4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
212 unsigned long long nr_switches;
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
220 unsigned long nr_uninterruptible;
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
231 struct sched_domain *sd;
233 /* For active balancing */
237 task_t *migration_thread;
238 struct list_head migration_queue;
241 #ifdef CONFIG_SCHEDSTATS
243 struct sched_info rq_sched_info;
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
289 return rq->curr == p;
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
302 spin_unlock_irq(&rq->lock);
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
311 return rq->curr == p;
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
328 spin_unlock(&rq->lock);
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
360 local_irq_save(*flags);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
373 spin_unlock_irqrestore(&rq->lock, *flags);
376 #ifdef CONFIG_SCHEDSTATS
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
381 #define SCHEDSTAT_VERSION 12
383 static int show_schedstat(struct seq_file *seq, void *v)
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
392 struct sched_domain *sd;
396 /* runqueue-specific stats */
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406 seq_printf(seq, "\n");
409 /* domain-specific stats */
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
441 static int schedstat_open(struct inode *inode, struct file *file)
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
450 res = single_open(file, show_schedstat, NULL);
452 m = file->private_data;
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
464 .release = single_release,
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
475 * rq_lock - lock a given runqueue and disable interrupts.
477 static inline runqueue_t *this_rq_lock(void)
484 spin_lock(&rq->lock);
489 #ifdef CONFIG_SCHEDSTATS
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
505 static inline void sched_info_dequeued(task_t *t)
507 t->sched_info.last_queued = 0;
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
515 static inline void sched_info_arrive(task_t *t)
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
549 static inline void sched_info_queued(task_t *t)
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 static inline void sched_info_depart(task_t *t)
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
564 t->sched_info.cpu_time += diff;
567 rq->rq_sched_info.cpu_time += diff;
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
575 static inline void sched_info_switch(task_t *prev, task_t *next)
577 struct runqueue *rq = task_rq(prev);
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
584 if (prev != rq->idle)
585 sched_info_depart(prev);
587 if (next != rq->idle)
588 sched_info_arrive(next);
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
596 * Adding/removing a task to/from a priority array:
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 list_move_tail(&p->run_list, array->queue + p->prio);
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
639 * We use 25% of the full 0...39 priority range so that:
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 * Both properties are important to certain workloads.
646 static int effective_prio(task_t *p)
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
658 if (prio > MAX_PRIO-1)
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
666 rq->prio_bias += MAX_PRIO - prio;
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
671 rq->prio_bias -= MAX_PRIO - prio;
674 static inline void inc_prio_bias(runqueue_t *rq, int prio)
678 static inline void dec_prio_bias(runqueue_t *rq, int prio)
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
687 inc_prio_bias(rq, p->prio);
689 inc_prio_bias(rq, p->static_prio);
692 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
696 dec_prio_bias(rq, p->prio);
698 dec_prio_bias(rq, p->static_prio);
702 * __activate_task - move a task to the runqueue.
704 static inline void __activate_task(task_t *p, runqueue_t *rq)
706 enqueue_task(p, rq->active);
707 inc_nr_running(p, rq);
711 * __activate_idle_task - move idle task to the _front_ of runqueue.
713 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
715 enqueue_task_head(p, rq->active);
716 inc_nr_running(p, rq);
719 static int recalc_task_prio(task_t *p, unsigned long long now)
721 /* Caller must always ensure 'now >= p->timestamp' */
722 unsigned long long __sleep_time = now - p->timestamp;
723 unsigned long sleep_time;
725 if (__sleep_time > NS_MAX_SLEEP_AVG)
726 sleep_time = NS_MAX_SLEEP_AVG;
728 sleep_time = (unsigned long)__sleep_time;
730 if (likely(sleep_time > 0)) {
732 * User tasks that sleep a long time are categorised as
733 * idle and will get just interactive status to stay active &
734 * prevent them suddenly becoming cpu hogs and starving
737 if (p->mm && p->activated != -1 &&
738 sleep_time > INTERACTIVE_SLEEP(p)) {
739 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
743 * The lower the sleep avg a task has the more
744 * rapidly it will rise with sleep time.
746 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
749 * Tasks waking from uninterruptible sleep are
750 * limited in their sleep_avg rise as they
751 * are likely to be waiting on I/O
753 if (p->activated == -1 && p->mm) {
754 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
756 else if (p->sleep_avg + sleep_time >=
757 INTERACTIVE_SLEEP(p)) {
758 p->sleep_avg = INTERACTIVE_SLEEP(p);
764 * This code gives a bonus to interactive tasks.
766 * The boost works by updating the 'average sleep time'
767 * value here, based on ->timestamp. The more time a
768 * task spends sleeping, the higher the average gets -
769 * and the higher the priority boost gets as well.
771 p->sleep_avg += sleep_time;
773 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
774 p->sleep_avg = NS_MAX_SLEEP_AVG;
778 return effective_prio(p);
782 * activate_task - move a task to the runqueue and do priority recalculation
784 * Update all the scheduling statistics stuff. (sleep average
785 * calculation, priority modifiers, etc.)
787 static void activate_task(task_t *p, runqueue_t *rq, int local)
789 unsigned long long now;
794 /* Compensate for drifting sched_clock */
795 runqueue_t *this_rq = this_rq();
796 now = (now - this_rq->timestamp_last_tick)
797 + rq->timestamp_last_tick;
801 p->prio = recalc_task_prio(p, now);
804 * This checks to make sure it's not an uninterruptible task
805 * that is now waking up.
809 * Tasks which were woken up by interrupts (ie. hw events)
810 * are most likely of interactive nature. So we give them
811 * the credit of extending their sleep time to the period
812 * of time they spend on the runqueue, waiting for execution
813 * on a CPU, first time around:
819 * Normal first-time wakeups get a credit too for
820 * on-runqueue time, but it will be weighted down:
827 __activate_task(p, rq);
831 * deactivate_task - remove a task from the runqueue.
833 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
835 dec_nr_running(p, rq);
836 dequeue_task(p, p->array);
841 * resched_task - mark a task 'to be rescheduled now'.
843 * On UP this means the setting of the need_resched flag, on SMP it
844 * might also involve a cross-CPU call to trigger the scheduler on
848 static void resched_task(task_t *p)
850 int need_resched, nrpolling;
852 assert_spin_locked(&task_rq(p)->lock);
854 /* minimise the chance of sending an interrupt to poll_idle() */
855 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
856 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
857 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
859 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
860 smp_send_reschedule(task_cpu(p));
863 static inline void resched_task(task_t *p)
865 set_tsk_need_resched(p);
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
873 inline int task_curr(const task_t *p)
875 return cpu_curr(task_cpu(p)) == p;
880 struct list_head list;
885 struct completion done;
889 * The task's runqueue lock must be held.
890 * Returns true if you have to wait for migration thread.
892 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
894 runqueue_t *rq = task_rq(p);
897 * If the task is not on a runqueue (and not running), then
898 * it is sufficient to simply update the task's cpu field.
900 if (!p->array && !task_running(rq, p)) {
901 set_task_cpu(p, dest_cpu);
905 init_completion(&req->done);
907 req->dest_cpu = dest_cpu;
908 list_add(&req->list, &rq->migration_queue);
913 * wait_task_inactive - wait for a thread to unschedule.
915 * The caller must ensure that the task *will* unschedule sometime soon,
916 * else this function might spin for a *long* time. This function can't
917 * be called with interrupts off, or it may introduce deadlock with
918 * smp_call_function() if an IPI is sent by the same process we are
919 * waiting to become inactive.
921 void wait_task_inactive(task_t *p)
928 rq = task_rq_lock(p, &flags);
929 /* Must be off runqueue entirely, not preempted. */
930 if (unlikely(p->array || task_running(rq, p))) {
931 /* If it's preempted, we yield. It could be a while. */
932 preempted = !task_running(rq, p);
933 task_rq_unlock(rq, &flags);
939 task_rq_unlock(rq, &flags);
943 * kick_process - kick a running thread to enter/exit the kernel
944 * @p: the to-be-kicked thread
946 * Cause a process which is running on another CPU to enter
947 * kernel-mode, without any delay. (to get signals handled.)
949 * NOTE: this function doesnt have to take the runqueue lock,
950 * because all it wants to ensure is that the remote task enters
951 * the kernel. If the IPI races and the task has been migrated
952 * to another CPU then no harm is done and the purpose has been
955 void kick_process(task_t *p)
961 if ((cpu != smp_processor_id()) && task_curr(p))
962 smp_send_reschedule(cpu);
967 * Return a low guess at the load of a migration-source cpu.
969 * We want to under-estimate the load of migration sources, to
970 * balance conservatively.
972 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
974 runqueue_t *rq = cpu_rq(cpu);
975 unsigned long running = rq->nr_running;
976 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
977 load_now = running * SCHED_LOAD_SCALE;
980 source_load = load_now;
982 source_load = min(cpu_load, load_now);
984 if (running > 1 || (idle == NOT_IDLE && running))
986 * If we are busy rebalancing the load is biased by
987 * priority to create 'nice' support across cpus. When
988 * idle rebalancing we should only bias the source_load if
989 * there is more than one task running on that queue to
990 * prevent idle rebalance from trying to pull tasks from a
991 * queue with only one running task.
993 source_load = source_load * rq->prio_bias / running;
998 static inline unsigned long source_load(int cpu, int type)
1000 return __source_load(cpu, type, NOT_IDLE);
1004 * Return a high guess at the load of a migration-target cpu
1006 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1008 runqueue_t *rq = cpu_rq(cpu);
1009 unsigned long running = rq->nr_running;
1010 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1011 load_now = running * SCHED_LOAD_SCALE;
1014 target_load = load_now;
1016 target_load = max(cpu_load, load_now);
1018 if (running > 1 || (idle == NOT_IDLE && running))
1019 target_load = target_load * rq->prio_bias / running;
1024 static inline unsigned long target_load(int cpu, int type)
1026 return __target_load(cpu, type, NOT_IDLE);
1030 * find_idlest_group finds and returns the least busy CPU group within the
1033 static struct sched_group *
1034 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1036 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1037 unsigned long min_load = ULONG_MAX, this_load = 0;
1038 int load_idx = sd->forkexec_idx;
1039 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1042 unsigned long load, avg_load;
1046 /* Skip over this group if it has no CPUs allowed */
1047 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1050 local_group = cpu_isset(this_cpu, group->cpumask);
1052 /* Tally up the load of all CPUs in the group */
1055 for_each_cpu_mask(i, group->cpumask) {
1056 /* Bias balancing toward cpus of our domain */
1058 load = source_load(i, load_idx);
1060 load = target_load(i, load_idx);
1065 /* Adjust by relative CPU power of the group */
1066 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1069 this_load = avg_load;
1071 } else if (avg_load < min_load) {
1072 min_load = avg_load;
1076 group = group->next;
1077 } while (group != sd->groups);
1079 if (!idlest || 100*this_load < imbalance*min_load)
1085 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1088 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1091 unsigned long load, min_load = ULONG_MAX;
1095 /* Traverse only the allowed CPUs */
1096 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1098 for_each_cpu_mask(i, tmp) {
1099 load = source_load(i, 0);
1101 if (load < min_load || (load == min_load && i == this_cpu)) {
1111 * sched_balance_self: balance the current task (running on cpu) in domains
1112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1115 * Balance, ie. select the least loaded group.
1117 * Returns the target CPU number, or the same CPU if no balancing is needed.
1119 * preempt must be disabled.
1121 static int sched_balance_self(int cpu, int flag)
1123 struct task_struct *t = current;
1124 struct sched_domain *tmp, *sd = NULL;
1126 for_each_domain(cpu, tmp)
1127 if (tmp->flags & flag)
1132 struct sched_group *group;
1137 group = find_idlest_group(sd, t, cpu);
1141 new_cpu = find_idlest_cpu(group, t, cpu);
1142 if (new_cpu == -1 || new_cpu == cpu)
1145 /* Now try balancing at a lower domain level */
1149 weight = cpus_weight(span);
1150 for_each_domain(cpu, tmp) {
1151 if (weight <= cpus_weight(tmp->span))
1153 if (tmp->flags & flag)
1156 /* while loop will break here if sd == NULL */
1162 #endif /* CONFIG_SMP */
1165 * wake_idle() will wake a task on an idle cpu if task->cpu is
1166 * not idle and an idle cpu is available. The span of cpus to
1167 * search starts with cpus closest then further out as needed,
1168 * so we always favor a closer, idle cpu.
1170 * Returns the CPU we should wake onto.
1172 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1173 static int wake_idle(int cpu, task_t *p)
1176 struct sched_domain *sd;
1182 for_each_domain(cpu, sd) {
1183 if (sd->flags & SD_WAKE_IDLE) {
1184 cpus_and(tmp, sd->span, p->cpus_allowed);
1185 for_each_cpu_mask(i, tmp) {
1196 static inline int wake_idle(int cpu, task_t *p)
1203 * try_to_wake_up - wake up a thread
1204 * @p: the to-be-woken-up thread
1205 * @state: the mask of task states that can be woken
1206 * @sync: do a synchronous wakeup?
1208 * Put it on the run-queue if it's not already there. The "current"
1209 * thread is always on the run-queue (except when the actual
1210 * re-schedule is in progress), and as such you're allowed to do
1211 * the simpler "current->state = TASK_RUNNING" to mark yourself
1212 * runnable without the overhead of this.
1214 * returns failure only if the task is already active.
1216 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1218 int cpu, this_cpu, success = 0;
1219 unsigned long flags;
1223 unsigned long load, this_load;
1224 struct sched_domain *sd, *this_sd = NULL;
1228 rq = task_rq_lock(p, &flags);
1229 old_state = p->state;
1230 if (!(old_state & state))
1237 this_cpu = smp_processor_id();
1240 if (unlikely(task_running(rq, p)))
1245 schedstat_inc(rq, ttwu_cnt);
1246 if (cpu == this_cpu) {
1247 schedstat_inc(rq, ttwu_local);
1251 for_each_domain(this_cpu, sd) {
1252 if (cpu_isset(cpu, sd->span)) {
1253 schedstat_inc(sd, ttwu_wake_remote);
1259 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1263 * Check for affine wakeup and passive balancing possibilities.
1266 int idx = this_sd->wake_idx;
1267 unsigned int imbalance;
1269 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1271 load = source_load(cpu, idx);
1272 this_load = target_load(this_cpu, idx);
1274 new_cpu = this_cpu; /* Wake to this CPU if we can */
1276 if (this_sd->flags & SD_WAKE_AFFINE) {
1277 unsigned long tl = this_load;
1279 * If sync wakeup then subtract the (maximum possible)
1280 * effect of the currently running task from the load
1281 * of the current CPU:
1284 tl -= SCHED_LOAD_SCALE;
1287 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1288 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1290 * This domain has SD_WAKE_AFFINE and
1291 * p is cache cold in this domain, and
1292 * there is no bad imbalance.
1294 schedstat_inc(this_sd, ttwu_move_affine);
1300 * Start passive balancing when half the imbalance_pct
1303 if (this_sd->flags & SD_WAKE_BALANCE) {
1304 if (imbalance*this_load <= 100*load) {
1305 schedstat_inc(this_sd, ttwu_move_balance);
1311 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1313 new_cpu = wake_idle(new_cpu, p);
1314 if (new_cpu != cpu) {
1315 set_task_cpu(p, new_cpu);
1316 task_rq_unlock(rq, &flags);
1317 /* might preempt at this point */
1318 rq = task_rq_lock(p, &flags);
1319 old_state = p->state;
1320 if (!(old_state & state))
1325 this_cpu = smp_processor_id();
1330 #endif /* CONFIG_SMP */
1331 if (old_state == TASK_UNINTERRUPTIBLE) {
1332 rq->nr_uninterruptible--;
1334 * Tasks on involuntary sleep don't earn
1335 * sleep_avg beyond just interactive state.
1341 * Tasks that have marked their sleep as noninteractive get
1342 * woken up without updating their sleep average. (i.e. their
1343 * sleep is handled in a priority-neutral manner, no priority
1344 * boost and no penalty.)
1346 if (old_state & TASK_NONINTERACTIVE)
1347 __activate_task(p, rq);
1349 activate_task(p, rq, cpu == this_cpu);
1351 * Sync wakeups (i.e. those types of wakeups where the waker
1352 * has indicated that it will leave the CPU in short order)
1353 * don't trigger a preemption, if the woken up task will run on
1354 * this cpu. (in this case the 'I will reschedule' promise of
1355 * the waker guarantees that the freshly woken up task is going
1356 * to be considered on this CPU.)
1358 if (!sync || cpu != this_cpu) {
1359 if (TASK_PREEMPTS_CURR(p, rq))
1360 resched_task(rq->curr);
1365 p->state = TASK_RUNNING;
1367 task_rq_unlock(rq, &flags);
1372 int fastcall wake_up_process(task_t *p)
1374 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1375 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1378 EXPORT_SYMBOL(wake_up_process);
1380 int fastcall wake_up_state(task_t *p, unsigned int state)
1382 return try_to_wake_up(p, state, 0);
1386 * Perform scheduler related setup for a newly forked process p.
1387 * p is forked by current.
1389 void fastcall sched_fork(task_t *p, int clone_flags)
1391 int cpu = get_cpu();
1394 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1396 set_task_cpu(p, cpu);
1399 * We mark the process as running here, but have not actually
1400 * inserted it onto the runqueue yet. This guarantees that
1401 * nobody will actually run it, and a signal or other external
1402 * event cannot wake it up and insert it on the runqueue either.
1404 p->state = TASK_RUNNING;
1405 INIT_LIST_HEAD(&p->run_list);
1407 #ifdef CONFIG_SCHEDSTATS
1408 memset(&p->sched_info, 0, sizeof(p->sched_info));
1410 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1413 #ifdef CONFIG_PREEMPT
1414 /* Want to start with kernel preemption disabled. */
1415 p->thread_info->preempt_count = 1;
1418 * Share the timeslice between parent and child, thus the
1419 * total amount of pending timeslices in the system doesn't change,
1420 * resulting in more scheduling fairness.
1422 local_irq_disable();
1423 p->time_slice = (current->time_slice + 1) >> 1;
1425 * The remainder of the first timeslice might be recovered by
1426 * the parent if the child exits early enough.
1428 p->first_time_slice = 1;
1429 current->time_slice >>= 1;
1430 p->timestamp = sched_clock();
1431 if (unlikely(!current->time_slice)) {
1433 * This case is rare, it happens when the parent has only
1434 * a single jiffy left from its timeslice. Taking the
1435 * runqueue lock is not a problem.
1437 current->time_slice = 1;
1445 * wake_up_new_task - wake up a newly created task for the first time.
1447 * This function will do some initial scheduler statistics housekeeping
1448 * that must be done for every newly created context, then puts the task
1449 * on the runqueue and wakes it.
1451 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1453 unsigned long flags;
1455 runqueue_t *rq, *this_rq;
1457 rq = task_rq_lock(p, &flags);
1458 BUG_ON(p->state != TASK_RUNNING);
1459 this_cpu = smp_processor_id();
1463 * We decrease the sleep average of forking parents
1464 * and children as well, to keep max-interactive tasks
1465 * from forking tasks that are max-interactive. The parent
1466 * (current) is done further down, under its lock.
1468 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1469 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1471 p->prio = effective_prio(p);
1473 if (likely(cpu == this_cpu)) {
1474 if (!(clone_flags & CLONE_VM)) {
1476 * The VM isn't cloned, so we're in a good position to
1477 * do child-runs-first in anticipation of an exec. This
1478 * usually avoids a lot of COW overhead.
1480 if (unlikely(!current->array))
1481 __activate_task(p, rq);
1483 p->prio = current->prio;
1484 list_add_tail(&p->run_list, ¤t->run_list);
1485 p->array = current->array;
1486 p->array->nr_active++;
1487 inc_nr_running(p, rq);
1491 /* Run child last */
1492 __activate_task(p, rq);
1494 * We skip the following code due to cpu == this_cpu
1496 * task_rq_unlock(rq, &flags);
1497 * this_rq = task_rq_lock(current, &flags);
1501 this_rq = cpu_rq(this_cpu);
1504 * Not the local CPU - must adjust timestamp. This should
1505 * get optimised away in the !CONFIG_SMP case.
1507 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1508 + rq->timestamp_last_tick;
1509 __activate_task(p, rq);
1510 if (TASK_PREEMPTS_CURR(p, rq))
1511 resched_task(rq->curr);
1514 * Parent and child are on different CPUs, now get the
1515 * parent runqueue to update the parent's ->sleep_avg:
1517 task_rq_unlock(rq, &flags);
1518 this_rq = task_rq_lock(current, &flags);
1520 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1521 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1522 task_rq_unlock(this_rq, &flags);
1526 * Potentially available exiting-child timeslices are
1527 * retrieved here - this way the parent does not get
1528 * penalized for creating too many threads.
1530 * (this cannot be used to 'generate' timeslices
1531 * artificially, because any timeslice recovered here
1532 * was given away by the parent in the first place.)
1534 void fastcall sched_exit(task_t *p)
1536 unsigned long flags;
1540 * If the child was a (relative-) CPU hog then decrease
1541 * the sleep_avg of the parent as well.
1543 rq = task_rq_lock(p->parent, &flags);
1544 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1545 p->parent->time_slice += p->time_slice;
1546 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1547 p->parent->time_slice = task_timeslice(p);
1549 if (p->sleep_avg < p->parent->sleep_avg)
1550 p->parent->sleep_avg = p->parent->sleep_avg /
1551 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1553 task_rq_unlock(rq, &flags);
1557 * prepare_task_switch - prepare to switch tasks
1558 * @rq: the runqueue preparing to switch
1559 * @next: the task we are going to switch to.
1561 * This is called with the rq lock held and interrupts off. It must
1562 * be paired with a subsequent finish_task_switch after the context
1565 * prepare_task_switch sets up locking and calls architecture specific
1568 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1570 prepare_lock_switch(rq, next);
1571 prepare_arch_switch(next);
1575 * finish_task_switch - clean up after a task-switch
1576 * @rq: runqueue associated with task-switch
1577 * @prev: the thread we just switched away from.
1579 * finish_task_switch must be called after the context switch, paired
1580 * with a prepare_task_switch call before the context switch.
1581 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1582 * and do any other architecture-specific cleanup actions.
1584 * Note that we may have delayed dropping an mm in context_switch(). If
1585 * so, we finish that here outside of the runqueue lock. (Doing it
1586 * with the lock held can cause deadlocks; see schedule() for
1589 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1590 __releases(rq->lock)
1592 struct mm_struct *mm = rq->prev_mm;
1593 unsigned long prev_task_flags;
1598 * A task struct has one reference for the use as "current".
1599 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1600 * calls schedule one last time. The schedule call will never return,
1601 * and the scheduled task must drop that reference.
1602 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1603 * still held, otherwise prev could be scheduled on another cpu, die
1604 * there before we look at prev->state, and then the reference would
1606 * Manfred Spraul <manfred@colorfullife.com>
1608 prev_task_flags = prev->flags;
1609 finish_arch_switch(prev);
1610 finish_lock_switch(rq, prev);
1613 if (unlikely(prev_task_flags & PF_DEAD))
1614 put_task_struct(prev);
1618 * schedule_tail - first thing a freshly forked thread must call.
1619 * @prev: the thread we just switched away from.
1621 asmlinkage void schedule_tail(task_t *prev)
1622 __releases(rq->lock)
1624 runqueue_t *rq = this_rq();
1625 finish_task_switch(rq, prev);
1626 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1627 /* In this case, finish_task_switch does not reenable preemption */
1630 if (current->set_child_tid)
1631 put_user(current->pid, current->set_child_tid);
1635 * context_switch - switch to the new MM and the new
1636 * thread's register state.
1639 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1641 struct mm_struct *mm = next->mm;
1642 struct mm_struct *oldmm = prev->active_mm;
1644 if (unlikely(!mm)) {
1645 next->active_mm = oldmm;
1646 atomic_inc(&oldmm->mm_count);
1647 enter_lazy_tlb(oldmm, next);
1649 switch_mm(oldmm, mm, next);
1651 if (unlikely(!prev->mm)) {
1652 prev->active_mm = NULL;
1653 WARN_ON(rq->prev_mm);
1654 rq->prev_mm = oldmm;
1657 /* Here we just switch the register state and the stack. */
1658 switch_to(prev, next, prev);
1664 * nr_running, nr_uninterruptible and nr_context_switches:
1666 * externally visible scheduler statistics: current number of runnable
1667 * threads, current number of uninterruptible-sleeping threads, total
1668 * number of context switches performed since bootup.
1670 unsigned long nr_running(void)
1672 unsigned long i, sum = 0;
1674 for_each_online_cpu(i)
1675 sum += cpu_rq(i)->nr_running;
1680 unsigned long nr_uninterruptible(void)
1682 unsigned long i, sum = 0;
1685 sum += cpu_rq(i)->nr_uninterruptible;
1688 * Since we read the counters lockless, it might be slightly
1689 * inaccurate. Do not allow it to go below zero though:
1691 if (unlikely((long)sum < 0))
1697 unsigned long long nr_context_switches(void)
1699 unsigned long long i, sum = 0;
1702 sum += cpu_rq(i)->nr_switches;
1707 unsigned long nr_iowait(void)
1709 unsigned long i, sum = 0;
1712 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1720 * double_rq_lock - safely lock two runqueues
1722 * Note this does not disable interrupts like task_rq_lock,
1723 * you need to do so manually before calling.
1725 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1726 __acquires(rq1->lock)
1727 __acquires(rq2->lock)
1730 spin_lock(&rq1->lock);
1731 __acquire(rq2->lock); /* Fake it out ;) */
1734 spin_lock(&rq1->lock);
1735 spin_lock(&rq2->lock);
1737 spin_lock(&rq2->lock);
1738 spin_lock(&rq1->lock);
1744 * double_rq_unlock - safely unlock two runqueues
1746 * Note this does not restore interrupts like task_rq_unlock,
1747 * you need to do so manually after calling.
1749 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1750 __releases(rq1->lock)
1751 __releases(rq2->lock)
1753 spin_unlock(&rq1->lock);
1755 spin_unlock(&rq2->lock);
1757 __release(rq2->lock);
1761 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1763 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1768 if (unlikely(!spin_trylock(&busiest->lock))) {
1769 if (busiest < this_rq) {
1770 spin_unlock(&this_rq->lock);
1771 spin_lock(&busiest->lock);
1772 spin_lock(&this_rq->lock);
1774 spin_lock(&busiest->lock);
1779 * If dest_cpu is allowed for this process, migrate the task to it.
1780 * This is accomplished by forcing the cpu_allowed mask to only
1781 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1782 * the cpu_allowed mask is restored.
1784 static void sched_migrate_task(task_t *p, int dest_cpu)
1786 migration_req_t req;
1788 unsigned long flags;
1790 rq = task_rq_lock(p, &flags);
1791 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1792 || unlikely(cpu_is_offline(dest_cpu)))
1795 /* force the process onto the specified CPU */
1796 if (migrate_task(p, dest_cpu, &req)) {
1797 /* Need to wait for migration thread (might exit: take ref). */
1798 struct task_struct *mt = rq->migration_thread;
1799 get_task_struct(mt);
1800 task_rq_unlock(rq, &flags);
1801 wake_up_process(mt);
1802 put_task_struct(mt);
1803 wait_for_completion(&req.done);
1807 task_rq_unlock(rq, &flags);
1811 * sched_exec - execve() is a valuable balancing opportunity, because at
1812 * this point the task has the smallest effective memory and cache footprint.
1814 void sched_exec(void)
1816 int new_cpu, this_cpu = get_cpu();
1817 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1819 if (new_cpu != this_cpu)
1820 sched_migrate_task(current, new_cpu);
1824 * pull_task - move a task from a remote runqueue to the local runqueue.
1825 * Both runqueues must be locked.
1828 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1829 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1831 dequeue_task(p, src_array);
1832 dec_nr_running(p, src_rq);
1833 set_task_cpu(p, this_cpu);
1834 inc_nr_running(p, this_rq);
1835 enqueue_task(p, this_array);
1836 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1837 + this_rq->timestamp_last_tick;
1839 * Note that idle threads have a prio of MAX_PRIO, for this test
1840 * to be always true for them.
1842 if (TASK_PREEMPTS_CURR(p, this_rq))
1843 resched_task(this_rq->curr);
1847 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1850 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1851 struct sched_domain *sd, enum idle_type idle,
1855 * We do not migrate tasks that are:
1856 * 1) running (obviously), or
1857 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1858 * 3) are cache-hot on their current CPU.
1860 if (!cpu_isset(this_cpu, p->cpus_allowed))
1864 if (task_running(rq, p))
1868 * Aggressive migration if:
1869 * 1) task is cache cold, or
1870 * 2) too many balance attempts have failed.
1873 if (sd->nr_balance_failed > sd->cache_nice_tries)
1876 if (task_hot(p, rq->timestamp_last_tick, sd))
1882 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1883 * as part of a balancing operation within "domain". Returns the number of
1886 * Called with both runqueues locked.
1888 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1889 unsigned long max_nr_move, struct sched_domain *sd,
1890 enum idle_type idle, int *all_pinned)
1892 prio_array_t *array, *dst_array;
1893 struct list_head *head, *curr;
1894 int idx, pulled = 0, pinned = 0;
1897 if (max_nr_move == 0)
1903 * We first consider expired tasks. Those will likely not be
1904 * executed in the near future, and they are most likely to
1905 * be cache-cold, thus switching CPUs has the least effect
1908 if (busiest->expired->nr_active) {
1909 array = busiest->expired;
1910 dst_array = this_rq->expired;
1912 array = busiest->active;
1913 dst_array = this_rq->active;
1917 /* Start searching at priority 0: */
1921 idx = sched_find_first_bit(array->bitmap);
1923 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1924 if (idx >= MAX_PRIO) {
1925 if (array == busiest->expired && busiest->active->nr_active) {
1926 array = busiest->active;
1927 dst_array = this_rq->active;
1933 head = array->queue + idx;
1936 tmp = list_entry(curr, task_t, run_list);
1940 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1947 #ifdef CONFIG_SCHEDSTATS
1948 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1949 schedstat_inc(sd, lb_hot_gained[idle]);
1952 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1955 /* We only want to steal up to the prescribed number of tasks. */
1956 if (pulled < max_nr_move) {
1964 * Right now, this is the only place pull_task() is called,
1965 * so we can safely collect pull_task() stats here rather than
1966 * inside pull_task().
1968 schedstat_add(sd, lb_gained[idle], pulled);
1971 *all_pinned = pinned;
1976 * find_busiest_group finds and returns the busiest CPU group within the
1977 * domain. It calculates and returns the number of tasks which should be
1978 * moved to restore balance via the imbalance parameter.
1980 static struct sched_group *
1981 find_busiest_group(struct sched_domain *sd, int this_cpu,
1982 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1984 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1985 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1986 unsigned long max_pull;
1989 max_load = this_load = total_load = total_pwr = 0;
1990 if (idle == NOT_IDLE)
1991 load_idx = sd->busy_idx;
1992 else if (idle == NEWLY_IDLE)
1993 load_idx = sd->newidle_idx;
1995 load_idx = sd->idle_idx;
2002 local_group = cpu_isset(this_cpu, group->cpumask);
2004 /* Tally up the load of all CPUs in the group */
2007 for_each_cpu_mask(i, group->cpumask) {
2008 if (*sd_idle && !idle_cpu(i))
2011 /* Bias balancing toward cpus of our domain */
2013 load = __target_load(i, load_idx, idle);
2015 load = __source_load(i, load_idx, idle);
2020 total_load += avg_load;
2021 total_pwr += group->cpu_power;
2023 /* Adjust by relative CPU power of the group */
2024 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2027 this_load = avg_load;
2029 } else if (avg_load > max_load) {
2030 max_load = avg_load;
2033 group = group->next;
2034 } while (group != sd->groups);
2036 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2039 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2041 if (this_load >= avg_load ||
2042 100*max_load <= sd->imbalance_pct*this_load)
2046 * We're trying to get all the cpus to the average_load, so we don't
2047 * want to push ourselves above the average load, nor do we wish to
2048 * reduce the max loaded cpu below the average load, as either of these
2049 * actions would just result in more rebalancing later, and ping-pong
2050 * tasks around. Thus we look for the minimum possible imbalance.
2051 * Negative imbalances (*we* are more loaded than anyone else) will
2052 * be counted as no imbalance for these purposes -- we can't fix that
2053 * by pulling tasks to us. Be careful of negative numbers as they'll
2054 * appear as very large values with unsigned longs.
2057 /* Don't want to pull so many tasks that a group would go idle */
2058 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2060 /* How much load to actually move to equalise the imbalance */
2061 *imbalance = min(max_pull * busiest->cpu_power,
2062 (avg_load - this_load) * this->cpu_power)
2065 if (*imbalance < SCHED_LOAD_SCALE) {
2066 unsigned long pwr_now = 0, pwr_move = 0;
2069 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2075 * OK, we don't have enough imbalance to justify moving tasks,
2076 * however we may be able to increase total CPU power used by
2080 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2081 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2082 pwr_now /= SCHED_LOAD_SCALE;
2084 /* Amount of load we'd subtract */
2085 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2087 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2090 /* Amount of load we'd add */
2091 if (max_load*busiest->cpu_power <
2092 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2093 tmp = max_load*busiest->cpu_power/this->cpu_power;
2095 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2096 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2097 pwr_move /= SCHED_LOAD_SCALE;
2099 /* Move if we gain throughput */
2100 if (pwr_move <= pwr_now)
2107 /* Get rid of the scaling factor, rounding down as we divide */
2108 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2118 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2120 static runqueue_t *find_busiest_queue(struct sched_group *group,
2121 enum idle_type idle)
2123 unsigned long load, max_load = 0;
2124 runqueue_t *busiest = NULL;
2127 for_each_cpu_mask(i, group->cpumask) {
2128 load = __source_load(i, 0, idle);
2130 if (load > max_load) {
2132 busiest = cpu_rq(i);
2140 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2141 * so long as it is large enough.
2143 #define MAX_PINNED_INTERVAL 512
2146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2147 * tasks if there is an imbalance.
2149 * Called with this_rq unlocked.
2151 static int load_balance(int this_cpu, runqueue_t *this_rq,
2152 struct sched_domain *sd, enum idle_type idle)
2154 struct sched_group *group;
2155 runqueue_t *busiest;
2156 unsigned long imbalance;
2157 int nr_moved, all_pinned = 0;
2158 int active_balance = 0;
2161 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2164 schedstat_inc(sd, lb_cnt[idle]);
2166 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2168 schedstat_inc(sd, lb_nobusyg[idle]);
2172 busiest = find_busiest_queue(group, idle);
2174 schedstat_inc(sd, lb_nobusyq[idle]);
2178 BUG_ON(busiest == this_rq);
2180 schedstat_add(sd, lb_imbalance[idle], imbalance);
2183 if (busiest->nr_running > 1) {
2185 * Attempt to move tasks. If find_busiest_group has found
2186 * an imbalance but busiest->nr_running <= 1, the group is
2187 * still unbalanced. nr_moved simply stays zero, so it is
2188 * correctly treated as an imbalance.
2190 double_rq_lock(this_rq, busiest);
2191 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2192 imbalance, sd, idle, &all_pinned);
2193 double_rq_unlock(this_rq, busiest);
2195 /* All tasks on this runqueue were pinned by CPU affinity */
2196 if (unlikely(all_pinned))
2201 schedstat_inc(sd, lb_failed[idle]);
2202 sd->nr_balance_failed++;
2204 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2206 spin_lock(&busiest->lock);
2208 /* don't kick the migration_thread, if the curr
2209 * task on busiest cpu can't be moved to this_cpu
2211 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2212 spin_unlock(&busiest->lock);
2214 goto out_one_pinned;
2217 if (!busiest->active_balance) {
2218 busiest->active_balance = 1;
2219 busiest->push_cpu = this_cpu;
2222 spin_unlock(&busiest->lock);
2224 wake_up_process(busiest->migration_thread);
2227 * We've kicked active balancing, reset the failure
2230 sd->nr_balance_failed = sd->cache_nice_tries+1;
2233 sd->nr_balance_failed = 0;
2235 if (likely(!active_balance)) {
2236 /* We were unbalanced, so reset the balancing interval */
2237 sd->balance_interval = sd->min_interval;
2240 * If we've begun active balancing, start to back off. This
2241 * case may not be covered by the all_pinned logic if there
2242 * is only 1 task on the busy runqueue (because we don't call
2245 if (sd->balance_interval < sd->max_interval)
2246 sd->balance_interval *= 2;
2249 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2254 schedstat_inc(sd, lb_balanced[idle]);
2256 sd->nr_balance_failed = 0;
2259 /* tune up the balancing interval */
2260 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2261 (sd->balance_interval < sd->max_interval))
2262 sd->balance_interval *= 2;
2264 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2270 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2271 * tasks if there is an imbalance.
2273 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2274 * this_rq is locked.
2276 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2277 struct sched_domain *sd)
2279 struct sched_group *group;
2280 runqueue_t *busiest = NULL;
2281 unsigned long imbalance;
2285 if (sd->flags & SD_SHARE_CPUPOWER)
2288 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2289 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2291 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2295 busiest = find_busiest_queue(group, NEWLY_IDLE);
2297 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2301 BUG_ON(busiest == this_rq);
2303 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2306 if (busiest->nr_running > 1) {
2307 /* Attempt to move tasks */
2308 double_lock_balance(this_rq, busiest);
2309 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2310 imbalance, sd, NEWLY_IDLE, NULL);
2311 spin_unlock(&busiest->lock);
2315 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2316 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2319 sd->nr_balance_failed = 0;
2324 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2325 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2327 sd->nr_balance_failed = 0;
2332 * idle_balance is called by schedule() if this_cpu is about to become
2333 * idle. Attempts to pull tasks from other CPUs.
2335 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2337 struct sched_domain *sd;
2339 for_each_domain(this_cpu, sd) {
2340 if (sd->flags & SD_BALANCE_NEWIDLE) {
2341 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2342 /* We've pulled tasks over so stop searching */
2350 * active_load_balance is run by migration threads. It pushes running tasks
2351 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2352 * running on each physical CPU where possible, and avoids physical /
2353 * logical imbalances.
2355 * Called with busiest_rq locked.
2357 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2359 struct sched_domain *sd;
2360 runqueue_t *target_rq;
2361 int target_cpu = busiest_rq->push_cpu;
2363 if (busiest_rq->nr_running <= 1)
2364 /* no task to move */
2367 target_rq = cpu_rq(target_cpu);
2370 * This condition is "impossible", if it occurs
2371 * we need to fix it. Originally reported by
2372 * Bjorn Helgaas on a 128-cpu setup.
2374 BUG_ON(busiest_rq == target_rq);
2376 /* move a task from busiest_rq to target_rq */
2377 double_lock_balance(busiest_rq, target_rq);
2379 /* Search for an sd spanning us and the target CPU. */
2380 for_each_domain(target_cpu, sd)
2381 if ((sd->flags & SD_LOAD_BALANCE) &&
2382 cpu_isset(busiest_cpu, sd->span))
2385 if (unlikely(sd == NULL))
2388 schedstat_inc(sd, alb_cnt);
2390 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2391 schedstat_inc(sd, alb_pushed);
2393 schedstat_inc(sd, alb_failed);
2395 spin_unlock(&target_rq->lock);
2399 * rebalance_tick will get called every timer tick, on every CPU.
2401 * It checks each scheduling domain to see if it is due to be balanced,
2402 * and initiates a balancing operation if so.
2404 * Balancing parameters are set up in arch_init_sched_domains.
2407 /* Don't have all balancing operations going off at once */
2408 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2410 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2411 enum idle_type idle)
2413 unsigned long old_load, this_load;
2414 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2415 struct sched_domain *sd;
2418 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2419 /* Update our load */
2420 for (i = 0; i < 3; i++) {
2421 unsigned long new_load = this_load;
2423 old_load = this_rq->cpu_load[i];
2425 * Round up the averaging division if load is increasing. This
2426 * prevents us from getting stuck on 9 if the load is 10, for
2429 if (new_load > old_load)
2430 new_load += scale-1;
2431 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2434 for_each_domain(this_cpu, sd) {
2435 unsigned long interval;
2437 if (!(sd->flags & SD_LOAD_BALANCE))
2440 interval = sd->balance_interval;
2441 if (idle != SCHED_IDLE)
2442 interval *= sd->busy_factor;
2444 /* scale ms to jiffies */
2445 interval = msecs_to_jiffies(interval);
2446 if (unlikely(!interval))
2449 if (j - sd->last_balance >= interval) {
2450 if (load_balance(this_cpu, this_rq, sd, idle)) {
2452 * We've pulled tasks over so either we're no
2453 * longer idle, or one of our SMT siblings is
2458 sd->last_balance += interval;
2464 * on UP we do not need to balance between CPUs:
2466 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2469 static inline void idle_balance(int cpu, runqueue_t *rq)
2474 static inline int wake_priority_sleeper(runqueue_t *rq)
2477 #ifdef CONFIG_SCHED_SMT
2478 spin_lock(&rq->lock);
2480 * If an SMT sibling task has been put to sleep for priority
2481 * reasons reschedule the idle task to see if it can now run.
2483 if (rq->nr_running) {
2484 resched_task(rq->idle);
2487 spin_unlock(&rq->lock);
2492 DEFINE_PER_CPU(struct kernel_stat, kstat);
2494 EXPORT_PER_CPU_SYMBOL(kstat);
2497 * This is called on clock ticks and on context switches.
2498 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2500 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2501 unsigned long long now)
2503 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2504 p->sched_time += now - last;
2508 * Return current->sched_time plus any more ns on the sched_clock
2509 * that have not yet been banked.
2511 unsigned long long current_sched_time(const task_t *tsk)
2513 unsigned long long ns;
2514 unsigned long flags;
2515 local_irq_save(flags);
2516 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2517 ns = tsk->sched_time + (sched_clock() - ns);
2518 local_irq_restore(flags);
2523 * We place interactive tasks back into the active array, if possible.
2525 * To guarantee that this does not starve expired tasks we ignore the
2526 * interactivity of a task if the first expired task had to wait more
2527 * than a 'reasonable' amount of time. This deadline timeout is
2528 * load-dependent, as the frequency of array switched decreases with
2529 * increasing number of running tasks. We also ignore the interactivity
2530 * if a better static_prio task has expired:
2532 #define EXPIRED_STARVING(rq) \
2533 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2534 (jiffies - (rq)->expired_timestamp >= \
2535 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2536 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2539 * Account user cpu time to a process.
2540 * @p: the process that the cpu time gets accounted to
2541 * @hardirq_offset: the offset to subtract from hardirq_count()
2542 * @cputime: the cpu time spent in user space since the last update
2544 void account_user_time(struct task_struct *p, cputime_t cputime)
2546 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2549 p->utime = cputime_add(p->utime, cputime);
2551 /* Add user time to cpustat. */
2552 tmp = cputime_to_cputime64(cputime);
2553 if (TASK_NICE(p) > 0)
2554 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2556 cpustat->user = cputime64_add(cpustat->user, tmp);
2560 * Account system cpu time to a process.
2561 * @p: the process that the cpu time gets accounted to
2562 * @hardirq_offset: the offset to subtract from hardirq_count()
2563 * @cputime: the cpu time spent in kernel space since the last update
2565 void account_system_time(struct task_struct *p, int hardirq_offset,
2568 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2569 runqueue_t *rq = this_rq();
2572 p->stime = cputime_add(p->stime, cputime);
2574 /* Add system time to cpustat. */
2575 tmp = cputime_to_cputime64(cputime);
2576 if (hardirq_count() - hardirq_offset)
2577 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2578 else if (softirq_count())
2579 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2580 else if (p != rq->idle)
2581 cpustat->system = cputime64_add(cpustat->system, tmp);
2582 else if (atomic_read(&rq->nr_iowait) > 0)
2583 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2585 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2586 /* Account for system time used */
2587 acct_update_integrals(p);
2591 * Account for involuntary wait time.
2592 * @p: the process from which the cpu time has been stolen
2593 * @steal: the cpu time spent in involuntary wait
2595 void account_steal_time(struct task_struct *p, cputime_t steal)
2597 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2598 cputime64_t tmp = cputime_to_cputime64(steal);
2599 runqueue_t *rq = this_rq();
2601 if (p == rq->idle) {
2602 p->stime = cputime_add(p->stime, steal);
2603 if (atomic_read(&rq->nr_iowait) > 0)
2604 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2606 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2608 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2612 * This function gets called by the timer code, with HZ frequency.
2613 * We call it with interrupts disabled.
2615 * It also gets called by the fork code, when changing the parent's
2618 void scheduler_tick(void)
2620 int cpu = smp_processor_id();
2621 runqueue_t *rq = this_rq();
2622 task_t *p = current;
2623 unsigned long long now = sched_clock();
2625 update_cpu_clock(p, rq, now);
2627 rq->timestamp_last_tick = now;
2629 if (p == rq->idle) {
2630 if (wake_priority_sleeper(rq))
2632 rebalance_tick(cpu, rq, SCHED_IDLE);
2636 /* Task might have expired already, but not scheduled off yet */
2637 if (p->array != rq->active) {
2638 set_tsk_need_resched(p);
2641 spin_lock(&rq->lock);
2643 * The task was running during this tick - update the
2644 * time slice counter. Note: we do not update a thread's
2645 * priority until it either goes to sleep or uses up its
2646 * timeslice. This makes it possible for interactive tasks
2647 * to use up their timeslices at their highest priority levels.
2651 * RR tasks need a special form of timeslice management.
2652 * FIFO tasks have no timeslices.
2654 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2655 p->time_slice = task_timeslice(p);
2656 p->first_time_slice = 0;
2657 set_tsk_need_resched(p);
2659 /* put it at the end of the queue: */
2660 requeue_task(p, rq->active);
2664 if (!--p->time_slice) {
2665 dequeue_task(p, rq->active);
2666 set_tsk_need_resched(p);
2667 p->prio = effective_prio(p);
2668 p->time_slice = task_timeslice(p);
2669 p->first_time_slice = 0;
2671 if (!rq->expired_timestamp)
2672 rq->expired_timestamp = jiffies;
2673 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2674 enqueue_task(p, rq->expired);
2675 if (p->static_prio < rq->best_expired_prio)
2676 rq->best_expired_prio = p->static_prio;
2678 enqueue_task(p, rq->active);
2681 * Prevent a too long timeslice allowing a task to monopolize
2682 * the CPU. We do this by splitting up the timeslice into
2685 * Note: this does not mean the task's timeslices expire or
2686 * get lost in any way, they just might be preempted by
2687 * another task of equal priority. (one with higher
2688 * priority would have preempted this task already.) We
2689 * requeue this task to the end of the list on this priority
2690 * level, which is in essence a round-robin of tasks with
2693 * This only applies to tasks in the interactive
2694 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2696 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2697 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2698 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2699 (p->array == rq->active)) {
2701 requeue_task(p, rq->active);
2702 set_tsk_need_resched(p);
2706 spin_unlock(&rq->lock);
2708 rebalance_tick(cpu, rq, NOT_IDLE);
2711 #ifdef CONFIG_SCHED_SMT
2712 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2714 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2715 if (rq->curr == rq->idle && rq->nr_running)
2716 resched_task(rq->idle);
2719 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2721 struct sched_domain *tmp, *sd = NULL;
2722 cpumask_t sibling_map;
2725 for_each_domain(this_cpu, tmp)
2726 if (tmp->flags & SD_SHARE_CPUPOWER)
2733 * Unlock the current runqueue because we have to lock in
2734 * CPU order to avoid deadlocks. Caller knows that we might
2735 * unlock. We keep IRQs disabled.
2737 spin_unlock(&this_rq->lock);
2739 sibling_map = sd->span;
2741 for_each_cpu_mask(i, sibling_map)
2742 spin_lock(&cpu_rq(i)->lock);
2744 * We clear this CPU from the mask. This both simplifies the
2745 * inner loop and keps this_rq locked when we exit:
2747 cpu_clear(this_cpu, sibling_map);
2749 for_each_cpu_mask(i, sibling_map) {
2750 runqueue_t *smt_rq = cpu_rq(i);
2752 wakeup_busy_runqueue(smt_rq);
2755 for_each_cpu_mask(i, sibling_map)
2756 spin_unlock(&cpu_rq(i)->lock);
2758 * We exit with this_cpu's rq still held and IRQs
2764 * number of 'lost' timeslices this task wont be able to fully
2765 * utilize, if another task runs on a sibling. This models the
2766 * slowdown effect of other tasks running on siblings:
2768 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2770 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2773 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2775 struct sched_domain *tmp, *sd = NULL;
2776 cpumask_t sibling_map;
2777 prio_array_t *array;
2781 for_each_domain(this_cpu, tmp)
2782 if (tmp->flags & SD_SHARE_CPUPOWER)
2789 * The same locking rules and details apply as for
2790 * wake_sleeping_dependent():
2792 spin_unlock(&this_rq->lock);
2793 sibling_map = sd->span;
2794 for_each_cpu_mask(i, sibling_map)
2795 spin_lock(&cpu_rq(i)->lock);
2796 cpu_clear(this_cpu, sibling_map);
2799 * Establish next task to be run - it might have gone away because
2800 * we released the runqueue lock above:
2802 if (!this_rq->nr_running)
2804 array = this_rq->active;
2805 if (!array->nr_active)
2806 array = this_rq->expired;
2807 BUG_ON(!array->nr_active);
2809 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2812 for_each_cpu_mask(i, sibling_map) {
2813 runqueue_t *smt_rq = cpu_rq(i);
2814 task_t *smt_curr = smt_rq->curr;
2816 /* Kernel threads do not participate in dependent sleeping */
2817 if (!p->mm || !smt_curr->mm || rt_task(p))
2818 goto check_smt_task;
2821 * If a user task with lower static priority than the
2822 * running task on the SMT sibling is trying to schedule,
2823 * delay it till there is proportionately less timeslice
2824 * left of the sibling task to prevent a lower priority
2825 * task from using an unfair proportion of the
2826 * physical cpu's resources. -ck
2828 if (rt_task(smt_curr)) {
2830 * With real time tasks we run non-rt tasks only
2831 * per_cpu_gain% of the time.
2833 if ((jiffies % DEF_TIMESLICE) >
2834 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2837 if (smt_curr->static_prio < p->static_prio &&
2838 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2839 smt_slice(smt_curr, sd) > task_timeslice(p))
2843 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2847 wakeup_busy_runqueue(smt_rq);
2852 * Reschedule a lower priority task on the SMT sibling for
2853 * it to be put to sleep, or wake it up if it has been put to
2854 * sleep for priority reasons to see if it should run now.
2857 if ((jiffies % DEF_TIMESLICE) >
2858 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2859 resched_task(smt_curr);
2861 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2862 smt_slice(p, sd) > task_timeslice(smt_curr))
2863 resched_task(smt_curr);
2865 wakeup_busy_runqueue(smt_rq);
2869 for_each_cpu_mask(i, sibling_map)
2870 spin_unlock(&cpu_rq(i)->lock);
2874 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2878 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2884 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2886 void fastcall add_preempt_count(int val)
2891 BUG_ON((preempt_count() < 0));
2892 preempt_count() += val;
2894 * Spinlock count overflowing soon?
2896 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2898 EXPORT_SYMBOL(add_preempt_count);
2900 void fastcall sub_preempt_count(int val)
2905 BUG_ON(val > preempt_count());
2907 * Is the spinlock portion underflowing?
2909 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2910 preempt_count() -= val;
2912 EXPORT_SYMBOL(sub_preempt_count);
2917 * schedule() is the main scheduler function.
2919 asmlinkage void __sched schedule(void)
2922 task_t *prev, *next;
2924 prio_array_t *array;
2925 struct list_head *queue;
2926 unsigned long long now;
2927 unsigned long run_time;
2928 int cpu, idx, new_prio;
2931 * Test if we are atomic. Since do_exit() needs to call into
2932 * schedule() atomically, we ignore that path for now.
2933 * Otherwise, whine if we are scheduling when we should not be.
2935 if (likely(!current->exit_state)) {
2936 if (unlikely(in_atomic())) {
2937 printk(KERN_ERR "scheduling while atomic: "
2939 current->comm, preempt_count(), current->pid);
2943 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2948 release_kernel_lock(prev);
2949 need_resched_nonpreemptible:
2953 * The idle thread is not allowed to schedule!
2954 * Remove this check after it has been exercised a bit.
2956 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2957 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2961 schedstat_inc(rq, sched_cnt);
2962 now = sched_clock();
2963 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2964 run_time = now - prev->timestamp;
2965 if (unlikely((long long)(now - prev->timestamp) < 0))
2968 run_time = NS_MAX_SLEEP_AVG;
2971 * Tasks charged proportionately less run_time at high sleep_avg to
2972 * delay them losing their interactive status
2974 run_time /= (CURRENT_BONUS(prev) ? : 1);
2976 spin_lock_irq(&rq->lock);
2978 if (unlikely(prev->flags & PF_DEAD))
2979 prev->state = EXIT_DEAD;
2981 switch_count = &prev->nivcsw;
2982 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2983 switch_count = &prev->nvcsw;
2984 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2985 unlikely(signal_pending(prev))))
2986 prev->state = TASK_RUNNING;
2988 if (prev->state == TASK_UNINTERRUPTIBLE)
2989 rq->nr_uninterruptible++;
2990 deactivate_task(prev, rq);
2994 cpu = smp_processor_id();
2995 if (unlikely(!rq->nr_running)) {
2997 idle_balance(cpu, rq);
2998 if (!rq->nr_running) {
3000 rq->expired_timestamp = 0;
3001 wake_sleeping_dependent(cpu, rq);
3003 * wake_sleeping_dependent() might have released
3004 * the runqueue, so break out if we got new
3007 if (!rq->nr_running)
3011 if (dependent_sleeper(cpu, rq)) {
3016 * dependent_sleeper() releases and reacquires the runqueue
3017 * lock, hence go into the idle loop if the rq went
3020 if (unlikely(!rq->nr_running))
3025 if (unlikely(!array->nr_active)) {
3027 * Switch the active and expired arrays.
3029 schedstat_inc(rq, sched_switch);
3030 rq->active = rq->expired;
3031 rq->expired = array;
3033 rq->expired_timestamp = 0;
3034 rq->best_expired_prio = MAX_PRIO;
3037 idx = sched_find_first_bit(array->bitmap);
3038 queue = array->queue + idx;
3039 next = list_entry(queue->next, task_t, run_list);
3041 if (!rt_task(next) && next->activated > 0) {
3042 unsigned long long delta = now - next->timestamp;
3043 if (unlikely((long long)(now - next->timestamp) < 0))
3046 if (next->activated == 1)
3047 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3049 array = next->array;
3050 new_prio = recalc_task_prio(next, next->timestamp + delta);
3052 if (unlikely(next->prio != new_prio)) {
3053 dequeue_task(next, array);
3054 next->prio = new_prio;
3055 enqueue_task(next, array);
3057 requeue_task(next, array);
3059 next->activated = 0;
3061 if (next == rq->idle)
3062 schedstat_inc(rq, sched_goidle);
3064 prefetch_stack(next);
3065 clear_tsk_need_resched(prev);
3066 rcu_qsctr_inc(task_cpu(prev));
3068 update_cpu_clock(prev, rq, now);
3070 prev->sleep_avg -= run_time;
3071 if ((long)prev->sleep_avg <= 0)
3072 prev->sleep_avg = 0;
3073 prev->timestamp = prev->last_ran = now;
3075 sched_info_switch(prev, next);
3076 if (likely(prev != next)) {
3077 next->timestamp = now;
3082 prepare_task_switch(rq, next);
3083 prev = context_switch(rq, prev, next);
3086 * this_rq must be evaluated again because prev may have moved
3087 * CPUs since it called schedule(), thus the 'rq' on its stack
3088 * frame will be invalid.
3090 finish_task_switch(this_rq(), prev);
3092 spin_unlock_irq(&rq->lock);
3095 if (unlikely(reacquire_kernel_lock(prev) < 0))
3096 goto need_resched_nonpreemptible;
3097 preempt_enable_no_resched();
3098 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3102 EXPORT_SYMBOL(schedule);
3104 #ifdef CONFIG_PREEMPT
3106 * this is is the entry point to schedule() from in-kernel preemption
3107 * off of preempt_enable. Kernel preemptions off return from interrupt
3108 * occur there and call schedule directly.
3110 asmlinkage void __sched preempt_schedule(void)
3112 struct thread_info *ti = current_thread_info();
3113 #ifdef CONFIG_PREEMPT_BKL
3114 struct task_struct *task = current;
3115 int saved_lock_depth;
3118 * If there is a non-zero preempt_count or interrupts are disabled,
3119 * we do not want to preempt the current task. Just return..
3121 if (unlikely(ti->preempt_count || irqs_disabled()))
3125 add_preempt_count(PREEMPT_ACTIVE);
3127 * We keep the big kernel semaphore locked, but we
3128 * clear ->lock_depth so that schedule() doesnt
3129 * auto-release the semaphore:
3131 #ifdef CONFIG_PREEMPT_BKL
3132 saved_lock_depth = task->lock_depth;
3133 task->lock_depth = -1;
3136 #ifdef CONFIG_PREEMPT_BKL
3137 task->lock_depth = saved_lock_depth;
3139 sub_preempt_count(PREEMPT_ACTIVE);
3141 /* we could miss a preemption opportunity between schedule and now */
3143 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3147 EXPORT_SYMBOL(preempt_schedule);
3150 * this is is the entry point to schedule() from kernel preemption
3151 * off of irq context.
3152 * Note, that this is called and return with irqs disabled. This will
3153 * protect us against recursive calling from irq.
3155 asmlinkage void __sched preempt_schedule_irq(void)
3157 struct thread_info *ti = current_thread_info();
3158 #ifdef CONFIG_PREEMPT_BKL
3159 struct task_struct *task = current;
3160 int saved_lock_depth;
3162 /* Catch callers which need to be fixed*/
3163 BUG_ON(ti->preempt_count || !irqs_disabled());
3166 add_preempt_count(PREEMPT_ACTIVE);
3168 * We keep the big kernel semaphore locked, but we
3169 * clear ->lock_depth so that schedule() doesnt
3170 * auto-release the semaphore:
3172 #ifdef CONFIG_PREEMPT_BKL
3173 saved_lock_depth = task->lock_depth;
3174 task->lock_depth = -1;
3178 local_irq_disable();
3179 #ifdef CONFIG_PREEMPT_BKL
3180 task->lock_depth = saved_lock_depth;
3182 sub_preempt_count(PREEMPT_ACTIVE);
3184 /* we could miss a preemption opportunity between schedule and now */
3186 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3190 #endif /* CONFIG_PREEMPT */
3192 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3195 task_t *p = curr->private;
3196 return try_to_wake_up(p, mode, sync);
3199 EXPORT_SYMBOL(default_wake_function);
3202 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3203 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3204 * number) then we wake all the non-exclusive tasks and one exclusive task.
3206 * There are circumstances in which we can try to wake a task which has already
3207 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3208 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3210 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3211 int nr_exclusive, int sync, void *key)
3213 struct list_head *tmp, *next;
3215 list_for_each_safe(tmp, next, &q->task_list) {
3218 curr = list_entry(tmp, wait_queue_t, task_list);
3219 flags = curr->flags;
3220 if (curr->func(curr, mode, sync, key) &&
3221 (flags & WQ_FLAG_EXCLUSIVE) &&
3228 * __wake_up - wake up threads blocked on a waitqueue.
3230 * @mode: which threads
3231 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3232 * @key: is directly passed to the wakeup function
3234 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3235 int nr_exclusive, void *key)
3237 unsigned long flags;
3239 spin_lock_irqsave(&q->lock, flags);
3240 __wake_up_common(q, mode, nr_exclusive, 0, key);
3241 spin_unlock_irqrestore(&q->lock, flags);
3244 EXPORT_SYMBOL(__wake_up);
3247 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3249 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3251 __wake_up_common(q, mode, 1, 0, NULL);
3255 * __wake_up_sync - wake up threads blocked on a waitqueue.
3257 * @mode: which threads
3258 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3260 * The sync wakeup differs that the waker knows that it will schedule
3261 * away soon, so while the target thread will be woken up, it will not
3262 * be migrated to another CPU - ie. the two threads are 'synchronized'
3263 * with each other. This can prevent needless bouncing between CPUs.
3265 * On UP it can prevent extra preemption.
3268 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3270 unsigned long flags;
3276 if (unlikely(!nr_exclusive))
3279 spin_lock_irqsave(&q->lock, flags);
3280 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3281 spin_unlock_irqrestore(&q->lock, flags);
3283 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3285 void fastcall complete(struct completion *x)
3287 unsigned long flags;
3289 spin_lock_irqsave(&x->wait.lock, flags);
3291 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3293 spin_unlock_irqrestore(&x->wait.lock, flags);
3295 EXPORT_SYMBOL(complete);
3297 void fastcall complete_all(struct completion *x)
3299 unsigned long flags;
3301 spin_lock_irqsave(&x->wait.lock, flags);
3302 x->done += UINT_MAX/2;
3303 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3305 spin_unlock_irqrestore(&x->wait.lock, flags);
3307 EXPORT_SYMBOL(complete_all);
3309 void fastcall __sched wait_for_completion(struct completion *x)
3312 spin_lock_irq(&x->wait.lock);
3314 DECLARE_WAITQUEUE(wait, current);
3316 wait.flags |= WQ_FLAG_EXCLUSIVE;
3317 __add_wait_queue_tail(&x->wait, &wait);
3319 __set_current_state(TASK_UNINTERRUPTIBLE);
3320 spin_unlock_irq(&x->wait.lock);
3322 spin_lock_irq(&x->wait.lock);
3324 __remove_wait_queue(&x->wait, &wait);
3327 spin_unlock_irq(&x->wait.lock);
3329 EXPORT_SYMBOL(wait_for_completion);
3331 unsigned long fastcall __sched
3332 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3336 spin_lock_irq(&x->wait.lock);
3338 DECLARE_WAITQUEUE(wait, current);
3340 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341 __add_wait_queue_tail(&x->wait, &wait);
3343 __set_current_state(TASK_UNINTERRUPTIBLE);
3344 spin_unlock_irq(&x->wait.lock);
3345 timeout = schedule_timeout(timeout);
3346 spin_lock_irq(&x->wait.lock);
3348 __remove_wait_queue(&x->wait, &wait);
3352 __remove_wait_queue(&x->wait, &wait);
3356 spin_unlock_irq(&x->wait.lock);
3359 EXPORT_SYMBOL(wait_for_completion_timeout);
3361 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3367 spin_lock_irq(&x->wait.lock);
3369 DECLARE_WAITQUEUE(wait, current);
3371 wait.flags |= WQ_FLAG_EXCLUSIVE;
3372 __add_wait_queue_tail(&x->wait, &wait);
3374 if (signal_pending(current)) {
3376 __remove_wait_queue(&x->wait, &wait);
3379 __set_current_state(TASK_INTERRUPTIBLE);
3380 spin_unlock_irq(&x->wait.lock);
3382 spin_lock_irq(&x->wait.lock);
3384 __remove_wait_queue(&x->wait, &wait);
3388 spin_unlock_irq(&x->wait.lock);
3392 EXPORT_SYMBOL(wait_for_completion_interruptible);
3394 unsigned long fastcall __sched
3395 wait_for_completion_interruptible_timeout(struct completion *x,
3396 unsigned long timeout)
3400 spin_lock_irq(&x->wait.lock);
3402 DECLARE_WAITQUEUE(wait, current);
3404 wait.flags |= WQ_FLAG_EXCLUSIVE;
3405 __add_wait_queue_tail(&x->wait, &wait);
3407 if (signal_pending(current)) {
3408 timeout = -ERESTARTSYS;
3409 __remove_wait_queue(&x->wait, &wait);
3412 __set_current_state(TASK_INTERRUPTIBLE);
3413 spin_unlock_irq(&x->wait.lock);
3414 timeout = schedule_timeout(timeout);
3415 spin_lock_irq(&x->wait.lock);
3417 __remove_wait_queue(&x->wait, &wait);
3421 __remove_wait_queue(&x->wait, &wait);
3425 spin_unlock_irq(&x->wait.lock);
3428 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3431 #define SLEEP_ON_VAR \
3432 unsigned long flags; \
3433 wait_queue_t wait; \
3434 init_waitqueue_entry(&wait, current);
3436 #define SLEEP_ON_HEAD \
3437 spin_lock_irqsave(&q->lock,flags); \
3438 __add_wait_queue(q, &wait); \
3439 spin_unlock(&q->lock);
3441 #define SLEEP_ON_TAIL \
3442 spin_lock_irq(&q->lock); \
3443 __remove_wait_queue(q, &wait); \
3444 spin_unlock_irqrestore(&q->lock, flags);
3446 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3450 current->state = TASK_INTERRUPTIBLE;
3457 EXPORT_SYMBOL(interruptible_sleep_on);
3459 long fastcall __sched
3460 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3464 current->state = TASK_INTERRUPTIBLE;
3467 timeout = schedule_timeout(timeout);
3473 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3475 void fastcall __sched sleep_on(wait_queue_head_t *q)
3479 current->state = TASK_UNINTERRUPTIBLE;
3486 EXPORT_SYMBOL(sleep_on);
3488 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3492 current->state = TASK_UNINTERRUPTIBLE;
3495 timeout = schedule_timeout(timeout);
3501 EXPORT_SYMBOL(sleep_on_timeout);
3503 void set_user_nice(task_t *p, long nice)
3505 unsigned long flags;
3506 prio_array_t *array;
3508 int old_prio, new_prio, delta;
3510 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3513 * We have to be careful, if called from sys_setpriority(),
3514 * the task might be in the middle of scheduling on another CPU.
3516 rq = task_rq_lock(p, &flags);
3518 * The RT priorities are set via sched_setscheduler(), but we still
3519 * allow the 'normal' nice value to be set - but as expected
3520 * it wont have any effect on scheduling until the task is
3524 p->static_prio = NICE_TO_PRIO(nice);
3529 dequeue_task(p, array);
3530 dec_prio_bias(rq, p->static_prio);
3534 new_prio = NICE_TO_PRIO(nice);
3535 delta = new_prio - old_prio;
3536 p->static_prio = NICE_TO_PRIO(nice);
3540 enqueue_task(p, array);
3541 inc_prio_bias(rq, p->static_prio);
3543 * If the task increased its priority or is running and
3544 * lowered its priority, then reschedule its CPU:
3546 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3547 resched_task(rq->curr);
3550 task_rq_unlock(rq, &flags);
3553 EXPORT_SYMBOL(set_user_nice);
3556 * can_nice - check if a task can reduce its nice value
3560 int can_nice(const task_t *p, const int nice)
3562 /* convert nice value [19,-20] to rlimit style value [1,40] */
3563 int nice_rlim = 20 - nice;
3564 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3565 capable(CAP_SYS_NICE));
3568 #ifdef __ARCH_WANT_SYS_NICE
3571 * sys_nice - change the priority of the current process.
3572 * @increment: priority increment
3574 * sys_setpriority is a more generic, but much slower function that
3575 * does similar things.
3577 asmlinkage long sys_nice(int increment)
3583 * Setpriority might change our priority at the same moment.
3584 * We don't have to worry. Conceptually one call occurs first
3585 * and we have a single winner.
3587 if (increment < -40)
3592 nice = PRIO_TO_NICE(current->static_prio) + increment;
3598 if (increment < 0 && !can_nice(current, nice))
3601 retval = security_task_setnice(current, nice);
3605 set_user_nice(current, nice);
3612 * task_prio - return the priority value of a given task.
3613 * @p: the task in question.
3615 * This is the priority value as seen by users in /proc.
3616 * RT tasks are offset by -200. Normal tasks are centered
3617 * around 0, value goes from -16 to +15.
3619 int task_prio(const task_t *p)
3621 return p->prio - MAX_RT_PRIO;
3625 * task_nice - return the nice value of a given task.
3626 * @p: the task in question.
3628 int task_nice(const task_t *p)
3630 return TASK_NICE(p);
3632 EXPORT_SYMBOL_GPL(task_nice);
3635 * idle_cpu - is a given cpu idle currently?
3636 * @cpu: the processor in question.
3638 int idle_cpu(int cpu)
3640 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3644 * idle_task - return the idle task for a given cpu.
3645 * @cpu: the processor in question.
3647 task_t *idle_task(int cpu)
3649 return cpu_rq(cpu)->idle;
3653 * find_process_by_pid - find a process with a matching PID value.
3654 * @pid: the pid in question.
3656 static inline task_t *find_process_by_pid(pid_t pid)
3658 return pid ? find_task_by_pid(pid) : current;
3661 /* Actually do priority change: must hold rq lock. */
3662 static void __setscheduler(struct task_struct *p, int policy, int prio)
3666 p->rt_priority = prio;
3667 if (policy != SCHED_NORMAL)
3668 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3670 p->prio = p->static_prio;
3674 * sched_setscheduler - change the scheduling policy and/or RT priority of
3676 * @p: the task in question.
3677 * @policy: new policy.
3678 * @param: structure containing the new RT priority.
3680 int sched_setscheduler(struct task_struct *p, int policy,
3681 struct sched_param *param)
3684 int oldprio, oldpolicy = -1;
3685 prio_array_t *array;
3686 unsigned long flags;
3690 /* double check policy once rq lock held */
3692 policy = oldpolicy = p->policy;
3693 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3694 policy != SCHED_NORMAL)
3697 * Valid priorities for SCHED_FIFO and SCHED_RR are
3698 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3700 if (param->sched_priority < 0 ||
3701 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3702 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3704 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3708 * Allow unprivileged RT tasks to decrease priority:
3710 if (!capable(CAP_SYS_NICE)) {
3711 /* can't change policy */
3712 if (policy != p->policy &&
3713 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3715 /* can't increase priority */
3716 if (policy != SCHED_NORMAL &&
3717 param->sched_priority > p->rt_priority &&
3718 param->sched_priority >
3719 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3721 /* can't change other user's priorities */
3722 if ((current->euid != p->euid) &&
3723 (current->euid != p->uid))
3727 retval = security_task_setscheduler(p, policy, param);
3731 * To be able to change p->policy safely, the apropriate
3732 * runqueue lock must be held.
3734 rq = task_rq_lock(p, &flags);
3735 /* recheck policy now with rq lock held */
3736 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3737 policy = oldpolicy = -1;
3738 task_rq_unlock(rq, &flags);
3743 deactivate_task(p, rq);
3745 __setscheduler(p, policy, param->sched_priority);
3747 __activate_task(p, rq);
3749 * Reschedule if we are currently running on this runqueue and
3750 * our priority decreased, or if we are not currently running on
3751 * this runqueue and our priority is higher than the current's
3753 if (task_running(rq, p)) {
3754 if (p->prio > oldprio)
3755 resched_task(rq->curr);
3756 } else if (TASK_PREEMPTS_CURR(p, rq))
3757 resched_task(rq->curr);
3759 task_rq_unlock(rq, &flags);
3762 EXPORT_SYMBOL_GPL(sched_setscheduler);
3765 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3768 struct sched_param lparam;
3769 struct task_struct *p;
3771 if (!param || pid < 0)
3773 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3775 read_lock_irq(&tasklist_lock);
3776 p = find_process_by_pid(pid);
3778 read_unlock_irq(&tasklist_lock);
3781 retval = sched_setscheduler(p, policy, &lparam);
3782 read_unlock_irq(&tasklist_lock);
3787 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3788 * @pid: the pid in question.
3789 * @policy: new policy.
3790 * @param: structure containing the new RT priority.
3792 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3793 struct sched_param __user *param)
3795 return do_sched_setscheduler(pid, policy, param);
3799 * sys_sched_setparam - set/change the RT priority of a thread
3800 * @pid: the pid in question.
3801 * @param: structure containing the new RT priority.
3803 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3805 return do_sched_setscheduler(pid, -1, param);
3809 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3810 * @pid: the pid in question.
3812 asmlinkage long sys_sched_getscheduler(pid_t pid)
3814 int retval = -EINVAL;
3821 read_lock(&tasklist_lock);
3822 p = find_process_by_pid(pid);
3824 retval = security_task_getscheduler(p);
3828 read_unlock(&tasklist_lock);
3835 * sys_sched_getscheduler - get the RT priority of a thread
3836 * @pid: the pid in question.
3837 * @param: structure containing the RT priority.
3839 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3841 struct sched_param lp;
3842 int retval = -EINVAL;
3845 if (!param || pid < 0)
3848 read_lock(&tasklist_lock);
3849 p = find_process_by_pid(pid);
3854 retval = security_task_getscheduler(p);
3858 lp.sched_priority = p->rt_priority;
3859 read_unlock(&tasklist_lock);
3862 * This one might sleep, we cannot do it with a spinlock held ...
3864 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3870 read_unlock(&tasklist_lock);
3874 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3878 cpumask_t cpus_allowed;
3881 read_lock(&tasklist_lock);
3883 p = find_process_by_pid(pid);
3885 read_unlock(&tasklist_lock);
3886 unlock_cpu_hotplug();
3891 * It is not safe to call set_cpus_allowed with the
3892 * tasklist_lock held. We will bump the task_struct's
3893 * usage count and then drop tasklist_lock.
3896 read_unlock(&tasklist_lock);
3899 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3900 !capable(CAP_SYS_NICE))
3903 cpus_allowed = cpuset_cpus_allowed(p);
3904 cpus_and(new_mask, new_mask, cpus_allowed);
3905 retval = set_cpus_allowed(p, new_mask);
3909 unlock_cpu_hotplug();
3913 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3914 cpumask_t *new_mask)
3916 if (len < sizeof(cpumask_t)) {
3917 memset(new_mask, 0, sizeof(cpumask_t));
3918 } else if (len > sizeof(cpumask_t)) {
3919 len = sizeof(cpumask_t);
3921 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3925 * sys_sched_setaffinity - set the cpu affinity of a process
3926 * @pid: pid of the process
3927 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3928 * @user_mask_ptr: user-space pointer to the new cpu mask
3930 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3931 unsigned long __user *user_mask_ptr)
3936 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3940 return sched_setaffinity(pid, new_mask);
3944 * Represents all cpu's present in the system
3945 * In systems capable of hotplug, this map could dynamically grow
3946 * as new cpu's are detected in the system via any platform specific
3947 * method, such as ACPI for e.g.
3950 cpumask_t cpu_present_map;
3951 EXPORT_SYMBOL(cpu_present_map);
3954 cpumask_t cpu_online_map = CPU_MASK_ALL;
3955 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3958 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3964 read_lock(&tasklist_lock);
3967 p = find_process_by_pid(pid);
3972 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3975 read_unlock(&tasklist_lock);
3976 unlock_cpu_hotplug();
3984 * sys_sched_getaffinity - get the cpu affinity of a process
3985 * @pid: pid of the process
3986 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3987 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3989 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3990 unsigned long __user *user_mask_ptr)
3995 if (len < sizeof(cpumask_t))
3998 ret = sched_getaffinity(pid, &mask);
4002 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4005 return sizeof(cpumask_t);
4009 * sys_sched_yield - yield the current processor to other threads.
4011 * this function yields the current CPU by moving the calling thread
4012 * to the expired array. If there are no other threads running on this
4013 * CPU then this function will return.
4015 asmlinkage long sys_sched_yield(void)
4017 runqueue_t *rq = this_rq_lock();
4018 prio_array_t *array = current->array;
4019 prio_array_t *target = rq->expired;
4021 schedstat_inc(rq, yld_cnt);
4023 * We implement yielding by moving the task into the expired
4026 * (special rule: RT tasks will just roundrobin in the active
4029 if (rt_task(current))
4030 target = rq->active;
4032 if (array->nr_active == 1) {
4033 schedstat_inc(rq, yld_act_empty);
4034 if (!rq->expired->nr_active)
4035 schedstat_inc(rq, yld_both_empty);
4036 } else if (!rq->expired->nr_active)
4037 schedstat_inc(rq, yld_exp_empty);
4039 if (array != target) {
4040 dequeue_task(current, array);
4041 enqueue_task(current, target);
4044 * requeue_task is cheaper so perform that if possible.
4046 requeue_task(current, array);
4049 * Since we are going to call schedule() anyway, there's
4050 * no need to preempt or enable interrupts:
4052 __release(rq->lock);
4053 _raw_spin_unlock(&rq->lock);
4054 preempt_enable_no_resched();
4061 static inline void __cond_resched(void)
4064 * The BKS might be reacquired before we have dropped
4065 * PREEMPT_ACTIVE, which could trigger a second
4066 * cond_resched() call.
4068 if (unlikely(preempt_count()))
4071 add_preempt_count(PREEMPT_ACTIVE);
4073 sub_preempt_count(PREEMPT_ACTIVE);
4074 } while (need_resched());
4077 int __sched cond_resched(void)
4079 if (need_resched()) {
4086 EXPORT_SYMBOL(cond_resched);
4089 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4090 * call schedule, and on return reacquire the lock.
4092 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4093 * operations here to prevent schedule() from being called twice (once via
4094 * spin_unlock(), once by hand).
4096 int cond_resched_lock(spinlock_t *lock)
4100 if (need_lockbreak(lock)) {
4106 if (need_resched()) {
4107 _raw_spin_unlock(lock);
4108 preempt_enable_no_resched();
4116 EXPORT_SYMBOL(cond_resched_lock);
4118 int __sched cond_resched_softirq(void)
4120 BUG_ON(!in_softirq());
4122 if (need_resched()) {
4123 __local_bh_enable();
4131 EXPORT_SYMBOL(cond_resched_softirq);
4135 * yield - yield the current processor to other threads.
4137 * this is a shortcut for kernel-space yielding - it marks the
4138 * thread runnable and calls sys_sched_yield().
4140 void __sched yield(void)
4142 set_current_state(TASK_RUNNING);
4146 EXPORT_SYMBOL(yield);
4149 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4150 * that process accounting knows that this is a task in IO wait state.
4152 * But don't do that if it is a deliberate, throttling IO wait (this task
4153 * has set its backing_dev_info: the queue against which it should throttle)
4155 void __sched io_schedule(void)
4157 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4159 atomic_inc(&rq->nr_iowait);
4161 atomic_dec(&rq->nr_iowait);
4164 EXPORT_SYMBOL(io_schedule);
4166 long __sched io_schedule_timeout(long timeout)
4168 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4171 atomic_inc(&rq->nr_iowait);
4172 ret = schedule_timeout(timeout);
4173 atomic_dec(&rq->nr_iowait);
4178 * sys_sched_get_priority_max - return maximum RT priority.
4179 * @policy: scheduling class.
4181 * this syscall returns the maximum rt_priority that can be used
4182 * by a given scheduling class.
4184 asmlinkage long sys_sched_get_priority_max(int policy)
4191 ret = MAX_USER_RT_PRIO-1;
4201 * sys_sched_get_priority_min - return minimum RT priority.
4202 * @policy: scheduling class.
4204 * this syscall returns the minimum rt_priority that can be used
4205 * by a given scheduling class.
4207 asmlinkage long sys_sched_get_priority_min(int policy)
4223 * sys_sched_rr_get_interval - return the default timeslice of a process.
4224 * @pid: pid of the process.
4225 * @interval: userspace pointer to the timeslice value.
4227 * this syscall writes the default timeslice value of a given process
4228 * into the user-space timespec buffer. A value of '0' means infinity.
4231 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4233 int retval = -EINVAL;
4241 read_lock(&tasklist_lock);
4242 p = find_process_by_pid(pid);
4246 retval = security_task_getscheduler(p);
4250 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4251 0 : task_timeslice(p), &t);
4252 read_unlock(&tasklist_lock);
4253 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4257 read_unlock(&tasklist_lock);
4261 static inline struct task_struct *eldest_child(struct task_struct *p)
4263 if (list_empty(&p->children)) return NULL;
4264 return list_entry(p->children.next,struct task_struct,sibling);
4267 static inline struct task_struct *older_sibling(struct task_struct *p)
4269 if (p->sibling.prev==&p->parent->children) return NULL;
4270 return list_entry(p->sibling.prev,struct task_struct,sibling);
4273 static inline struct task_struct *younger_sibling(struct task_struct *p)
4275 if (p->sibling.next==&p->parent->children) return NULL;
4276 return list_entry(p->sibling.next,struct task_struct,sibling);
4279 static void show_task(task_t *p)
4283 unsigned long free = 0;
4284 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4286 printk("%-13.13s ", p->comm);
4287 state = p->state ? __ffs(p->state) + 1 : 0;
4288 if (state < ARRAY_SIZE(stat_nam))
4289 printk(stat_nam[state]);
4292 #if (BITS_PER_LONG == 32)
4293 if (state == TASK_RUNNING)
4294 printk(" running ");
4296 printk(" %08lX ", thread_saved_pc(p));
4298 if (state == TASK_RUNNING)
4299 printk(" running task ");
4301 printk(" %016lx ", thread_saved_pc(p));
4303 #ifdef CONFIG_DEBUG_STACK_USAGE
4305 unsigned long *n = (unsigned long *) (p->thread_info+1);
4308 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4311 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4312 if ((relative = eldest_child(p)))
4313 printk("%5d ", relative->pid);
4316 if ((relative = younger_sibling(p)))
4317 printk("%7d", relative->pid);
4320 if ((relative = older_sibling(p)))
4321 printk(" %5d", relative->pid);
4325 printk(" (L-TLB)\n");
4327 printk(" (NOTLB)\n");
4329 if (state != TASK_RUNNING)
4330 show_stack(p, NULL);
4333 void show_state(void)
4337 #if (BITS_PER_LONG == 32)
4340 printk(" task PC pid father child younger older\n");
4344 printk(" task PC pid father child younger older\n");
4346 read_lock(&tasklist_lock);
4347 do_each_thread(g, p) {
4349 * reset the NMI-timeout, listing all files on a slow
4350 * console might take alot of time:
4352 touch_nmi_watchdog();
4354 } while_each_thread(g, p);
4356 read_unlock(&tasklist_lock);
4360 * init_idle - set up an idle thread for a given CPU
4361 * @idle: task in question
4362 * @cpu: cpu the idle task belongs to
4364 * NOTE: this function does not set the idle thread's NEED_RESCHED
4365 * flag, to make booting more robust.
4367 void __devinit init_idle(task_t *idle, int cpu)
4369 runqueue_t *rq = cpu_rq(cpu);
4370 unsigned long flags;
4372 idle->sleep_avg = 0;
4374 idle->prio = MAX_PRIO;
4375 idle->state = TASK_RUNNING;
4376 idle->cpus_allowed = cpumask_of_cpu(cpu);
4377 set_task_cpu(idle, cpu);
4379 spin_lock_irqsave(&rq->lock, flags);
4380 rq->curr = rq->idle = idle;
4381 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4384 spin_unlock_irqrestore(&rq->lock, flags);
4386 /* Set the preempt count _outside_ the spinlocks! */
4387 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4388 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4390 idle->thread_info->preempt_count = 0;
4395 * In a system that switches off the HZ timer nohz_cpu_mask
4396 * indicates which cpus entered this state. This is used
4397 * in the rcu update to wait only for active cpus. For system
4398 * which do not switch off the HZ timer nohz_cpu_mask should
4399 * always be CPU_MASK_NONE.
4401 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4405 * This is how migration works:
4407 * 1) we queue a migration_req_t structure in the source CPU's
4408 * runqueue and wake up that CPU's migration thread.
4409 * 2) we down() the locked semaphore => thread blocks.
4410 * 3) migration thread wakes up (implicitly it forces the migrated
4411 * thread off the CPU)
4412 * 4) it gets the migration request and checks whether the migrated
4413 * task is still in the wrong runqueue.
4414 * 5) if it's in the wrong runqueue then the migration thread removes
4415 * it and puts it into the right queue.
4416 * 6) migration thread up()s the semaphore.
4417 * 7) we wake up and the migration is done.
4421 * Change a given task's CPU affinity. Migrate the thread to a
4422 * proper CPU and schedule it away if the CPU it's executing on
4423 * is removed from the allowed bitmask.
4425 * NOTE: the caller must have a valid reference to the task, the
4426 * task must not exit() & deallocate itself prematurely. The
4427 * call is not atomic; no spinlocks may be held.
4429 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4431 unsigned long flags;
4433 migration_req_t req;
4436 rq = task_rq_lock(p, &flags);
4437 if (!cpus_intersects(new_mask, cpu_online_map)) {
4442 p->cpus_allowed = new_mask;
4443 /* Can the task run on the task's current CPU? If so, we're done */
4444 if (cpu_isset(task_cpu(p), new_mask))
4447 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4448 /* Need help from migration thread: drop lock and wait. */
4449 task_rq_unlock(rq, &flags);
4450 wake_up_process(rq->migration_thread);
4451 wait_for_completion(&req.done);
4452 tlb_migrate_finish(p->mm);
4456 task_rq_unlock(rq, &flags);
4460 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4463 * Move (not current) task off this cpu, onto dest cpu. We're doing
4464 * this because either it can't run here any more (set_cpus_allowed()
4465 * away from this CPU, or CPU going down), or because we're
4466 * attempting to rebalance this task on exec (sched_exec).
4468 * So we race with normal scheduler movements, but that's OK, as long
4469 * as the task is no longer on this CPU.
4471 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4473 runqueue_t *rq_dest, *rq_src;
4475 if (unlikely(cpu_is_offline(dest_cpu)))
4478 rq_src = cpu_rq(src_cpu);
4479 rq_dest = cpu_rq(dest_cpu);
4481 double_rq_lock(rq_src, rq_dest);
4482 /* Already moved. */
4483 if (task_cpu(p) != src_cpu)
4485 /* Affinity changed (again). */
4486 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4489 set_task_cpu(p, dest_cpu);
4492 * Sync timestamp with rq_dest's before activating.
4493 * The same thing could be achieved by doing this step
4494 * afterwards, and pretending it was a local activate.
4495 * This way is cleaner and logically correct.
4497 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4498 + rq_dest->timestamp_last_tick;
4499 deactivate_task(p, rq_src);
4500 activate_task(p, rq_dest, 0);
4501 if (TASK_PREEMPTS_CURR(p, rq_dest))
4502 resched_task(rq_dest->curr);
4506 double_rq_unlock(rq_src, rq_dest);
4510 * migration_thread - this is a highprio system thread that performs
4511 * thread migration by bumping thread off CPU then 'pushing' onto
4514 static int migration_thread(void *data)
4517 int cpu = (long)data;
4520 BUG_ON(rq->migration_thread != current);
4522 set_current_state(TASK_INTERRUPTIBLE);
4523 while (!kthread_should_stop()) {
4524 struct list_head *head;
4525 migration_req_t *req;
4529 spin_lock_irq(&rq->lock);
4531 if (cpu_is_offline(cpu)) {
4532 spin_unlock_irq(&rq->lock);
4536 if (rq->active_balance) {
4537 active_load_balance(rq, cpu);
4538 rq->active_balance = 0;
4541 head = &rq->migration_queue;
4543 if (list_empty(head)) {
4544 spin_unlock_irq(&rq->lock);
4546 set_current_state(TASK_INTERRUPTIBLE);
4549 req = list_entry(head->next, migration_req_t, list);
4550 list_del_init(head->next);
4552 spin_unlock(&rq->lock);
4553 __migrate_task(req->task, cpu, req->dest_cpu);
4556 complete(&req->done);
4558 __set_current_state(TASK_RUNNING);
4562 /* Wait for kthread_stop */
4563 set_current_state(TASK_INTERRUPTIBLE);
4564 while (!kthread_should_stop()) {
4566 set_current_state(TASK_INTERRUPTIBLE);
4568 __set_current_state(TASK_RUNNING);
4572 #ifdef CONFIG_HOTPLUG_CPU
4573 /* Figure out where task on dead CPU should go, use force if neccessary. */
4574 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4580 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4581 cpus_and(mask, mask, tsk->cpus_allowed);
4582 dest_cpu = any_online_cpu(mask);
4584 /* On any allowed CPU? */
4585 if (dest_cpu == NR_CPUS)
4586 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4588 /* No more Mr. Nice Guy. */
4589 if (dest_cpu == NR_CPUS) {
4590 cpus_setall(tsk->cpus_allowed);
4591 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4594 * Don't tell them about moving exiting tasks or
4595 * kernel threads (both mm NULL), since they never
4598 if (tsk->mm && printk_ratelimit())
4599 printk(KERN_INFO "process %d (%s) no "
4600 "longer affine to cpu%d\n",
4601 tsk->pid, tsk->comm, dead_cpu);
4603 __migrate_task(tsk, dead_cpu, dest_cpu);
4607 * While a dead CPU has no uninterruptible tasks queued at this point,
4608 * it might still have a nonzero ->nr_uninterruptible counter, because
4609 * for performance reasons the counter is not stricly tracking tasks to
4610 * their home CPUs. So we just add the counter to another CPU's counter,
4611 * to keep the global sum constant after CPU-down:
4613 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4615 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4616 unsigned long flags;
4618 local_irq_save(flags);
4619 double_rq_lock(rq_src, rq_dest);
4620 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4621 rq_src->nr_uninterruptible = 0;
4622 double_rq_unlock(rq_src, rq_dest);
4623 local_irq_restore(flags);
4626 /* Run through task list and migrate tasks from the dead cpu. */
4627 static void migrate_live_tasks(int src_cpu)
4629 struct task_struct *tsk, *t;
4631 write_lock_irq(&tasklist_lock);
4633 do_each_thread(t, tsk) {
4637 if (task_cpu(tsk) == src_cpu)
4638 move_task_off_dead_cpu(src_cpu, tsk);
4639 } while_each_thread(t, tsk);
4641 write_unlock_irq(&tasklist_lock);
4644 /* Schedules idle task to be the next runnable task on current CPU.
4645 * It does so by boosting its priority to highest possible and adding it to
4646 * the _front_ of runqueue. Used by CPU offline code.
4648 void sched_idle_next(void)
4650 int cpu = smp_processor_id();
4651 runqueue_t *rq = this_rq();
4652 struct task_struct *p = rq->idle;
4653 unsigned long flags;
4655 /* cpu has to be offline */
4656 BUG_ON(cpu_online(cpu));
4658 /* Strictly not necessary since rest of the CPUs are stopped by now
4659 * and interrupts disabled on current cpu.
4661 spin_lock_irqsave(&rq->lock, flags);
4663 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4664 /* Add idle task to _front_ of it's priority queue */
4665 __activate_idle_task(p, rq);
4667 spin_unlock_irqrestore(&rq->lock, flags);
4670 /* Ensures that the idle task is using init_mm right before its cpu goes
4673 void idle_task_exit(void)
4675 struct mm_struct *mm = current->active_mm;
4677 BUG_ON(cpu_online(smp_processor_id()));
4680 switch_mm(mm, &init_mm, current);
4684 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4686 struct runqueue *rq = cpu_rq(dead_cpu);
4688 /* Must be exiting, otherwise would be on tasklist. */
4689 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4691 /* Cannot have done final schedule yet: would have vanished. */
4692 BUG_ON(tsk->flags & PF_DEAD);
4694 get_task_struct(tsk);
4697 * Drop lock around migration; if someone else moves it,
4698 * that's OK. No task can be added to this CPU, so iteration is
4701 spin_unlock_irq(&rq->lock);
4702 move_task_off_dead_cpu(dead_cpu, tsk);
4703 spin_lock_irq(&rq->lock);
4705 put_task_struct(tsk);
4708 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4709 static void migrate_dead_tasks(unsigned int dead_cpu)
4712 struct runqueue *rq = cpu_rq(dead_cpu);
4714 for (arr = 0; arr < 2; arr++) {
4715 for (i = 0; i < MAX_PRIO; i++) {
4716 struct list_head *list = &rq->arrays[arr].queue[i];
4717 while (!list_empty(list))
4718 migrate_dead(dead_cpu,
4719 list_entry(list->next, task_t,
4724 #endif /* CONFIG_HOTPLUG_CPU */
4727 * migration_call - callback that gets triggered when a CPU is added.
4728 * Here we can start up the necessary migration thread for the new CPU.
4730 static int migration_call(struct notifier_block *nfb, unsigned long action,
4733 int cpu = (long)hcpu;
4734 struct task_struct *p;
4735 struct runqueue *rq;
4736 unsigned long flags;
4739 case CPU_UP_PREPARE:
4740 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4743 p->flags |= PF_NOFREEZE;
4744 kthread_bind(p, cpu);
4745 /* Must be high prio: stop_machine expects to yield to it. */
4746 rq = task_rq_lock(p, &flags);
4747 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4748 task_rq_unlock(rq, &flags);
4749 cpu_rq(cpu)->migration_thread = p;
4752 /* Strictly unneccessary, as first user will wake it. */
4753 wake_up_process(cpu_rq(cpu)->migration_thread);
4755 #ifdef CONFIG_HOTPLUG_CPU
4756 case CPU_UP_CANCELED:
4757 /* Unbind it from offline cpu so it can run. Fall thru. */
4758 kthread_bind(cpu_rq(cpu)->migration_thread,
4759 any_online_cpu(cpu_online_map));
4760 kthread_stop(cpu_rq(cpu)->migration_thread);
4761 cpu_rq(cpu)->migration_thread = NULL;
4764 migrate_live_tasks(cpu);
4766 kthread_stop(rq->migration_thread);
4767 rq->migration_thread = NULL;
4768 /* Idle task back to normal (off runqueue, low prio) */
4769 rq = task_rq_lock(rq->idle, &flags);
4770 deactivate_task(rq->idle, rq);
4771 rq->idle->static_prio = MAX_PRIO;
4772 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4773 migrate_dead_tasks(cpu);
4774 task_rq_unlock(rq, &flags);
4775 migrate_nr_uninterruptible(rq);
4776 BUG_ON(rq->nr_running != 0);
4778 /* No need to migrate the tasks: it was best-effort if
4779 * they didn't do lock_cpu_hotplug(). Just wake up
4780 * the requestors. */
4781 spin_lock_irq(&rq->lock);
4782 while (!list_empty(&rq->migration_queue)) {
4783 migration_req_t *req;
4784 req = list_entry(rq->migration_queue.next,
4785 migration_req_t, list);
4786 list_del_init(&req->list);
4787 complete(&req->done);
4789 spin_unlock_irq(&rq->lock);
4796 /* Register at highest priority so that task migration (migrate_all_tasks)
4797 * happens before everything else.
4799 static struct notifier_block __devinitdata migration_notifier = {
4800 .notifier_call = migration_call,
4804 int __init migration_init(void)
4806 void *cpu = (void *)(long)smp_processor_id();
4807 /* Start one for boot CPU. */
4808 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4809 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4810 register_cpu_notifier(&migration_notifier);
4816 #undef SCHED_DOMAIN_DEBUG
4817 #ifdef SCHED_DOMAIN_DEBUG
4818 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4823 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4827 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4832 struct sched_group *group = sd->groups;
4833 cpumask_t groupmask;
4835 cpumask_scnprintf(str, NR_CPUS, sd->span);
4836 cpus_clear(groupmask);
4839 for (i = 0; i < level + 1; i++)
4841 printk("domain %d: ", level);
4843 if (!(sd->flags & SD_LOAD_BALANCE)) {
4844 printk("does not load-balance\n");
4846 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4850 printk("span %s\n", str);
4852 if (!cpu_isset(cpu, sd->span))
4853 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4854 if (!cpu_isset(cpu, group->cpumask))
4855 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4858 for (i = 0; i < level + 2; i++)
4864 printk(KERN_ERR "ERROR: group is NULL\n");
4868 if (!group->cpu_power) {
4870 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4873 if (!cpus_weight(group->cpumask)) {
4875 printk(KERN_ERR "ERROR: empty group\n");
4878 if (cpus_intersects(groupmask, group->cpumask)) {
4880 printk(KERN_ERR "ERROR: repeated CPUs\n");
4883 cpus_or(groupmask, groupmask, group->cpumask);
4885 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4888 group = group->next;
4889 } while (group != sd->groups);
4892 if (!cpus_equal(sd->span, groupmask))
4893 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4899 if (!cpus_subset(groupmask, sd->span))
4900 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4906 #define sched_domain_debug(sd, cpu) {}
4909 static int sd_degenerate(struct sched_domain *sd)
4911 if (cpus_weight(sd->span) == 1)
4914 /* Following flags need at least 2 groups */
4915 if (sd->flags & (SD_LOAD_BALANCE |
4916 SD_BALANCE_NEWIDLE |
4919 if (sd->groups != sd->groups->next)
4923 /* Following flags don't use groups */
4924 if (sd->flags & (SD_WAKE_IDLE |
4932 static int sd_parent_degenerate(struct sched_domain *sd,
4933 struct sched_domain *parent)
4935 unsigned long cflags = sd->flags, pflags = parent->flags;
4937 if (sd_degenerate(parent))
4940 if (!cpus_equal(sd->span, parent->span))
4943 /* Does parent contain flags not in child? */
4944 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4945 if (cflags & SD_WAKE_AFFINE)
4946 pflags &= ~SD_WAKE_BALANCE;
4947 /* Flags needing groups don't count if only 1 group in parent */
4948 if (parent->groups == parent->groups->next) {
4949 pflags &= ~(SD_LOAD_BALANCE |
4950 SD_BALANCE_NEWIDLE |
4954 if (~cflags & pflags)
4961 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4962 * hold the hotplug lock.
4964 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4966 runqueue_t *rq = cpu_rq(cpu);
4967 struct sched_domain *tmp;
4969 /* Remove the sched domains which do not contribute to scheduling. */
4970 for (tmp = sd; tmp; tmp = tmp->parent) {
4971 struct sched_domain *parent = tmp->parent;
4974 if (sd_parent_degenerate(tmp, parent))
4975 tmp->parent = parent->parent;
4978 if (sd && sd_degenerate(sd))
4981 sched_domain_debug(sd, cpu);
4983 rcu_assign_pointer(rq->sd, sd);
4986 /* cpus with isolated domains */
4987 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4989 /* Setup the mask of cpus configured for isolated domains */
4990 static int __init isolated_cpu_setup(char *str)
4992 int ints[NR_CPUS], i;
4994 str = get_options(str, ARRAY_SIZE(ints), ints);
4995 cpus_clear(cpu_isolated_map);
4996 for (i = 1; i <= ints[0]; i++)
4997 if (ints[i] < NR_CPUS)
4998 cpu_set(ints[i], cpu_isolated_map);
5002 __setup ("isolcpus=", isolated_cpu_setup);
5005 * init_sched_build_groups takes an array of groups, the cpumask we wish
5006 * to span, and a pointer to a function which identifies what group a CPU
5007 * belongs to. The return value of group_fn must be a valid index into the
5008 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5009 * keep track of groups covered with a cpumask_t).
5011 * init_sched_build_groups will build a circular linked list of the groups
5012 * covered by the given span, and will set each group's ->cpumask correctly,
5013 * and ->cpu_power to 0.
5015 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5016 int (*group_fn)(int cpu))
5018 struct sched_group *first = NULL, *last = NULL;
5019 cpumask_t covered = CPU_MASK_NONE;
5022 for_each_cpu_mask(i, span) {
5023 int group = group_fn(i);
5024 struct sched_group *sg = &groups[group];
5027 if (cpu_isset(i, covered))
5030 sg->cpumask = CPU_MASK_NONE;
5033 for_each_cpu_mask(j, span) {
5034 if (group_fn(j) != group)
5037 cpu_set(j, covered);
5038 cpu_set(j, sg->cpumask);
5049 #define SD_NODES_PER_DOMAIN 16
5053 * find_next_best_node - find the next node to include in a sched_domain
5054 * @node: node whose sched_domain we're building
5055 * @used_nodes: nodes already in the sched_domain
5057 * Find the next node to include in a given scheduling domain. Simply
5058 * finds the closest node not already in the @used_nodes map.
5060 * Should use nodemask_t.
5062 static int find_next_best_node(int node, unsigned long *used_nodes)
5064 int i, n, val, min_val, best_node = 0;
5068 for (i = 0; i < MAX_NUMNODES; i++) {
5069 /* Start at @node */
5070 n = (node + i) % MAX_NUMNODES;
5072 if (!nr_cpus_node(n))
5075 /* Skip already used nodes */
5076 if (test_bit(n, used_nodes))
5079 /* Simple min distance search */
5080 val = node_distance(node, n);
5082 if (val < min_val) {
5088 set_bit(best_node, used_nodes);
5093 * sched_domain_node_span - get a cpumask for a node's sched_domain
5094 * @node: node whose cpumask we're constructing
5095 * @size: number of nodes to include in this span
5097 * Given a node, construct a good cpumask for its sched_domain to span. It
5098 * should be one that prevents unnecessary balancing, but also spreads tasks
5101 static cpumask_t sched_domain_node_span(int node)
5104 cpumask_t span, nodemask;
5105 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5108 bitmap_zero(used_nodes, MAX_NUMNODES);
5110 nodemask = node_to_cpumask(node);
5111 cpus_or(span, span, nodemask);
5112 set_bit(node, used_nodes);
5114 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5115 int next_node = find_next_best_node(node, used_nodes);
5116 nodemask = node_to_cpumask(next_node);
5117 cpus_or(span, span, nodemask);
5125 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5126 * can switch it on easily if needed.
5128 #ifdef CONFIG_SCHED_SMT
5129 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5130 static struct sched_group sched_group_cpus[NR_CPUS];
5131 static int cpu_to_cpu_group(int cpu)
5137 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5138 static struct sched_group sched_group_phys[NR_CPUS];
5139 static int cpu_to_phys_group(int cpu)
5141 #ifdef CONFIG_SCHED_SMT
5142 return first_cpu(cpu_sibling_map[cpu]);
5150 * The init_sched_build_groups can't handle what we want to do with node
5151 * groups, so roll our own. Now each node has its own list of groups which
5152 * gets dynamically allocated.
5154 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5155 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5157 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5158 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5160 static int cpu_to_allnodes_group(int cpu)
5162 return cpu_to_node(cpu);
5167 * Build sched domains for a given set of cpus and attach the sched domains
5168 * to the individual cpus
5170 void build_sched_domains(const cpumask_t *cpu_map)
5174 struct sched_group **sched_group_nodes = NULL;
5175 struct sched_group *sched_group_allnodes = NULL;
5178 * Allocate the per-node list of sched groups
5180 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5182 if (!sched_group_nodes) {
5183 printk(KERN_WARNING "Can not alloc sched group node list\n");
5186 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5190 * Set up domains for cpus specified by the cpu_map.
5192 for_each_cpu_mask(i, *cpu_map) {
5194 struct sched_domain *sd = NULL, *p;
5195 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5197 cpus_and(nodemask, nodemask, *cpu_map);
5200 if (cpus_weight(*cpu_map)
5201 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5202 if (!sched_group_allnodes) {
5203 sched_group_allnodes
5204 = kmalloc(sizeof(struct sched_group)
5207 if (!sched_group_allnodes) {
5209 "Can not alloc allnodes sched group\n");
5212 sched_group_allnodes_bycpu[i]
5213 = sched_group_allnodes;
5215 sd = &per_cpu(allnodes_domains, i);
5216 *sd = SD_ALLNODES_INIT;
5217 sd->span = *cpu_map;
5218 group = cpu_to_allnodes_group(i);
5219 sd->groups = &sched_group_allnodes[group];
5224 sd = &per_cpu(node_domains, i);
5226 sd->span = sched_domain_node_span(cpu_to_node(i));
5228 cpus_and(sd->span, sd->span, *cpu_map);
5232 sd = &per_cpu(phys_domains, i);
5233 group = cpu_to_phys_group(i);
5235 sd->span = nodemask;
5237 sd->groups = &sched_group_phys[group];
5239 #ifdef CONFIG_SCHED_SMT
5241 sd = &per_cpu(cpu_domains, i);
5242 group = cpu_to_cpu_group(i);
5243 *sd = SD_SIBLING_INIT;
5244 sd->span = cpu_sibling_map[i];
5245 cpus_and(sd->span, sd->span, *cpu_map);
5247 sd->groups = &sched_group_cpus[group];
5251 #ifdef CONFIG_SCHED_SMT
5252 /* Set up CPU (sibling) groups */
5253 for_each_cpu_mask(i, *cpu_map) {
5254 cpumask_t this_sibling_map = cpu_sibling_map[i];
5255 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5256 if (i != first_cpu(this_sibling_map))
5259 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5264 /* Set up physical groups */
5265 for (i = 0; i < MAX_NUMNODES; i++) {
5266 cpumask_t nodemask = node_to_cpumask(i);
5268 cpus_and(nodemask, nodemask, *cpu_map);
5269 if (cpus_empty(nodemask))
5272 init_sched_build_groups(sched_group_phys, nodemask,
5273 &cpu_to_phys_group);
5277 /* Set up node groups */
5278 if (sched_group_allnodes)
5279 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5280 &cpu_to_allnodes_group);
5282 for (i = 0; i < MAX_NUMNODES; i++) {
5283 /* Set up node groups */
5284 struct sched_group *sg, *prev;
5285 cpumask_t nodemask = node_to_cpumask(i);
5286 cpumask_t domainspan;
5287 cpumask_t covered = CPU_MASK_NONE;
5290 cpus_and(nodemask, nodemask, *cpu_map);
5291 if (cpus_empty(nodemask)) {
5292 sched_group_nodes[i] = NULL;
5296 domainspan = sched_domain_node_span(i);
5297 cpus_and(domainspan, domainspan, *cpu_map);
5299 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5300 sched_group_nodes[i] = sg;
5301 for_each_cpu_mask(j, nodemask) {
5302 struct sched_domain *sd;
5303 sd = &per_cpu(node_domains, j);
5305 if (sd->groups == NULL) {
5306 /* Turn off balancing if we have no groups */
5312 "Can not alloc domain group for node %d\n", i);
5316 sg->cpumask = nodemask;
5317 cpus_or(covered, covered, nodemask);
5320 for (j = 0; j < MAX_NUMNODES; j++) {
5321 cpumask_t tmp, notcovered;
5322 int n = (i + j) % MAX_NUMNODES;
5324 cpus_complement(notcovered, covered);
5325 cpus_and(tmp, notcovered, *cpu_map);
5326 cpus_and(tmp, tmp, domainspan);
5327 if (cpus_empty(tmp))
5330 nodemask = node_to_cpumask(n);
5331 cpus_and(tmp, tmp, nodemask);
5332 if (cpus_empty(tmp))
5335 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5338 "Can not alloc domain group for node %d\n", j);
5343 cpus_or(covered, covered, tmp);
5347 prev->next = sched_group_nodes[i];
5351 /* Calculate CPU power for physical packages and nodes */
5352 for_each_cpu_mask(i, *cpu_map) {
5354 struct sched_domain *sd;
5355 #ifdef CONFIG_SCHED_SMT
5356 sd = &per_cpu(cpu_domains, i);
5357 power = SCHED_LOAD_SCALE;
5358 sd->groups->cpu_power = power;
5361 sd = &per_cpu(phys_domains, i);
5362 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5363 (cpus_weight(sd->groups->cpumask)-1) / 10;
5364 sd->groups->cpu_power = power;
5367 sd = &per_cpu(allnodes_domains, i);
5369 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5370 (cpus_weight(sd->groups->cpumask)-1) / 10;
5371 sd->groups->cpu_power = power;
5377 for (i = 0; i < MAX_NUMNODES; i++) {
5378 struct sched_group *sg = sched_group_nodes[i];
5384 for_each_cpu_mask(j, sg->cpumask) {
5385 struct sched_domain *sd;
5388 sd = &per_cpu(phys_domains, j);
5389 if (j != first_cpu(sd->groups->cpumask)) {
5391 * Only add "power" once for each
5396 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5397 (cpus_weight(sd->groups->cpumask)-1) / 10;
5399 sg->cpu_power += power;
5402 if (sg != sched_group_nodes[i])
5407 /* Attach the domains */
5408 for_each_cpu_mask(i, *cpu_map) {
5409 struct sched_domain *sd;
5410 #ifdef CONFIG_SCHED_SMT
5411 sd = &per_cpu(cpu_domains, i);
5413 sd = &per_cpu(phys_domains, i);
5415 cpu_attach_domain(sd, i);
5419 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5421 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5423 cpumask_t cpu_default_map;
5426 * Setup mask for cpus without special case scheduling requirements.
5427 * For now this just excludes isolated cpus, but could be used to
5428 * exclude other special cases in the future.
5430 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5432 build_sched_domains(&cpu_default_map);
5435 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5441 for_each_cpu_mask(cpu, *cpu_map) {
5442 struct sched_group *sched_group_allnodes
5443 = sched_group_allnodes_bycpu[cpu];
5444 struct sched_group **sched_group_nodes
5445 = sched_group_nodes_bycpu[cpu];
5447 if (sched_group_allnodes) {
5448 kfree(sched_group_allnodes);
5449 sched_group_allnodes_bycpu[cpu] = NULL;
5452 if (!sched_group_nodes)
5455 for (i = 0; i < MAX_NUMNODES; i++) {
5456 cpumask_t nodemask = node_to_cpumask(i);
5457 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5459 cpus_and(nodemask, nodemask, *cpu_map);
5460 if (cpus_empty(nodemask))
5470 if (oldsg != sched_group_nodes[i])
5473 kfree(sched_group_nodes);
5474 sched_group_nodes_bycpu[cpu] = NULL;
5480 * Detach sched domains from a group of cpus specified in cpu_map
5481 * These cpus will now be attached to the NULL domain
5483 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5487 for_each_cpu_mask(i, *cpu_map)
5488 cpu_attach_domain(NULL, i);
5489 synchronize_sched();
5490 arch_destroy_sched_domains(cpu_map);
5494 * Partition sched domains as specified by the cpumasks below.
5495 * This attaches all cpus from the cpumasks to the NULL domain,
5496 * waits for a RCU quiescent period, recalculates sched
5497 * domain information and then attaches them back to the
5498 * correct sched domains
5499 * Call with hotplug lock held
5501 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5503 cpumask_t change_map;
5505 cpus_and(*partition1, *partition1, cpu_online_map);
5506 cpus_and(*partition2, *partition2, cpu_online_map);
5507 cpus_or(change_map, *partition1, *partition2);
5509 /* Detach sched domains from all of the affected cpus */
5510 detach_destroy_domains(&change_map);
5511 if (!cpus_empty(*partition1))
5512 build_sched_domains(partition1);
5513 if (!cpus_empty(*partition2))
5514 build_sched_domains(partition2);
5517 #ifdef CONFIG_HOTPLUG_CPU
5519 * Force a reinitialization of the sched domains hierarchy. The domains
5520 * and groups cannot be updated in place without racing with the balancing
5521 * code, so we temporarily attach all running cpus to the NULL domain
5522 * which will prevent rebalancing while the sched domains are recalculated.
5524 static int update_sched_domains(struct notifier_block *nfb,
5525 unsigned long action, void *hcpu)
5528 case CPU_UP_PREPARE:
5529 case CPU_DOWN_PREPARE:
5530 detach_destroy_domains(&cpu_online_map);
5533 case CPU_UP_CANCELED:
5534 case CPU_DOWN_FAILED:
5538 * Fall through and re-initialise the domains.
5545 /* The hotplug lock is already held by cpu_up/cpu_down */
5546 arch_init_sched_domains(&cpu_online_map);
5552 void __init sched_init_smp(void)
5555 arch_init_sched_domains(&cpu_online_map);
5556 unlock_cpu_hotplug();
5557 /* XXX: Theoretical race here - CPU may be hotplugged now */
5558 hotcpu_notifier(update_sched_domains, 0);
5561 void __init sched_init_smp(void)
5564 #endif /* CONFIG_SMP */
5566 int in_sched_functions(unsigned long addr)
5568 /* Linker adds these: start and end of __sched functions */
5569 extern char __sched_text_start[], __sched_text_end[];
5570 return in_lock_functions(addr) ||
5571 (addr >= (unsigned long)__sched_text_start
5572 && addr < (unsigned long)__sched_text_end);
5575 void __init sched_init(void)
5580 for (i = 0; i < NR_CPUS; i++) {
5581 prio_array_t *array;
5584 spin_lock_init(&rq->lock);
5586 rq->active = rq->arrays;
5587 rq->expired = rq->arrays + 1;
5588 rq->best_expired_prio = MAX_PRIO;
5592 for (j = 1; j < 3; j++)
5593 rq->cpu_load[j] = 0;
5594 rq->active_balance = 0;
5596 rq->migration_thread = NULL;
5597 INIT_LIST_HEAD(&rq->migration_queue);
5599 atomic_set(&rq->nr_iowait, 0);
5601 for (j = 0; j < 2; j++) {
5602 array = rq->arrays + j;
5603 for (k = 0; k < MAX_PRIO; k++) {
5604 INIT_LIST_HEAD(array->queue + k);
5605 __clear_bit(k, array->bitmap);
5607 // delimiter for bitsearch
5608 __set_bit(MAX_PRIO, array->bitmap);
5613 * The boot idle thread does lazy MMU switching as well:
5615 atomic_inc(&init_mm.mm_count);
5616 enter_lazy_tlb(&init_mm, current);
5619 * Make us the idle thread. Technically, schedule() should not be
5620 * called from this thread, however somewhere below it might be,
5621 * but because we are the idle thread, we just pick up running again
5622 * when this runqueue becomes "idle".
5624 init_idle(current, smp_processor_id());
5627 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5628 void __might_sleep(char *file, int line)
5630 #if defined(in_atomic)
5631 static unsigned long prev_jiffy; /* ratelimiting */
5633 if ((in_atomic() || irqs_disabled()) &&
5634 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5635 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5637 prev_jiffy = jiffies;
5638 printk(KERN_ERR "Debug: sleeping function called from invalid"
5639 " context at %s:%d\n", file, line);
5640 printk("in_atomic():%d, irqs_disabled():%d\n",
5641 in_atomic(), irqs_disabled());
5646 EXPORT_SYMBOL(__might_sleep);
5649 #ifdef CONFIG_MAGIC_SYSRQ
5650 void normalize_rt_tasks(void)
5652 struct task_struct *p;
5653 prio_array_t *array;
5654 unsigned long flags;
5657 read_lock_irq(&tasklist_lock);
5658 for_each_process (p) {
5662 rq = task_rq_lock(p, &flags);
5666 deactivate_task(p, task_rq(p));
5667 __setscheduler(p, SCHED_NORMAL, 0);
5669 __activate_task(p, task_rq(p));
5670 resched_task(rq->curr);
5673 task_rq_unlock(rq, &flags);
5675 read_unlock_irq(&tasklist_lock);
5678 #endif /* CONFIG_MAGIC_SYSRQ */
5682 * These functions are only useful for the IA64 MCA handling.
5684 * They can only be called when the whole system has been
5685 * stopped - every CPU needs to be quiescent, and no scheduling
5686 * activity can take place. Using them for anything else would
5687 * be a serious bug, and as a result, they aren't even visible
5688 * under any other configuration.
5692 * curr_task - return the current task for a given cpu.
5693 * @cpu: the processor in question.
5695 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5697 task_t *curr_task(int cpu)
5699 return cpu_curr(cpu);
5703 * set_curr_task - set the current task for a given cpu.
5704 * @cpu: the processor in question.
5705 * @p: the task pointer to set.
5707 * Description: This function must only be used when non-maskable interrupts
5708 * are serviced on a separate stack. It allows the architecture to switch the
5709 * notion of the current task on a cpu in a non-blocking manner. This function
5710 * must be called with all CPU's synchronized, and interrupts disabled, the
5711 * and caller must save the original value of the current task (see
5712 * curr_task() above) and restore that value before reenabling interrupts and
5713 * re-starting the system.
5715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5717 void set_curr_task(int cpu, task_t *p)