i2o debug output cleanup
[linux-2.6] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/vmalloc.h>
20 #include <linux/highmem.h>
21 #include <linux/profile.h>
22 #include <linux/sched.h>
23 #include <asm/desc.h>
24
25 #include "kvm_svm.h"
26 #include "x86_emulate.h"
27
28 MODULE_AUTHOR("Qumranet");
29 MODULE_LICENSE("GPL");
30
31 #define IOPM_ALLOC_ORDER 2
32 #define MSRPM_ALLOC_ORDER 1
33
34 #define DB_VECTOR 1
35 #define UD_VECTOR 6
36 #define GP_VECTOR 13
37
38 #define DR7_GD_MASK (1 << 13)
39 #define DR6_BD_MASK (1 << 13)
40 #define CR4_DE_MASK (1UL << 3)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 unsigned long iopm_base;
53 unsigned long msrpm_base;
54
55 struct kvm_ldttss_desc {
56         u16 limit0;
57         u16 base0;
58         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
59         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
60         u32 base3;
61         u32 zero1;
62 } __attribute__((packed));
63
64 struct svm_cpu_data {
65         int cpu;
66
67         u64 asid_generation;
68         u32 max_asid;
69         u32 next_asid;
70         struct kvm_ldttss_desc *tss_desc;
71
72         struct page *save_area;
73 };
74
75 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
76 static uint32_t svm_features;
77
78 struct svm_init_data {
79         int cpu;
80         int r;
81 };
82
83 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
84
85 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
86 #define MSRS_RANGE_SIZE 2048
87 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
88
89 #define MAX_INST_SIZE 15
90
91 static inline u32 svm_has(u32 feat)
92 {
93         return svm_features & feat;
94 }
95
96 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
97 {
98         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
99         u16 cs_attrib;
100
101         if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
102                 return 2;
103
104         cs_attrib = sa->cs.attrib;
105
106         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
107                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
108 }
109
110 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
111 {
112         int word_index = __ffs(vcpu->irq_summary);
113         int bit_index = __ffs(vcpu->irq_pending[word_index]);
114         int irq = word_index * BITS_PER_LONG + bit_index;
115
116         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
117         if (!vcpu->irq_pending[word_index])
118                 clear_bit(word_index, &vcpu->irq_summary);
119         return irq;
120 }
121
122 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
123 {
124         set_bit(irq, vcpu->irq_pending);
125         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
126 }
127
128 static inline void clgi(void)
129 {
130         asm volatile (SVM_CLGI);
131 }
132
133 static inline void stgi(void)
134 {
135         asm volatile (SVM_STGI);
136 }
137
138 static inline void invlpga(unsigned long addr, u32 asid)
139 {
140         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
141 }
142
143 static inline unsigned long kvm_read_cr2(void)
144 {
145         unsigned long cr2;
146
147         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
148         return cr2;
149 }
150
151 static inline void kvm_write_cr2(unsigned long val)
152 {
153         asm volatile ("mov %0, %%cr2" :: "r" (val));
154 }
155
156 static inline unsigned long read_dr6(void)
157 {
158         unsigned long dr6;
159
160         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
161         return dr6;
162 }
163
164 static inline void write_dr6(unsigned long val)
165 {
166         asm volatile ("mov %0, %%dr6" :: "r" (val));
167 }
168
169 static inline unsigned long read_dr7(void)
170 {
171         unsigned long dr7;
172
173         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
174         return dr7;
175 }
176
177 static inline void write_dr7(unsigned long val)
178 {
179         asm volatile ("mov %0, %%dr7" :: "r" (val));
180 }
181
182 static inline void force_new_asid(struct kvm_vcpu *vcpu)
183 {
184         vcpu->svm->asid_generation--;
185 }
186
187 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
188 {
189         force_new_asid(vcpu);
190 }
191
192 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
193 {
194         if (!(efer & KVM_EFER_LMA))
195                 efer &= ~KVM_EFER_LME;
196
197         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
198         vcpu->shadow_efer = efer;
199 }
200
201 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
202 {
203         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
204                                                 SVM_EVTINJ_VALID_ERR |
205                                                 SVM_EVTINJ_TYPE_EXEPT |
206                                                 GP_VECTOR;
207         vcpu->svm->vmcb->control.event_inj_err = error_code;
208 }
209
210 static void inject_ud(struct kvm_vcpu *vcpu)
211 {
212         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
213                                                 SVM_EVTINJ_TYPE_EXEPT |
214                                                 UD_VECTOR;
215 }
216
217 static int is_page_fault(uint32_t info)
218 {
219         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
221 }
222
223 static int is_external_interrupt(u32 info)
224 {
225         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
226         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
227 }
228
229 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
230 {
231         if (!vcpu->svm->next_rip) {
232                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
233                 return;
234         }
235         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
236                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
237                        __FUNCTION__,
238                        vcpu->svm->vmcb->save.rip,
239                        vcpu->svm->next_rip);
240         }
241
242         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
243         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245         vcpu->interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250         uint32_t eax, ebx, ecx, edx;
251
252         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
253                 printk(KERN_INFO "has_svm: not amd\n");
254                 return 0;
255         }
256
257         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
258         if (eax < SVM_CPUID_FUNC) {
259                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
260                 return 0;
261         }
262
263         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
264         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
265                 printk(KERN_DEBUG "has_svm: svm not available\n");
266                 return 0;
267         }
268         return 1;
269 }
270
271 static void svm_hardware_disable(void *garbage)
272 {
273         struct svm_cpu_data *svm_data
274                 = per_cpu(svm_data, raw_smp_processor_id());
275
276         if (svm_data) {
277                 uint64_t efer;
278
279                 wrmsrl(MSR_VM_HSAVE_PA, 0);
280                 rdmsrl(MSR_EFER, efer);
281                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
282                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
283                 __free_page(svm_data->save_area);
284                 kfree(svm_data);
285         }
286 }
287
288 static void svm_hardware_enable(void *garbage)
289 {
290
291         struct svm_cpu_data *svm_data;
292         uint64_t efer;
293 #ifdef CONFIG_X86_64
294         struct desc_ptr gdt_descr;
295 #else
296         struct Xgt_desc_struct gdt_descr;
297 #endif
298         struct desc_struct *gdt;
299         int me = raw_smp_processor_id();
300
301         if (!has_svm()) {
302                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
303                 return;
304         }
305         svm_data = per_cpu(svm_data, me);
306
307         if (!svm_data) {
308                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
309                        me);
310                 return;
311         }
312
313         svm_data->asid_generation = 1;
314         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
315         svm_data->next_asid = svm_data->max_asid + 1;
316         svm_features = cpuid_edx(SVM_CPUID_FUNC);
317
318         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
319         gdt = (struct desc_struct *)gdt_descr.address;
320         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
321
322         rdmsrl(MSR_EFER, efer);
323         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
324
325         wrmsrl(MSR_VM_HSAVE_PA,
326                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
327 }
328
329 static int svm_cpu_init(int cpu)
330 {
331         struct svm_cpu_data *svm_data;
332         int r;
333
334         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
335         if (!svm_data)
336                 return -ENOMEM;
337         svm_data->cpu = cpu;
338         svm_data->save_area = alloc_page(GFP_KERNEL);
339         r = -ENOMEM;
340         if (!svm_data->save_area)
341                 goto err_1;
342
343         per_cpu(svm_data, cpu) = svm_data;
344
345         return 0;
346
347 err_1:
348         kfree(svm_data);
349         return r;
350
351 }
352
353 static int set_msr_interception(u32 *msrpm, unsigned msr,
354                                 int read, int write)
355 {
356         int i;
357
358         for (i = 0; i < NUM_MSR_MAPS; i++) {
359                 if (msr >= msrpm_ranges[i] &&
360                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
361                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
362                                           msrpm_ranges[i]) * 2;
363
364                         u32 *base = msrpm + (msr_offset / 32);
365                         u32 msr_shift = msr_offset % 32;
366                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
367                         *base = (*base & ~(0x3 << msr_shift)) |
368                                 (mask << msr_shift);
369                         return 1;
370                 }
371         }
372         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
373         return 0;
374 }
375
376 static __init int svm_hardware_setup(void)
377 {
378         int cpu;
379         struct page *iopm_pages;
380         struct page *msrpm_pages;
381         void *msrpm_va;
382         int r;
383
384         kvm_emulator_want_group7_invlpg();
385
386         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
387
388         if (!iopm_pages)
389                 return -ENOMEM;
390         memset(page_address(iopm_pages), 0xff,
391                                         PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
392         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
393
394
395         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
396
397         r = -ENOMEM;
398         if (!msrpm_pages)
399                 goto err_1;
400
401         msrpm_va = page_address(msrpm_pages);
402         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
403         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
404
405 #ifdef CONFIG_X86_64
406         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
407         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
408         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
409         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
410         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
411         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
412 #endif
413         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
414         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
415         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
416         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
417
418         for_each_online_cpu(cpu) {
419                 r = svm_cpu_init(cpu);
420                 if (r)
421                         goto err_2;
422         }
423         return 0;
424
425 err_2:
426         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
427         msrpm_base = 0;
428 err_1:
429         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
430         iopm_base = 0;
431         return r;
432 }
433
434 static __exit void svm_hardware_unsetup(void)
435 {
436         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
437         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
438         iopm_base = msrpm_base = 0;
439 }
440
441 static void init_seg(struct vmcb_seg *seg)
442 {
443         seg->selector = 0;
444         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
445                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
446         seg->limit = 0xffff;
447         seg->base = 0;
448 }
449
450 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
451 {
452         seg->selector = 0;
453         seg->attrib = SVM_SELECTOR_P_MASK | type;
454         seg->limit = 0xffff;
455         seg->base = 0;
456 }
457
458 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 static void init_vmcb(struct vmcb *vmcb)
464 {
465         struct vmcb_control_area *control = &vmcb->control;
466         struct vmcb_save_area *save = &vmcb->save;
467
468         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
469                                         INTERCEPT_CR3_MASK |
470                                         INTERCEPT_CR4_MASK;
471
472         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
473                                         INTERCEPT_CR3_MASK |
474                                         INTERCEPT_CR4_MASK;
475
476         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
477                                         INTERCEPT_DR1_MASK |
478                                         INTERCEPT_DR2_MASK |
479                                         INTERCEPT_DR3_MASK;
480
481         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
482                                         INTERCEPT_DR1_MASK |
483                                         INTERCEPT_DR2_MASK |
484                                         INTERCEPT_DR3_MASK |
485                                         INTERCEPT_DR5_MASK |
486                                         INTERCEPT_DR7_MASK;
487
488         control->intercept_exceptions = 1 << PF_VECTOR;
489
490
491         control->intercept =    (1ULL << INTERCEPT_INTR) |
492                                 (1ULL << INTERCEPT_NMI) |
493                                 (1ULL << INTERCEPT_SMI) |
494                 /*
495                  * selective cr0 intercept bug?
496                  *      0:   0f 22 d8                mov    %eax,%cr3
497                  *      3:   0f 20 c0                mov    %cr0,%eax
498                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
499                  *      b:   0f 22 c0                mov    %eax,%cr0
500                  * set cr3 ->interception
501                  * get cr0 ->interception
502                  * set cr0 -> no interception
503                  */
504                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
505                                 (1ULL << INTERCEPT_CPUID) |
506                                 (1ULL << INTERCEPT_HLT) |
507                                 (1ULL << INTERCEPT_INVLPGA) |
508                                 (1ULL << INTERCEPT_IOIO_PROT) |
509                                 (1ULL << INTERCEPT_MSR_PROT) |
510                                 (1ULL << INTERCEPT_TASK_SWITCH) |
511                                 (1ULL << INTERCEPT_SHUTDOWN) |
512                                 (1ULL << INTERCEPT_VMRUN) |
513                                 (1ULL << INTERCEPT_VMMCALL) |
514                                 (1ULL << INTERCEPT_VMLOAD) |
515                                 (1ULL << INTERCEPT_VMSAVE) |
516                                 (1ULL << INTERCEPT_STGI) |
517                                 (1ULL << INTERCEPT_CLGI) |
518                                 (1ULL << INTERCEPT_SKINIT) |
519                                 (1ULL << INTERCEPT_MONITOR) |
520                                 (1ULL << INTERCEPT_MWAIT);
521
522         control->iopm_base_pa = iopm_base;
523         control->msrpm_base_pa = msrpm_base;
524         control->tsc_offset = 0;
525         control->int_ctl = V_INTR_MASKING_MASK;
526
527         init_seg(&save->es);
528         init_seg(&save->ss);
529         init_seg(&save->ds);
530         init_seg(&save->fs);
531         init_seg(&save->gs);
532
533         save->cs.selector = 0xf000;
534         /* Executable/Readable Code Segment */
535         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
536                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
537         save->cs.limit = 0xffff;
538         /*
539          * cs.base should really be 0xffff0000, but vmx can't handle that, so
540          * be consistent with it.
541          *
542          * Replace when we have real mode working for vmx.
543          */
544         save->cs.base = 0xf0000;
545
546         save->gdtr.limit = 0xffff;
547         save->idtr.limit = 0xffff;
548
549         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
550         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
551
552         save->efer = MSR_EFER_SVME_MASK;
553
554         save->dr6 = 0xffff0ff0;
555         save->dr7 = 0x400;
556         save->rflags = 2;
557         save->rip = 0x0000fff0;
558
559         /*
560          * cr0 val on cpu init should be 0x60000010, we enable cpu
561          * cache by default. the orderly way is to enable cache in bios.
562          */
563         save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
564         save->cr4 = CR4_PAE_MASK;
565         /* rdx = ?? */
566 }
567
568 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
569 {
570         struct page *page;
571         int r;
572
573         r = -ENOMEM;
574         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
575         if (!vcpu->svm)
576                 goto out1;
577         page = alloc_page(GFP_KERNEL);
578         if (!page)
579                 goto out2;
580
581         vcpu->svm->vmcb = page_address(page);
582         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
583         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
584         vcpu->svm->asid_generation = 0;
585         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
586         init_vmcb(vcpu->svm->vmcb);
587
588         fx_init(vcpu);
589         vcpu->fpu_active = 1;
590         vcpu->apic_base = 0xfee00000 |
591                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
592                         MSR_IA32_APICBASE_ENABLE;
593
594         return 0;
595
596 out2:
597         kfree(vcpu->svm);
598 out1:
599         return r;
600 }
601
602 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
603 {
604         if (!vcpu->svm)
605                 return;
606         if (vcpu->svm->vmcb)
607                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
608         kfree(vcpu->svm);
609 }
610
611 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
612 {
613         int cpu, i;
614
615         cpu = get_cpu();
616         if (unlikely(cpu != vcpu->cpu)) {
617                 u64 tsc_this, delta;
618
619                 /*
620                  * Make sure that the guest sees a monotonically
621                  * increasing TSC.
622                  */
623                 rdtscll(tsc_this);
624                 delta = vcpu->host_tsc - tsc_this;
625                 vcpu->svm->vmcb->control.tsc_offset += delta;
626                 vcpu->cpu = cpu;
627         }
628
629         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
630                 rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
631 }
632
633 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
634 {
635         int i;
636
637         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
638                 wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
639
640         rdtscll(vcpu->host_tsc);
641         put_cpu();
642 }
643
644 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
645 {
646 }
647
648 static void svm_cache_regs(struct kvm_vcpu *vcpu)
649 {
650         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
651         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
652         vcpu->rip = vcpu->svm->vmcb->save.rip;
653 }
654
655 static void svm_decache_regs(struct kvm_vcpu *vcpu)
656 {
657         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
658         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
659         vcpu->svm->vmcb->save.rip = vcpu->rip;
660 }
661
662 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
663 {
664         return vcpu->svm->vmcb->save.rflags;
665 }
666
667 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
668 {
669         vcpu->svm->vmcb->save.rflags = rflags;
670 }
671
672 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
673 {
674         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
675
676         switch (seg) {
677         case VCPU_SREG_CS: return &save->cs;
678         case VCPU_SREG_DS: return &save->ds;
679         case VCPU_SREG_ES: return &save->es;
680         case VCPU_SREG_FS: return &save->fs;
681         case VCPU_SREG_GS: return &save->gs;
682         case VCPU_SREG_SS: return &save->ss;
683         case VCPU_SREG_TR: return &save->tr;
684         case VCPU_SREG_LDTR: return &save->ldtr;
685         }
686         BUG();
687         return NULL;
688 }
689
690 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
691 {
692         struct vmcb_seg *s = svm_seg(vcpu, seg);
693
694         return s->base;
695 }
696
697 static void svm_get_segment(struct kvm_vcpu *vcpu,
698                             struct kvm_segment *var, int seg)
699 {
700         struct vmcb_seg *s = svm_seg(vcpu, seg);
701
702         var->base = s->base;
703         var->limit = s->limit;
704         var->selector = s->selector;
705         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
706         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
707         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
708         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
709         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
710         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
711         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
712         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
713         var->unusable = !var->present;
714 }
715
716 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
717 {
718         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
719
720         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
721         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
722 }
723
724 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
725 {
726         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
727         dt->base = vcpu->svm->vmcb->save.idtr.base;
728 }
729
730 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
731 {
732         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
733         vcpu->svm->vmcb->save.idtr.base = dt->base ;
734 }
735
736 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
737 {
738         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
739         dt->base = vcpu->svm->vmcb->save.gdtr.base;
740 }
741
742 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
743 {
744         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
745         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
746 }
747
748 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
749 {
750 }
751
752 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
753 {
754 #ifdef CONFIG_X86_64
755         if (vcpu->shadow_efer & KVM_EFER_LME) {
756                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
757                         vcpu->shadow_efer |= KVM_EFER_LMA;
758                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
759                 }
760
761                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
762                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
763                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
764                 }
765         }
766 #endif
767         if ((vcpu->cr0 & CR0_TS_MASK) && !(cr0 & CR0_TS_MASK)) {
768                 vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
769                 vcpu->fpu_active = 1;
770         }
771
772         vcpu->cr0 = cr0;
773         cr0 |= CR0_PG_MASK | CR0_WP_MASK;
774         cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
775         vcpu->svm->vmcb->save.cr0 = cr0;
776 }
777
778 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
779 {
780        vcpu->cr4 = cr4;
781        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
782 }
783
784 static void svm_set_segment(struct kvm_vcpu *vcpu,
785                             struct kvm_segment *var, int seg)
786 {
787         struct vmcb_seg *s = svm_seg(vcpu, seg);
788
789         s->base = var->base;
790         s->limit = var->limit;
791         s->selector = var->selector;
792         if (var->unusable)
793                 s->attrib = 0;
794         else {
795                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
796                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
797                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
798                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
799                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
800                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
801                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
802                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
803         }
804         if (seg == VCPU_SREG_CS)
805                 vcpu->svm->vmcb->save.cpl
806                         = (vcpu->svm->vmcb->save.cs.attrib
807                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
808
809 }
810
811 /* FIXME:
812
813         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
814         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
815
816 */
817
818 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
819 {
820         return -EOPNOTSUPP;
821 }
822
823 static void load_host_msrs(struct kvm_vcpu *vcpu)
824 {
825 #ifdef CONFIG_X86_64
826         wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
827 #endif
828 }
829
830 static void save_host_msrs(struct kvm_vcpu *vcpu)
831 {
832 #ifdef CONFIG_X86_64
833         rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
834 #endif
835 }
836
837 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
838 {
839         if (svm_data->next_asid > svm_data->max_asid) {
840                 ++svm_data->asid_generation;
841                 svm_data->next_asid = 1;
842                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
843         }
844
845         vcpu->cpu = svm_data->cpu;
846         vcpu->svm->asid_generation = svm_data->asid_generation;
847         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
848 }
849
850 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
851 {
852         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
853 }
854
855 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
856 {
857         return vcpu->svm->db_regs[dr];
858 }
859
860 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
861                        int *exception)
862 {
863         *exception = 0;
864
865         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
866                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
867                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
868                 *exception = DB_VECTOR;
869                 return;
870         }
871
872         switch (dr) {
873         case 0 ... 3:
874                 vcpu->svm->db_regs[dr] = value;
875                 return;
876         case 4 ... 5:
877                 if (vcpu->cr4 & CR4_DE_MASK) {
878                         *exception = UD_VECTOR;
879                         return;
880                 }
881         case 7: {
882                 if (value & ~((1ULL << 32) - 1)) {
883                         *exception = GP_VECTOR;
884                         return;
885                 }
886                 vcpu->svm->vmcb->save.dr7 = value;
887                 return;
888         }
889         default:
890                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
891                        __FUNCTION__, dr);
892                 *exception = UD_VECTOR;
893                 return;
894         }
895 }
896
897 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
898 {
899         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
900         u64 fault_address;
901         u32 error_code;
902         enum emulation_result er;
903         int r;
904
905         if (is_external_interrupt(exit_int_info))
906                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
907
908         spin_lock(&vcpu->kvm->lock);
909
910         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
911         error_code = vcpu->svm->vmcb->control.exit_info_1;
912         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
913         if (r < 0) {
914                 spin_unlock(&vcpu->kvm->lock);
915                 return r;
916         }
917         if (!r) {
918                 spin_unlock(&vcpu->kvm->lock);
919                 return 1;
920         }
921         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
922         spin_unlock(&vcpu->kvm->lock);
923
924         switch (er) {
925         case EMULATE_DONE:
926                 return 1;
927         case EMULATE_DO_MMIO:
928                 ++vcpu->stat.mmio_exits;
929                 kvm_run->exit_reason = KVM_EXIT_MMIO;
930                 return 0;
931         case EMULATE_FAIL:
932                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
933                 break;
934         default:
935                 BUG();
936         }
937
938         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
939         return 0;
940 }
941
942 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
943 {
944        vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
945        if (!(vcpu->cr0 & CR0_TS_MASK))
946                vcpu->svm->vmcb->save.cr0 &= ~CR0_TS_MASK;
947        vcpu->fpu_active = 1;
948
949        return 1;
950 }
951
952 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
953 {
954         /*
955          * VMCB is undefined after a SHUTDOWN intercept
956          * so reinitialize it.
957          */
958         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
959         init_vmcb(vcpu->svm->vmcb);
960
961         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
962         return 0;
963 }
964
965 static int io_get_override(struct kvm_vcpu *vcpu,
966                           struct vmcb_seg **seg,
967                           int *addr_override)
968 {
969         u8 inst[MAX_INST_SIZE];
970         unsigned ins_length;
971         gva_t rip;
972         int i;
973
974         rip =  vcpu->svm->vmcb->save.rip;
975         ins_length = vcpu->svm->next_rip - rip;
976         rip += vcpu->svm->vmcb->save.cs.base;
977
978         if (ins_length > MAX_INST_SIZE)
979                 printk(KERN_DEBUG
980                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
981                        "next rip 0x%llx ins_length %u\n",
982                        __FUNCTION__,
983                        vcpu->svm->vmcb->save.cs.base,
984                        vcpu->svm->vmcb->save.rip,
985                        vcpu->svm->vmcb->control.exit_info_2,
986                        ins_length);
987
988         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
989                 /* #PF */
990                 return 0;
991
992         *addr_override = 0;
993         *seg = NULL;
994         for (i = 0; i < ins_length; i++)
995                 switch (inst[i]) {
996                 case 0xf0:
997                 case 0xf2:
998                 case 0xf3:
999                 case 0x66:
1000                         continue;
1001                 case 0x67:
1002                         *addr_override = 1;
1003                         continue;
1004                 case 0x2e:
1005                         *seg = &vcpu->svm->vmcb->save.cs;
1006                         continue;
1007                 case 0x36:
1008                         *seg = &vcpu->svm->vmcb->save.ss;
1009                         continue;
1010                 case 0x3e:
1011                         *seg = &vcpu->svm->vmcb->save.ds;
1012                         continue;
1013                 case 0x26:
1014                         *seg = &vcpu->svm->vmcb->save.es;
1015                         continue;
1016                 case 0x64:
1017                         *seg = &vcpu->svm->vmcb->save.fs;
1018                         continue;
1019                 case 0x65:
1020                         *seg = &vcpu->svm->vmcb->save.gs;
1021                         continue;
1022                 default:
1023                         return 1;
1024                 }
1025         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1026         return 0;
1027 }
1028
1029 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1030 {
1031         unsigned long addr_mask;
1032         unsigned long *reg;
1033         struct vmcb_seg *seg;
1034         int addr_override;
1035         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1036         u16 cs_attrib = save_area->cs.attrib;
1037         unsigned addr_size = get_addr_size(vcpu);
1038
1039         if (!io_get_override(vcpu, &seg, &addr_override))
1040                 return 0;
1041
1042         if (addr_override)
1043                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1044
1045         if (ins) {
1046                 reg = &vcpu->regs[VCPU_REGS_RDI];
1047                 seg = &vcpu->svm->vmcb->save.es;
1048         } else {
1049                 reg = &vcpu->regs[VCPU_REGS_RSI];
1050                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1051         }
1052
1053         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1054
1055         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1056             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1057                 *address = (*reg & addr_mask);
1058                 return addr_mask;
1059         }
1060
1061         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1062                 svm_inject_gp(vcpu, 0);
1063                 return 0;
1064         }
1065
1066         *address = (*reg & addr_mask) + seg->base;
1067         return addr_mask;
1068 }
1069
1070 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1071 {
1072         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1073         int size, down, in, string, rep;
1074         unsigned port;
1075         unsigned long count;
1076         gva_t address = 0;
1077
1078         ++vcpu->stat.io_exits;
1079
1080         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1081
1082         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1083         port = io_info >> 16;
1084         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1085         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1086         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1087         count = 1;
1088         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1089
1090         if (string) {
1091                 unsigned addr_mask;
1092
1093                 addr_mask = io_adress(vcpu, in, &address);
1094                 if (!addr_mask) {
1095                         printk(KERN_DEBUG "%s: get io address failed\n",
1096                                __FUNCTION__);
1097                         return 1;
1098                 }
1099
1100                 if (rep)
1101                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1102         }
1103         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1104                              address, rep, port);
1105 }
1106
1107 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1108 {
1109         return 1;
1110 }
1111
1112 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1113 {
1114         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1115         skip_emulated_instruction(vcpu);
1116         if (vcpu->irq_summary)
1117                 return 1;
1118
1119         kvm_run->exit_reason = KVM_EXIT_HLT;
1120         ++vcpu->stat.halt_exits;
1121         return 0;
1122 }
1123
1124 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1125 {
1126         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1127         skip_emulated_instruction(vcpu);
1128         return kvm_hypercall(vcpu, kvm_run);
1129 }
1130
1131 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1132 {
1133         inject_ud(vcpu);
1134         return 1;
1135 }
1136
1137 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1138 {
1139         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1140         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1141         return 0;
1142 }
1143
1144 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1145 {
1146         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1147         kvm_emulate_cpuid(vcpu);
1148         return 1;
1149 }
1150
1151 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1152 {
1153         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1154                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1155         return 1;
1156 }
1157
1158 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1159 {
1160         switch (ecx) {
1161         case MSR_IA32_TIME_STAMP_COUNTER: {
1162                 u64 tsc;
1163
1164                 rdtscll(tsc);
1165                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1166                 break;
1167         }
1168         case MSR_K6_STAR:
1169                 *data = vcpu->svm->vmcb->save.star;
1170                 break;
1171 #ifdef CONFIG_X86_64
1172         case MSR_LSTAR:
1173                 *data = vcpu->svm->vmcb->save.lstar;
1174                 break;
1175         case MSR_CSTAR:
1176                 *data = vcpu->svm->vmcb->save.cstar;
1177                 break;
1178         case MSR_KERNEL_GS_BASE:
1179                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1180                 break;
1181         case MSR_SYSCALL_MASK:
1182                 *data = vcpu->svm->vmcb->save.sfmask;
1183                 break;
1184 #endif
1185         case MSR_IA32_SYSENTER_CS:
1186                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1187                 break;
1188         case MSR_IA32_SYSENTER_EIP:
1189                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1190                 break;
1191         case MSR_IA32_SYSENTER_ESP:
1192                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1193                 break;
1194         default:
1195                 return kvm_get_msr_common(vcpu, ecx, data);
1196         }
1197         return 0;
1198 }
1199
1200 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1201 {
1202         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1203         u64 data;
1204
1205         if (svm_get_msr(vcpu, ecx, &data))
1206                 svm_inject_gp(vcpu, 0);
1207         else {
1208                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1209                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1210                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1211                 skip_emulated_instruction(vcpu);
1212         }
1213         return 1;
1214 }
1215
1216 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1217 {
1218         switch (ecx) {
1219         case MSR_IA32_TIME_STAMP_COUNTER: {
1220                 u64 tsc;
1221
1222                 rdtscll(tsc);
1223                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1224                 break;
1225         }
1226         case MSR_K6_STAR:
1227                 vcpu->svm->vmcb->save.star = data;
1228                 break;
1229 #ifdef CONFIG_X86_64
1230         case MSR_LSTAR:
1231                 vcpu->svm->vmcb->save.lstar = data;
1232                 break;
1233         case MSR_CSTAR:
1234                 vcpu->svm->vmcb->save.cstar = data;
1235                 break;
1236         case MSR_KERNEL_GS_BASE:
1237                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1238                 break;
1239         case MSR_SYSCALL_MASK:
1240                 vcpu->svm->vmcb->save.sfmask = data;
1241                 break;
1242 #endif
1243         case MSR_IA32_SYSENTER_CS:
1244                 vcpu->svm->vmcb->save.sysenter_cs = data;
1245                 break;
1246         case MSR_IA32_SYSENTER_EIP:
1247                 vcpu->svm->vmcb->save.sysenter_eip = data;
1248                 break;
1249         case MSR_IA32_SYSENTER_ESP:
1250                 vcpu->svm->vmcb->save.sysenter_esp = data;
1251                 break;
1252         default:
1253                 return kvm_set_msr_common(vcpu, ecx, data);
1254         }
1255         return 0;
1256 }
1257
1258 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1259 {
1260         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1261         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1262                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1263         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1264         if (svm_set_msr(vcpu, ecx, data))
1265                 svm_inject_gp(vcpu, 0);
1266         else
1267                 skip_emulated_instruction(vcpu);
1268         return 1;
1269 }
1270
1271 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1272 {
1273         if (vcpu->svm->vmcb->control.exit_info_1)
1274                 return wrmsr_interception(vcpu, kvm_run);
1275         else
1276                 return rdmsr_interception(vcpu, kvm_run);
1277 }
1278
1279 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1280                                    struct kvm_run *kvm_run)
1281 {
1282         /*
1283          * If the user space waits to inject interrupts, exit as soon as
1284          * possible
1285          */
1286         if (kvm_run->request_interrupt_window &&
1287             !vcpu->irq_summary) {
1288                 ++vcpu->stat.irq_window_exits;
1289                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1290                 return 0;
1291         }
1292
1293         return 1;
1294 }
1295
1296 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1297                                       struct kvm_run *kvm_run) = {
1298         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1299         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1300         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1301         /* for now: */
1302         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1303         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1304         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1305         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1306         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1307         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1308         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1309         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1310         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1311         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1312         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1313         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1314         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1315         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1316         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1317         [SVM_EXIT_INTR]                         = nop_on_interception,
1318         [SVM_EXIT_NMI]                          = nop_on_interception,
1319         [SVM_EXIT_SMI]                          = nop_on_interception,
1320         [SVM_EXIT_INIT]                         = nop_on_interception,
1321         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1322         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1323         [SVM_EXIT_CPUID]                        = cpuid_interception,
1324         [SVM_EXIT_HLT]                          = halt_interception,
1325         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1326         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1327         [SVM_EXIT_IOIO]                         = io_interception,
1328         [SVM_EXIT_MSR]                          = msr_interception,
1329         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1330         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1331         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1332         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1333         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1334         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1335         [SVM_EXIT_STGI]                         = invalid_op_interception,
1336         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1337         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1338         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1339         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1340 };
1341
1342
1343 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1344 {
1345         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1346
1347         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1348             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1349                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1350                        "exit_code 0x%x\n",
1351                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1352                        exit_code);
1353
1354         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1355             || svm_exit_handlers[exit_code] == 0) {
1356                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1357                 kvm_run->hw.hardware_exit_reason = exit_code;
1358                 return 0;
1359         }
1360
1361         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1362 }
1363
1364 static void reload_tss(struct kvm_vcpu *vcpu)
1365 {
1366         int cpu = raw_smp_processor_id();
1367
1368         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1369         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1370         load_TR_desc();
1371 }
1372
1373 static void pre_svm_run(struct kvm_vcpu *vcpu)
1374 {
1375         int cpu = raw_smp_processor_id();
1376
1377         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1378
1379         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1380         if (vcpu->cpu != cpu ||
1381             vcpu->svm->asid_generation != svm_data->asid_generation)
1382                 new_asid(vcpu, svm_data);
1383 }
1384
1385
1386 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1387 {
1388         struct vmcb_control_area *control;
1389
1390         control = &vcpu->svm->vmcb->control;
1391         control->int_vector = pop_irq(vcpu);
1392         control->int_ctl &= ~V_INTR_PRIO_MASK;
1393         control->int_ctl |= V_IRQ_MASK |
1394                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1395 }
1396
1397 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1398 {
1399         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1400
1401         if (control->int_ctl & V_IRQ_MASK) {
1402                 control->int_ctl &= ~V_IRQ_MASK;
1403                 push_irq(vcpu, control->int_vector);
1404         }
1405
1406         vcpu->interrupt_window_open =
1407                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1408 }
1409
1410 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1411                                        struct kvm_run *kvm_run)
1412 {
1413         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1414
1415         vcpu->interrupt_window_open =
1416                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1417                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1418
1419         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1420                 /*
1421                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1422                  */
1423                 kvm_do_inject_irq(vcpu);
1424
1425         /*
1426          * Interrupts blocked.  Wait for unblock.
1427          */
1428         if (!vcpu->interrupt_window_open &&
1429             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1430                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1431         } else
1432                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1433 }
1434
1435 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1436                               struct kvm_run *kvm_run)
1437 {
1438         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1439                                                   vcpu->irq_summary == 0);
1440         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1441         kvm_run->cr8 = vcpu->cr8;
1442         kvm_run->apic_base = vcpu->apic_base;
1443 }
1444
1445 /*
1446  * Check if userspace requested an interrupt window, and that the
1447  * interrupt window is open.
1448  *
1449  * No need to exit to userspace if we already have an interrupt queued.
1450  */
1451 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1452                                           struct kvm_run *kvm_run)
1453 {
1454         return (!vcpu->irq_summary &&
1455                 kvm_run->request_interrupt_window &&
1456                 vcpu->interrupt_window_open &&
1457                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1458 }
1459
1460 static void save_db_regs(unsigned long *db_regs)
1461 {
1462         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1463         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1464         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1465         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1466 }
1467
1468 static void load_db_regs(unsigned long *db_regs)
1469 {
1470         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1471         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1472         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1473         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1474 }
1475
1476 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1477 {
1478         u16 fs_selector;
1479         u16 gs_selector;
1480         u16 ldt_selector;
1481         int r;
1482
1483 again:
1484         if (!vcpu->mmio_read_completed)
1485                 do_interrupt_requests(vcpu, kvm_run);
1486
1487         clgi();
1488
1489         pre_svm_run(vcpu);
1490
1491         save_host_msrs(vcpu);
1492         fs_selector = read_fs();
1493         gs_selector = read_gs();
1494         ldt_selector = read_ldt();
1495         vcpu->svm->host_cr2 = kvm_read_cr2();
1496         vcpu->svm->host_dr6 = read_dr6();
1497         vcpu->svm->host_dr7 = read_dr7();
1498         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1499
1500         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1501                 write_dr7(0);
1502                 save_db_regs(vcpu->svm->host_db_regs);
1503                 load_db_regs(vcpu->svm->db_regs);
1504         }
1505
1506         if (vcpu->fpu_active) {
1507                 fx_save(vcpu->host_fx_image);
1508                 fx_restore(vcpu->guest_fx_image);
1509         }
1510
1511         asm volatile (
1512 #ifdef CONFIG_X86_64
1513                 "push %%rbx; push %%rcx; push %%rdx;"
1514                 "push %%rsi; push %%rdi; push %%rbp;"
1515                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1516                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1517 #else
1518                 "push %%ebx; push %%ecx; push %%edx;"
1519                 "push %%esi; push %%edi; push %%ebp;"
1520 #endif
1521
1522 #ifdef CONFIG_X86_64
1523                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1524                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1525                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1526                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1527                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1528                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1529                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1530                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1531                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1532                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1533                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1534                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1535                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1536                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1537 #else
1538                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1539                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1540                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1541                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1542                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1543                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1544 #endif
1545
1546 #ifdef CONFIG_X86_64
1547                 /* Enter guest mode */
1548                 "push %%rax \n\t"
1549                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1550                 "mov %c[vmcb](%%rax), %%rax \n\t"
1551                 SVM_VMLOAD "\n\t"
1552                 SVM_VMRUN "\n\t"
1553                 SVM_VMSAVE "\n\t"
1554                 "pop %%rax \n\t"
1555 #else
1556                 /* Enter guest mode */
1557                 "push %%eax \n\t"
1558                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1559                 "mov %c[vmcb](%%eax), %%eax \n\t"
1560                 SVM_VMLOAD "\n\t"
1561                 SVM_VMRUN "\n\t"
1562                 SVM_VMSAVE "\n\t"
1563                 "pop %%eax \n\t"
1564 #endif
1565
1566                 /* Save guest registers, load host registers */
1567 #ifdef CONFIG_X86_64
1568                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1569                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1570                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1571                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1572                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1573                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1574                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1575                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1576                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1577                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1578                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1579                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1580                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1581                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1582
1583                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1584                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1585                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1586                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1587 #else
1588                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1589                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1590                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1591                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1592                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1593                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1594
1595                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1596                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1597 #endif
1598                 :
1599                 : [vcpu]"a"(vcpu),
1600                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1601                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1602                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1603                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1604                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1605                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1606                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1607                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1608 #ifdef CONFIG_X86_64
1609                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1610                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1611                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1612                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1613                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1614                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1615                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1616                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1617 #endif
1618                 : "cc", "memory" );
1619
1620         if (vcpu->fpu_active) {
1621                 fx_save(vcpu->guest_fx_image);
1622                 fx_restore(vcpu->host_fx_image);
1623         }
1624
1625         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1626                 load_db_regs(vcpu->svm->host_db_regs);
1627
1628         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1629
1630         write_dr6(vcpu->svm->host_dr6);
1631         write_dr7(vcpu->svm->host_dr7);
1632         kvm_write_cr2(vcpu->svm->host_cr2);
1633
1634         load_fs(fs_selector);
1635         load_gs(gs_selector);
1636         load_ldt(ldt_selector);
1637         load_host_msrs(vcpu);
1638
1639         reload_tss(vcpu);
1640
1641         /*
1642          * Profile KVM exit RIPs:
1643          */
1644         if (unlikely(prof_on == KVM_PROFILING))
1645                 profile_hit(KVM_PROFILING,
1646                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1647
1648         stgi();
1649
1650         kvm_reput_irq(vcpu);
1651
1652         vcpu->svm->next_rip = 0;
1653
1654         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1655                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1656                 kvm_run->fail_entry.hardware_entry_failure_reason
1657                         = vcpu->svm->vmcb->control.exit_code;
1658                 post_kvm_run_save(vcpu, kvm_run);
1659                 return 0;
1660         }
1661
1662         r = handle_exit(vcpu, kvm_run);
1663         if (r > 0) {
1664                 if (signal_pending(current)) {
1665                         ++vcpu->stat.signal_exits;
1666                         post_kvm_run_save(vcpu, kvm_run);
1667                         kvm_run->exit_reason = KVM_EXIT_INTR;
1668                         return -EINTR;
1669                 }
1670
1671                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1672                         ++vcpu->stat.request_irq_exits;
1673                         post_kvm_run_save(vcpu, kvm_run);
1674                         kvm_run->exit_reason = KVM_EXIT_INTR;
1675                         return -EINTR;
1676                 }
1677                 kvm_resched(vcpu);
1678                 goto again;
1679         }
1680         post_kvm_run_save(vcpu, kvm_run);
1681         return r;
1682 }
1683
1684 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1685 {
1686         force_new_asid(vcpu);
1687 }
1688
1689 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1690 {
1691         vcpu->svm->vmcb->save.cr3 = root;
1692         force_new_asid(vcpu);
1693
1694         if (vcpu->fpu_active) {
1695                 vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1696                 vcpu->svm->vmcb->save.cr0 |= CR0_TS_MASK;
1697                 vcpu->fpu_active = 0;
1698         }
1699 }
1700
1701 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1702                                   unsigned long  addr,
1703                                   uint32_t err_code)
1704 {
1705         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1706
1707         ++vcpu->stat.pf_guest;
1708
1709         if (is_page_fault(exit_int_info)) {
1710
1711                 vcpu->svm->vmcb->control.event_inj_err = 0;
1712                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1713                                                         SVM_EVTINJ_VALID_ERR |
1714                                                         SVM_EVTINJ_TYPE_EXEPT |
1715                                                         DF_VECTOR;
1716                 return;
1717         }
1718         vcpu->cr2 = addr;
1719         vcpu->svm->vmcb->save.cr2 = addr;
1720         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1721                                                 SVM_EVTINJ_VALID_ERR |
1722                                                 SVM_EVTINJ_TYPE_EXEPT |
1723                                                 PF_VECTOR;
1724         vcpu->svm->vmcb->control.event_inj_err = err_code;
1725 }
1726
1727
1728 static int is_disabled(void)
1729 {
1730         return 0;
1731 }
1732
1733 static void
1734 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1735 {
1736         /*
1737          * Patch in the VMMCALL instruction:
1738          */
1739         hypercall[0] = 0x0f;
1740         hypercall[1] = 0x01;
1741         hypercall[2] = 0xd9;
1742         hypercall[3] = 0xc3;
1743 }
1744
1745 static struct kvm_arch_ops svm_arch_ops = {
1746         .cpu_has_kvm_support = has_svm,
1747         .disabled_by_bios = is_disabled,
1748         .hardware_setup = svm_hardware_setup,
1749         .hardware_unsetup = svm_hardware_unsetup,
1750         .hardware_enable = svm_hardware_enable,
1751         .hardware_disable = svm_hardware_disable,
1752
1753         .vcpu_create = svm_create_vcpu,
1754         .vcpu_free = svm_free_vcpu,
1755
1756         .vcpu_load = svm_vcpu_load,
1757         .vcpu_put = svm_vcpu_put,
1758         .vcpu_decache = svm_vcpu_decache,
1759
1760         .set_guest_debug = svm_guest_debug,
1761         .get_msr = svm_get_msr,
1762         .set_msr = svm_set_msr,
1763         .get_segment_base = svm_get_segment_base,
1764         .get_segment = svm_get_segment,
1765         .set_segment = svm_set_segment,
1766         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1767         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1768         .set_cr0 = svm_set_cr0,
1769         .set_cr3 = svm_set_cr3,
1770         .set_cr4 = svm_set_cr4,
1771         .set_efer = svm_set_efer,
1772         .get_idt = svm_get_idt,
1773         .set_idt = svm_set_idt,
1774         .get_gdt = svm_get_gdt,
1775         .set_gdt = svm_set_gdt,
1776         .get_dr = svm_get_dr,
1777         .set_dr = svm_set_dr,
1778         .cache_regs = svm_cache_regs,
1779         .decache_regs = svm_decache_regs,
1780         .get_rflags = svm_get_rflags,
1781         .set_rflags = svm_set_rflags,
1782
1783         .invlpg = svm_invlpg,
1784         .tlb_flush = svm_flush_tlb,
1785         .inject_page_fault = svm_inject_page_fault,
1786
1787         .inject_gp = svm_inject_gp,
1788
1789         .run = svm_vcpu_run,
1790         .skip_emulated_instruction = skip_emulated_instruction,
1791         .vcpu_setup = svm_vcpu_setup,
1792         .patch_hypercall = svm_patch_hypercall,
1793 };
1794
1795 static int __init svm_init(void)
1796 {
1797         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1798 }
1799
1800 static void __exit svm_exit(void)
1801 {
1802         kvm_exit_arch();
1803 }
1804
1805 module_init(svm_init)
1806 module_exit(svm_exit)