.lock);
3426         return timeout;
3427 }
3428 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3429
3430
3431 #define SLEEP_ON_VAR                                    \
3432         unsigned long flags;                            \
3433         wait_queue_t wait;                              \
3434         init_waitqueue_entry(&wait, current);
3435
3436 #define SLEEP_ON_HEAD                                   \
3437         spin_lock_irqsave(&q->lock,flags);              \
3438         __add_wait_queue(q, &wait);                     \
3439         spin_unlock(&q->lock);
3440
3441 #define SLEEP_ON_TAIL                                   \
3442         spin_lock_irq(&q->lock);                        \
3443         __remove_wait_queue(q, &wait);                  \
3444         spin_unlock_irqrestore(&q->lock, flags);
3445
3446 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3447 {
3448         SLEEP_ON_VAR
3449
3450         current->state = TASK_INTERRUPTIBLE;
3451
3452         SLEEP_ON_HEAD
3453         schedule();
3454         SLEEP_ON_TAIL
3455 }
3456
3457 EXPORT_SYMBOL(interruptible_sleep_on);
3458
3459 long fastcall __sched
3460 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3461 {
3462         SLEEP_ON_VAR
3463
3464         current->state = TASK_INTERRUPTIBLE;
3465
3466         SLEEP_ON_HEAD
3467         timeout = schedule_timeout(timeout);
3468         SLEEP_ON_TAIL
3469
3470         return timeout;
3471 }
3472
3473 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3474
3475 void fastcall __sched sleep_on(wait_queue_head_t *q)
3476 {
3477         SLEEP_ON_VAR
3478
3479         current->state = TASK_UNINTERRUPTIBLE;
3480
3481         SLEEP_ON_HEAD
3482         schedule();
3483         SLEEP_ON_TAIL
3484 }
3485
3486 EXPORT_SYMBOL(sleep_on);
3487
3488 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3489 {
3490         SLEEP_ON_VAR
3491
3492         current->state = TASK_UNINTERRUPTIBLE;
3493
3494         SLEEP_ON_HEAD
3495         timeout = schedule_timeout(timeout);
3496         SLEEP_ON_TAIL
3497
3498         return timeout;
3499 }
3500
3501 EXPORT_SYMBOL(sleep_on_timeout);
3502
3503 void set_user_nice(task_t *p, long nice)
3504 {
3505         unsigned long flags;
3506         prio_array_t *array;
3507         runqueue_t *rq;
3508         int old_prio, new_prio, delta;
3509
3510         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3511                 return;
3512         /*
3513          * We have to be careful, if called from sys_setpriority(),
3514          * the task might be in the middle of scheduling on another CPU.
3515          */
3516         rq = task_rq_lock(p, &flags);
3517         /*
3518          * The RT priorities are set via sched_setscheduler(), but we still
3519          * allow the 'normal' nice value to be set - but as expected
3520          * it wont have any effect on scheduling until the task is
3521          * not SCHED_NORMAL:
3522          */
3523         if (rt_task(p)) {
3524                 p->static_prio = NICE_TO_PRIO(nice);
3525                 goto out_unlock;
3526         }
3527         array = p->array;
3528         if (array) {
3529                 dequeue_task(p, array);
3530                 dec_prio_bias(rq, p->static_prio);
3531         }
3532
3533         old_prio = p->prio;
3534         new_prio = NICE_TO_PRIO(nice);
3535         delta = new_prio - old_prio;
3536         p->static_prio = NICE_TO_PRIO(nice);
3537         p->prio += delta;
3538
3539         if (array) {
3540                 enqueue_task(p, array);
3541                 inc_prio_bias(rq, p->static_prio);
3542                 /*
3543                  * If the task increased its priority or is running and
3544                  * lowered its priority, then reschedule its CPU:
3545                  */
3546                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3547                         resched_task(rq->curr);
3548         }
3549 out_unlock:
3550         task_rq_unlock(rq, &flags);
3551 }
3552
3553 EXPORT_SYMBOL(set_user_nice);
3554
3555 /*
3556  * can_nice - check if a task can reduce its nice value
3557  * @p: task
3558  * @nice: nice value
3559  */
3560 int can_nice(const task_t *p, const int nice)
3561 {
3562         /* convert nice value [19,-20] to rlimit style value [1,40] */
3563         int nice_rlim = 20 - nice;
3564         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3565                 capable(CAP_SYS_NICE));
3566 }
3567
3568 #ifdef __ARCH_WANT_SYS_NICE
3569
3570 /*
3571  * sys_nice - change the priority of the current process.
3572  * @increment: priority increment
3573  *
3574  * sys_setpriority is a more generic, but much slower function that
3575  * does similar things.
3576  */
3577 asmlinkage long sys_nice(int increment)
3578 {
3579         int retval;
3580         long nice;
3581
3582         /*
3583          * Setpriority might change our priority at the same moment.
3584          * We don't have to worry. Conceptually one call occurs first
3585          * and we have a single winner.
3586          */
3587         if (increment < -40)
3588                 increment = -40;
3589         if (increment > 40)
3590                 increment = 40;
3591
3592         nice = PRIO_TO_NICE(current->static_prio) + increment;
3593         if (nice < -20)
3594                 nice = -20;
3595         if (nice > 19)
3596                 nice = 19;
3597
3598         if (increment < 0 && !can_nice(current, nice))
3599                 return -EPERM;
3600
3601         retval = security_task_setnice(current, nice);
3602         if (retval)
3603                 return retval;
3604
3605         set_user_nice(current, nice);
3606         return 0;
3607 }
3608
3609 #endif
3610
3611 /**
3612  * task_prio - return the priority value of a given task.
3613  * @p: the task in question.
3614  *
3615  * This is the priority value as seen by users in /proc.
3616  * RT tasks are offset by -200. Normal tasks are centered
3617  * around 0, value goes from -16 to +15.
3618  */
3619 int task_prio(const task_t *p)
3620 {
3621         return p->prio - MAX_RT_PRIO;
3622 }
3623
3624 /**
3625  * task_nice - return the nice value of a given task.
3626  * @p: the task in question.
3627  */
3628 int task_nice(const task_t *p)
3629 {
3630         return TASK_NICE(p);
3631 }
3632 EXPORT_SYMBOL_GPL(task_nice);
3633
3634 /**
3635  * idle_cpu - is a given cpu idle currently?
3636  * @cpu: the processor in question.
3637  */
3638 int idle_cpu(int cpu)
3639 {
3640         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3641 }
3642
3643 /**
3644  * idle_task - return the idle task for a given cpu.
3645  * @cpu: the processor in question.
3646  */
3647 task_t *idle_task(int cpu)
3648 {
3649         return cpu_rq(cpu)->idle;
3650 }
3651
3652 /**
3653  * find_process_by_pid - find a process with a matching PID value.
3654  * @pid: the pid in question.
3655  */
3656 static inline task_t *find_process_by_pid(pid_t pid)
3657 {
3658         return pid ? find_task_by_pid(pid) : current;
3659 }
3660
3661 /* Actually do priority change: must hold rq lock. */
3662 static void __setscheduler(struct task_struct *p, int policy, int prio)
3663 {
3664         BUG_ON(p->array);
3665         p->policy = policy;
3666         p->rt_priority = prio;
3667         if (policy != SCHED_NORMAL)
3668                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3669         else
3670                 p->prio = p->static_prio;
3671 }
3672
3673 /**
3674  * sched_setscheduler - change the scheduling policy and/or RT priority of
3675  * a thread.
3676  * @p: the task in question.
3677  * @policy: new policy.
3678  * @param: structure containing the new RT priority.
3679  */
3680 int sched_setscheduler(struct task_struct *p, int policy,
3681                        struct sched_param *param)
3682 {
3683         int retval;
3684         int oldprio, oldpolicy = -1;
3685         prio_array_t *array;
3686         unsigned long flags;
3687         runqueue_t *rq;
3688
3689 recheck:
3690         /* double check policy once rq lock held */
3691         if (policy < 0)
3692                 policy = oldpolicy = p->policy;
3693         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3694                                 policy != SCHED_NORMAL)
3695                         return -EINVAL;
3696         /*
3697          * Valid priorities for SCHED_FIFO and SCHED_RR are
3698          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3699          */
3700         if (param->sched_priority < 0 ||
3701             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3702             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3703                 return -EINVAL;
3704         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3705                 return -EINVAL;
3706
3707         /*
3708          * Allow unprivileged RT tasks to decrease priority:
3709          */
3710         if (!capable(CAP_SYS_NICE)) {
3711                 /* can't change policy */
3712                 if (policy != p->policy &&
3713                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3714                         return -EPERM;
3715                 /* can't increase priority */
3716                 if (policy != SCHED_NORMAL &&
3717                     param->sched_priority > p->rt_priority &&
3718                     param->sched_priority >
3719                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3720                         return -EPERM;
3721                 /* can't change other user's priorities */
3722                 if ((current->euid != p->euid) &&
3723                     (current->euid != p->uid))
3724                         return -EPERM;
3725         }
3726
3727         retval = security_task_setscheduler(p, policy, param);
3728         if (retval)
3729                 return retval;
3730         /*
3731          * To be able to change p->policy safely, the apropriate
3732          * runqueue lock must be held.
3733          */
3734         rq = task_rq_lock(p, &flags);
3735         /* recheck policy now with rq lock held */
3736         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3737                 policy = oldpolicy = -1;
3738                 task_rq_unlock(rq, &flags);
3739                 goto recheck;
3740         }
3741         array = p->array;
3742         if (array)
3743                 deactivate_task(p, rq);
3744         oldprio = p->prio;
3745         __setscheduler(p, policy, param->sched_priority);
3746         if (array) {
3747                 __activate_task(p, rq);
3748                 /*
3749                  * Reschedule if we are currently running on this runqueue and
3750                  * our priority decreased, or if we are not currently running on
3751                  * this runqueue and our priority is higher than the current's
3752                  */
3753                 if (task_running(rq, p)) {
3754                         if (p->prio > oldprio)
3755                                 resched_task(rq->curr);
3756                 } else if (TASK_PREEMPTS_CURR(p, rq))
3757                         resched_task(rq->curr);
3758         }
3759         task_rq_unlock(rq, &flags);
3760         return 0;
3761 }
3762 EXPORT_SYMBOL_GPL(sched_setscheduler);
3763
3764 static int
3765 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3766 {
3767         int retval;
3768         struct sched_param lparam;
3769         struct task_struct *p;
3770
3771         if (!param || pid < 0)
3772                 return -EINVAL;
3773         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3774                 return -EFAULT;
3775         read_lock_irq(&tasklist_lock);
3776         p = find_process_by_pid(pid);
3777         if (!p) {
3778                 read_unlock_irq(&tasklist_lock);
3779                 return -ESRCH;
3780         }
3781         retval = sched_setscheduler(p, policy, &lparam);
3782         read_unlock_irq(&tasklist_lock);
3783         return retval;
3784 }
3785
3786 /**
3787  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3788  * @pid: the pid in question.
3789  * @policy: new policy.
3790  * @param: structure containing the new RT priority.
3791  */
3792 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3793                                        struct sched_param __user *param)
3794 {
3795         return do_sched_setscheduler(pid, policy, param);
3796 }
3797
3798 /**
3799  * sys_sched_setparam - set/change the RT priority of a thread
3800  * @pid: the pid in question.
3801  * @param: structure containing the new RT priority.
3802  */
3803 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3804 {
3805         return do_sched_setscheduler(pid, -1, param);
3806 }
3807
3808 /**
3809  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3810  * @pid: the pid in question.
3811  */
3812 asmlinkage long sys_sched_getscheduler(pid_t pid)
3813 {
3814         int retval = -EINVAL;
3815         task_t *p;
3816
3817         if (pid < 0)
3818                 goto out_nounlock;
3819
3820         retval = -ESRCH;
3821         read_lock(&tasklist_lock);
3822         p = find_process_by_pid(pid);
3823         if (p) {
3824                 retval = security_task_getscheduler(p);
3825                 if (!retval)
3826                         retval = p->policy;
3827         }
3828         read_unlock(&tasklist_lock);
3829
3830 out_nounlock:
3831         return retval;
3832 }
3833
3834 /**
3835  * sys_sched_getscheduler - get the RT priority of a thread
3836  * @pid: the pid in question.
3837  * @param: structure containing the RT priority.
3838  */
3839 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3840 {
3841         struct sched_param lp;
3842         int retval = -EINVAL;
3843         task_t *p;
3844
3845         if (!param || pid < 0)
3846                 goto out_nounlock;
3847
3848         read_lock(&tasklist_lock);
3849         p = find_process_by_pid(pid);
3850         retval = -ESRCH;
3851         if (!p)
3852                 goto out_unlock;
3853
3854         retval = security_task_getscheduler(p);
3855         if (retval)
3856                 goto out_unlock;
3857
3858         lp.sched_priority = p->rt_priority;
3859         read_unlock(&tasklist_lock);
3860
3861         /*
3862          * This one might sleep, we cannot do it with a spinlock held ...
3863          */
3864         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3865
3866 out_nounlock:
3867         return retval;
3868
3869 out_unlock:
3870         read_unlock(&tasklist_lock);
3871         return retval;
3872 }
3873
3874 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3875 {
3876         task_t *p;
3877         int retval;
3878         cpumask_t cpus_allowed;
3879
3880         lock_cpu_hotplug();
3881         read_lock(&tasklist_lock);
3882
3883         p = find_process_by_pid(pid);
3884         if (!p) {
3885                 read_unlock(&tasklist_lock);
3886                 unlock_cpu_hotplug();
3887                 return -ESRCH;
3888         }
3889
3890         /*
3891          * It is not safe to call set_cpus_allowed with the
3892          * tasklist_lock held.  We will bump the task_struct's
3893          * usage count and then drop tasklist_lock.
3894          */
3895         get_task_struct(p);
3896         read_unlock(&tasklist_lock);
3897
3898         retval = -EPERM;
3899         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3900                         !capable(CAP_SYS_NICE))
3901                 goto out_unlock;
3902
3903         cpus_allowed = cpuset_cpus_allowed(p);
3904         cpus_and(new_mask, new_mask, cpus_allowed);
3905         retval = set_cpus_allowed(p, new_mask);
3906
3907 out_unlock:
3908         put_task_struct(p);
3909         unlock_cpu_hotplug();
3910         return retval;
3911 }
3912
3913 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3914                              cpumask_t *new_mask)
3915 {
3916         if (len < sizeof(cpumask_t)) {
3917                 memset(new_mask, 0, sizeof(cpumask_t));
3918         } else if (len > sizeof(cpumask_t)) {
3919                 len = sizeof(cpumask_t);
3920         }
3921         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3922 }
3923
3924 /**
3925  * sys_sched_setaffinity - set the cpu affinity of a process
3926  * @pid: pid of the process
3927  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3928  * @user_mask_ptr: user-space pointer to the new cpu mask
3929  */
3930 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3931                                       unsigned long __user *user_mask_ptr)
3932 {
3933         cpumask_t new_mask;
3934         int retval;
3935
3936         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3937         if (retval)
3938                 return retval;
3939
3940         return sched_setaffinity(pid, new_mask);
3941 }
3942
3943 /*
3944  * Represents all cpu's present in the system
3945  * In systems capable of hotplug, this map could dynamically grow
3946  * as new cpu's are detected in the system via any platform specific
3947  * method, such as ACPI for e.g.
3948  */
3949
3950 cpumask_t cpu_present_map;
3951 EXPORT_SYMBOL(cpu_present_map);
3952
3953 #ifndef CONFIG_SMP
3954 cpumask_t cpu_online_map = CPU_MASK_ALL;
3955 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3956 #endif
3957
3958 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3959 {
3960         int retval;
3961         task_t *p;
3962
3963         lock_cpu_hotplug();
3964         read_lock(&tasklist_lock);
3965
3966         retval = -ESRCH;
3967         p = find_process_by_pid(pid);
3968         if (!p)
3969                 goto out_unlock;
3970
3971         retval = 0;
3972         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3973
3974 out_unlock:
3975         read_unlock(&tasklist_lock);
3976         unlock_cpu_hotplug();
3977         if (retval)
3978                 return retval;
3979
3980         return 0;
3981 }
3982
3983 /**
3984  * sys_sched_getaffinity - get the cpu affinity of a process
3985  * @pid: pid of the process
3986  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3987  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3988  */
3989 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3990                                       unsigned long __user *user_mask_ptr)
3991 {
3992         int ret;
3993         cpumask_t mask;
3994
3995         if (len < sizeof(cpumask_t))
3996                 return -EINVAL;
3997
3998         ret = sched_getaffinity(pid, &mask);
3999         if (ret < 0)
4000                 return ret;
4001
4002         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4003                 return -EFAULT;
4004
4005         return sizeof(cpumask_t);
4006 }
4007
4008 /**
4009  * sys_sched_yield - yield the current processor to other threads.
4010  *
4011  * this function yields the current CPU by moving the calling thread
4012  * to the expired array. If there are no other threads running on this
4013  * CPU then this function will return.
4014  */
4015 asmlinkage long sys_sched_yield(void)
4016 {
4017         runqueue_t *rq = this_rq_lock();
4018         prio_array_t *array = current->array;
4019         prio_array_t *target = rq->expired;
4020
4021         schedstat_inc(rq, yld_cnt);
4022         /*
4023          * We implement yielding by moving the task into the expired
4024          * queue.
4025          *
4026          * (special rule: RT tasks will just roundrobin in the active
4027          *  array.)
4028          */
4029         if (rt_task(current))
4030                 target = rq->active;
4031
4032         if (array->nr_active == 1) {
4033                 schedstat_inc(rq, yld_act_empty);
4034                 if (!rq->expired->nr_active)
4035                         schedstat_inc(rq, yld_both_empty);
4036         } else if (!rq->expired->nr_active)
4037                 schedstat_inc(rq, yld_exp_empty);
4038
4039         if (array != target) {
4040                 dequeue_task(current, array);
4041                 enqueue_task(current, target);
4042         } else
4043                 /*
4044                  * requeue_task is cheaper so perform that if possible.
4045                  */
4046                 requeue_task(current, array);
4047
4048         /*
4049          * Since we are going to call schedule() anyway, there's
4050          * no need to preempt or enable interrupts:
4051          */
4052         __release(rq->lock);
4053         _raw_spin_unlock(&rq->lock);
4054         preempt_enable_no_resched();
4055
4056         schedule();
4057
4058         return 0;
4059 }
4060
4061 static inline void __cond_resched(void)
4062 {
4063         /*
4064          * The BKS might be reacquired before we have dropped
4065          * PREEMPT_ACTIVE, which could trigger a second
4066          * cond_resched() call.
4067          */
4068         if (unlikely(preempt_count()))
4069                 return;
4070         do {
4071                 add_preempt_count(PREEMPT_ACTIVE);
4072                 schedule();
4073                 sub_preempt_count(PREEMPT_ACTIVE);
4074         } while (need_resched());
4075 }
4076
4077 int __sched cond_resched(void)
4078 {
4079         if (need_resched()) {
4080                 __cond_resched();
4081                 return 1;
4082         }
4083         return 0;
4084 }
4085
4086 EXPORT_SYMBOL(cond_resched);
4087
4088 /*
4089  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4090  * call schedule, and on return reacquire the lock.
4091  *
4092  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4093  * operations here to prevent schedule() from being called twice (once via
4094  * spin_unlock(), once by hand).
4095  */
4096 int cond_resched_lock(spinlock_t *lock)
4097 {
4098         int ret = 0;
4099
4100         if (need_lockbreak(lock)) {
4101                 spin_unlock(lock);
4102                 cpu_relax();
4103                 ret = 1;
4104                 spin_lock(lock);
4105         }
4106         if (need_resched()) {
4107                 _raw_spin_unlock(lock);
4108                 preempt_enable_no_resched();
4109                 __cond_resched();
4110                 ret = 1;
4111                 spin_lock(lock);
4112         }
4113         return ret;
4114 }
4115
4116 EXPORT_SYMBOL(cond_resched_lock);
4117
4118 int __sched cond_resched_softirq(void)
4119 {
4120         BUG_ON(!in_softirq());
4121
4122         if (need_resched()) {
4123                 __local_bh_enable();
4124                 __cond_resched();
4125                 local_bh_disable();
4126                 return 1;
4127         }
4128         return 0;
4129 }
4130
4131 EXPORT_SYMBOL(cond_resched_softirq);
4132
4133
4134 /**
4135  * yield - yield the current processor to other threads.
4136  *
4137  * this is a shortcut for kernel-space yielding - it marks the
4138  * thread runnable and calls sys_sched_yield().
4139  */
4140 void __sched yield(void)
4141 {
4142         set_current_state(TASK_RUNNING);
4143         sys_sched_yield();
4144 }
4145
4146 EXPORT_SYMBOL(yield);
4147
4148 /*
4149  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4150  * that process accounting knows that this is a task in IO wait state.
4151  *
4152  * But don't do that if it is a deliberate, throttling IO wait (this task
4153  * has set its backing_dev_info: the queue against which it should throttle)
4154  */
4155 void __sched io_schedule(void)
4156 {
4157         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4158
4159         atomic_inc(&rq->nr_iowait);
4160         schedule();
4161         atomic_dec(&rq->nr_iowait);
4162 }
4163
4164 EXPORT_SYMBOL(io_schedule);
4165
4166 long __sched io_schedule_timeout(long timeout)
4167 {
4168         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4169         long ret;
4170
4171         atomic_inc(&rq->nr_iowait);
4172         ret = schedule_timeout(timeout);
4173         atomic_dec(&rq->nr_iowait);
4174         return ret;
4175 }
4176
4177 /**
4178  * sys_sched_get_priority_max - return maximum RT priority.
4179  * @policy: scheduling class.
4180  *
4181  * this syscall returns the maximum rt_priority that can be used
4182  * by a given scheduling class.
4183  */
4184 asmlinkage long sys_sched_get_priority_max(int policy)
4185 {
4186         int ret = -EINVAL;
4187
4188         switch (policy) {
4189         case SCHED_FIFO:
4190         case SCHED_RR:
4191                 ret = MAX_USER_RT_PRIO-1;
4192                 break;
4193         case SCHED_NORMAL:
4194                 ret = 0;
4195                 break;
4196         }
4197         return ret;
4198 }
4199
4200 /**
4201  * sys_sched_get_priority_min - return minimum RT priority.
4202  * @policy: scheduling class.
4203  *
4204  * this syscall returns the minimum rt_priority that can be used
4205  * by a given scheduling class.
4206  */
4207 asmlinkage long sys_sched_get_priority_min(int policy)
4208 {
4209         int ret = -EINVAL;
4210
4211         switch (policy) {
4212         case SCHED_FIFO:
4213         case SCHED_RR:
4214                 ret = 1;
4215                 break;
4216         case SCHED_NORMAL:
4217                 ret = 0;
4218         }
4219         return ret;
4220 }
4221
4222 /**
4223  * sys_sched_rr_get_interval - return the default timeslice of a process.
4224  * @pid: pid of the process.
4225  * @interval: userspace pointer to the timeslice value.
4226  *
4227  * this syscall writes the default timeslice value of a given process
4228  * into the user-space timespec buffer. A value of '0' means infinity.
4229  */
4230 asmlinkage
4231 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4232 {
4233         int retval = -EINVAL;
4234         struct timespec t;
4235         task_t *p;
4236
4237         if (pid < 0)
4238                 goto out_nounlock;
4239
4240         retval = -ESRCH;
4241         read_lock(&tasklist_lock);
4242         p = find_process_by_pid(pid);
4243         if (!p)
4244                 goto out_unlock;
4245
4246         retval = security_task_getscheduler(p);
4247         if (retval)
4248                 goto out_unlock;
4249
4250         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4251                                 0 : task_timeslice(p), &t);
4252         read_unlock(&tasklist_lock);
4253         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4254 out_nounlock:
4255         return retval;
4256 out_unlock:
4257         read_unlock(&tasklist_lock);
4258         return retval;
4259 }
4260
4261 static inline struct task_struct *eldest_child(struct task_struct *p)
4262 {
4263         if (list_empty(&p->children)) return NULL;
4264         return list_entry(p->children.next,struct task_struct,sibling);
4265 }
4266
4267 static inline struct task_struct *older_sibling(struct task_struct *p)
4268 {
4269         if (p->sibling.prev==&p->parent->children) return NULL;
4270         return list_entry(p->sibling.prev,struct task_struct,sibling);
4271 }
4272
4273 static inline struct task_struct *younger_sibling(struct task_struct *p)
4274 {
4275         if (p->sibling.next==&p->parent->children) return NULL;
4276         return list_entry(p->sibling.next,struct task_struct,sibling);
4277 }
4278
4279 static void show_task(task_t *p)
4280 {
4281         task_t *relative;
4282         unsigned state;
4283         unsigned long free = 0;
4284         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4285
4286         printk("%-13.13s ", p->comm);
4287         state = p->state ? __ffs(p->state) + 1 : 0;
4288         if (state < ARRAY_SIZE(stat_nam))
4289                 printk(stat_nam[state]);
4290         else
4291                 printk("?");
4292 #if (BITS_PER_LONG == 32)
4293         if (state == TASK_RUNNING)
4294                 printk(" running ");
4295         else
4296                 printk(" %08lX ", thread_saved_pc(p));
4297 #else
4298         if (state == TASK_RUNNING)
4299                 printk("  running task   ");
4300         else
4301                 printk(" %016lx ", thread_saved_pc(p));
4302 #endif
4303 #ifdef CONFIG_DEBUG_STACK_USAGE
4304         {
4305                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4306                 while (!*n)
4307                         n++;
4308                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4309         }
4310 #endif
4311         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4312         if ((relative = eldest_child(p)))
4313                 printk("%5d ", relative->pid);
4314         else
4315                 printk("      ");
4316         if ((relative = younger_sibling(p)))
4317                 printk("%7d", relative->pid);
4318         else
4319                 printk("       ");
4320         if ((relative = older_sibling(p)))
4321                 printk(" %5d", relative->pid);
4322         else
4323                 printk("      ");
4324         if (!p->mm)
4325                 printk(" (L-TLB)\n");
4326         else
4327                 printk(" (NOTLB)\n");
4328
4329         if (state != TASK_RUNNING)
4330                 show_stack(p, NULL);
4331 }
4332
4333 void show_state(void)
4334 {
4335         task_t *g, *p;
4336
4337 #if (BITS_PER_LONG == 32)
4338         printk("\n"
4339                "                                               sibling\n");
4340         printk("  task             PC      pid father child younger older\n");
4341 #else
4342         printk("\n"
4343                "                                                       sibling\n");
4344         printk("  task                 PC          pid father child younger older\n");
4345 #endif
4346         read_lock(&tasklist_lock);
4347         do_each_thread(g, p) {
4348                 /*
4349                  * reset the NMI-timeout, listing all files on a slow
4350                  * console might take alot of time:
4351                  */
4352                 touch_nmi_watchdog();
4353                 show_task(p);
4354         } while_each_thread(g, p);
4355
4356         read_unlock(&tasklist_lock);
4357 }
4358
4359 /**
4360  * init_idle - set up an idle thread for a given CPU
4361  * @idle: task in question
4362  * @cpu: cpu the idle task belongs to
4363  *
4364  * NOTE: this function does not set the idle thread's NEED_RESCHED
4365  * flag, to make booting more robust.
4366  */
4367 void __devinit init_idle(task_t *idle, int cpu)
4368 {
4369         runqueue_t *rq = cpu_rq(cpu);
4370         unsigned long flags;
4371
4372         idle->sleep_avg = 0;
4373         idle->array = NULL;
4374         idle->prio = MAX_PRIO;
4375         idle->state = TASK_RUNNING;
4376         idle->cpus_allowed = cpumask_of_cpu(cpu);
4377         set_task_cpu(idle, cpu);
4378
4379         spin_lock_irqsave(&rq->lock, flags);
4380         rq->curr = rq->idle = idle;
4381 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4382         idle->oncpu = 1;
4383 #endif
4384         spin_unlock_irqrestore(&rq->lock, flags);
4385
4386         /* Set the preempt count _outside_ the spinlocks! */
4387 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4388         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4389 #else
4390         idle->thread_info->preempt_count = 0;
4391 #endif
4392 }
4393
4394 /*
4395  * In a system that switches off the HZ timer nohz_cpu_mask
4396  * indicates which cpus entered this state. This is used
4397  * in the rcu update to wait only for active cpus. For system
4398  * which do not switch off the HZ timer nohz_cpu_mask should
4399  * always be CPU_MASK_NONE.
4400  */
4401 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4402
4403 #ifdef CONFIG_SMP
4404 /*
4405  * This is how migration works:
4406  *
4407  * 1) we queue a migration_req_t structure in the source CPU's
4408  *    runqueue and wake up that CPU's migration thread.
4409  * 2) we down() the locked semaphore => thread blocks.
4410  * 3) migration thread wakes up (implicitly it forces the migrated
4411  *    thread off the CPU)
4412  * 4) it gets the migration request and checks whether the migrated
4413  *    task is still in the wrong runqueue.
4414  * 5) if it's in the wrong runqueue then the migration thread removes
4415  *    it and puts it into the right queue.
4416  * 6) migration thread up()s the semaphore.
4417  * 7) we wake up and the migration is done.
4418  */
4419
4420 /*
4421  * Change a given task's CPU affinity. Migrate the thread to a
4422  * proper CPU and schedule it away if the CPU it's executing on
4423  * is removed from the allowed bitmask.
4424  *
4425  * NOTE: the caller must have a valid reference to the task, the
4426  * task must not exit() & deallocate itself prematurely.  The
4427  * call is not atomic; no spinlocks may be held.
4428  */
4429 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4430 {
4431         unsigned long flags;
4432         int ret = 0;
4433         migration_req_t req;
4434         runqueue_t *rq;
4435
4436         rq = task_rq_lock(p, &flags);
4437         if (!cpus_intersects(new_mask, cpu_online_map)) {
4438                 ret = -EINVAL;
4439                 goto out;
4440         }
4441
4442         p->cpus_allowed = new_mask;
4443         /* Can the task run on the task's current CPU? If so, we're done */
4444         if (cpu_isset(task_cpu(p), new_mask))
4445                 goto out;
4446
4447         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4448                 /* Need help from migration thread: drop lock and wait. */
4449                 task_rq_unlock(rq, &flags);
4450                 wake_up_process(rq->migration_thread);
4451                 wait_for_completion(&req.done);
4452                 tlb_migrate_finish(p->mm);
4453                 return 0;
4454         }
4455 out:
4456         task_rq_unlock(rq, &flags);
4457         return ret;
4458 }
4459
4460 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4461
4462 /*
4463  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4464  * this because either it can't run here any more (set_cpus_allowed()
4465  * away from this CPU, or CPU going down), or because we're
4466  * attempting to rebalance this task on exec (sched_exec).
4467  *
4468  * So we race with normal scheduler movements, but that's OK, as long
4469  * as the task is no longer on this CPU.
4470  */
4471 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4472 {
4473         runqueue_t *rq_dest, *rq_src;
4474
4475         if (unlikely(cpu_is_offline(dest_cpu)))
4476                 return;
4477
4478         rq_src = cpu_rq(src_cpu);
4479         rq_dest = cpu_rq(dest_cpu);
4480
4481         double_rq_lock(rq_src, rq_dest);
4482         /* Already moved. */
4483         if (task_cpu(p) != src_cpu)
4484                 goto out;
4485         /* Affinity changed (again). */
4486         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4487                 goto out;
4488
4489         set_task_cpu(p, dest_cpu);
4490         if (p->array) {
4491                 /*
4492                  * Sync timestamp with rq_dest's before activating.
4493                  * The same thing could be achieved by doing this step
4494                  * afterwards, and pretending it was a local activate.
4495                  * This way is cleaner and logically correct.
4496                  */
4497                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4498                                 + rq_dest->timestamp_last_tick;
4499                 deactivate_task(p, rq_src);
4500                 activate_task(p, rq_dest, 0);
4501                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4502                         resched_task(rq_dest->curr);
4503         }
4504
4505 out:
4506         double_rq_unlock(rq_src, rq_dest);
4507 }
4508
4509 /*
4510  * migration_thread - this is a highprio system thread that performs
4511  * thread migration by bumping thread off CPU then 'pushing' onto
4512  * another runqueue.
4513  */
4514 static int migration_thread(void *data)
4515 {
4516         runqueue_t *rq;
4517         int cpu = (long)data;
4518
4519         rq = cpu_rq(cpu);
4520         BUG_ON(rq->migration_thread != current);
4521
4522         set_current_state(TASK_INTERRUPTIBLE);
4523         while (!kthread_should_stop()) {
4524                 struct list_head *head;
4525                 migration_req_t *req;
4526
4527                 try_to_freeze();
4528
4529                 spin_lock_irq(&rq->lock);
4530
4531                 if (cpu_is_offline(cpu)) {
4532                         spin_unlock_irq(&rq->lock);
4533                         goto wait_to_die;
4534                 }
4535
4536                 if (rq->active_balance) {
4537                         active_load_balance(rq, cpu);
4538                         rq->active_balance = 0;
4539                 }
4540
4541                 head = &rq->migration_queue;
4542
4543                 if (list_empty(head)) {
4544                         spin_unlock_irq(&rq->lock);
4545                         schedule();
4546                         set_current_state(TASK_INTERRUPTIBLE);
4547                         continue;
4548                 }
4549                 req = list_entry(head->next, migration_req_t, list);
4550                 list_del_init(head->next);
4551
4552                 spin_unlock(&rq->lock);
4553                 __migrate_task(req->task, cpu, req->dest_cpu);
4554                 local_irq_enable();
4555
4556                 complete(&req->done);
4557         }
4558         __set_current_state(TASK_RUNNING);
4559         return 0;
4560
4561 wait_to_die:
4562         /* Wait for kthread_stop */
4563         set_current_state(TASK_INTERRUPTIBLE);
4564         while (!kthread_should_stop()) {
4565                 schedule();
4566                 set_current_state(TASK_INTERRUPTIBLE);
4567         }
4568         __set_current_state(TASK_RUNNING);
4569         return 0;
4570 }
4571
4572 #ifdef CONFIG_HOTPLUG_CPU
4573 /* Figure out where task on dead CPU should go, use force if neccessary. */
4574 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4575 {
4576         int dest_cpu;
4577         cpumask_t mask;
4578
4579         /* On same node? */
4580         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4581         cpus_and(mask, mask, tsk->cpus_allowed);
4582         dest_cpu = any_online_cpu(mask);
4583
4584         /* On any allowed CPU? */
4585         if (dest_cpu == NR_CPUS)
4586                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4587
4588         /* No more Mr. Nice Guy. */
4589         if (dest_cpu == NR_CPUS) {
4590                 cpus_setall(tsk->cpus_allowed);
4591                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4592
4593                 /*
4594                  * Don't tell them about moving exiting tasks or
4595                  * kernel threads (both mm NULL), since they never
4596                  * leave kernel.
4597                  */
4598                 if (tsk->mm && printk_ratelimit())
4599                         printk(KERN_INFO "process %d (%s) no "
4600                                "longer affine to cpu%d\n",
4601                                tsk->pid, tsk->comm, dead_cpu);
4602         }
4603         __migrate_task(tsk, dead_cpu, dest_cpu);
4604 }
4605
4606 /*
4607  * While a dead CPU has no uninterruptible tasks queued at this point,
4608  * it might still have a nonzero ->nr_uninterruptible counter, because
4609  * for performance reasons the counter is not stricly tracking tasks to
4610  * their home CPUs. So we just add the counter to another CPU's counter,
4611  * to keep the global sum constant after CPU-down:
4612  */
4613 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4614 {
4615         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4616         unsigned long flags;
4617
4618         local_irq_save(flags);
4619         double_rq_lock(rq_src, rq_dest);
4620         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4621         rq_src->nr_uninterruptible = 0;
4622         double_rq_unlock(rq_src, rq_dest);
4623         local_irq_restore(flags);
4624 }
4625
4626 /* Run through task list and migrate tasks from the dead cpu. */
4627 static void migrate_live_tasks(int src_cpu)
4628 {
4629         struct task_struct *tsk, *t;
4630
4631         write_lock_irq(&tasklist_lock);
4632
4633         do_each_thread(t, tsk) {
4634                 if (tsk == current)
4635                         continue;
4636
4637                 if (task_cpu(tsk) == src_cpu)
4638                         move_task_off_dead_cpu(src_cpu, tsk);
4639         } while_each_thread(t, tsk);
4640
4641         write_unlock_irq(&tasklist_lock);
4642 }
4643
4644 /* Schedules idle task to be the next runnable task on current CPU.
4645  * It does so by boosting its priority to highest possible and adding it to
4646  * the _front_ of runqueue. Used by CPU offline code.
4647  */
4648 void sched_idle_next(void)
4649 {
4650         int cpu = smp_processor_id();
4651         runqueue_t *rq = this_rq();
4652         struct task_struct *p = rq->idle;
4653         unsigned long flags;
4654
4655         /* cpu has to be offline */
4656         BUG_ON(cpu_online(cpu));
4657
4658         /* Strictly not necessary since rest of the CPUs are stopped by now
4659          * and interrupts disabled on current cpu.
4660          */
4661         spin_lock_irqsave(&rq->lock, flags);
4662
4663         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4664         /* Add idle task to _front_ of it's priority queue */
4665         __activate_idle_task(p, rq);
4666
4667         spin_unlock_irqrestore(&rq->lock, flags);
4668 }
4669
4670 /* Ensures that the idle task is using init_mm right before its cpu goes
4671  * offline.
4672  */
4673 void idle_task_exit(void)
4674 {
4675         struct mm_struct *mm = current->active_mm;
4676
4677         BUG_ON(cpu_online(smp_processor_id()));
4678
4679         if (mm != &init_mm)
4680                 switch_mm(mm, &init_mm, current);
4681         mmdrop(mm);
4682 }
4683
4684 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4685 {
4686         struct runqueue *rq = cpu_rq(dead_cpu);
4687
4688         /* Must be exiting, otherwise would be on tasklist. */
4689         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4690
4691         /* Cannot have done final schedule yet: would have vanished. */
4692         BUG_ON(tsk->flags & PF_DEAD);
4693
4694         get_task_struct(tsk);
4695
4696         /*
4697          * Drop lock around migration; if someone else moves it,
4698          * that's OK.  No task can be added to this CPU, so iteration is
4699          * fine.
4700          */
4701         spin_unlock_irq(&rq->lock);
4702         move_task_off_dead_cpu(dead_cpu, tsk);
4703         spin_lock_irq(&rq->lock);
4704
4705         put_task_struct(tsk);
4706 }
4707
4708 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4709 static void migrate_dead_tasks(unsigned int dead_cpu)
4710 {
4711         unsigned arr, i;
4712         struct runqueue *rq = cpu_rq(dead_cpu);
4713
4714         for (arr = 0; arr < 2; arr++) {
4715                 for (i = 0; i < MAX_PRIO; i++) {
4716                         struct list_head *list = &rq->arrays[arr].queue[i];
4717                         while (!list_empty(list))
4718                                 migrate_dead(dead_cpu,
4719                                              list_entry(list->next, task_t,
4720                                                         run_list));
4721                 }
4722         }
4723 }
4724 #endif /* CONFIG_HOTPLUG_CPU */
4725
4726 /*
4727  * migration_call - callback that gets triggered when a CPU is added.
4728  * Here we can start up the necessary migration thread for the new CPU.
4729  */
4730 static int migration_call(struct notifier_block *nfb, unsigned long action,
4731                           void *hcpu)
4732 {
4733         int cpu = (long)hcpu;
4734         struct task_struct *p;
4735         struct runqueue *rq;
4736         unsigned long flags;
4737
4738         switch (action) {
4739         case CPU_UP_PREPARE:
4740                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4741                 if (IS_ERR(p))
4742                         return NOTIFY_BAD;
4743                 p->flags |= PF_NOFREEZE;
4744                 kthread_bind(p, cpu);
4745                 /* Must be high prio: stop_machine expects to yield to it. */
4746                 rq = task_rq_lock(p, &flags);
4747                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4748                 task_rq_unlock(rq, &flags);
4749                 cpu_rq(cpu)->migration_thread = p;
4750                 break;
4751         case CPU_ONLINE:
4752                 /* Strictly unneccessary, as first user will wake it. */
4753                 wake_up_process(cpu_rq(cpu)->migration_thread);
4754                 break;
4755 #ifdef CONFIG_HOTPLUG_CPU
4756         case CPU_UP_CANCELED:
4757                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4758                 kthread_bind(cpu_rq(cpu)->migration_thread,
4759                              any_online_cpu(cpu_online_map));
4760                 kthread_stop(cpu_rq(cpu)->migration_thread);
4761                 cpu_rq(cpu)->migration_thread = NULL;
4762                 break;
4763         case CPU_DEAD:
4764                 migrate_live_tasks(cpu);
4765                 rq = cpu_rq(cpu);
4766                 kthread_stop(rq->migration_thread);
4767                 rq->migration_thread = NULL;
4768                 /* Idle task back to normal (off runqueue, low prio) */
4769                 rq = task_rq_lock(rq->idle, &flags);
4770                 deactivate_task(rq->idle, rq);
4771                 rq->idle->static_prio = MAX_PRIO;
4772                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4773                 migrate_dead_tasks(cpu);
4774                 task_rq_unlock(rq, &flags);
4775                 migrate_nr_uninterruptible(rq);
4776                 BUG_ON(rq->nr_running != 0);
4777
4778                 /* No need to migrate the tasks: it was best-effort if
4779                  * they didn't do lock_cpu_hotplug().  Just wake up
4780                  * the requestors. */
4781                 spin_lock_irq(&rq->lock);
4782                 while (!list_empty(&rq->migration_queue)) {
4783                         migration_req_t *req;
4784                         req = list_entry(rq->migration_queue.next,
4785                                          migration_req_t, list);
4786                         list_del_init(&req->list);
4787                         complete(&req->done);
4788                 }
4789                 spin_unlock_irq(&rq->lock);
4790                 break;
4791 #endif
4792         }
4793         return NOTIFY_OK;
4794 }
4795
4796 /* Register at highest priority so that task migration (migrate_all_tasks)
4797  * happens before everything else.
4798  */
4799 static struct notifier_block __devinitdata migration_notifier = {
4800         .notifier_call = migration_call,
4801         .priority = 10
4802 };
4803
4804 int __init migration_init(void)
4805 {
4806         void *cpu = (void *)(long)smp_processor_id();
4807         /* Start one for boot CPU. */
4808         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4809         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4810         register_cpu_notifier(&migration_notifier);
4811         return 0;
4812 }
4813 #endif
4814
4815 #ifdef CONFIG_SMP
4816 #undef SCHED_DOMAIN_DEBUG
4817 #ifdef SCHED_DOMAIN_DEBUG
4818 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4819 {
4820         int level = 0;
4821
4822         if (!sd) {
4823                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4824                 return;
4825         }
4826
4827         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4828
4829         do {
4830                 int i;
4831                 char str[NR_CPUS];
4832                 struct sched_group *group = sd->groups;
4833                 cpumask_t groupmask;
4834
4835                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4836                 cpus_clear(groupmask);
4837
4838                 printk(KERN_DEBUG);
4839                 for (i = 0; i < level + 1; i++)
4840                         printk(" ");
4841                 printk("domain %d: ", level);
4842
4843                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4844                         printk("does not load-balance\n");
4845                         if (sd->parent)
4846                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4847                         break;
4848                 }
4849
4850                 printk("span %s\n", str);
4851
4852                 if (!cpu_isset(cpu, sd->span))
4853                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4854                 if (!cpu_isset(cpu, group->cpumask))
4855                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4856
4857                 printk(KERN_DEBUG);
4858                 for (i = 0; i < level + 2; i++)
4859                         printk(" ");
4860                 printk("groups:");
4861                 do {
4862                         if (!group) {
4863                                 printk("\n");
4864                                 printk(KERN_ERR "ERROR: group is NULL\n");
4865                                 break;
4866                         }
4867
4868                         if (!group->cpu_power) {
4869                                 printk("\n");
4870                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4871                         }
4872
4873                         if (!cpus_weight(group->cpumask)) {
4874                                 printk("\n");
4875                                 printk(KERN_ERR "ERROR: empty group\n");
4876                         }
4877
4878                         if (cpus_intersects(groupmask, group->cpumask)) {
4879                                 printk("\n");
4880                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4881                         }
4882
4883                         cpus_or(groupmask, groupmask, group->cpumask);
4884
4885                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4886                         printk(" %s", str);
4887
4888                         group = group->next;
4889                 } while (group != sd->groups);
4890                 printk("\n");
4891
4892                 if (!cpus_equal(sd->span, groupmask))
4893                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4894
4895                 level++;
4896                 sd = sd->parent;
4897
4898                 if (sd) {
4899                         if (!cpus_subset(groupmask, sd->span))
4900                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4901                 }
4902
4903         } while (sd);
4904 }
4905 #else
4906 #define sched_domain_debug(sd, cpu) {}
4907 #endif
4908
4909 static int sd_degenerate(struct sched_domain *sd)
4910 {
4911         if (cpus_weight(sd->span) == 1)
4912                 return 1;
4913
4914         /* Following flags need at least 2 groups */
4915         if (sd->flags & (SD_LOAD_BALANCE |
4916                          SD_BALANCE_NEWIDLE |
4917                          SD_BALANCE_FORK |
4918                          SD_BALANCE_EXEC)) {
4919                 if (sd->groups != sd->groups->next)
4920                         return 0;
4921         }
4922
4923         /* Following flags don't use groups */
4924         if (sd->flags & (SD_WAKE_IDLE |
4925                          SD_WAKE_AFFINE |
4926                          SD_WAKE_BALANCE))
4927                 return 0;
4928
4929         return 1;
4930 }
4931
4932 static int sd_parent_degenerate(struct sched_domain *sd,
4933                                                 struct sched_domain *parent)
4934 {
4935         unsigned long cflags = sd->flags, pflags = parent->flags;
4936
4937         if (sd_degenerate(parent))
4938                 return 1;
4939
4940         if (!cpus_equal(sd->span, parent->span))
4941                 return 0;
4942
4943         /* Does parent contain flags not in child? */
4944         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4945         if (cflags & SD_WAKE_AFFINE)
4946                 pflags &= ~SD_WAKE_BALANCE;
4947         /* Flags needing groups don't count if only 1 group in parent */
4948         if (parent->groups == parent->groups->next) {
4949                 pflags &= ~(SD_LOAD_BALANCE |
4950                                 SD_BALANCE_NEWIDLE |
4951                                 SD_BALANCE_FORK |
4952                                 SD_BALANCE_EXEC);
4953         }
4954         if (~cflags & pflags)
4955                 return 0;
4956
4957         return 1;
4958 }
4959
4960 /*
4961  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4962  * hold the hotplug lock.
4963  */
4964 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4965 {
4966         runqueue_t *rq = cpu_rq(cpu);
4967         struct sched_domain *tmp;
4968
4969         /* Remove the sched domains which do not contribute to scheduling. */
4970         for (tmp = sd; tmp; tmp = tmp->parent) {
4971                 struct sched_domain *parent = tmp->parent;
4972                 if (!parent)
4973                         break;
4974                 if (sd_parent_degenerate(tmp, parent))
4975                         tmp->parent = parent->parent;
4976         }
4977
4978         if (sd && sd_degenerate(sd))
4979                 sd = sd->parent;
4980
4981         sched_domain_debug(sd, cpu);
4982
4983         rcu_assign_pointer(rq->sd, sd);
4984 }
4985
4986 /* cpus with isolated domains */
4987 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4988
4989 /* Setup the mask of cpus configured for isolated domains */
4990 static int __init isolated_cpu_setup(char *str)
4991 {
4992         int ints[NR_CPUS], i;
4993
4994         str = get_options(str, ARRAY_SIZE(ints), ints);
4995         cpus_clear(cpu_isolated_map);
4996         for (i = 1; i <= ints[0]; i++)
4997                 if (ints[i] < NR_CPUS)
4998                         cpu_set(ints[i], cpu_isolated_map);
4999         return 1;
5000 }
5001
5002 __setup ("isolcpus=", isolated_cpu_setup);
5003
5004 /*
5005  * init_sched_build_groups takes an array of groups, the cpumask we wish
5006  * to span, and a pointer to a function which identifies what group a CPU
5007  * belongs to. The return value of group_fn must be a valid index into the
5008  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5009  * keep track of groups covered with a cpumask_t).
5010  *
5011  * init_sched_build_groups will build a circular linked list of the groups
5012  * covered by the given span, and will set each group's ->cpumask correctly,
5013  * and ->cpu_power to 0.
5014  */
5015 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5016                                     int (*group_fn)(int cpu))
5017 {
5018         struct sched_group *first = NULL, *last = NULL;
5019         cpumask_t covered = CPU_MASK_NONE;
5020         int i;
5021
5022         for_each_cpu_mask(i, span) {
5023                 int group = group_fn(i);
5024                 struct sched_group *sg = &groups[group];
5025                 int j;
5026
5027                 if (cpu_isset(i, covered))
5028                         continue;
5029
5030                 sg->cpumask = CPU_MASK_NONE;
5031                 sg->cpu_power = 0;
5032
5033                 for_each_cpu_mask(j, span) {
5034                         if (group_fn(j) != group)
5035                                 continue;
5036
5037                         cpu_set(j, covered);
5038                         cpu_set(j, sg->cpumask);
5039                 }
5040                 if (!first)
5041                         first = sg;
5042                 if (last)
5043                         last->next = sg;
5044                 last = sg;
5045         }
5046         last->next = first;
5047 }
5048
5049 #define SD_NODES_PER_DOMAIN 16
5050
5051 #ifdef CONFIG_NUMA
5052 /**
5053  * find_next_best_node - find the next node to include in a sched_domain
5054  * @node: node whose sched_domain we're building
5055  * @used_nodes: nodes already in the sched_domain
5056  *
5057  * Find the next node to include in a given scheduling domain.  Simply
5058  * finds the closest node not already in the @used_nodes map.
5059  *
5060  * Should use nodemask_t.
5061  */
5062 static int find_next_best_node(int node, unsigned long *used_nodes)
5063 {
5064         int i, n, val, min_val, best_node = 0;
5065
5066         min_val = INT_MAX;
5067
5068         for (i = 0; i < MAX_NUMNODES; i++) {
5069                 /* Start at @node */
5070                 n = (node + i) % MAX_NUMNODES;
5071
5072                 if (!nr_cpus_node(n))
5073                         continue;
5074
5075                 /* Skip already used nodes */
5076                 if (test_bit(n, used_nodes))
5077                         continue;
5078
5079                 /* Simple min distance search */
5080                 val = node_distance(node, n);
5081
5082                 if (val < min_val) {
5083                         min_val = val;
5084                         best_node = n;
5085                 }
5086         }
5087
5088         set_bit(best_node, used_nodes);
5089         return best_node;
5090 }
5091
5092 /**
5093  * sched_domain_node_span - get a cpumask for a node's sched_domain
5094  * @node: node whose cpumask we're constructing
5095  * @size: number of nodes to include in this span
5096  *
5097  * Given a node, construct a good cpumask for its sched_domain to span.  It
5098  * should be one that prevents unnecessary balancing, but also spreads tasks
5099  * out optimally.
5100  */
5101 static cpumask_t sched_domain_node_span(int node)
5102 {
5103         int i;
5104         cpumask_t span, nodemask;
5105         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5106
5107         cpus_clear(span);
5108         bitmap_zero(used_nodes, MAX_NUMNODES);
5109
5110         nodemask = node_to_cpumask(node);
5111         cpus_or(span, span, nodemask);
5112         set_bit(node, used_nodes);
5113
5114         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5115                 int next_node = find_next_best_node(node, used_nodes);
5116                 nodemask = node_to_cpumask(next_node);
5117                 cpus_or(span, span, nodemask);
5118         }
5119
5120         return span;
5121 }
5122 #endif
5123
5124 /*
5125  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5126  * can switch it on easily if needed.
5127  */
5128 #ifdef CONFIG_SCHED_SMT
5129 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5130 static struct sched_group sched_group_cpus[NR_CPUS];
5131 static int cpu_to_cpu_group(int cpu)
5132 {
5133         return cpu;
5134 }
5135 #endif
5136
5137 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5138 static struct sched_group sched_group_phys[NR_CPUS];
5139 static int cpu_to_phys_group(int cpu)
5140 {
5141 #ifdef CONFIG_SCHED_SMT
5142         return first_cpu(cpu_sibling_map[cpu]);
5143 #else
5144         return cpu;
5145 #endif
5146 }
5147
5148 #ifdef CONFIG_NUMA
5149 /*
5150  * The init_sched_build_groups can't handle what we want to do with node
5151  * groups, so roll our own. Now each node has its own list of groups which
5152  * gets dynamically allocated.
5153  */
5154 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5155 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5156
5157 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5158 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5159
5160 static int cpu_to_allnodes_group(int cpu)
5161 {
5162         return cpu_to_node(cpu);
5163 }
5164 #endif
5165
5166 /*
5167  * Build sched domains for a given set of cpus and attach the sched domains
5168  * to the individual cpus
5169  */
5170 void build_sched_domains(const cpumask_t *cpu_map)
5171 {
5172         int i;
5173 #ifdef CONFIG_NUMA
5174         struct sched_group **sched_group_nodes = NULL;
5175         struct sched_group *sched_group_allnodes = NULL;
5176
5177         /*
5178          * Allocate the per-node list of sched groups
5179          */
5180         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5181                                            GFP_ATOMIC);
5182         if (!sched_group_nodes) {
5183                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5184                 return;
5185         }
5186         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5187 #endif
5188
5189         /*
5190          * Set up domains for cpus specified by the cpu_map.
5191          */
5192         for_each_cpu_mask(i, *cpu_map) {
5193                 int group;
5194                 struct sched_domain *sd = NULL, *p;
5195                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5196
5197                 cpus_and(nodemask, nodemask, *cpu_map);
5198
5199 #ifdef CONFIG_NUMA
5200                 if (cpus_weight(*cpu_map)
5201                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5202                         if (!sched_group_allnodes) {
5203                                 sched_group_allnodes
5204                                         = kmalloc(sizeof(struct sched_group)
5205                                                         * MAX_NUMNODES,
5206                                                   GFP_KERNEL);
5207                                 if (!sched_group_allnodes) {
5208                                         printk(KERN_WARNING
5209                                         "Can not alloc allnodes sched group\n");
5210                                         break;
5211                                 }
5212                                 sched_group_allnodes_bycpu[i]
5213                                                 = sched_group_allnodes;
5214                         }
5215                         sd = &per_cpu(allnodes_domains, i);
5216                         *sd = SD_ALLNODES_INIT;
5217                         sd->span = *cpu_map;
5218                         group = cpu_to_allnodes_group(i);
5219                         sd->groups = &sched_group_allnodes[group];
5220                         p = sd;
5221                 } else
5222                         p = NULL;
5223
5224                 sd = &per_cpu(node_domains, i);
5225                 *sd = SD_NODE_INIT;
5226                 sd->span = sched_domain_node_span(cpu_to_node(i));
5227                 sd->parent = p;
5228                 cpus_and(sd->span, sd->span, *cpu_map);
5229 #endif
5230
5231                 p = sd;
5232                 sd = &per_cpu(phys_domains, i);
5233                 group = cpu_to_phys_group(i);
5234                 *sd = SD_CPU_INIT;
5235                 sd->span = nodemask;
5236                 sd->parent = p;
5237                 sd->groups = &sched_group_phys[group];
5238
5239 #ifdef CONFIG_SCHED_SMT
5240                 p = sd;
5241                 sd = &per_cpu(cpu_domains, i);
5242                 group = cpu_to_cpu_group(i);
5243                 *sd = SD_SIBLING_INIT;
5244                 sd->span = cpu_sibling_map[i];
5245                 cpus_and(sd->span, sd->span, *cpu_map);
5246                 sd->parent = p;
5247                 sd->groups = &sched_group_cpus[group];
5248 #endif
5249         }
5250
5251 #ifdef CONFIG_SCHED_SMT
5252         /* Set up CPU (sibling) groups */
5253         for_each_cpu_mask(i, *cpu_map) {
5254                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5255                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5256                 if (i != first_cpu(this_sibling_map))
5257                         continue;
5258
5259                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5260                                                 &cpu_to_cpu_group);
5261         }
5262 #endif
5263
5264         /* Set up physical groups */
5265         for (i = 0; i < MAX_NUMNODES; i++) {
5266                 cpumask_t nodemask = node_to_cpumask(i);
5267
5268                 cpus_and(nodemask, nodemask, *cpu_map);
5269                 if (cpus_empty(nodemask))
5270                         continue;
5271
5272                 init_sched_build_groups(sched_group_phys, nodemask,
5273                                                 &cpu_to_phys_group);
5274         }
5275
5276 #ifdef CONFIG_NUMA
5277         /* Set up node groups */
5278         if (sched_group_allnodes)
5279                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5280                                         &cpu_to_allnodes_group);
5281
5282         for (i = 0; i < MAX_NUMNODES; i++) {
5283                 /* Set up node groups */
5284                 struct sched_group *sg, *prev;
5285                 cpumask_t nodemask = node_to_cpumask(i);
5286                 cpumask_t domainspan;
5287                 cpumask_t covered = CPU_MASK_NONE;
5288                 int j;
5289
5290                 cpus_and(nodemask, nodemask, *cpu_map);
5291                 if (cpus_empty(nodemask)) {
5292                         sched_group_nodes[i] = NULL;
5293                         continue;
5294                 }
5295
5296                 domainspan = sched_domain_node_span(i);
5297                 cpus_and(domainspan, domainspan, *cpu_map);
5298
5299                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5300                 sched_group_nodes[i] = sg;
5301                 for_each_cpu_mask(j, nodemask) {
5302                         struct sched_domain *sd;
5303                         sd = &per_cpu(node_domains, j);
5304                         sd->groups = sg;
5305                         if (sd->groups == NULL) {
5306                                 /* Turn off balancing if we have no groups */
5307                                 sd->flags = 0;
5308                         }
5309                 }
5310                 if (!sg) {
5311                         printk(KERN_WARNING
5312                         "Can not alloc domain group for node %d\n", i);
5313                         continue;
5314                 }
5315                 sg->cpu_power = 0;
5316                 sg->cpumask = nodemask;
5317                 cpus_or(covered, covered, nodemask);
5318                 prev = sg;
5319
5320                 for (j = 0; j < MAX_NUMNODES; j++) {
5321                         cpumask_t tmp, notcovered;
5322                         int n = (i + j) % MAX_NUMNODES;
5323
5324                         cpus_complement(notcovered, covered);
5325                         cpus_and(tmp, notcovered, *cpu_map);
5326                         cpus_and(tmp, tmp, domainspan);
5327                         if (cpus_empty(tmp))
5328                                 break;
5329
5330                         nodemask = node_to_cpumask(n);
5331                         cpus_and(tmp, tmp, nodemask);
5332                         if (cpus_empty(tmp))
5333                                 continue;
5334
5335                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5336                         if (!sg) {
5337                                 printk(KERN_WARNING
5338                                 "Can not alloc domain group for node %d\n", j);
5339                                 break;
5340                         }
5341                         sg->cpu_power = 0;
5342                         sg->cpumask = tmp;
5343                         cpus_or(covered, covered, tmp);
5344                         prev->next = sg;
5345                         prev = sg;
5346                 }
5347                 prev->next = sched_group_nodes[i];
5348         }
5349 #endif
5350
5351         /* Calculate CPU power for physical packages and nodes */
5352         for_each_cpu_mask(i, *cpu_map) {
5353                 int power;
5354                 struct sched_domain *sd;
5355 #ifdef CONFIG_SCHED_SMT
5356                 sd = &per_cpu(cpu_domains, i);
5357                 power = SCHED_LOAD_SCALE;
5358                 sd->groups->cpu_power = power;
5359 #endif
5360
5361                 sd = &per_cpu(phys_domains, i);
5362                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5363                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5364                 sd->groups->cpu_power = power;
5365
5366 #ifdef CONFIG_NUMA
5367                 sd = &per_cpu(allnodes_domains, i);
5368                 if (sd->groups) {
5369                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5370                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5371                         sd->groups->cpu_power = power;
5372                 }
5373 #endif
5374         }
5375
5376 #ifdef CONFIG_NUMA
5377         for (i = 0; i < MAX_NUMNODES; i++) {
5378                 struct sched_group *sg = sched_group_nodes[i];
5379                 int j;
5380
5381                 if (sg == NULL)
5382                         continue;
5383 next_sg:
5384                 for_each_cpu_mask(j, sg->cpumask) {
5385                         struct sched_domain *sd;
5386                         int power;
5387
5388                         sd = &per_cpu(phys_domains, j);
5389                         if (j != first_cpu(sd->groups->cpumask)) {
5390                                 /*
5391                                  * Only add "power" once for each
5392                                  * physical package.
5393                                  */
5394                                 continue;
5395                         }
5396                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5397                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5398
5399                         sg->cpu_power += power;
5400                 }
5401                 sg = sg->next;
5402                 if (sg != sched_group_nodes[i])
5403                         goto next_sg;
5404         }
5405 #endif
5406
5407         /* Attach the domains */
5408         for_each_cpu_mask(i, *cpu_map) {
5409                 struct sched_domain *sd;
5410 #ifdef CONFIG_SCHED_SMT
5411                 sd = &per_cpu(cpu_domains, i);
5412 #else
5413                 sd = &per_cpu(phys_domains, i);
5414 #endif
5415                 cpu_attach_domain(sd, i);
5416         }
5417 }
5418 /*
5419  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5420  */
5421 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5422 {
5423         cpumask_t cpu_default_map;
5424
5425         /*
5426          * Setup mask for cpus without special case scheduling requirements.
5427          * For now this just excludes isolated cpus, but could be used to
5428          * exclude other special cases in the future.
5429          */
5430         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5431
5432         build_sched_domains(&cpu_default_map);
5433 }
5434
5435 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5436 {
5437 #ifdef CONFIG_NUMA
5438         int i;
5439         int cpu;
5440
5441         for_each_cpu_mask(cpu, *cpu_map) {
5442                 struct sched_group *sched_group_allnodes
5443                         = sched_group_allnodes_bycpu[cpu];
5444                 struct sched_group **sched_group_nodes
5445                         = sched_group_nodes_bycpu[cpu];
5446
5447                 if (sched_group_allnodes) {
5448                         kfree(sched_group_allnodes);
5449                         sched_group_allnodes_bycpu[cpu] = NULL;
5450                 }
5451
5452                 if (!sched_group_nodes)
5453                         continue;
5454
5455                 for (i = 0; i < MAX_NUMNODES; i++) {
5456                         cpumask_t nodemask = node_to_cpumask(i);
5457                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5458
5459                         cpus_and(nodemask, nodemask, *cpu_map);
5460                         if (cpus_empty(nodemask))
5461                                 continue;
5462
5463                         if (sg == NULL)
5464                                 continue;
5465                         sg = sg->next;
5466 next_sg:
5467                         oldsg = sg;
5468                         sg = sg->next;
5469                         kfree(oldsg);
5470                         if (oldsg != sched_group_nodes[i])
5471                                 goto next_sg;
5472                 }
5473                 kfree(sched_group_nodes);
5474                 sched_group_nodes_bycpu[cpu] = NULL;
5475         }
5476 #endif
5477 }
5478
5479 /*
5480  * Detach sched domains from a group of cpus specified in cpu_map
5481  * These cpus will now be attached to the NULL domain
5482  */
5483 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5484 {
5485         int i;
5486
5487         for_each_cpu_mask(i, *cpu_map)
5488                 cpu_attach_domain(NULL, i);
5489         synchronize_sched();
5490         arch_destroy_sched_domains(cpu_map);
5491 }
5492
5493 /*
5494  * Partition sched domains as specified by the cpumasks below.
5495  * This attaches all cpus from the cpumasks to the NULL domain,
5496  * waits for a RCU quiescent period, recalculates sched
5497  * domain information and then attaches them back to the
5498  * correct sched domains
5499  * Call with hotplug lock held
5500  */
5501 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5502 {
5503         cpumask_t change_map;
5504
5505         cpus_and(*partition1, *partition1, cpu_online_map);
5506         cpus_and(*partition2, *partition2, cpu_online_map);
5507         cpus_or(change_map, *partition1, *partition2);
5508
5509         /* Detach sched domains from all of the affected cpus */
5510         detach_destroy_domains(&change_map);
5511         if (!cpus_empty(*partition1))
5512                 build_sched_domains(partition1);
5513         if (!cpus_empty(*partition2))
5514                 build_sched_domains(partition2);
5515 }
5516
5517 #ifdef CONFIG_HOTPLUG_CPU
5518 /*
5519  * Force a reinitialization of the sched domains hierarchy.  The domains
5520  * and groups cannot be updated in place without racing with the balancing
5521  * code, so we temporarily attach all running cpus to the NULL domain
5522  * which will prevent rebalancing while the sched domains are recalculated.
5523  */
5524 static int update_sched_domains(struct notifier_block *nfb,
5525                                 unsigned long action, void *hcpu)
5526 {
5527         switch (action) {
5528         case CPU_UP_PREPARE:
5529         case CPU_DOWN_PREPARE:
5530                 detach_destroy_domains(&cpu_online_map);
5531                 return NOTIFY_OK;
5532
5533         case CPU_UP_CANCELED:
5534         case CPU_DOWN_FAILED:
5535         case CPU_ONLINE:
5536         case CPU_DEAD:
5537                 /*
5538                  * Fall through and re-initialise the domains.
5539                  */
5540                 break;
5541         default:
5542                 return NOTIFY_DONE;
5543         }
5544
5545         /* The hotplug lock is already held by cpu_up/cpu_down */
5546         arch_init_sched_domains(&cpu_online_map);
5547
5548         return NOTIFY_OK;
5549 }
5550 #endif
5551
5552 void __init sched_init_smp(void)
5553 {
5554         lock_cpu_hotplug();
5555         arch_init_sched_domains(&cpu_online_map);
5556         unlock_cpu_hotplug();
5557         /* XXX: Theoretical race here - CPU may be hotplugged now */
5558         hotcpu_notifier(update_sched_domains, 0);
5559 }
5560 #else
5561 void __init sched_init_smp(void)
5562 {
5563 }
5564 #endif /* CONFIG_SMP */
5565
5566 int in_sched_functions(unsigned long addr)
5567 {
5568         /* Linker adds these: start and end of __sched functions */
5569         extern char __sched_text_start[], __sched_text_end[];
5570         return in_lock_functions(addr) ||
5571                 (addr >= (unsigned long)__sched_text_start
5572                 && addr < (unsigned long)__sched_text_end);
5573 }
5574
5575 void __init sched_init(void)
5576 {
5577         runqueue_t *rq;
5578         int i, j, k;
5579
5580         for (i = 0; i < NR_CPUS; i++) {
5581                 prio_array_t *array;
5582
5583                 rq = cpu_rq(i);
5584                 spin_lock_init(&rq->lock);
5585                 rq->nr_running = 0;
5586                 rq->active = rq->arrays;
5587                 rq->expired = rq->arrays + 1;
5588                 rq->best_expired_prio = MAX_PRIO;
5589
5590 #ifdef CONFIG_SMP
5591                 rq->sd = NULL;
5592                 for (j = 1; j < 3; j++)
5593                         rq->cpu_load[j] = 0;
5594                 rq->active_balance = 0;
5595                 rq->push_cpu = 0;
5596                 rq->migration_thread = NULL;
5597                 INIT_LIST_HEAD(&rq->migration_queue);
5598 #endif
5599                 atomic_set(&rq->nr_iowait, 0);
5600
5601                 for (j = 0; j < 2; j++) {
5602                         array = rq->arrays + j;
5603                         for (k = 0; k < MAX_PRIO; k++) {
5604                                 INIT_LIST_HEAD(array->queue + k);
5605                                 __clear_bit(k, array->bitmap);
5606                         }
5607                         // delimiter for bitsearch
5608                         __set_bit(MAX_PRIO, array->bitmap);
5609                 }
5610         }
5611
5612         /*
5613          * The boot idle thread does lazy MMU switching as well:
5614          */
5615         atomic_inc(&init_mm.mm_count);
5616         enter_lazy_tlb(&init_mm, current);
5617
5618         /*
5619          * Make us the idle thread. Technically, schedule() should not be
5620          * called from this thread, however somewhere below it might be,
5621          * but because we are the idle thread, we just pick up running again
5622          * when this runqueue becomes "idle".
5623          */
5624         init_idle(current, smp_processor_id());
5625 }
5626
5627 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5628 void __might_sleep(char *file, int line)
5629 {
5630 #if defined(in_atomic)
5631         static unsigned long prev_jiffy;        /* ratelimiting */
5632
5633         if ((in_atomic() || irqs_disabled()) &&
5634             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5635                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5636                         return;
5637                 prev_jiffy = jiffies;
5638                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5639                                 " context at %s:%d\n", file, line);
5640                 printk("in_atomic():%d, irqs_disabled():%d\n",
5641                         in_atomic(), irqs_disabled());
5642                 dump_stack();
5643         }
5644 #endif
5645 }
5646 EXPORT_SYMBOL(__might_sleep);
5647 #endif
5648
5649 #ifdef CONFIG_MAGIC_SYSRQ
5650 void normalize_rt_tasks(void)
5651 {
5652         struct task_struct *p;
5653         prio_array_t *array;
5654         unsigned long flags;
5655         runqueue_t *rq;
5656
5657         read_lock_irq(&tasklist_lock);
5658         for_each_process (p) {
5659                 if (!rt_task(p))
5660                         continue;
5661
5662                 rq = task_rq_lock(p, &flags);
5663
5664                 array = p->array;
5665                 if (array)
5666                         deactivate_task(p, task_rq(p));
5667                 __setscheduler(p, SCHED_NORMAL, 0);
5668                 if (array) {
5669                         __activate_task(p, task_rq(p));
5670                         resched_task(rq->curr);
5671                 }
5672
5673                 task_rq_unlock(rq, &flags);
5674         }
5675         read_unlock_irq(&tasklist_lock);
5676 }
5677
5678 #endif /* CONFIG_MAGIC_SYSRQ */
5679
5680 #ifdef CONFIG_IA64
5681 /*
5682  * These functions are only useful for the IA64 MCA handling.
5683  *
5684  * They can only be called when the whole system has been
5685  * stopped - every CPU needs to be quiescent, and no scheduling
5686  * activity can take place. Using them for anything else would
5687  * be a serious bug, and as a result, they aren't even visible
5688  * under any other configuration.
5689  */
5690
5691 /**
5692  * curr_task - return the current task for a given cpu.
5693  * @cpu: the processor in question.
5694  *
5695  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5696  */
5697 task_t *curr_task(int cpu)
5698 {
5699         return cpu_curr(cpu);
5700 }
5701
5702 /**
5703  * set_curr_task - set the current task for a given cpu.
5704  * @cpu: the processor in question.
5705  * @p: the task pointer to set.
5706  *
5707  * Description: This function must only be used when non-maskable interrupts
5708  * are serviced on a separate stack.  It allows the architecture to switch the
5709  * notion of the current task on a cpu in a non-blocking manner.  This function
5710  * must be called with all CPU's synchronized, and interrupts disabled, the
5711  * and caller must save the original value of the current task (see
5712  * curr_task() above) and restore that value before reenabling interrupts and
5713  * re-starting the system.
5714  *
5715  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5716  */
5717 void set_curr_task(int cpu, task_t *p)
5718 {
5719         cpu_curr(cpu) = p;
5720 }
5721
5722 #endif