4 * Copyright (c) 1999 Al Smith
6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
23 static int efs_get_sb(struct file_system_type *fs_type,
24 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
26 return get_sb_bdev(fs_type, flags, dev_name, data, efs_fill_super, mnt);
29 static struct file_system_type efs_fs_type = {
33 .kill_sb = kill_block_super,
34 .fs_flags = FS_REQUIRES_DEV,
37 static struct pt_types sgi_pt_types[] = {
39 {0x01, "SGI trkrepl"},
40 {0x02, "SGI secrepl"},
43 {SGI_SYSV, "SGI sysv"},
52 {0x83, "Linux native"},
57 static struct kmem_cache * efs_inode_cachep;
59 static struct inode *efs_alloc_inode(struct super_block *sb)
61 struct efs_inode_info *ei;
62 ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
65 return &ei->vfs_inode;
68 static void efs_destroy_inode(struct inode *inode)
70 kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
73 static void init_once(struct kmem_cache *cachep, void *foo)
75 struct efs_inode_info *ei = (struct efs_inode_info *) foo;
77 inode_init_once(&ei->vfs_inode);
80 static int init_inodecache(void)
82 efs_inode_cachep = kmem_cache_create("efs_inode_cache",
83 sizeof(struct efs_inode_info),
84 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
86 if (efs_inode_cachep == NULL)
91 static void destroy_inodecache(void)
93 kmem_cache_destroy(efs_inode_cachep);
96 static void efs_put_super(struct super_block *s)
102 static int efs_remount(struct super_block *sb, int *flags, char *data)
108 static const struct super_operations efs_superblock_operations = {
109 .alloc_inode = efs_alloc_inode,
110 .destroy_inode = efs_destroy_inode,
111 .put_super = efs_put_super,
112 .statfs = efs_statfs,
113 .remount_fs = efs_remount,
116 static const struct export_operations efs_export_ops = {
117 .fh_to_dentry = efs_fh_to_dentry,
118 .fh_to_parent = efs_fh_to_parent,
119 .get_parent = efs_get_parent,
122 static int __init init_efs_fs(void) {
124 printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
125 err = init_inodecache();
128 err = register_filesystem(&efs_fs_type);
133 destroy_inodecache();
138 static void __exit exit_efs_fs(void) {
139 unregister_filesystem(&efs_fs_type);
140 destroy_inodecache();
143 module_init(init_efs_fs)
144 module_exit(exit_efs_fs)
146 static efs_block_t efs_validate_vh(struct volume_header *vh) {
150 efs_block_t sblock = 0; /* shuts up gcc */
151 struct pt_types *pt_entry;
152 int pt_type, slice = -1;
154 if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
156 * assume that we're dealing with a partition and allow
157 * read_super() to try and detect a valid superblock
163 ui = ((__be32 *) (vh + 1)) - 1;
164 for(csum = 0; ui >= ((__be32 *) vh);) {
166 csum += be32_to_cpu(cs);
169 printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
174 printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
176 for(i = 0; i < NVDIR; i++) {
178 char name[VDNAMESIZE+1];
180 for(j = 0; j < VDNAMESIZE; j++) {
181 name[j] = vh->vh_vd[i].vd_name[j];
186 printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
188 (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
189 (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
194 for(i = 0; i < NPARTAB; i++) {
195 pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
196 for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
197 if (pt_type == pt_entry->pt_type) break;
200 if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
201 printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
203 (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
204 (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
206 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
209 if (IS_EFS(pt_type)) {
210 sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
216 printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
219 printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
221 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
228 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
230 if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
233 sb->fs_magic = be32_to_cpu(super->fs_magic);
234 sb->total_blocks = be32_to_cpu(super->fs_size);
235 sb->first_block = be32_to_cpu(super->fs_firstcg);
236 sb->group_size = be32_to_cpu(super->fs_cgfsize);
237 sb->data_free = be32_to_cpu(super->fs_tfree);
238 sb->inode_free = be32_to_cpu(super->fs_tinode);
239 sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
240 sb->total_groups = be16_to_cpu(super->fs_ncg);
245 static int efs_fill_super(struct super_block *s, void *d, int silent)
247 struct efs_sb_info *sb;
248 struct buffer_head *bh;
252 sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
257 s->s_magic = EFS_SUPER_MAGIC;
258 if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
259 printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
264 /* read the vh (volume header) block */
268 printk(KERN_ERR "EFS: cannot read volume header\n");
273 * if this returns zero then we didn't find any partition table.
274 * this isn't (yet) an error - just assume for the moment that
275 * the device is valid and go on to search for a superblock.
277 sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
280 if (sb->fs_start == -1) {
284 bh = sb_bread(s, sb->fs_start + EFS_SUPER);
286 printk(KERN_ERR "EFS: cannot read superblock\n");
290 if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
292 printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
299 if (!(s->s_flags & MS_RDONLY)) {
301 printk(KERN_INFO "EFS: forcing read-only mode\n");
303 s->s_flags |= MS_RDONLY;
305 s->s_op = &efs_superblock_operations;
306 s->s_export_op = &efs_export_ops;
307 root = efs_iget(s, EFS_ROOTINODE);
309 printk(KERN_ERR "EFS: get root inode failed\n");
314 s->s_root = d_alloc_root(root);
316 printk(KERN_ERR "EFS: get root dentry failed\n");
331 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
332 struct efs_sb_info *sb = SUPER_INFO(dentry->d_sb);
334 buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
335 buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
336 buf->f_blocks = sb->total_groups * /* total data blocks */
337 (sb->group_size - sb->inode_blocks);
338 buf->f_bfree = sb->data_free; /* free data blocks */
339 buf->f_bavail = sb->data_free; /* free blocks for non-root */
340 buf->f_files = sb->total_groups * /* total inodes */
342 (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
343 buf->f_ffree = sb->inode_free; /* free inodes */
344 buf->f_fsid.val[0] = (sb->fs_magic >> 16) & 0xffff; /* fs ID */
345 buf->f_fsid.val[1] = sb->fs_magic & 0xffff; /* fs ID */
346 buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */