2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
28 #include <asm/system.h>
29 #include <asm/hardware.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/arm_timer.h>
37 #include <asm/hardware/icst307.h>
39 #include <asm/mach/arch.h>
40 #include <asm/mach/flash.h>
41 #include <asm/mach/irq.h>
42 #include <asm/mach/time.h>
43 #include <asm/mach/map.h>
44 #include <asm/mach/mmc.h>
50 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
53 * Setup a VA for the Versatile Vectored Interrupt Controller.
55 #define __io_address(n) __io(IO_ADDRESS(n))
56 #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
57 #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
59 static void vic_mask_irq(unsigned int irq)
62 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
65 static void vic_unmask_irq(unsigned int irq)
68 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
71 static struct irqchip vic_chip = {
74 .unmask = vic_unmask_irq,
77 static void sic_mask_irq(unsigned int irq)
80 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
83 static void sic_unmask_irq(unsigned int irq)
86 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
89 static struct irqchip sic_chip = {
92 .unmask = sic_unmask_irq,
96 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
98 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
101 do_bad_IRQ(irq, desc, regs);
106 irq = ffs(status) - 1;
107 status &= ~(1 << irq);
109 irq += IRQ_SIC_START;
111 desc = irq_desc + irq;
112 desc_handle_irq(irq, desc, regs);
117 #define IRQ_MMCI0A IRQ_VICSOURCE22
118 #define IRQ_AACI IRQ_VICSOURCE24
119 #define IRQ_ETH IRQ_VICSOURCE25
120 #define PIC_MASK 0xFFD00000
122 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
123 #define IRQ_AACI IRQ_SIC_AACI
124 #define IRQ_ETH IRQ_SIC_ETH
128 void __init versatile_init_irq(void)
130 unsigned int i, value;
132 /* Disable all interrupts initially. */
134 writel(0, VA_VIC_BASE + VIC_INT_SELECT);
135 writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
136 writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
137 writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
138 writel(0, VA_VIC_BASE + VIC_ITCR);
139 writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
142 * Make sure we clear all existing interrupts
144 writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
145 for (i = 0; i < 19; i++) {
146 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
147 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
150 for (i = 0; i < 16; i++) {
151 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
152 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
155 writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
157 for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
158 if (i != IRQ_VICSOURCE31) {
159 set_irq_chip(i, &vic_chip);
160 set_irq_handler(i, do_level_IRQ);
161 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
165 set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
166 vic_unmask_irq(IRQ_VICSOURCE31);
168 /* Do second interrupt controller */
169 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
171 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
172 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
173 set_irq_chip(i, &sic_chip);
174 set_irq_handler(i, do_level_IRQ);
175 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
180 * Interrupts on secondary controller from 0 to 8 are routed to
182 * Interrupts from 21 to 31 are routed directly to the VIC on
183 * the corresponding number on primary controller. This is controlled
184 * by setting PIC_ENABLEx.
186 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
189 static struct map_desc versatile_io_desc[] __initdata = {
190 { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
191 { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
192 { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
193 { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
194 #ifdef CONFIG_MACH_VERSATILE_AB
195 { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
196 { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
198 #ifdef CONFIG_DEBUG_LL
199 { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
202 { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
203 { VERSATILE_PCI_VIRT_BASE, VERSATILE_PCI_BASE, VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
204 { VERSATILE_PCI_CFG_VIRT_BASE, VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
206 { VERSATILE_PCI_VIRT_MEM_BASE0, VERSATILE_PCI_MEM_BASE0, SZ_16M, MT_DEVICE },
207 { VERSATILE_PCI_VIRT_MEM_BASE1, VERSATILE_PCI_MEM_BASE1, SZ_16M, MT_DEVICE },
208 { VERSATILE_PCI_VIRT_MEM_BASE2, VERSATILE_PCI_MEM_BASE2, SZ_16M, MT_DEVICE },
213 void __init versatile_map_io(void)
215 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
218 #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
221 * This is the Versatile sched_clock implementation. This has
222 * a resolution of 41.7ns, and a maximum value of about 179s.
224 unsigned long long sched_clock(void)
226 unsigned long long v;
228 v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
235 #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
237 static int versatile_flash_init(void)
241 val = __raw_readl(VERSATILE_FLASHCTRL);
242 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
243 __raw_writel(val, VERSATILE_FLASHCTRL);
248 static void versatile_flash_exit(void)
252 val = __raw_readl(VERSATILE_FLASHCTRL);
253 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
254 __raw_writel(val, VERSATILE_FLASHCTRL);
257 static void versatile_flash_set_vpp(int on)
261 val = __raw_readl(VERSATILE_FLASHCTRL);
263 val |= VERSATILE_FLASHPROG_FLVPPEN;
265 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
266 __raw_writel(val, VERSATILE_FLASHCTRL);
269 static struct flash_platform_data versatile_flash_data = {
270 .map_name = "cfi_probe",
272 .init = versatile_flash_init,
273 .exit = versatile_flash_exit,
274 .set_vpp = versatile_flash_set_vpp,
277 static struct resource versatile_flash_resource = {
278 .start = VERSATILE_FLASH_BASE,
279 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
280 .flags = IORESOURCE_MEM,
283 static struct platform_device versatile_flash_device = {
287 .platform_data = &versatile_flash_data,
290 .resource = &versatile_flash_resource,
293 static struct resource smc91x_resources[] = {
295 .start = VERSATILE_ETH_BASE,
296 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
297 .flags = IORESOURCE_MEM,
302 .flags = IORESOURCE_IRQ,
306 static struct platform_device smc91x_device = {
309 .num_resources = ARRAY_SIZE(smc91x_resources),
310 .resource = smc91x_resources,
313 #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
315 unsigned int mmc_status(struct device *dev)
317 struct amba_device *adev = container_of(dev, struct amba_device, dev);
320 if (adev->res.start == VERSATILE_MMCI0_BASE)
325 return readl(VERSATILE_SYSMCI) & mask;
328 static struct mmc_platform_data mmc0_plat_data = {
329 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
330 .status = mmc_status,
336 static const struct icst307_params versatile_oscvco_params = {
345 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
347 void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
348 #if defined(CONFIG_ARCH_VERSATILE_PB)
349 void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
350 #elif defined(CONFIG_MACH_VERSATILE_AB)
351 void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
355 val = readl(sys_osc) & ~0x7ffff;
356 val |= vco.v | (vco.r << 9) | (vco.s << 16);
358 writel(0xa05f, sys_lock);
359 writel(val, sys_osc);
363 static struct clk versatile_clcd_clk = {
365 .params = &versatile_oscvco_params,
366 .setvco = versatile_oscvco_set,
372 #define SYS_CLCD_MODE_MASK (3 << 0)
373 #define SYS_CLCD_MODE_888 (0 << 0)
374 #define SYS_CLCD_MODE_5551 (1 << 0)
375 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
376 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
377 #define SYS_CLCD_NLCDIOON (1 << 2)
378 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
379 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
380 #define SYS_CLCD_ID_MASK (0x1f << 8)
381 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
382 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
383 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
384 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
385 #define SYS_CLCD_ID_VGA (0x1f << 8)
387 static struct clcd_panel vga = {
401 .vmode = FB_VMODE_NONINTERLACED,
405 .tim2 = TIM2_BCD | TIM2_IPC,
406 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
410 static struct clcd_panel sanyo_3_8_in = {
412 .name = "Sanyo QVGA",
424 .vmode = FB_VMODE_NONINTERLACED,
429 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
433 static struct clcd_panel sanyo_2_5_in = {
435 .name = "Sanyo QVGA Portrait",
446 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
447 .vmode = FB_VMODE_NONINTERLACED,
451 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
452 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
456 static struct clcd_panel epson_2_2_in = {
458 .name = "Epson QCIF",
470 .vmode = FB_VMODE_NONINTERLACED,
474 .tim2 = TIM2_BCD | TIM2_IPC,
475 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
480 * Detect which LCD panel is connected, and return the appropriate
481 * clcd_panel structure. Note: we do not have any information on
482 * the required timings for the 8.4in panel, so we presently assume
485 static struct clcd_panel *versatile_clcd_panel(void)
487 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
488 struct clcd_panel *panel = &vga;
491 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
492 if (val == SYS_CLCD_ID_SANYO_3_8)
493 panel = &sanyo_3_8_in;
494 else if (val == SYS_CLCD_ID_SANYO_2_5)
495 panel = &sanyo_2_5_in;
496 else if (val == SYS_CLCD_ID_EPSON_2_2)
497 panel = &epson_2_2_in;
498 else if (val == SYS_CLCD_ID_VGA)
501 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
510 * Disable all display connectors on the interface module.
512 static void versatile_clcd_disable(struct clcd_fb *fb)
514 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
517 val = readl(sys_clcd);
518 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
519 writel(val, sys_clcd);
521 #ifdef CONFIG_MACH_VERSATILE_AB
523 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
525 if (fb->panel == &sanyo_2_5_in) {
526 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
529 ctrl = readl(versatile_ib2_ctrl);
531 writel(ctrl, versatile_ib2_ctrl);
537 * Enable the relevant connector on the interface module.
539 static void versatile_clcd_enable(struct clcd_fb *fb)
541 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
544 val = readl(sys_clcd);
545 val &= ~SYS_CLCD_MODE_MASK;
547 switch (fb->fb.var.green.length) {
549 val |= SYS_CLCD_MODE_5551;
552 val |= SYS_CLCD_MODE_565_RLSB;
555 val |= SYS_CLCD_MODE_888;
562 writel(val, sys_clcd);
565 * And now enable the PSUs
567 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
568 writel(val, sys_clcd);
570 #ifdef CONFIG_MACH_VERSATILE_AB
572 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
574 if (fb->panel == &sanyo_2_5_in) {
575 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
578 ctrl = readl(versatile_ib2_ctrl);
580 writel(ctrl, versatile_ib2_ctrl);
585 static unsigned long framesize = SZ_1M;
587 static int versatile_clcd_setup(struct clcd_fb *fb)
591 fb->panel = versatile_clcd_panel();
593 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
595 if (!fb->fb.screen_base) {
596 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
600 fb->fb.fix.smem_start = dma;
601 fb->fb.fix.smem_len = framesize;
606 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
608 return dma_mmap_writecombine(&fb->dev->dev, vma,
610 fb->fb.fix.smem_start,
611 fb->fb.fix.smem_len);
614 static void versatile_clcd_remove(struct clcd_fb *fb)
616 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
617 fb->fb.screen_base, fb->fb.fix.smem_start);
620 static struct clcd_board clcd_plat_data = {
622 .check = clcdfb_check,
623 .decode = clcdfb_decode,
624 .disable = versatile_clcd_disable,
625 .enable = versatile_clcd_enable,
626 .setup = versatile_clcd_setup,
627 .mmap = versatile_clcd_mmap,
628 .remove = versatile_clcd_remove,
631 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
632 #define AACI_DMA { 0x80, 0x81 }
633 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
634 #define MMCI0_DMA { 0x84, 0 }
635 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
636 #define KMI0_DMA { 0, 0 }
637 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
638 #define KMI1_DMA { 0, 0 }
641 * These devices are connected directly to the multi-layer AHB switch
643 #define SMC_IRQ { NO_IRQ, NO_IRQ }
644 #define SMC_DMA { 0, 0 }
645 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
646 #define MPMC_DMA { 0, 0 }
647 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
648 #define CLCD_DMA { 0, 0 }
649 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
650 #define DMAC_DMA { 0, 0 }
653 * These devices are connected via the core APB bridge
655 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
656 #define SCTL_DMA { 0, 0 }
657 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
658 #define WATCHDOG_DMA { 0, 0 }
659 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
660 #define GPIO0_DMA { 0, 0 }
661 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
662 #define GPIO1_DMA { 0, 0 }
663 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
664 #define RTC_DMA { 0, 0 }
667 * These devices are connected via the DMA APB bridge
669 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
670 #define SCI_DMA { 7, 6 }
671 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
672 #define UART0_DMA { 15, 14 }
673 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
674 #define UART1_DMA { 13, 12 }
675 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
676 #define UART2_DMA { 11, 10 }
677 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
678 #define SSP_DMA { 9, 8 }
680 /* FPGA Primecells */
681 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
682 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
683 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
684 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
686 /* DevChip Primecells */
687 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
688 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
689 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
690 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
691 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
692 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
693 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
694 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
695 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
696 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
697 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
698 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
699 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
700 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
702 static struct amba_device *amba_devs[] __initdata = {
724 #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
726 static void versatile_leds_event(led_event_t ledevt)
731 local_irq_save(flags);
732 val = readl(VA_LEDS_BASE);
736 val = val & ~VERSATILE_SYS_LED0;
740 val = val | VERSATILE_SYS_LED0;
744 val = val ^ VERSATILE_SYS_LED1;
755 writel(val, VA_LEDS_BASE);
756 local_irq_restore(flags);
758 #endif /* CONFIG_LEDS */
760 void __init versatile_init(void)
764 clk_register(&versatile_clcd_clk);
766 platform_device_register(&versatile_flash_device);
767 platform_device_register(&smc91x_device);
769 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
770 struct amba_device *d = amba_devs[i];
771 amba_device_register(d, &iomem_resource);
775 leds_event = versatile_leds_event;
780 * Where is the timer (VA)?
782 #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
783 #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
784 #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
785 #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
786 #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
789 * How long is the timer interval?
791 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
792 #if TIMER_INTERVAL >= 0x100000
793 #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
794 #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
795 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
796 #elif TIMER_INTERVAL >= 0x10000
797 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
798 #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
799 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
801 #define TIMER_RELOAD (TIMER_INTERVAL)
802 #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
803 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
807 * Returns number of ms since last clock interrupt. Note that interrupts
808 * will have been disabled by do_gettimeoffset()
810 static unsigned long versatile_gettimeoffset(void)
812 unsigned long ticks1, ticks2, status;
815 * Get the current number of ticks. Note that there is a race
816 * condition between us reading the timer and checking for
817 * an interrupt. We get around this by ensuring that the
818 * counter has not reloaded between our two reads.
820 ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
823 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
824 ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
825 } while (ticks2 > ticks1);
828 * Number of ticks since last interrupt.
830 ticks1 = TIMER_RELOAD - ticks2;
833 * Interrupt pending? If so, we've reloaded once already.
835 * FIXME: Need to check this is effectively timer 0 that expires
837 if (status & IRQMASK_TIMERINT0_1)
838 ticks1 += TIMER_RELOAD;
841 * Convert the ticks to usecs
843 return TICKS2USECS(ticks1);
847 * IRQ handler for the timer
849 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
851 write_seqlock(&xtime_lock);
853 // ...clear the interrupt
854 writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
858 write_sequnlock(&xtime_lock);
863 static struct irqaction versatile_timer_irq = {
864 .name = "Versatile Timer Tick",
865 .flags = SA_INTERRUPT | SA_TIMER,
866 .handler = versatile_timer_interrupt,
870 * Set up timer interrupt, and return the current time in seconds.
872 static void __init versatile_timer_init(void)
877 * set clock frequency:
878 * VERSATILE_REFCLK is 32KHz
879 * VERSATILE_TIMCLK is 1MHz
881 val = readl(__io_address(VERSATILE_SCTL_BASE));
882 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
883 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
884 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
885 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
886 __io_address(VERSATILE_SCTL_BASE));
889 * Initialise to a known state (all timers off)
891 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
892 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
893 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
894 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
896 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
897 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
898 writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
899 TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
902 * Make irqs happen for the system timer
904 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
907 struct sys_timer versatile_timer = {
908 .init = versatile_timer_init,
909 .offset = versatile_gettimeoffset,