1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
192 static struct ipw2100_fw ipw2100_firmware;
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
226 "unused", /* HOST_ATTENTION */
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
232 "unused", /* SET_IMR */
235 "AUTHENTICATION_TYPE",
238 "INTERNATIONAL_MODE",
253 "CLEAR_ALL_MULTICAST",
274 "AP_OR_STATION_TABLE",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
631 out += snprintf(buf + out, count - out, "%c", c);
635 out += snprintf(buf + out, count - out, " ");
641 static void printk_buf(int level, const u8 * data, u32 len)
645 if (!(ipw2100_debug_level & level))
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
714 ("Attempt to send command while hardware in fatal error condition.\n");
719 if (!(priv->status & STATUS_RUNNING)) {
721 ("Attempt to send command while hardware is not running.\n");
726 if (priv->status & STATUS_CMD_ACTIVE) {
728 ("Attempt to send command while another command is pending.\n");
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
775 wait_event_interruptible_timeout(priv->wait_command_queue,
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
805 spin_unlock_irqrestore(&priv->low_lock, flags);
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841 if (val1 == data1 && val2 == data2)
850 * Loop until the CARD_DISABLED bit is the same value as the
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
862 u32 len = sizeof(card_state);
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
883 priv->status &= ~STATUS_ENABLED;
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1005 err = ipw2100_verify(priv);
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1154 priv->status |= STATUS_RF_KILL_HW;
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1204 * Start firmware execution after power on and intialization
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1344 priv->status &= ~STATUS_RESET_PENDING;
1348 ("exit - waited too long for master assert stop\n");
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1428 err = ipw2100_hw_send_command(priv, &cmd);
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1447 mutex_unlock(&priv->adapter_mutex);
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1463 if (!(priv->status & STATUS_RUNNING))
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1598 mutex_unlock(&priv->adapter_mutex);
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1675 static const struct ieee80211_geo ipw_geos[] = {
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1781 /* Send all of the commands that must be sent prior to
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1822 .sa_family = ARPHRD_ETHER}
1824 int associated = priv->status & STATUS_ASSOCIATED;
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862 if (priv->config & CFG_C3_DISABLED) {
1863 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864 acpi_set_cstate_limit(priv->cstate_limit);
1865 priv->config &= ~CFG_C3_DISABLED;
1869 /* We have to signal any supplicant if we are disassociating */
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1885 .sa_family = ARPHRD_ETHER}
1887 int associated = priv->status & STATUS_ASSOCIATED;
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1895 /* Force a power cycle even if interface hasn't been opened
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1906 /* We have to signal any supplicant if we are disassociating */
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret, len, essid_len;
1920 char essid[IW_ESSID_MAX_SIZE];
1927 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1928 * an actual MAC of the AP. Seems like FW sets this
1929 * address too late. Read it later and expose through
1930 * /proc or schedule a later task to query and update
1933 essid_len = IW_ESSID_MAX_SIZE;
1934 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1937 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1943 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1945 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1953 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1958 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1960 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1964 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1967 case TX_RATE_1_MBIT:
1968 txratename = "1Mbps";
1970 case TX_RATE_2_MBIT:
1971 txratename = "2Mbsp";
1973 case TX_RATE_5_5_MBIT:
1974 txratename = "5.5Mbps";
1976 case TX_RATE_11_MBIT:
1977 txratename = "11Mbps";
1980 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1981 txratename = "unknown rate";
1985 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1987 priv->net_dev->name, escape_essid(essid, essid_len),
1988 txratename, chan, MAC_ARG(bssid));
1990 /* now we copy read ssid into dev */
1991 if (!(priv->config & CFG_STATIC_ESSID)) {
1992 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1993 memcpy(priv->essid, essid, priv->essid_len);
1995 priv->channel = chan;
1996 memcpy(priv->bssid, bssid, ETH_ALEN);
1998 priv->status |= STATUS_ASSOCIATING;
1999 priv->connect_start = get_seconds();
2001 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2004 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2005 int length, int batch_mode)
2007 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2008 struct host_command cmd = {
2009 .host_command = SSID,
2010 .host_command_sequence = 0,
2011 .host_command_length = ssid_len
2015 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2018 memcpy(cmd.host_command_parameters, essid, ssid_len);
2021 err = ipw2100_disable_adapter(priv);
2026 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2027 * disable auto association -- so we cheat by setting a bogus SSID */
2028 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2030 u8 *bogus = (u8 *) cmd.host_command_parameters;
2031 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2032 bogus[i] = 0x18 + i;
2033 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2036 /* NOTE: We always send the SSID command even if the provided ESSID is
2037 * the same as what we currently think is set. */
2039 err = ipw2100_hw_send_command(priv, &cmd);
2041 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2042 memcpy(priv->essid, essid, ssid_len);
2043 priv->essid_len = ssid_len;
2047 if (ipw2100_enable_adapter(priv))
2054 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2056 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2057 "disassociated: '%s' " MAC_FMT " \n",
2058 escape_essid(priv->essid, priv->essid_len),
2059 MAC_ARG(priv->bssid));
2061 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2063 if (priv->status & STATUS_STOPPING) {
2064 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2068 memset(priv->bssid, 0, ETH_ALEN);
2069 memset(priv->ieee->bssid, 0, ETH_ALEN);
2071 netif_carrier_off(priv->net_dev);
2072 netif_stop_queue(priv->net_dev);
2074 if (!(priv->status & STATUS_RUNNING))
2077 if (priv->status & STATUS_SECURITY_UPDATED)
2078 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2080 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2083 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2085 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2086 priv->net_dev->name);
2088 /* RF_KILL is now enabled (else we wouldn't be here) */
2089 priv->status |= STATUS_RF_KILL_HW;
2091 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2092 if (priv->config & CFG_C3_DISABLED) {
2093 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2094 acpi_set_cstate_limit(priv->cstate_limit);
2095 priv->config &= ~CFG_C3_DISABLED;
2099 /* Make sure the RF Kill check timer is running */
2100 priv->stop_rf_kill = 0;
2101 cancel_delayed_work(&priv->rf_kill);
2102 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2105 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2107 IPW_DEBUG_SCAN("scan complete\n");
2108 /* Age the scan results... */
2109 priv->ieee->scans++;
2110 priv->status &= ~STATUS_SCANNING;
2113 #ifdef CONFIG_IPW2100_DEBUG
2114 #define IPW2100_HANDLER(v, f) { v, f, # v }
2115 struct ipw2100_status_indicator {
2117 void (*cb) (struct ipw2100_priv * priv, u32 status);
2121 #define IPW2100_HANDLER(v, f) { v, f }
2122 struct ipw2100_status_indicator {
2124 void (*cb) (struct ipw2100_priv * priv, u32 status);
2126 #endif /* CONFIG_IPW2100_DEBUG */
2128 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2130 IPW_DEBUG_SCAN("Scanning...\n");
2131 priv->status |= STATUS_SCANNING;
2134 static const struct ipw2100_status_indicator status_handlers[] = {
2135 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2136 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2137 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2139 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2140 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2141 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2143 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2144 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2145 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2146 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2147 IPW2100_HANDLER(-1, NULL)
2150 static void isr_status_change(struct ipw2100_priv *priv, int status)
2154 if (status == IPW_STATE_SCANNING &&
2155 priv->status & STATUS_ASSOCIATED &&
2156 !(priv->status & STATUS_SCANNING)) {
2157 IPW_DEBUG_INFO("Scan detected while associated, with "
2158 "no scan request. Restarting firmware.\n");
2160 /* Wake up any sleeping jobs */
2161 schedule_reset(priv);
2164 for (i = 0; status_handlers[i].status != -1; i++) {
2165 if (status == status_handlers[i].status) {
2166 IPW_DEBUG_NOTIF("Status change: %s\n",
2167 status_handlers[i].name);
2168 if (status_handlers[i].cb)
2169 status_handlers[i].cb(priv, status);
2170 priv->wstats.status = status;
2175 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2178 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2179 struct ipw2100_cmd_header *cmd)
2181 #ifdef CONFIG_IPW2100_DEBUG
2182 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2183 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2184 command_types[cmd->host_command_reg],
2185 cmd->host_command_reg);
2188 if (cmd->host_command_reg == HOST_COMPLETE)
2189 priv->status |= STATUS_ENABLED;
2191 if (cmd->host_command_reg == CARD_DISABLE)
2192 priv->status &= ~STATUS_ENABLED;
2194 priv->status &= ~STATUS_CMD_ACTIVE;
2196 wake_up_interruptible(&priv->wait_command_queue);
2199 #ifdef CONFIG_IPW2100_DEBUG
2200 static const char *frame_types[] = {
2201 "COMMAND_STATUS_VAL",
2202 "STATUS_CHANGE_VAL",
2205 "HOST_NOTIFICATION_VAL"
2209 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2210 struct ipw2100_rx_packet *packet)
2212 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2216 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2217 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2218 sizeof(struct ipw2100_rx),
2219 PCI_DMA_FROMDEVICE);
2220 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2226 #define SEARCH_ERROR 0xffffffff
2227 #define SEARCH_FAIL 0xfffffffe
2228 #define SEARCH_SUCCESS 0xfffffff0
2229 #define SEARCH_DISCARD 0
2230 #define SEARCH_SNAPSHOT 1
2232 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2233 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2236 if (!priv->snapshot[0])
2238 for (i = 0; i < 0x30; i++)
2239 kfree(priv->snapshot[i]);
2240 priv->snapshot[0] = NULL;
2243 #ifdef IPW2100_DEBUG_C3
2244 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2247 if (priv->snapshot[0])
2249 for (i = 0; i < 0x30; i++) {
2250 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2251 if (!priv->snapshot[i]) {
2252 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2253 "buffer %d\n", priv->net_dev->name, i);
2255 kfree(priv->snapshot[--i]);
2256 priv->snapshot[0] = NULL;
2264 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2265 size_t len, int mode)
2273 if (mode == SEARCH_SNAPSHOT) {
2274 if (!ipw2100_snapshot_alloc(priv))
2275 mode = SEARCH_DISCARD;
2278 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2279 read_nic_dword(priv->net_dev, i, &tmp);
2280 if (mode == SEARCH_SNAPSHOT)
2281 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2282 if (ret == SEARCH_FAIL) {
2284 for (j = 0; j < 4; j++) {
2293 if ((s - in_buf) == len)
2294 ret = (i + j) - len + 1;
2296 } else if (mode == SEARCH_DISCARD)
2306 * 0) Disconnect the SKB from the firmware (just unmap)
2307 * 1) Pack the ETH header into the SKB
2308 * 2) Pass the SKB to the network stack
2310 * When packet is provided by the firmware, it contains the following:
2313 * . ieee80211_snap_hdr
2315 * The size of the constructed ethernet
2318 #ifdef IPW2100_RX_DEBUG
2319 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2322 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2324 #ifdef IPW2100_DEBUG_C3
2325 struct ipw2100_status *status = &priv->status_queue.drv[i];
2329 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2333 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2334 i * sizeof(struct ipw2100_status));
2336 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2337 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2338 limit = acpi_get_cstate_limit();
2340 priv->cstate_limit = limit;
2341 acpi_set_cstate_limit(2);
2342 priv->config |= CFG_C3_DISABLED;
2346 #ifdef IPW2100_DEBUG_C3
2347 /* Halt the fimrware so we can get a good image */
2348 write_register(priv->net_dev, IPW_REG_RESET_REG,
2349 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2352 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2353 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2355 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2359 match = ipw2100_match_buf(priv, (u8 *) status,
2360 sizeof(struct ipw2100_status),
2362 if (match < SEARCH_SUCCESS)
2363 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2364 "offset 0x%06X, length %d:\n",
2365 priv->net_dev->name, match,
2366 sizeof(struct ipw2100_status));
2368 IPW_DEBUG_INFO("%s: No DMA status match in "
2369 "Firmware.\n", priv->net_dev->name);
2371 printk_buf((u8 *) priv->status_queue.drv,
2372 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2375 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2376 priv->ieee->stats.rx_errors++;
2377 schedule_reset(priv);
2380 static void isr_rx(struct ipw2100_priv *priv, int i,
2381 struct ieee80211_rx_stats *stats)
2383 struct ipw2100_status *status = &priv->status_queue.drv[i];
2384 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2386 IPW_DEBUG_RX("Handler...\n");
2388 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2389 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2391 priv->net_dev->name,
2392 status->frame_size, skb_tailroom(packet->skb));
2393 priv->ieee->stats.rx_errors++;
2397 if (unlikely(!netif_running(priv->net_dev))) {
2398 priv->ieee->stats.rx_errors++;
2399 priv->wstats.discard.misc++;
2400 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2404 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2405 !(priv->status & STATUS_ASSOCIATED))) {
2406 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2407 priv->wstats.discard.misc++;
2411 pci_unmap_single(priv->pci_dev,
2413 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2415 skb_put(packet->skb, status->frame_size);
2417 #ifdef IPW2100_RX_DEBUG
2418 /* Make a copy of the frame so we can dump it to the logs if
2419 * ieee80211_rx fails */
2420 skb_copy_from_linear_data(packet->skb, packet_data,
2421 min_t(u32, status->frame_size,
2422 IPW_RX_NIC_BUFFER_LENGTH));
2425 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2426 #ifdef IPW2100_RX_DEBUG
2427 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2428 priv->net_dev->name);
2429 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2431 priv->ieee->stats.rx_errors++;
2433 /* ieee80211_rx failed, so it didn't free the SKB */
2434 dev_kfree_skb_any(packet->skb);
2438 /* We need to allocate a new SKB and attach it to the RDB. */
2439 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2440 printk(KERN_WARNING DRV_NAME ": "
2441 "%s: Unable to allocate SKB onto RBD ring - disabling "
2442 "adapter.\n", priv->net_dev->name);
2443 /* TODO: schedule adapter shutdown */
2444 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2447 /* Update the RDB entry */
2448 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2451 #ifdef CONFIG_IPW2100_MONITOR
2453 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2454 struct ieee80211_rx_stats *stats)
2456 struct ipw2100_status *status = &priv->status_queue.drv[i];
2457 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2459 /* Magic struct that slots into the radiotap header -- no reason
2460 * to build this manually element by element, we can write it much
2461 * more efficiently than we can parse it. ORDER MATTERS HERE */
2463 struct ieee80211_radiotap_header rt_hdr;
2464 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2467 IPW_DEBUG_RX("Handler...\n");
2469 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2470 sizeof(struct ipw_rt_hdr))) {
2471 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2473 priv->net_dev->name,
2475 skb_tailroom(packet->skb));
2476 priv->ieee->stats.rx_errors++;
2480 if (unlikely(!netif_running(priv->net_dev))) {
2481 priv->ieee->stats.rx_errors++;
2482 priv->wstats.discard.misc++;
2483 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2487 if (unlikely(priv->config & CFG_CRC_CHECK &&
2488 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2489 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2490 priv->ieee->stats.rx_errors++;
2494 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2495 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2497 packet->skb->data, status->frame_size);
2499 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2501 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2502 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2503 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2505 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2507 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2509 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2511 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2512 priv->ieee->stats.rx_errors++;
2514 /* ieee80211_rx failed, so it didn't free the SKB */
2515 dev_kfree_skb_any(packet->skb);
2519 /* We need to allocate a new SKB and attach it to the RDB. */
2520 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522 "%s: Unable to allocate SKB onto RBD ring - disabling "
2523 "adapter.\n", priv->net_dev->name);
2524 /* TODO: schedule adapter shutdown */
2525 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2528 /* Update the RDB entry */
2529 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2534 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2536 struct ipw2100_status *status = &priv->status_queue.drv[i];
2537 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2538 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2540 switch (frame_type) {
2541 case COMMAND_STATUS_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.command));
2543 case STATUS_CHANGE_VAL:
2544 return (status->frame_size != sizeof(u->rx_data.status));
2545 case HOST_NOTIFICATION_VAL:
2546 return (status->frame_size < sizeof(u->rx_data.notification));
2547 case P80211_DATA_VAL:
2548 case P8023_DATA_VAL:
2549 #ifdef CONFIG_IPW2100_MONITOR
2552 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2553 case IEEE80211_FTYPE_MGMT:
2554 case IEEE80211_FTYPE_CTL:
2556 case IEEE80211_FTYPE_DATA:
2557 return (status->frame_size >
2558 IPW_MAX_802_11_PAYLOAD_LENGTH);
2567 * ipw2100 interrupts are disabled at this point, and the ISR
2568 * is the only code that calls this method. So, we do not need
2569 * to play with any locks.
2571 * RX Queue works as follows:
2573 * Read index - firmware places packet in entry identified by the
2574 * Read index and advances Read index. In this manner,
2575 * Read index will always point to the next packet to
2576 * be filled--but not yet valid.
2578 * Write index - driver fills this entry with an unused RBD entry.
2579 * This entry has not filled by the firmware yet.
2581 * In between the W and R indexes are the RBDs that have been received
2582 * but not yet processed.
2584 * The process of handling packets will start at WRITE + 1 and advance
2585 * until it reaches the READ index.
2587 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2590 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2592 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2593 struct ipw2100_status_queue *sq = &priv->status_queue;
2594 struct ipw2100_rx_packet *packet;
2597 struct ipw2100_rx *u;
2598 struct ieee80211_rx_stats stats = {
2599 .mac_time = jiffies,
2602 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2603 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2605 if (r >= rxq->entries) {
2606 IPW_DEBUG_RX("exit - bad read index\n");
2610 i = (rxq->next + 1) % rxq->entries;
2613 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2614 r, rxq->next, i); */
2616 packet = &priv->rx_buffers[i];
2618 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2619 * the correct values */
2620 pci_dma_sync_single_for_cpu(priv->pci_dev,
2622 sizeof(struct ipw2100_status) * i,
2623 sizeof(struct ipw2100_status),
2624 PCI_DMA_FROMDEVICE);
2626 /* Sync the DMA for the RX buffer so CPU is sure to get
2627 * the correct values */
2628 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2629 sizeof(struct ipw2100_rx),
2630 PCI_DMA_FROMDEVICE);
2632 if (unlikely(ipw2100_corruption_check(priv, i))) {
2633 ipw2100_corruption_detected(priv, i);
2638 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2639 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2640 stats.len = sq->drv[i].frame_size;
2643 if (stats.rssi != 0)
2644 stats.mask |= IEEE80211_STATMASK_RSSI;
2645 stats.freq = IEEE80211_24GHZ_BAND;
2647 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2648 priv->net_dev->name, frame_types[frame_type],
2651 switch (frame_type) {
2652 case COMMAND_STATUS_VAL:
2653 /* Reset Rx watchdog */
2654 isr_rx_complete_command(priv, &u->rx_data.command);
2657 case STATUS_CHANGE_VAL:
2658 isr_status_change(priv, u->rx_data.status);
2661 case P80211_DATA_VAL:
2662 case P8023_DATA_VAL:
2663 #ifdef CONFIG_IPW2100_MONITOR
2664 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2665 isr_rx_monitor(priv, i, &stats);
2669 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2671 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2672 case IEEE80211_FTYPE_MGMT:
2673 ieee80211_rx_mgt(priv->ieee,
2674 &u->rx_data.header, &stats);
2677 case IEEE80211_FTYPE_CTL:
2680 case IEEE80211_FTYPE_DATA:
2681 isr_rx(priv, i, &stats);
2689 /* clear status field associated with this RBD */
2690 rxq->drv[i].status.info.field = 0;
2692 i = (i + 1) % rxq->entries;
2696 /* backtrack one entry, wrapping to end if at 0 */
2697 rxq->next = (i ? i : rxq->entries) - 1;
2699 write_register(priv->net_dev,
2700 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2705 * __ipw2100_tx_process
2707 * This routine will determine whether the next packet on
2708 * the fw_pend_list has been processed by the firmware yet.
2710 * If not, then it does nothing and returns.
2712 * If so, then it removes the item from the fw_pend_list, frees
2713 * any associated storage, and places the item back on the
2714 * free list of its source (either msg_free_list or tx_free_list)
2716 * TX Queue works as follows:
2718 * Read index - points to the next TBD that the firmware will
2719 * process. The firmware will read the data, and once
2720 * done processing, it will advance the Read index.
2722 * Write index - driver fills this entry with an constructed TBD
2723 * entry. The Write index is not advanced until the
2724 * packet has been configured.
2726 * In between the W and R indexes are the TBDs that have NOT been
2727 * processed. Lagging behind the R index are packets that have
2728 * been processed but have not been freed by the driver.
2730 * In order to free old storage, an internal index will be maintained
2731 * that points to the next packet to be freed. When all used
2732 * packets have been freed, the oldest index will be the same as the
2733 * firmware's read index.
2735 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2737 * Because the TBD structure can not contain arbitrary data, the
2738 * driver must keep an internal queue of cached allocations such that
2739 * it can put that data back into the tx_free_list and msg_free_list
2740 * for use by future command and data packets.
2743 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2745 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2746 struct ipw2100_bd *tbd;
2747 struct list_head *element;
2748 struct ipw2100_tx_packet *packet;
2749 int descriptors_used;
2751 u32 r, w, frag_num = 0;
2753 if (list_empty(&priv->fw_pend_list))
2756 element = priv->fw_pend_list.next;
2758 packet = list_entry(element, struct ipw2100_tx_packet, list);
2759 tbd = &txq->drv[packet->index];
2761 /* Determine how many TBD entries must be finished... */
2762 switch (packet->type) {
2764 /* COMMAND uses only one slot; don't advance */
2765 descriptors_used = 1;
2770 /* DATA uses two slots; advance and loop position. */
2771 descriptors_used = tbd->num_fragments;
2772 frag_num = tbd->num_fragments - 1;
2773 e = txq->oldest + frag_num;
2778 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2779 priv->net_dev->name);
2783 /* if the last TBD is not done by NIC yet, then packet is
2784 * not ready to be released.
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2789 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2792 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2793 priv->net_dev->name);
2796 * txq->next is the index of the last packet written txq->oldest is
2797 * the index of the r is the index of the next packet to be read by
2802 * Quick graphic to help you visualize the following
2803 * if / else statement
2805 * ===>| s---->|===============
2807 * | a | b | c | d | e | f | g | h | i | j | k | l
2811 * w - updated by driver
2812 * r - updated by firmware
2813 * s - start of oldest BD entry (txq->oldest)
2814 * e - end of oldest BD entry
2817 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2818 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2823 DEC_STAT(&priv->fw_pend_stat);
2825 #ifdef CONFIG_IPW2100_DEBUG
2827 int i = txq->oldest;
2828 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2830 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2831 txq->drv[i].host_addr, txq->drv[i].buf_length);
2833 if (packet->type == DATA) {
2834 i = (i + 1) % txq->entries;
2836 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2838 (u32) (txq->nic + i *
2839 sizeof(struct ipw2100_bd)),
2840 (u32) txq->drv[i].host_addr,
2841 txq->drv[i].buf_length);
2846 switch (packet->type) {
2848 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2849 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2850 "Expecting DATA TBD but pulled "
2851 "something else: ids %d=%d.\n",
2852 priv->net_dev->name, txq->oldest, packet->index);
2854 /* DATA packet; we have to unmap and free the SKB */
2855 for (i = 0; i < frag_num; i++) {
2856 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2858 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2859 (packet->index + 1 + i) % txq->entries,
2860 tbd->host_addr, tbd->buf_length);
2862 pci_unmap_single(priv->pci_dev,
2864 tbd->buf_length, PCI_DMA_TODEVICE);
2867 ieee80211_txb_free(packet->info.d_struct.txb);
2868 packet->info.d_struct.txb = NULL;
2870 list_add_tail(element, &priv->tx_free_list);
2871 INC_STAT(&priv->tx_free_stat);
2873 /* We have a free slot in the Tx queue, so wake up the
2874 * transmit layer if it is stopped. */
2875 if (priv->status & STATUS_ASSOCIATED)
2876 netif_wake_queue(priv->net_dev);
2878 /* A packet was processed by the hardware, so update the
2880 priv->net_dev->trans_start = jiffies;
2885 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2886 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2887 "Expecting COMMAND TBD but pulled "
2888 "something else: ids %d=%d.\n",
2889 priv->net_dev->name, txq->oldest, packet->index);
2891 #ifdef CONFIG_IPW2100_DEBUG
2892 if (packet->info.c_struct.cmd->host_command_reg <
2893 ARRAY_SIZE(command_types))
2894 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2895 command_types[packet->info.c_struct.cmd->
2897 packet->info.c_struct.cmd->
2899 packet->info.c_struct.cmd->cmd_status_reg);
2902 list_add_tail(element, &priv->msg_free_list);
2903 INC_STAT(&priv->msg_free_stat);
2907 /* advance oldest used TBD pointer to start of next entry */
2908 txq->oldest = (e + 1) % txq->entries;
2909 /* increase available TBDs number */
2910 txq->available += descriptors_used;
2911 SET_STAT(&priv->txq_stat, txq->available);
2913 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2914 jiffies - packet->jiffy_start);
2916 return (!list_empty(&priv->fw_pend_list));
2919 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2923 while (__ipw2100_tx_process(priv) && i < 200)
2927 printk(KERN_WARNING DRV_NAME ": "
2928 "%s: Driver is running slow (%d iters).\n",
2929 priv->net_dev->name, i);
2933 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2935 struct list_head *element;
2936 struct ipw2100_tx_packet *packet;
2937 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2938 struct ipw2100_bd *tbd;
2939 int next = txq->next;
2941 while (!list_empty(&priv->msg_pend_list)) {
2942 /* if there isn't enough space in TBD queue, then
2943 * don't stuff a new one in.
2944 * NOTE: 3 are needed as a command will take one,
2945 * and there is a minimum of 2 that must be
2946 * maintained between the r and w indexes
2948 if (txq->available <= 3) {
2949 IPW_DEBUG_TX("no room in tx_queue\n");
2953 element = priv->msg_pend_list.next;
2955 DEC_STAT(&priv->msg_pend_stat);
2957 packet = list_entry(element, struct ipw2100_tx_packet, list);
2959 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2960 &txq->drv[txq->next],
2961 (void *)(txq->nic + txq->next *
2962 sizeof(struct ipw2100_bd)));
2964 packet->index = txq->next;
2966 tbd = &txq->drv[txq->next];
2968 /* initialize TBD */
2969 tbd->host_addr = packet->info.c_struct.cmd_phys;
2970 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2971 /* not marking number of fragments causes problems
2972 * with f/w debug version */
2973 tbd->num_fragments = 1;
2974 tbd->status.info.field =
2975 IPW_BD_STATUS_TX_FRAME_COMMAND |
2976 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2978 /* update TBD queue counters */
2980 txq->next %= txq->entries;
2982 DEC_STAT(&priv->txq_stat);
2984 list_add_tail(element, &priv->fw_pend_list);
2985 INC_STAT(&priv->fw_pend_stat);
2988 if (txq->next != next) {
2989 /* kick off the DMA by notifying firmware the
2990 * write index has moved; make sure TBD stores are sync'd */
2992 write_register(priv->net_dev,
2993 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2999 * ipw2100_tx_send_data
3002 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3004 struct list_head *element;
3005 struct ipw2100_tx_packet *packet;
3006 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3007 struct ipw2100_bd *tbd;
3008 int next = txq->next;
3010 struct ipw2100_data_header *ipw_hdr;
3011 struct ieee80211_hdr_3addr *hdr;
3013 while (!list_empty(&priv->tx_pend_list)) {
3014 /* if there isn't enough space in TBD queue, then
3015 * don't stuff a new one in.
3016 * NOTE: 4 are needed as a data will take two,
3017 * and there is a minimum of 2 that must be
3018 * maintained between the r and w indexes
3020 element = priv->tx_pend_list.next;
3021 packet = list_entry(element, struct ipw2100_tx_packet, list);
3023 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3025 /* TODO: Support merging buffers if more than
3026 * IPW_MAX_BDS are used */
3027 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3028 "Increase fragmentation level.\n",
3029 priv->net_dev->name);
3032 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3033 IPW_DEBUG_TX("no room in tx_queue\n");
3038 DEC_STAT(&priv->tx_pend_stat);
3040 tbd = &txq->drv[txq->next];
3042 packet->index = txq->next;
3044 ipw_hdr = packet->info.d_struct.data;
3045 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3048 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3049 /* To DS: Addr1 = BSSID, Addr2 = SA,
3051 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3053 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3054 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3056 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3057 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3060 ipw_hdr->host_command_reg = SEND;
3061 ipw_hdr->host_command_reg1 = 0;
3063 /* For now we only support host based encryption */
3064 ipw_hdr->needs_encryption = 0;
3065 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3066 if (packet->info.d_struct.txb->nr_frags > 1)
3067 ipw_hdr->fragment_size =
3068 packet->info.d_struct.txb->frag_size -
3069 IEEE80211_3ADDR_LEN;
3071 ipw_hdr->fragment_size = 0;
3073 tbd->host_addr = packet->info.d_struct.data_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_data_header);
3075 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3076 tbd->status.info.field =
3077 IPW_BD_STATUS_TX_FRAME_802_3 |
3078 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3080 txq->next %= txq->entries;
3082 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3083 packet->index, tbd->host_addr, tbd->buf_length);
3084 #ifdef CONFIG_IPW2100_DEBUG
3085 if (packet->info.d_struct.txb->nr_frags > 1)
3086 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3087 packet->info.d_struct.txb->nr_frags);
3090 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3091 tbd = &txq->drv[txq->next];
3092 if (i == packet->info.d_struct.txb->nr_frags - 1)
3093 tbd->status.info.field =
3094 IPW_BD_STATUS_TX_FRAME_802_3 |
3095 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3097 tbd->status.info.field =
3098 IPW_BD_STATUS_TX_FRAME_802_3 |
3099 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3101 tbd->buf_length = packet->info.d_struct.txb->
3102 fragments[i]->len - IEEE80211_3ADDR_LEN;
3104 tbd->host_addr = pci_map_single(priv->pci_dev,
3105 packet->info.d_struct.
3108 IEEE80211_3ADDR_LEN,
3112 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3113 txq->next, tbd->host_addr,
3116 pci_dma_sync_single_for_device(priv->pci_dev,
3122 txq->next %= txq->entries;
3125 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3126 SET_STAT(&priv->txq_stat, txq->available);
3128 list_add_tail(element, &priv->fw_pend_list);
3129 INC_STAT(&priv->fw_pend_stat);
3132 if (txq->next != next) {
3133 /* kick off the DMA by notifying firmware the
3134 * write index has moved; make sure TBD stores are sync'd */
3135 write_register(priv->net_dev,
3136 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3142 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3144 struct net_device *dev = priv->net_dev;
3145 unsigned long flags;
3148 spin_lock_irqsave(&priv->low_lock, flags);
3149 ipw2100_disable_interrupts(priv);
3151 read_register(dev, IPW_REG_INTA, &inta);
3153 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3154 (unsigned long)inta & IPW_INTERRUPT_MASK);
3159 /* We do not loop and keep polling for more interrupts as this
3160 * is frowned upon and doesn't play nicely with other potentially
3162 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3163 (unsigned long)inta & IPW_INTERRUPT_MASK);
3165 if (inta & IPW2100_INTA_FATAL_ERROR) {
3166 printk(KERN_WARNING DRV_NAME
3167 ": Fatal interrupt. Scheduling firmware restart.\n");
3169 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3171 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3172 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3173 priv->net_dev->name, priv->fatal_error);
3175 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3176 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3177 priv->net_dev->name, tmp);
3179 /* Wake up any sleeping jobs */
3180 schedule_reset(priv);
3183 if (inta & IPW2100_INTA_PARITY_ERROR) {
3184 printk(KERN_ERR DRV_NAME
3185 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3187 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3190 if (inta & IPW2100_INTA_RX_TRANSFER) {
3191 IPW_DEBUG_ISR("RX interrupt\n");
3193 priv->rx_interrupts++;
3195 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3197 __ipw2100_rx_process(priv);
3198 __ipw2100_tx_complete(priv);
3201 if (inta & IPW2100_INTA_TX_TRANSFER) {
3202 IPW_DEBUG_ISR("TX interrupt\n");
3204 priv->tx_interrupts++;
3206 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3208 __ipw2100_tx_complete(priv);
3209 ipw2100_tx_send_commands(priv);
3210 ipw2100_tx_send_data(priv);
3213 if (inta & IPW2100_INTA_TX_COMPLETE) {
3214 IPW_DEBUG_ISR("TX complete\n");
3216 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3218 __ipw2100_tx_complete(priv);
3221 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3222 /* ipw2100_handle_event(dev); */
3224 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3227 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3228 IPW_DEBUG_ISR("FW init done interrupt\n");
3231 read_register(dev, IPW_REG_INTA, &tmp);
3232 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3233 IPW2100_INTA_PARITY_ERROR)) {
3234 write_register(dev, IPW_REG_INTA,
3235 IPW2100_INTA_FATAL_ERROR |
3236 IPW2100_INTA_PARITY_ERROR);
3239 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3242 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3243 IPW_DEBUG_ISR("Status change interrupt\n");
3245 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3248 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3249 IPW_DEBUG_ISR("slave host mode interrupt\n");
3251 write_register(dev, IPW_REG_INTA,
3252 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3256 ipw2100_enable_interrupts(priv);
3258 spin_unlock_irqrestore(&priv->low_lock, flags);
3260 IPW_DEBUG_ISR("exit\n");
3263 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3265 struct ipw2100_priv *priv = data;
3266 u32 inta, inta_mask;
3271 spin_lock(&priv->low_lock);
3273 /* We check to see if we should be ignoring interrupts before
3274 * we touch the hardware. During ucode load if we try and handle
3275 * an interrupt we can cause keyboard problems as well as cause
3276 * the ucode to fail to initialize */
3277 if (!(priv->status & STATUS_INT_ENABLED)) {
3282 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3283 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3285 if (inta == 0xFFFFFFFF) {
3286 /* Hardware disappeared */
3287 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3291 inta &= IPW_INTERRUPT_MASK;
3293 if (!(inta & inta_mask)) {
3294 /* Shared interrupt */
3298 /* We disable the hardware interrupt here just to prevent unneeded
3299 * calls to be made. We disable this again within the actual
3300 * work tasklet, so if another part of the code re-enables the
3301 * interrupt, that is fine */
3302 ipw2100_disable_interrupts(priv);
3304 tasklet_schedule(&priv->irq_tasklet);
3305 spin_unlock(&priv->low_lock);
3309 spin_unlock(&priv->low_lock);
3313 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3316 struct ipw2100_priv *priv = ieee80211_priv(dev);
3317 struct list_head *element;
3318 struct ipw2100_tx_packet *packet;
3319 unsigned long flags;
3321 spin_lock_irqsave(&priv->low_lock, flags);
3323 if (!(priv->status & STATUS_ASSOCIATED)) {
3324 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3325 priv->ieee->stats.tx_carrier_errors++;
3326 netif_stop_queue(dev);
3330 if (list_empty(&priv->tx_free_list))
3333 element = priv->tx_free_list.next;
3334 packet = list_entry(element, struct ipw2100_tx_packet, list);
3336 packet->info.d_struct.txb = txb;
3338 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3339 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3341 packet->jiffy_start = jiffies;
3344 DEC_STAT(&priv->tx_free_stat);
3346 list_add_tail(element, &priv->tx_pend_list);
3347 INC_STAT(&priv->tx_pend_stat);
3349 ipw2100_tx_send_data(priv);
3351 spin_unlock_irqrestore(&priv->low_lock, flags);
3355 netif_stop_queue(dev);
3356 spin_unlock_irqrestore(&priv->low_lock, flags);
3360 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3362 int i, j, err = -EINVAL;
3367 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3371 if (!priv->msg_buffers) {
3372 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3373 "buffers.\n", priv->net_dev->name);
3377 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3378 v = pci_alloc_consistent(priv->pci_dev,
3379 sizeof(struct ipw2100_cmd_header), &p);
3381 printk(KERN_ERR DRV_NAME ": "
3382 "%s: PCI alloc failed for msg "
3383 "buffers.\n", priv->net_dev->name);
3388 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3390 priv->msg_buffers[i].type = COMMAND;
3391 priv->msg_buffers[i].info.c_struct.cmd =
3392 (struct ipw2100_cmd_header *)v;
3393 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3396 if (i == IPW_COMMAND_POOL_SIZE)
3399 for (j = 0; j < i; j++) {
3400 pci_free_consistent(priv->pci_dev,
3401 sizeof(struct ipw2100_cmd_header),
3402 priv->msg_buffers[j].info.c_struct.cmd,
3403 priv->msg_buffers[j].info.c_struct.
3407 kfree(priv->msg_buffers);
3408 priv->msg_buffers = NULL;
3413 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3417 INIT_LIST_HEAD(&priv->msg_free_list);
3418 INIT_LIST_HEAD(&priv->msg_pend_list);
3420 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3421 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3422 SET_STAT(&priv->msg_free_stat, i);
3427 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3431 if (!priv->msg_buffers)
3434 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3435 pci_free_consistent(priv->pci_dev,
3436 sizeof(struct ipw2100_cmd_header),
3437 priv->msg_buffers[i].info.c_struct.cmd,
3438 priv->msg_buffers[i].info.c_struct.
3442 kfree(priv->msg_buffers);
3443 priv->msg_buffers = NULL;
3446 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3449 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3454 for (i = 0; i < 16; i++) {
3455 out += sprintf(out, "[%08X] ", i * 16);
3456 for (j = 0; j < 16; j += 4) {
3457 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3458 out += sprintf(out, "%08X ", val);
3460 out += sprintf(out, "\n");
3466 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3468 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3471 struct ipw2100_priv *p = d->driver_data;
3472 return sprintf(buf, "0x%08x\n", (int)p->config);
3475 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3477 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3480 struct ipw2100_priv *p = d->driver_data;
3481 return sprintf(buf, "0x%08x\n", (int)p->status);
3484 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3486 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3489 struct ipw2100_priv *p = d->driver_data;
3490 return sprintf(buf, "0x%08x\n", (int)p->capability);
3493 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3495 #define IPW2100_REG(x) { IPW_ ##x, #x }
3496 static const struct {
3500 IPW2100_REG(REG_GP_CNTRL),
3501 IPW2100_REG(REG_GPIO),
3502 IPW2100_REG(REG_INTA),
3503 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3504 #define IPW2100_NIC(x, s) { x, #x, s }
3505 static const struct {
3510 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3511 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3512 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3513 static const struct {
3518 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3520 "successful Host Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA,
3522 "successful Directed Tx's (MSDU)"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA1,
3524 "successful Directed Tx's (MSDU) @ 1MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA2,
3526 "successful Directed Tx's (MSDU) @ 2MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3528 "successful Directed Tx's (MSDU) @ 5_5MB"),
3529 IPW2100_ORD(STAT_TX_DIR_DATA11,
3530 "successful Directed Tx's (MSDU) @ 11MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3532 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3534 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3536 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3537 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3538 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3539 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3540 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3541 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3542 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3543 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3544 IPW2100_ORD(STAT_TX_ASSN_RESP,
3545 "successful Association response Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN,
3547 "successful Reassociation Tx's"),
3548 IPW2100_ORD(STAT_TX_REASSN_RESP,
3549 "successful Reassociation response Tx's"),
3550 IPW2100_ORD(STAT_TX_PROBE,
3551 "probes successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_PROBE_RESP,
3553 "probe responses successfully transmitted"),
3554 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3555 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3556 IPW2100_ORD(STAT_TX_DISASSN,
3557 "successful Disassociation TX"),
3558 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3559 IPW2100_ORD(STAT_TX_DEAUTH,
3560 "successful Deauthentication TX"),
3561 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3562 "Total successful Tx data bytes"),
3563 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3564 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3566 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3567 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3568 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3569 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3570 "times max tries in a hop failed"),
3571 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3572 "times disassociation failed"),
3573 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3574 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3575 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3578 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3580 "directed packets at 5.5MB"),
3581 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3584 "nondirected packets at 1MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3586 "nondirected packets at 2MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3588 "nondirected packets at 5.5MB"),
3589 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3590 "nondirected packets at 11MB"),
3591 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3592 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3594 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3595 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3596 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3597 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3598 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3599 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3600 IPW2100_ORD(STAT_RX_REASSN_RESP,
3601 "Reassociation response Rx's"),
3602 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3603 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3604 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3605 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3606 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3607 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3608 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3609 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3610 "Total rx data bytes received"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3615 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE1,
3617 "duplicate rx packets at 1MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE2,
3619 "duplicate rx packets at 2MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3621 "duplicate rx packets at 5.5MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE11,
3623 "duplicate rx packets at 11MB"),
3624 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3625 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3626 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3627 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3628 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3629 "rx frames with invalid protocol"),
3630 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3631 IPW2100_ORD(STAT_RX_NO_BUFFER,
3632 "rx frames rejected due to no buffer"),
3633 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3634 "rx frames dropped due to missing fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3636 "rx frames dropped due to non-sequential fragment"),
3637 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3638 "rx frames dropped due to unmatched 1st frame"),
3639 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3640 "rx frames dropped due to uncompleted frame"),
3641 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3642 "ICV errors during decryption"),
3643 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3644 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3645 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3646 "poll response timeouts"),
3647 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3648 "timeouts waiting for last {broad,multi}cast pkt"),
3649 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3650 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3651 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3652 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3653 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3654 "current calculation of % missed beacons"),
3655 IPW2100_ORD(STAT_PERCENT_RETRIES,
3656 "current calculation of % missed tx retries"),
3657 IPW2100_ORD(ASSOCIATED_AP_PTR,
3658 "0 if not associated, else pointer to AP table entry"),
3659 IPW2100_ORD(AVAILABLE_AP_CNT,
3660 "AP's decsribed in the AP table"),
3661 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3662 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3663 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3664 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3665 "failures due to response fail"),
3666 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3667 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3668 IPW2100_ORD(STAT_ROAM_INHIBIT,
3669 "times roaming was inhibited due to activity"),
3670 IPW2100_ORD(RSSI_AT_ASSN,
3671 "RSSI of associated AP at time of association"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE1,
3673 "reassociation: no probe response or TX on hop"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE2,
3675 "reassociation: poor tx/rx quality"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE3,
3677 "reassociation: tx/rx quality (excessive AP load"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE4,
3679 "reassociation: AP RSSI level"),
3680 IPW2100_ORD(STAT_ASSN_CAUSE5,
3681 "reassociations due to load leveling"),
3682 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3683 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3684 "times authentication response failed"),
3685 IPW2100_ORD(STATION_TABLE_CNT,
3686 "entries in association table"),
3687 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3688 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3689 IPW2100_ORD(COUNTRY_CODE,
3690 "IEEE country code as recv'd from beacon"),
3691 IPW2100_ORD(COUNTRY_CHANNELS,
3692 "channels suported by country"),
3693 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3694 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3695 IPW2100_ORD(ANTENNA_DIVERSITY,
3696 "TRUE if antenna diversity is disabled"),
3697 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3698 IPW2100_ORD(OUR_FREQ,
3699 "current radio freq lower digits - channel ID"),
3700 IPW2100_ORD(RTC_TIME, "current RTC time"),
3701 IPW2100_ORD(PORT_TYPE, "operating mode"),
3702 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3703 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3704 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3705 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3706 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3707 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3708 IPW2100_ORD(CAPABILITIES,
3709 "Management frame capability field"),
3710 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3711 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3712 IPW2100_ORD(RTS_THRESHOLD,
3713 "Min packet length for RTS handshaking"),
3714 IPW2100_ORD(INT_MODE, "International mode"),
3715 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3716 "protocol frag threshold"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3718 "EEPROM offset in SRAM"),
3719 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3720 "EEPROM size in SRAM"),
3721 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3722 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3723 "EEPROM IBSS 11b channel set"),
3724 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3725 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3726 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3727 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3728 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3730 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3734 struct ipw2100_priv *priv = dev_get_drvdata(d);
3735 struct net_device *dev = priv->net_dev;
3739 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3741 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3742 read_register(dev, hw_data[i].addr, &val);
3743 out += sprintf(out, "%30s [%08X] : %08X\n",
3744 hw_data[i].name, hw_data[i].addr, val);
3750 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3752 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3755 struct ipw2100_priv *priv = dev_get_drvdata(d);
3756 struct net_device *dev = priv->net_dev;
3760 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3762 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3767 switch (nic_data[i].size) {
3769 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3770 out += sprintf(out, "%30s [%08X] : %02X\n",
3771 nic_data[i].name, nic_data[i].addr,
3775 read_nic_word(dev, nic_data[i].addr, &tmp16);
3776 out += sprintf(out, "%30s [%08X] : %04X\n",
3777 nic_data[i].name, nic_data[i].addr,
3781 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3782 out += sprintf(out, "%30s [%08X] : %08X\n",
3783 nic_data[i].name, nic_data[i].addr,
3791 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3793 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3796 struct ipw2100_priv *priv = dev_get_drvdata(d);
3797 struct net_device *dev = priv->net_dev;
3798 static unsigned long loop = 0;
3804 if (loop >= 0x30000)
3807 /* sysfs provides us PAGE_SIZE buffer */
3808 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3810 if (priv->snapshot[0])
3811 for (i = 0; i < 4; i++)
3813 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3815 for (i = 0; i < 4; i++)
3816 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3819 len += sprintf(buf + len,
3824 ((u8 *) buffer)[0x0],
3825 ((u8 *) buffer)[0x1],
3826 ((u8 *) buffer)[0x2],
3827 ((u8 *) buffer)[0x3],
3828 ((u8 *) buffer)[0x4],
3829 ((u8 *) buffer)[0x5],
3830 ((u8 *) buffer)[0x6],
3831 ((u8 *) buffer)[0x7],
3832 ((u8 *) buffer)[0x8],
3833 ((u8 *) buffer)[0x9],
3834 ((u8 *) buffer)[0xa],
3835 ((u8 *) buffer)[0xb],
3836 ((u8 *) buffer)[0xc],
3837 ((u8 *) buffer)[0xd],
3838 ((u8 *) buffer)[0xe],
3839 ((u8 *) buffer)[0xf]);
3841 len += sprintf(buf + len, "%s\n",
3842 snprint_line(line, sizeof(line),
3843 (u8 *) buffer, 16, loop));
3850 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3851 const char *buf, size_t count)
3853 struct ipw2100_priv *priv = dev_get_drvdata(d);
3854 struct net_device *dev = priv->net_dev;
3855 const char *p = buf;
3857 (void)dev; /* kill unused-var warning for debug-only code */
3863 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3864 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3868 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3869 tolower(p[1]) == 'f')) {
3870 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3874 } else if (tolower(p[0]) == 'r') {
3875 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3876 ipw2100_snapshot_free(priv);
3879 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3880 "reset = clear memory snapshot\n", dev->name);
3885 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3887 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3890 struct ipw2100_priv *priv = dev_get_drvdata(d);
3894 static int loop = 0;
3896 if (priv->status & STATUS_RF_KILL_MASK)
3899 if (loop >= ARRAY_SIZE(ord_data))
3902 /* sysfs provides us PAGE_SIZE buffer */
3903 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3904 val_len = sizeof(u32);
3906 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3908 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3909 ord_data[loop].index,
3910 ord_data[loop].desc);
3912 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913 ord_data[loop].index, val,
3914 ord_data[loop].desc);
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3929 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930 priv->interrupts, priv->tx_interrupts,
3931 priv->rx_interrupts, priv->inta_other);
3932 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935 out += sprintf(out, "packet mismatch image: %s\n",
3936 priv->snapshot[0] ? "YES" : "NO");
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3948 if (mode == priv->ieee->iw_mode)
3951 err = ipw2100_disable_adapter(priv);
3953 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954 priv->net_dev->name, err);
3960 priv->net_dev->type = ARPHRD_ETHER;
3963 priv->net_dev->type = ARPHRD_ETHER;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966 case IW_MODE_MONITOR:
3967 priv->last_mode = priv->ieee->iw_mode;
3968 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3970 #endif /* CONFIG_IPW2100_MONITOR */
3973 priv->ieee->iw_mode = mode;
3976 /* Indicate ipw2100_download_firmware download firmware
3977 * from disk instead of memory. */
3978 ipw2100_firmware.version = 0;
3981 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982 priv->reset_backoff = 0;
3983 schedule_reset(priv);
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3991 struct ipw2100_priv *priv = dev_get_drvdata(d);
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3996 if (priv->status & STATUS_ASSOCIATED)
3997 len += sprintf(buf + len, "connected: %lu\n",
3998 get_seconds() - priv->connect_start);
4000 len += sprintf(buf + len, "not connected\n");
4002 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003 DUMP_VAR(status, "08lx");
4004 DUMP_VAR(config, "08lx");
4005 DUMP_VAR(capability, "08lx");
4008 sprintf(buf + len, "last_rtc: %lu\n",
4009 (unsigned long)priv->last_rtc);
4011 DUMP_VAR(fatal_error, "d");
4012 DUMP_VAR(stop_hang_check, "d");
4013 DUMP_VAR(stop_rf_kill, "d");
4014 DUMP_VAR(messages_sent, "d");
4016 DUMP_VAR(tx_pend_stat.value, "d");
4017 DUMP_VAR(tx_pend_stat.hi, "d");
4019 DUMP_VAR(tx_free_stat.value, "d");
4020 DUMP_VAR(tx_free_stat.lo, "d");
4022 DUMP_VAR(msg_free_stat.value, "d");
4023 DUMP_VAR(msg_free_stat.lo, "d");
4025 DUMP_VAR(msg_pend_stat.value, "d");
4026 DUMP_VAR(msg_pend_stat.hi, "d");
4028 DUMP_VAR(fw_pend_stat.value, "d");
4029 DUMP_VAR(fw_pend_stat.hi, "d");
4031 DUMP_VAR(txq_stat.value, "d");
4032 DUMP_VAR(txq_stat.lo, "d");
4034 DUMP_VAR(ieee->scans, "d");
4035 DUMP_VAR(reset_backoff, "d");
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 char essid[IW_ESSID_MAX_SIZE + 1];
4053 if (priv->status & STATUS_RF_KILL_MASK)
4056 memset(essid, 0, sizeof(essid));
4057 memset(bssid, 0, sizeof(bssid));
4059 length = IW_ESSID_MAX_SIZE;
4060 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4062 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4065 length = sizeof(bssid);
4066 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4069 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4072 length = sizeof(u32);
4073 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4075 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4078 out += sprintf(out, "ESSID: %s\n", essid);
4079 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4080 bssid[0], bssid[1], bssid[2],
4081 bssid[3], bssid[4], bssid[5]);
4082 out += sprintf(out, "Channel: %d\n", chan);
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4092 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4095 static ssize_t store_debug_level(struct device_driver *d,
4096 const char *buf, size_t count)
4098 char *p = (char *)buf;
4101 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4103 if (p[0] == 'x' || p[0] == 'X')
4105 val = simple_strtoul(p, &p, 16);
4107 val = simple_strtoul(p, &p, 10);
4109 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4111 ipw2100_debug_level = val;
4113 return strnlen(buf, count);
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4118 #endif /* CONFIG_IPW2100_DEBUG */
4120 static ssize_t show_fatal_error(struct device *d,
4121 struct device_attribute *attr, char *buf)
4123 struct ipw2100_priv *priv = dev_get_drvdata(d);
4127 if (priv->fatal_error)
4128 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4130 out += sprintf(out, "0\n");
4132 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134 IPW2100_ERROR_QUEUE])
4137 out += sprintf(out, "%d. 0x%08X\n", i,
4138 priv->fatal_errors[(priv->fatal_index - i) %
4139 IPW2100_ERROR_QUEUE]);
4145 static ssize_t store_fatal_error(struct device *d,
4146 struct device_attribute *attr, const char *buf,
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 schedule_reset(priv);
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165 const char *buf, size_t count)
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 struct net_device *dev = priv->net_dev;
4169 char buffer[] = "00000000";
4171 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4175 (void)dev; /* kill unused-var warning for debug-only code */
4177 IPW_DEBUG_INFO("enter\n");
4179 strncpy(buffer, buf, len);
4182 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4184 if (p[0] == 'x' || p[0] == 'X')
4186 val = simple_strtoul(p, &p, 16);
4188 val = simple_strtoul(p, &p, 10);
4190 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4192 priv->ieee->scan_age = val;
4193 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4196 IPW_DEBUG_INFO("exit\n");
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4205 /* 0 - RF kill not enabled
4206 1 - SW based RF kill active (sysfs)
4207 2 - HW based RF kill active
4208 3 - Both HW and SW baed RF kill active */
4209 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211 (rf_kill_active(priv) ? 0x2 : 0x0);
4212 return sprintf(buf, "%i\n", val);
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4217 if ((disable_radio ? 1 : 0) ==
4218 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4221 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4222 disable_radio ? "OFF" : "ON");
4224 mutex_lock(&priv->action_mutex);
4226 if (disable_radio) {
4227 priv->status |= STATUS_RF_KILL_SW;
4230 priv->status &= ~STATUS_RF_KILL_SW;
4231 if (rf_kill_active(priv)) {
4232 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233 "disabled by HW switch\n");
4234 /* Make sure the RF_KILL check timer is running */
4235 priv->stop_rf_kill = 0;
4236 cancel_delayed_work(&priv->rf_kill);
4237 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4240 schedule_reset(priv);
4243 mutex_unlock(&priv->action_mutex);
4247 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4248 const char *buf, size_t count)
4250 struct ipw2100_priv *priv = dev_get_drvdata(d);
4251 ipw_radio_kill_sw(priv, buf[0] == '1');
4255 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4257 static struct attribute *ipw2100_sysfs_entries[] = {
4258 &dev_attr_hardware.attr,
4259 &dev_attr_registers.attr,
4260 &dev_attr_ordinals.attr,
4262 &dev_attr_stats.attr,
4263 &dev_attr_internals.attr,
4264 &dev_attr_bssinfo.attr,
4265 &dev_attr_memory.attr,
4266 &dev_attr_scan_age.attr,
4267 &dev_attr_fatal_error.attr,
4268 &dev_attr_rf_kill.attr,
4270 &dev_attr_status.attr,
4271 &dev_attr_capability.attr,
4275 static struct attribute_group ipw2100_attribute_group = {
4276 .attrs = ipw2100_sysfs_entries,
4279 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4281 struct ipw2100_status_queue *q = &priv->status_queue;
4283 IPW_DEBUG_INFO("enter\n");
4285 q->size = entries * sizeof(struct ipw2100_status);
4287 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4290 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4294 memset(q->drv, 0, q->size);
4296 IPW_DEBUG_INFO("exit\n");
4301 static void status_queue_free(struct ipw2100_priv *priv)
4303 IPW_DEBUG_INFO("enter\n");
4305 if (priv->status_queue.drv) {
4306 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4307 priv->status_queue.drv,
4308 priv->status_queue.nic);
4309 priv->status_queue.drv = NULL;
4312 IPW_DEBUG_INFO("exit\n");
4315 static int bd_queue_allocate(struct ipw2100_priv *priv,
4316 struct ipw2100_bd_queue *q, int entries)
4318 IPW_DEBUG_INFO("enter\n");
4320 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4322 q->entries = entries;
4323 q->size = entries * sizeof(struct ipw2100_bd);
4324 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4327 ("can't allocate shared memory for buffer descriptors\n");
4330 memset(q->drv, 0, q->size);
4332 IPW_DEBUG_INFO("exit\n");
4337 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4339 IPW_DEBUG_INFO("enter\n");
4345 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4349 IPW_DEBUG_INFO("exit\n");
4352 static void bd_queue_initialize(struct ipw2100_priv *priv,
4353 struct ipw2100_bd_queue *q, u32 base, u32 size,
4356 IPW_DEBUG_INFO("enter\n");
4358 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4361 write_register(priv->net_dev, base, q->nic);
4362 write_register(priv->net_dev, size, q->entries);
4363 write_register(priv->net_dev, r, q->oldest);
4364 write_register(priv->net_dev, w, q->next);
4366 IPW_DEBUG_INFO("exit\n");
4369 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4371 if (priv->workqueue) {
4372 priv->stop_rf_kill = 1;
4373 priv->stop_hang_check = 1;
4374 cancel_delayed_work(&priv->reset_work);
4375 cancel_delayed_work(&priv->security_work);
4376 cancel_delayed_work(&priv->wx_event_work);
4377 cancel_delayed_work(&priv->hang_check);
4378 cancel_delayed_work(&priv->rf_kill);
4379 destroy_workqueue(priv->workqueue);
4380 priv->workqueue = NULL;
4384 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4386 int i, j, err = -EINVAL;
4390 IPW_DEBUG_INFO("enter\n");
4392 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4394 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4395 priv->net_dev->name);
4400 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4404 if (!priv->tx_buffers) {
4405 printk(KERN_ERR DRV_NAME
4406 ": %s: alloc failed form tx buffers.\n",
4407 priv->net_dev->name);
4408 bd_queue_free(priv, &priv->tx_queue);
4412 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4413 v = pci_alloc_consistent(priv->pci_dev,
4414 sizeof(struct ipw2100_data_header),
4417 printk(KERN_ERR DRV_NAME
4418 ": %s: PCI alloc failed for tx " "buffers.\n",
4419 priv->net_dev->name);
4424 priv->tx_buffers[i].type = DATA;
4425 priv->tx_buffers[i].info.d_struct.data =
4426 (struct ipw2100_data_header *)v;
4427 priv->tx_buffers[i].info.d_struct.data_phys = p;
4428 priv->tx_buffers[i].info.d_struct.txb = NULL;
4431 if (i == TX_PENDED_QUEUE_LENGTH)
4434 for (j = 0; j < i; j++) {
4435 pci_free_consistent(priv->pci_dev,
4436 sizeof(struct ipw2100_data_header),
4437 priv->tx_buffers[j].info.d_struct.data,
4438 priv->tx_buffers[j].info.d_struct.
4442 kfree(priv->tx_buffers);
4443 priv->tx_buffers = NULL;
4448 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4452 IPW_DEBUG_INFO("enter\n");
4455 * reinitialize packet info lists
4457 INIT_LIST_HEAD(&priv->fw_pend_list);
4458 INIT_STAT(&priv->fw_pend_stat);
4461 * reinitialize lists
4463 INIT_LIST_HEAD(&priv->tx_pend_list);
4464 INIT_LIST_HEAD(&priv->tx_free_list);
4465 INIT_STAT(&priv->tx_pend_stat);
4466 INIT_STAT(&priv->tx_free_stat);
4468 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4469 /* We simply drop any SKBs that have been queued for
4471 if (priv->tx_buffers[i].info.d_struct.txb) {
4472 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4474 priv->tx_buffers[i].info.d_struct.txb = NULL;
4477 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4480 SET_STAT(&priv->tx_free_stat, i);
4482 priv->tx_queue.oldest = 0;
4483 priv->tx_queue.available = priv->tx_queue.entries;
4484 priv->tx_queue.next = 0;
4485 INIT_STAT(&priv->txq_stat);
4486 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4488 bd_queue_initialize(priv, &priv->tx_queue,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4492 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4494 IPW_DEBUG_INFO("exit\n");
4498 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4502 IPW_DEBUG_INFO("enter\n");
4504 bd_queue_free(priv, &priv->tx_queue);
4506 if (!priv->tx_buffers)
4509 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510 if (priv->tx_buffers[i].info.d_struct.txb) {
4511 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4515 if (priv->tx_buffers[i].info.d_struct.data)
4516 pci_free_consistent(priv->pci_dev,
4517 sizeof(struct ipw2100_data_header),
4518 priv->tx_buffers[i].info.d_struct.
4520 priv->tx_buffers[i].info.d_struct.
4524 kfree(priv->tx_buffers);
4525 priv->tx_buffers = NULL;
4527 IPW_DEBUG_INFO("exit\n");
4530 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4532 int i, j, err = -EINVAL;
4534 IPW_DEBUG_INFO("enter\n");
4536 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4538 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4542 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4544 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4545 bd_queue_free(priv, &priv->rx_queue);
4552 priv->rx_buffers = (struct ipw2100_rx_packet *)
4553 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4555 if (!priv->rx_buffers) {
4556 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4558 bd_queue_free(priv, &priv->rx_queue);
4560 status_queue_free(priv);
4565 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4566 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4568 err = ipw2100_alloc_skb(priv, packet);
4569 if (unlikely(err)) {
4574 /* The BD holds the cache aligned address */
4575 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4576 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4577 priv->status_queue.drv[i].status_fields = 0;
4580 if (i == RX_QUEUE_LENGTH)
4583 for (j = 0; j < i; j++) {
4584 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4585 sizeof(struct ipw2100_rx_packet),
4586 PCI_DMA_FROMDEVICE);
4587 dev_kfree_skb(priv->rx_buffers[j].skb);
4590 kfree(priv->rx_buffers);
4591 priv->rx_buffers = NULL;
4593 bd_queue_free(priv, &priv->rx_queue);
4595 status_queue_free(priv);
4600 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4602 IPW_DEBUG_INFO("enter\n");
4604 priv->rx_queue.oldest = 0;
4605 priv->rx_queue.available = priv->rx_queue.entries - 1;
4606 priv->rx_queue.next = priv->rx_queue.entries - 1;
4608 INIT_STAT(&priv->rxq_stat);
4609 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4611 bd_queue_initialize(priv, &priv->rx_queue,
4612 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4613 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4614 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4615 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4617 /* set up the status queue */
4618 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4619 priv->status_queue.nic);
4621 IPW_DEBUG_INFO("exit\n");
4624 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4628 IPW_DEBUG_INFO("enter\n");
4630 bd_queue_free(priv, &priv->rx_queue);
4631 status_queue_free(priv);
4633 if (!priv->rx_buffers)
4636 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4637 if (priv->rx_buffers[i].rxp) {
4638 pci_unmap_single(priv->pci_dev,
4639 priv->rx_buffers[i].dma_addr,
4640 sizeof(struct ipw2100_rx),
4641 PCI_DMA_FROMDEVICE);
4642 dev_kfree_skb(priv->rx_buffers[i].skb);
4646 kfree(priv->rx_buffers);
4647 priv->rx_buffers = NULL;
4649 IPW_DEBUG_INFO("exit\n");
4652 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4654 u32 length = ETH_ALEN;
4659 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4661 IPW_DEBUG_INFO("MAC address read failed\n");
4664 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4665 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4667 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4672 /********************************************************************
4676 ********************************************************************/
4678 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4680 struct host_command cmd = {
4681 .host_command = ADAPTER_ADDRESS,
4682 .host_command_sequence = 0,
4683 .host_command_length = ETH_ALEN
4687 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4689 IPW_DEBUG_INFO("enter\n");
4691 if (priv->config & CFG_CUSTOM_MAC) {
4692 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4693 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4695 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4698 err = ipw2100_hw_send_command(priv, &cmd);
4700 IPW_DEBUG_INFO("exit\n");
4704 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4707 struct host_command cmd = {
4708 .host_command = PORT_TYPE,
4709 .host_command_sequence = 0,
4710 .host_command_length = sizeof(u32)
4714 switch (port_type) {
4716 cmd.host_command_parameters[0] = IPW_BSS;
4719 cmd.host_command_parameters[0] = IPW_IBSS;
4723 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4724 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4727 err = ipw2100_disable_adapter(priv);
4729 printk(KERN_ERR DRV_NAME
4730 ": %s: Could not disable adapter %d\n",
4731 priv->net_dev->name, err);
4736 /* send cmd to firmware */
4737 err = ipw2100_hw_send_command(priv, &cmd);
4740 ipw2100_enable_adapter(priv);
4745 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4748 struct host_command cmd = {
4749 .host_command = CHANNEL,
4750 .host_command_sequence = 0,
4751 .host_command_length = sizeof(u32)
4755 cmd.host_command_parameters[0] = channel;
4757 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4759 /* If BSS then we don't support channel selection */
4760 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4763 if ((channel != 0) &&
4764 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4768 err = ipw2100_disable_adapter(priv);
4773 err = ipw2100_hw_send_command(priv, &cmd);
4775 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4780 priv->config |= CFG_STATIC_CHANNEL;
4782 priv->config &= ~CFG_STATIC_CHANNEL;
4784 priv->channel = channel;
4787 err = ipw2100_enable_adapter(priv);
4795 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4797 struct host_command cmd = {
4798 .host_command = SYSTEM_CONFIG,
4799 .host_command_sequence = 0,
4800 .host_command_length = 12,
4802 u32 ibss_mask, len = sizeof(u32);
4805 /* Set system configuration */
4808 err = ipw2100_disable_adapter(priv);
4813 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4814 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4816 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4817 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4819 if (!(priv->config & CFG_LONG_PREAMBLE))
4820 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4822 err = ipw2100_get_ordinal(priv,
4823 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4826 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4828 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4829 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4832 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4834 err = ipw2100_hw_send_command(priv, &cmd);
4838 /* If IPv6 is configured in the kernel then we don't want to filter out all
4839 * of the multicast packets as IPv6 needs some. */
4840 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4841 cmd.host_command = ADD_MULTICAST;
4842 cmd.host_command_sequence = 0;
4843 cmd.host_command_length = 0;
4845 ipw2100_hw_send_command(priv, &cmd);
4848 err = ipw2100_enable_adapter(priv);
4856 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4859 struct host_command cmd = {
4860 .host_command = BASIC_TX_RATES,
4861 .host_command_sequence = 0,
4862 .host_command_length = 4
4866 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4869 err = ipw2100_disable_adapter(priv);
4874 /* Set BASIC TX Rate first */
4875 ipw2100_hw_send_command(priv, &cmd);
4878 cmd.host_command = TX_RATES;
4879 ipw2100_hw_send_command(priv, &cmd);
4881 /* Set MSDU TX Rate */
4882 cmd.host_command = MSDU_TX_RATES;
4883 ipw2100_hw_send_command(priv, &cmd);
4886 err = ipw2100_enable_adapter(priv);
4891 priv->tx_rates = rate;
4896 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4898 struct host_command cmd = {
4899 .host_command = POWER_MODE,
4900 .host_command_sequence = 0,
4901 .host_command_length = 4
4905 cmd.host_command_parameters[0] = power_level;
4907 err = ipw2100_hw_send_command(priv, &cmd);
4911 if (power_level == IPW_POWER_MODE_CAM)
4912 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4914 priv->power_mode = IPW_POWER_ENABLED | power_level;
4916 #ifdef IPW2100_TX_POWER
4917 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4918 /* Set beacon interval */
4919 cmd.host_command = TX_POWER_INDEX;
4920 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4922 err = ipw2100_hw_send_command(priv, &cmd);
4931 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4933 struct host_command cmd = {
4934 .host_command = RTS_THRESHOLD,
4935 .host_command_sequence = 0,
4936 .host_command_length = 4
4940 if (threshold & RTS_DISABLED)
4941 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4943 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4945 err = ipw2100_hw_send_command(priv, &cmd);
4949 priv->rts_threshold = threshold;
4955 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4956 u32 threshold, int batch_mode)
4958 struct host_command cmd = {
4959 .host_command = FRAG_THRESHOLD,
4960 .host_command_sequence = 0,
4961 .host_command_length = 4,
4962 .host_command_parameters[0] = 0,
4967 err = ipw2100_disable_adapter(priv);
4973 threshold = DEFAULT_FRAG_THRESHOLD;
4975 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4976 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4979 cmd.host_command_parameters[0] = threshold;
4981 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4983 err = ipw2100_hw_send_command(priv, &cmd);
4986 ipw2100_enable_adapter(priv);
4989 priv->frag_threshold = threshold;
4995 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4997 struct host_command cmd = {
4998 .host_command = SHORT_RETRY_LIMIT,
4999 .host_command_sequence = 0,
5000 .host_command_length = 4
5004 cmd.host_command_parameters[0] = retry;
5006 err = ipw2100_hw_send_command(priv, &cmd);
5010 priv->short_retry_limit = retry;
5015 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5017 struct host_command cmd = {
5018 .host_command = LONG_RETRY_LIMIT,
5019 .host_command_sequence = 0,
5020 .host_command_length = 4
5024 cmd.host_command_parameters[0] = retry;
5026 err = ipw2100_hw_send_command(priv, &cmd);
5030 priv->long_retry_limit = retry;
5035 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5038 struct host_command cmd = {
5039 .host_command = MANDATORY_BSSID,
5040 .host_command_sequence = 0,
5041 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5045 #ifdef CONFIG_IPW2100_DEBUG
5047 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5048 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5051 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5053 /* if BSSID is empty then we disable mandatory bssid mode */
5055 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5058 err = ipw2100_disable_adapter(priv);
5063 err = ipw2100_hw_send_command(priv, &cmd);
5066 ipw2100_enable_adapter(priv);
5071 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5073 struct host_command cmd = {
5074 .host_command = DISASSOCIATION_BSSID,
5075 .host_command_sequence = 0,
5076 .host_command_length = ETH_ALEN
5081 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5084 /* The Firmware currently ignores the BSSID and just disassociates from
5085 * the currently associated AP -- but in the off chance that a future
5086 * firmware does use the BSSID provided here, we go ahead and try and
5087 * set it to the currently associated AP's BSSID */
5088 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5090 err = ipw2100_hw_send_command(priv, &cmd);
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5096 struct ipw2100_wpa_assoc_frame *, int)
5097 __attribute__ ((unused));
5099 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5100 struct ipw2100_wpa_assoc_frame *wpa_frame,
5103 struct host_command cmd = {
5104 .host_command = SET_WPA_IE,
5105 .host_command_sequence = 0,
5106 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5110 IPW_DEBUG_HC("SET_WPA_IE\n");
5113 err = ipw2100_disable_adapter(priv);
5118 memcpy(cmd.host_command_parameters, wpa_frame,
5119 sizeof(struct ipw2100_wpa_assoc_frame));
5121 err = ipw2100_hw_send_command(priv, &cmd);
5124 if (ipw2100_enable_adapter(priv))
5131 struct security_info_params {
5132 u32 allowed_ciphers;
5135 u8 replay_counters_number;
5136 u8 unicast_using_group;
5137 } __attribute__ ((packed));
5139 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5142 int unicast_using_group,
5145 struct host_command cmd = {
5146 .host_command = SET_SECURITY_INFORMATION,
5147 .host_command_sequence = 0,
5148 .host_command_length = sizeof(struct security_info_params)
5150 struct security_info_params *security =
5151 (struct security_info_params *)&cmd.host_command_parameters;
5153 memset(security, 0, sizeof(*security));
5155 /* If shared key AP authentication is turned on, then we need to
5156 * configure the firmware to try and use it.
5158 * Actual data encryption/decryption is handled by the host. */
5159 security->auth_mode = auth_mode;
5160 security->unicast_using_group = unicast_using_group;
5162 switch (security_level) {
5165 security->allowed_ciphers = IPW_NONE_CIPHER;
5168 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5175 case SEC_LEVEL_2_CKIP:
5176 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5180 security->allowed_ciphers = IPW_WEP40_CIPHER |
5181 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5186 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5187 security->auth_mode, security->allowed_ciphers, security_level);
5189 security->replay_counters_number = 0;
5192 err = ipw2100_disable_adapter(priv);
5197 err = ipw2100_hw_send_command(priv, &cmd);
5200 ipw2100_enable_adapter(priv);
5205 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5207 struct host_command cmd = {
5208 .host_command = TX_POWER_INDEX,
5209 .host_command_sequence = 0,
5210 .host_command_length = 4
5215 if (tx_power != IPW_TX_POWER_DEFAULT)
5216 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5217 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5219 cmd.host_command_parameters[0] = tmp;
5221 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5222 err = ipw2100_hw_send_command(priv, &cmd);
5224 priv->tx_power = tx_power;
5229 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5230 u32 interval, int batch_mode)
5232 struct host_command cmd = {
5233 .host_command = BEACON_INTERVAL,
5234 .host_command_sequence = 0,
5235 .host_command_length = 4
5239 cmd.host_command_parameters[0] = interval;
5241 IPW_DEBUG_INFO("enter\n");
5243 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5245 err = ipw2100_disable_adapter(priv);
5250 ipw2100_hw_send_command(priv, &cmd);
5253 err = ipw2100_enable_adapter(priv);
5259 IPW_DEBUG_INFO("exit\n");
5264 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5266 ipw2100_tx_initialize(priv);
5267 ipw2100_rx_initialize(priv);
5268 ipw2100_msg_initialize(priv);
5271 void ipw2100_queues_free(struct ipw2100_priv *priv)
5273 ipw2100_tx_free(priv);
5274 ipw2100_rx_free(priv);
5275 ipw2100_msg_free(priv);
5278 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5280 if (ipw2100_tx_allocate(priv) ||
5281 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5287 ipw2100_tx_free(priv);
5288 ipw2100_rx_free(priv);
5289 ipw2100_msg_free(priv);
5293 #define IPW_PRIVACY_CAPABLE 0x0008
5295 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5298 struct host_command cmd = {
5299 .host_command = WEP_FLAGS,
5300 .host_command_sequence = 0,
5301 .host_command_length = 4
5305 cmd.host_command_parameters[0] = flags;
5307 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5310 err = ipw2100_disable_adapter(priv);
5312 printk(KERN_ERR DRV_NAME
5313 ": %s: Could not disable adapter %d\n",
5314 priv->net_dev->name, err);
5319 /* send cmd to firmware */
5320 err = ipw2100_hw_send_command(priv, &cmd);
5323 ipw2100_enable_adapter(priv);
5328 struct ipw2100_wep_key {
5334 /* Macros to ease up priting WEP keys */
5335 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5336 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5337 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5338 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5343 * @priv: struct to work on
5344 * @idx: index of the key we want to set
5345 * @key: ptr to the key data to set
5346 * @len: length of the buffer at @key
5347 * @batch_mode: FIXME perform the operation in batch mode, not
5348 * disabling the device.
5350 * @returns 0 if OK, < 0 errno code on error.
5352 * Fill out a command structure with the new wep key, length an
5353 * index and send it down the wire.
5355 static int ipw2100_set_key(struct ipw2100_priv *priv,
5356 int idx, char *key, int len, int batch_mode)
5358 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5359 struct host_command cmd = {
5360 .host_command = WEP_KEY_INFO,
5361 .host_command_sequence = 0,
5362 .host_command_length = sizeof(struct ipw2100_wep_key),
5364 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5367 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5370 /* NOTE: We don't check cached values in case the firmware was reset
5371 * or some other problem is occurring. If the user is setting the key,
5372 * then we push the change */
5375 wep_key->len = keylen;
5378 memcpy(wep_key->key, key, len);
5379 memset(wep_key->key + len, 0, keylen - len);
5382 /* Will be optimized out on debug not being configured in */
5384 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5385 priv->net_dev->name, wep_key->idx);
5386 else if (keylen == 5)
5387 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5388 priv->net_dev->name, wep_key->idx, wep_key->len,
5389 WEP_STR_64(wep_key->key));
5391 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5393 priv->net_dev->name, wep_key->idx, wep_key->len,
5394 WEP_STR_128(wep_key->key));
5397 err = ipw2100_disable_adapter(priv);
5398 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5400 printk(KERN_ERR DRV_NAME
5401 ": %s: Could not disable adapter %d\n",
5402 priv->net_dev->name, err);
5407 /* send cmd to firmware */
5408 err = ipw2100_hw_send_command(priv, &cmd);
5411 int err2 = ipw2100_enable_adapter(priv);
5418 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5419 int idx, int batch_mode)
5421 struct host_command cmd = {
5422 .host_command = WEP_KEY_INDEX,
5423 .host_command_sequence = 0,
5424 .host_command_length = 4,
5425 .host_command_parameters = {idx},
5429 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5431 if (idx < 0 || idx > 3)
5435 err = ipw2100_disable_adapter(priv);
5437 printk(KERN_ERR DRV_NAME
5438 ": %s: Could not disable adapter %d\n",
5439 priv->net_dev->name, err);
5444 /* send cmd to firmware */
5445 err = ipw2100_hw_send_command(priv, &cmd);
5448 ipw2100_enable_adapter(priv);
5453 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5455 int i, err, auth_mode, sec_level, use_group;
5457 if (!(priv->status & STATUS_RUNNING))
5461 err = ipw2100_disable_adapter(priv);
5466 if (!priv->ieee->sec.enabled) {
5468 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5471 auth_mode = IPW_AUTH_OPEN;
5472 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5473 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5474 auth_mode = IPW_AUTH_SHARED;
5475 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5476 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5479 sec_level = SEC_LEVEL_0;
5480 if (priv->ieee->sec.flags & SEC_LEVEL)
5481 sec_level = priv->ieee->sec.level;
5484 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5485 use_group = priv->ieee->sec.unicast_uses_group;
5488 ipw2100_set_security_information(priv, auth_mode, sec_level,
5495 if (priv->ieee->sec.enabled) {
5496 for (i = 0; i < 4; i++) {
5497 if (!(priv->ieee->sec.flags & (1 << i))) {
5498 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5499 priv->ieee->sec.key_sizes[i] = 0;
5501 err = ipw2100_set_key(priv, i,
5502 priv->ieee->sec.keys[i],
5510 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5513 /* Always enable privacy so the Host can filter WEP packets if
5514 * encrypted data is sent up */
5516 ipw2100_set_wep_flags(priv,
5518 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5522 priv->status &= ~STATUS_SECURITY_UPDATED;
5526 ipw2100_enable_adapter(priv);
5531 static void ipw2100_security_work(struct work_struct *work)
5533 struct ipw2100_priv *priv =
5534 container_of(work, struct ipw2100_priv, security_work.work);
5536 /* If we happen to have reconnected before we get a chance to
5537 * process this, then update the security settings--which causes
5538 * a disassociation to occur */
5539 if (!(priv->status & STATUS_ASSOCIATED) &&
5540 priv->status & STATUS_SECURITY_UPDATED)
5541 ipw2100_configure_security(priv, 0);
5544 static void shim__set_security(struct net_device *dev,
5545 struct ieee80211_security *sec)
5547 struct ipw2100_priv *priv = ieee80211_priv(dev);
5548 int i, force_update = 0;
5550 mutex_lock(&priv->action_mutex);
5551 if (!(priv->status & STATUS_INITIALIZED))
5554 for (i = 0; i < 4; i++) {
5555 if (sec->flags & (1 << i)) {
5556 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5557 if (sec->key_sizes[i] == 0)
5558 priv->ieee->sec.flags &= ~(1 << i);
5560 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5562 if (sec->level == SEC_LEVEL_1) {
5563 priv->ieee->sec.flags |= (1 << i);
5564 priv->status |= STATUS_SECURITY_UPDATED;
5566 priv->ieee->sec.flags &= ~(1 << i);
5570 if ((sec->flags & SEC_ACTIVE_KEY) &&
5571 priv->ieee->sec.active_key != sec->active_key) {
5572 if (sec->active_key <= 3) {
5573 priv->ieee->sec.active_key = sec->active_key;
5574 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5576 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5578 priv->status |= STATUS_SECURITY_UPDATED;
5581 if ((sec->flags & SEC_AUTH_MODE) &&
5582 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5583 priv->ieee->sec.auth_mode = sec->auth_mode;
5584 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5585 priv->status |= STATUS_SECURITY_UPDATED;
5588 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5589 priv->ieee->sec.flags |= SEC_ENABLED;
5590 priv->ieee->sec.enabled = sec->enabled;
5591 priv->status |= STATUS_SECURITY_UPDATED;
5595 if (sec->flags & SEC_ENCRYPT)
5596 priv->ieee->sec.encrypt = sec->encrypt;
5598 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599 priv->ieee->sec.level = sec->level;
5600 priv->ieee->sec.flags |= SEC_LEVEL;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5604 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5615 /* As a temporary work around to enable WPA until we figure out why
5616 * wpa_supplicant toggles the security capability of the driver, which
5617 * forces a disassocation with force_update...
5619 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621 ipw2100_configure_security(priv, 0);
5623 mutex_unlock(&priv->action_mutex);
5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5632 IPW_DEBUG_INFO("enter\n");
5634 err = ipw2100_disable_adapter(priv);
5637 #ifdef CONFIG_IPW2100_MONITOR
5638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5643 IPW_DEBUG_INFO("exit\n");
5647 #endif /* CONFIG_IPW2100_MONITOR */
5649 err = ipw2100_read_mac_address(priv);
5653 err = ipw2100_set_mac_address(priv, batch_mode);
5657 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5661 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5667 err = ipw2100_system_config(priv, batch_mode);
5671 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5675 /* Default to power mode OFF */
5676 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5680 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5684 if (priv->config & CFG_STATIC_BSSID)
5685 bssid = priv->bssid;
5688 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5692 if (priv->config & CFG_STATIC_ESSID)
5693 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5696 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5700 err = ipw2100_configure_security(priv, batch_mode);
5704 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5706 ipw2100_set_ibss_beacon_interval(priv,
5707 priv->beacon_interval,
5712 err = ipw2100_set_tx_power(priv, priv->tx_power);
5718 err = ipw2100_set_fragmentation_threshold(
5719 priv, priv->frag_threshold, batch_mode);
5724 IPW_DEBUG_INFO("exit\n");
5729 /*************************************************************************
5731 * EXTERNALLY CALLED METHODS
5733 *************************************************************************/
5735 /* This method is called by the network layer -- not to be confused with
5736 * ipw2100_set_mac_address() declared above called by this driver (and this
5737 * method as well) to talk to the firmware */
5738 static int ipw2100_set_address(struct net_device *dev, void *p)
5740 struct ipw2100_priv *priv = ieee80211_priv(dev);
5741 struct sockaddr *addr = p;
5744 if (!is_valid_ether_addr(addr->sa_data))
5745 return -EADDRNOTAVAIL;
5747 mutex_lock(&priv->action_mutex);
5749 priv->config |= CFG_CUSTOM_MAC;
5750 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5752 err = ipw2100_set_mac_address(priv, 0);
5756 priv->reset_backoff = 0;
5757 mutex_unlock(&priv->action_mutex);
5758 ipw2100_reset_adapter(&priv->reset_work.work);
5762 mutex_unlock(&priv->action_mutex);
5766 static int ipw2100_open(struct net_device *dev)
5768 struct ipw2100_priv *priv = ieee80211_priv(dev);
5769 unsigned long flags;
5770 IPW_DEBUG_INFO("dev->open\n");
5772 spin_lock_irqsave(&priv->low_lock, flags);
5773 if (priv->status & STATUS_ASSOCIATED) {
5774 netif_carrier_on(dev);
5775 netif_start_queue(dev);
5777 spin_unlock_irqrestore(&priv->low_lock, flags);
5782 static int ipw2100_close(struct net_device *dev)
5784 struct ipw2100_priv *priv = ieee80211_priv(dev);
5785 unsigned long flags;
5786 struct list_head *element;
5787 struct ipw2100_tx_packet *packet;
5789 IPW_DEBUG_INFO("enter\n");
5791 spin_lock_irqsave(&priv->low_lock, flags);
5793 if (priv->status & STATUS_ASSOCIATED)
5794 netif_carrier_off(dev);
5795 netif_stop_queue(dev);
5797 /* Flush the TX queue ... */
5798 while (!list_empty(&priv->tx_pend_list)) {
5799 element = priv->tx_pend_list.next;
5800 packet = list_entry(element, struct ipw2100_tx_packet, list);
5803 DEC_STAT(&priv->tx_pend_stat);
5805 ieee80211_txb_free(packet->info.d_struct.txb);
5806 packet->info.d_struct.txb = NULL;
5808 list_add_tail(element, &priv->tx_free_list);
5809 INC_STAT(&priv->tx_free_stat);
5811 spin_unlock_irqrestore(&priv->low_lock, flags);
5813 IPW_DEBUG_INFO("exit\n");
5819 * TODO: Fix this function... its just wrong
5821 static void ipw2100_tx_timeout(struct net_device *dev)
5823 struct ipw2100_priv *priv = ieee80211_priv(dev);
5825 priv->ieee->stats.tx_errors++;
5827 #ifdef CONFIG_IPW2100_MONITOR
5828 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5832 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5834 schedule_reset(priv);
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5839 /* This is called when wpa_supplicant loads and closes the driver
5841 priv->ieee->wpa_enabled = value;
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5848 struct ieee80211_device *ieee = priv->ieee;
5849 struct ieee80211_security sec = {
5850 .flags = SEC_AUTH_MODE,
5854 if (value & IW_AUTH_ALG_SHARED_KEY) {
5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858 sec.auth_mode = WLAN_AUTH_OPEN;
5860 } else if (value & IW_AUTH_ALG_LEAP) {
5861 sec.auth_mode = WLAN_AUTH_LEAP;
5866 if (ieee->set_security)
5867 ieee->set_security(ieee->dev, &sec);
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875 char *wpa_ie, int wpa_ie_len)
5878 struct ipw2100_wpa_assoc_frame frame;
5880 frame.fixed_ie_mask = 0;
5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884 frame.var_ie_len = wpa_ie_len;
5886 /* make sure WPA is enabled */
5887 ipw2100_wpa_enable(priv, 1);
5888 ipw2100_set_wpa_ie(priv, &frame, 0);
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892 struct ethtool_drvinfo *info)
5894 struct ipw2100_priv *priv = ieee80211_priv(dev);
5895 char fw_ver[64], ucode_ver[64];
5897 strcpy(info->driver, DRV_NAME);
5898 strcpy(info->version, DRV_VERSION);
5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5903 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904 fw_ver, priv->eeprom_version, ucode_ver);
5906 strcpy(info->bus_info, pci_name(priv->pci_dev));
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5911 struct ipw2100_priv *priv = ieee80211_priv(dev);
5912 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5915 static const struct ethtool_ops ipw2100_ethtool_ops = {
5916 .get_link = ipw2100_ethtool_get_link,
5917 .get_drvinfo = ipw_ethtool_get_drvinfo,
5920 static void ipw2100_hang_check(struct work_struct *work)
5922 struct ipw2100_priv *priv =
5923 container_of(work, struct ipw2100_priv, hang_check.work);
5924 unsigned long flags;
5925 u32 rtc = 0xa5a5a5a5;
5926 u32 len = sizeof(rtc);
5929 spin_lock_irqsave(&priv->low_lock, flags);
5931 if (priv->fatal_error != 0) {
5932 /* If fatal_error is set then we need to restart */
5933 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5934 priv->net_dev->name);
5937 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5938 (rtc == priv->last_rtc)) {
5939 /* Check if firmware is hung */
5940 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5941 priv->net_dev->name);
5948 priv->stop_hang_check = 1;
5951 /* Restart the NIC */
5952 schedule_reset(priv);
5955 priv->last_rtc = rtc;
5957 if (!priv->stop_hang_check)
5958 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5960 spin_unlock_irqrestore(&priv->low_lock, flags);
5963 static void ipw2100_rf_kill(struct work_struct *work)
5965 struct ipw2100_priv *priv =
5966 container_of(work, struct ipw2100_priv, rf_kill.work);
5967 unsigned long flags;
5969 spin_lock_irqsave(&priv->low_lock, flags);
5971 if (rf_kill_active(priv)) {
5972 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5973 if (!priv->stop_rf_kill)
5974 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5979 /* RF Kill is now disabled, so bring the device back up */
5981 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5982 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5984 schedule_reset(priv);
5986 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5990 spin_unlock_irqrestore(&priv->low_lock, flags);
5993 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5995 /* Look into using netdev destructor to shutdown ieee80211? */
5997 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5998 void __iomem * base_addr,
5999 unsigned long mem_start,
6000 unsigned long mem_len)
6002 struct ipw2100_priv *priv;
6003 struct net_device *dev;
6005 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6008 priv = ieee80211_priv(dev);
6009 priv->ieee = netdev_priv(dev);
6010 priv->pci_dev = pci_dev;
6011 priv->net_dev = dev;
6013 priv->ieee->hard_start_xmit = ipw2100_tx;
6014 priv->ieee->set_security = shim__set_security;
6016 priv->ieee->perfect_rssi = -20;
6017 priv->ieee->worst_rssi = -85;
6019 dev->open = ipw2100_open;
6020 dev->stop = ipw2100_close;
6021 dev->init = ipw2100_net_init;
6022 dev->ethtool_ops = &ipw2100_ethtool_ops;
6023 dev->tx_timeout = ipw2100_tx_timeout;
6024 dev->wireless_handlers = &ipw2100_wx_handler_def;
6025 priv->wireless_data.ieee80211 = priv->ieee;
6026 dev->wireless_data = &priv->wireless_data;
6027 dev->set_mac_address = ipw2100_set_address;
6028 dev->watchdog_timeo = 3 * HZ;
6031 dev->base_addr = (unsigned long)base_addr;
6032 dev->mem_start = mem_start;
6033 dev->mem_end = dev->mem_start + mem_len - 1;
6035 /* NOTE: We don't use the wireless_handlers hook
6036 * in dev as the system will start throwing WX requests
6037 * to us before we're actually initialized and it just
6038 * ends up causing problems. So, we just handle
6039 * the WX extensions through the ipw2100_ioctl interface */
6041 /* memset() puts everything to 0, so we only have explicitely set
6042 * those values that need to be something else */
6044 /* If power management is turned on, default to AUTO mode */
6045 priv->power_mode = IPW_POWER_AUTO;
6047 #ifdef CONFIG_IPW2100_MONITOR
6048 priv->config |= CFG_CRC_CHECK;
6050 priv->ieee->wpa_enabled = 0;
6051 priv->ieee->drop_unencrypted = 0;
6052 priv->ieee->privacy_invoked = 0;
6053 priv->ieee->ieee802_1x = 1;
6055 /* Set module parameters */
6058 priv->ieee->iw_mode = IW_MODE_ADHOC;
6060 #ifdef CONFIG_IPW2100_MONITOR
6062 priv->ieee->iw_mode = IW_MODE_MONITOR;
6067 priv->ieee->iw_mode = IW_MODE_INFRA;
6072 priv->status |= STATUS_RF_KILL_SW;
6075 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076 priv->config |= CFG_STATIC_CHANNEL;
6077 priv->channel = channel;
6081 priv->config |= CFG_ASSOCIATE;
6083 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088 priv->tx_power = IPW_TX_POWER_DEFAULT;
6089 priv->tx_rates = DEFAULT_TX_RATES;
6091 strcpy(priv->nick, "ipw2100");
6093 spin_lock_init(&priv->low_lock);
6094 mutex_init(&priv->action_mutex);
6095 mutex_init(&priv->adapter_mutex);
6097 init_waitqueue_head(&priv->wait_command_queue);
6099 netif_carrier_off(dev);
6101 INIT_LIST_HEAD(&priv->msg_free_list);
6102 INIT_LIST_HEAD(&priv->msg_pend_list);
6103 INIT_STAT(&priv->msg_free_stat);
6104 INIT_STAT(&priv->msg_pend_stat);
6106 INIT_LIST_HEAD(&priv->tx_free_list);
6107 INIT_LIST_HEAD(&priv->tx_pend_list);
6108 INIT_STAT(&priv->tx_free_stat);
6109 INIT_STAT(&priv->tx_pend_stat);
6111 INIT_LIST_HEAD(&priv->fw_pend_list);
6112 INIT_STAT(&priv->fw_pend_stat);
6114 priv->workqueue = create_workqueue(DRV_NAME);
6116 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6117 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6118 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6119 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6120 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6122 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123 ipw2100_irq_tasklet, (unsigned long)priv);
6125 /* NOTE: We do not start the deferred work for status checks yet */
6126 priv->stop_rf_kill = 1;
6127 priv->stop_hang_check = 1;
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133 const struct pci_device_id *ent)
6135 unsigned long mem_start, mem_len, mem_flags;
6136 void __iomem *base_addr = NULL;
6137 struct net_device *dev = NULL;
6138 struct ipw2100_priv *priv = NULL;
6143 IPW_DEBUG_INFO("enter\n");
6145 mem_start = pci_resource_start(pci_dev, 0);
6146 mem_len = pci_resource_len(pci_dev, 0);
6147 mem_flags = pci_resource_flags(pci_dev, 0);
6149 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6155 base_addr = ioremap_nocache(mem_start, mem_len);
6157 printk(KERN_WARNING DRV_NAME
6158 "Error calling ioremap_nocache.\n");
6163 /* allocate and initialize our net_device */
6164 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling ipw2100_alloc_device.\n");
6172 /* set up PCI mappings for device */
6173 err = pci_enable_device(pci_dev);
6175 printk(KERN_WARNING DRV_NAME
6176 "Error calling pci_enable_device.\n");
6180 priv = ieee80211_priv(dev);
6182 pci_set_master(pci_dev);
6183 pci_set_drvdata(pci_dev, priv);
6185 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_set_dma_mask.\n");
6189 pci_disable_device(pci_dev);
6193 err = pci_request_regions(pci_dev, DRV_NAME);
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling pci_request_regions.\n");
6197 pci_disable_device(pci_dev);
6201 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202 * PCI Tx retries from interfering with C3 CPU state */
6203 pci_read_config_dword(pci_dev, 0x40, &val);
6204 if ((val & 0x0000ff00) != 0)
6205 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6207 pci_set_power_state(pci_dev, PCI_D0);
6209 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210 printk(KERN_WARNING DRV_NAME
6211 "Device not found via register read.\n");
6216 SET_NETDEV_DEV(dev, &pci_dev->dev);
6218 /* Force interrupts to be shut off on the device */
6219 priv->status |= STATUS_INT_ENABLED;
6220 ipw2100_disable_interrupts(priv);
6222 /* Allocate and initialize the Tx/Rx queues and lists */
6223 if (ipw2100_queues_allocate(priv)) {
6224 printk(KERN_WARNING DRV_NAME
6225 "Error calling ipw2100_queues_allocate.\n");
6229 ipw2100_queues_initialize(priv);
6231 err = request_irq(pci_dev->irq,
6232 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6234 printk(KERN_WARNING DRV_NAME
6235 "Error calling request_irq: %d.\n", pci_dev->irq);
6238 dev->irq = pci_dev->irq;
6240 IPW_DEBUG_INFO("Attempting to register device...\n");
6242 SET_MODULE_OWNER(dev);
6244 printk(KERN_INFO DRV_NAME
6245 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247 /* Bring up the interface. Pre 0.46, after we registered the
6248 * network device we would call ipw2100_up. This introduced a race
6249 * condition with newer hotplug configurations (network was coming
6250 * up and making calls before the device was initialized).
6252 * If we called ipw2100_up before we registered the device, then the
6253 * device name wasn't registered. So, we instead use the net_dev->init
6254 * member to call a function that then just turns and calls ipw2100_up.
6255 * net_dev->init is called after name allocation but before the
6256 * notifier chain is called */
6257 err = register_netdev(dev);
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling register_netdev.\n");
6264 mutex_lock(&priv->action_mutex);
6267 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6269 /* perform this after register_netdev so that dev->name is set */
6270 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6274 /* If the RF Kill switch is disabled, go ahead and complete the
6275 * startup sequence */
6276 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6277 /* Enable the adapter - sends HOST_COMPLETE */
6278 if (ipw2100_enable_adapter(priv)) {
6279 printk(KERN_WARNING DRV_NAME
6280 ": %s: failed in call to enable adapter.\n",
6281 priv->net_dev->name);
6282 ipw2100_hw_stop_adapter(priv);
6287 /* Start a scan . . . */
6288 ipw2100_set_scan_options(priv);
6289 ipw2100_start_scan(priv);
6292 IPW_DEBUG_INFO("exit\n");
6294 priv->status |= STATUS_INITIALIZED;
6296 mutex_unlock(&priv->action_mutex);
6301 mutex_unlock(&priv->action_mutex);
6306 unregister_netdev(dev);
6308 ipw2100_hw_stop_adapter(priv);
6310 ipw2100_disable_interrupts(priv);
6313 free_irq(dev->irq, priv);
6315 ipw2100_kill_workqueue(priv);
6317 /* These are safe to call even if they weren't allocated */
6318 ipw2100_queues_free(priv);
6319 sysfs_remove_group(&pci_dev->dev.kobj,
6320 &ipw2100_attribute_group);
6322 free_ieee80211(dev);
6323 pci_set_drvdata(pci_dev, NULL);
6329 pci_release_regions(pci_dev);
6330 pci_disable_device(pci_dev);
6335 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6337 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6338 struct net_device *dev;
6341 mutex_lock(&priv->action_mutex);
6343 priv->status &= ~STATUS_INITIALIZED;
6345 dev = priv->net_dev;
6346 sysfs_remove_group(&pci_dev->dev.kobj,
6347 &ipw2100_attribute_group);
6350 if (ipw2100_firmware.version)
6351 ipw2100_release_firmware(priv, &ipw2100_firmware);
6353 /* Take down the hardware */
6356 /* Release the mutex so that the network subsystem can
6357 * complete any needed calls into the driver... */
6358 mutex_unlock(&priv->action_mutex);
6360 /* Unregister the device first - this results in close()
6361 * being called if the device is open. If we free storage
6362 * first, then close() will crash. */
6363 unregister_netdev(dev);
6365 /* ipw2100_down will ensure that there is no more pending work
6366 * in the workqueue's, so we can safely remove them now. */
6367 ipw2100_kill_workqueue(priv);
6369 ipw2100_queues_free(priv);
6371 /* Free potential debugging firmware snapshot */
6372 ipw2100_snapshot_free(priv);
6375 free_irq(dev->irq, priv);
6378 iounmap((void __iomem *)dev->base_addr);
6380 free_ieee80211(dev);
6383 pci_release_regions(pci_dev);
6384 pci_disable_device(pci_dev);
6386 IPW_DEBUG_INFO("exit\n");
6390 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6392 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6393 struct net_device *dev = priv->net_dev;
6395 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6397 mutex_lock(&priv->action_mutex);
6398 if (priv->status & STATUS_INITIALIZED) {
6399 /* Take down the device; powers it off, etc. */
6403 /* Remove the PRESENT state of the device */
6404 netif_device_detach(dev);
6406 pci_save_state(pci_dev);
6407 pci_disable_device(pci_dev);
6408 pci_set_power_state(pci_dev, PCI_D3hot);
6410 mutex_unlock(&priv->action_mutex);
6415 static int ipw2100_resume(struct pci_dev *pci_dev)
6417 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 struct net_device *dev = priv->net_dev;
6422 if (IPW2100_PM_DISABLED)
6425 mutex_lock(&priv->action_mutex);
6427 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6429 pci_set_power_state(pci_dev, PCI_D0);
6430 err = pci_enable_device(pci_dev);
6432 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6436 pci_restore_state(pci_dev);
6439 * Suspend/Resume resets the PCI configuration space, so we have to
6440 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6441 * from interfering with C3 CPU state. pci_restore_state won't help
6442 * here since it only restores the first 64 bytes pci config header.
6444 pci_read_config_dword(pci_dev, 0x40, &val);
6445 if ((val & 0x0000ff00) != 0)
6446 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6448 /* Set the device back into the PRESENT state; this will also wake
6449 * the queue of needed */
6450 netif_device_attach(dev);
6452 /* Bring the device back up */
6453 if (!(priv->status & STATUS_RF_KILL_SW))
6454 ipw2100_up(priv, 0);
6456 mutex_unlock(&priv->action_mutex);
6462 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6464 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6465 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6466 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6470 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6472 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6476 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6479 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6486 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6493 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6514 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6516 static struct pci_driver ipw2100_pci_driver = {
6518 .id_table = ipw2100_pci_id_table,
6519 .probe = ipw2100_pci_init_one,
6520 .remove = __devexit_p(ipw2100_pci_remove_one),
6522 .suspend = ipw2100_suspend,
6523 .resume = ipw2100_resume,
6528 * Initialize the ipw2100 driver/module
6530 * @returns 0 if ok, < 0 errno node con error.
6532 * Note: we cannot init the /proc stuff until the PCI driver is there,
6533 * or we risk an unlikely race condition on someone accessing
6534 * uninitialized data in the PCI dev struct through /proc.
6536 static int __init ipw2100_init(void)
6540 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6541 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6543 ret = pci_register_driver(&ipw2100_pci_driver);
6547 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6548 #ifdef CONFIG_IPW2100_DEBUG
6549 ipw2100_debug_level = debug;
6550 ret = driver_create_file(&ipw2100_pci_driver.driver,
6551 &driver_attr_debug_level);
6559 * Cleanup ipw2100 driver registration
6561 static void __exit ipw2100_exit(void)
6563 /* FIXME: IPG: check that we have no instances of the devices open */
6564 #ifdef CONFIG_IPW2100_DEBUG
6565 driver_remove_file(&ipw2100_pci_driver.driver,
6566 &driver_attr_debug_level);
6568 pci_unregister_driver(&ipw2100_pci_driver);
6569 remove_acceptable_latency("ipw2100");
6572 module_init(ipw2100_init);
6573 module_exit(ipw2100_exit);
6575 #define WEXT_USECHANNELS 1
6577 static const long ipw2100_frequencies[] = {
6578 2412, 2417, 2422, 2427,
6579 2432, 2437, 2442, 2447,
6580 2452, 2457, 2462, 2467,
6584 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6585 sizeof(ipw2100_frequencies[0]))
6587 static const long ipw2100_rates_11b[] = {
6594 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6596 static int ipw2100_wx_get_name(struct net_device *dev,
6597 struct iw_request_info *info,
6598 union iwreq_data *wrqu, char *extra)
6601 * This can be called at any time. No action lock required
6604 struct ipw2100_priv *priv = ieee80211_priv(dev);
6605 if (!(priv->status & STATUS_ASSOCIATED))
6606 strcpy(wrqu->name, "unassociated");
6608 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6610 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6614 static int ipw2100_wx_set_freq(struct net_device *dev,
6615 struct iw_request_info *info,
6616 union iwreq_data *wrqu, char *extra)
6618 struct ipw2100_priv *priv = ieee80211_priv(dev);
6619 struct iw_freq *fwrq = &wrqu->freq;
6622 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6625 mutex_lock(&priv->action_mutex);
6626 if (!(priv->status & STATUS_INITIALIZED)) {
6631 /* if setting by freq convert to channel */
6633 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6634 int f = fwrq->m / 100000;
6637 while ((c < REG_MAX_CHANNEL) &&
6638 (f != ipw2100_frequencies[c]))
6641 /* hack to fall through */
6647 if (fwrq->e > 0 || fwrq->m > 1000) {
6650 } else { /* Set the channel */
6651 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6652 err = ipw2100_set_channel(priv, fwrq->m, 0);
6656 mutex_unlock(&priv->action_mutex);
6660 static int ipw2100_wx_get_freq(struct net_device *dev,
6661 struct iw_request_info *info,
6662 union iwreq_data *wrqu, char *extra)
6665 * This can be called at any time. No action lock required
6668 struct ipw2100_priv *priv = ieee80211_priv(dev);
6672 /* If we are associated, trying to associate, or have a statically
6673 * configured CHANNEL then return that; otherwise return ANY */
6674 if (priv->config & CFG_STATIC_CHANNEL ||
6675 priv->status & STATUS_ASSOCIATED)
6676 wrqu->freq.m = priv->channel;
6680 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6685 static int ipw2100_wx_set_mode(struct net_device *dev,
6686 struct iw_request_info *info,
6687 union iwreq_data *wrqu, char *extra)
6689 struct ipw2100_priv *priv = ieee80211_priv(dev);
6692 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6694 if (wrqu->mode == priv->ieee->iw_mode)
6697 mutex_lock(&priv->action_mutex);
6698 if (!(priv->status & STATUS_INITIALIZED)) {
6703 switch (wrqu->mode) {
6704 #ifdef CONFIG_IPW2100_MONITOR
6705 case IW_MODE_MONITOR:
6706 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6708 #endif /* CONFIG_IPW2100_MONITOR */
6710 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6715 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6720 mutex_unlock(&priv->action_mutex);
6724 static int ipw2100_wx_get_mode(struct net_device *dev,
6725 struct iw_request_info *info,
6726 union iwreq_data *wrqu, char *extra)
6729 * This can be called at any time. No action lock required
6732 struct ipw2100_priv *priv = ieee80211_priv(dev);
6734 wrqu->mode = priv->ieee->iw_mode;
6735 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6740 #define POWER_MODES 5
6742 /* Values are in microsecond */
6743 static const s32 timeout_duration[POWER_MODES] = {
6751 static const s32 period_duration[POWER_MODES] = {
6759 static int ipw2100_wx_get_range(struct net_device *dev,
6760 struct iw_request_info *info,
6761 union iwreq_data *wrqu, char *extra)
6764 * This can be called at any time. No action lock required
6767 struct ipw2100_priv *priv = ieee80211_priv(dev);
6768 struct iw_range *range = (struct iw_range *)extra;
6772 wrqu->data.length = sizeof(*range);
6773 memset(range, 0, sizeof(*range));
6775 /* Let's try to keep this struct in the same order as in
6776 * linux/include/wireless.h
6779 /* TODO: See what values we can set, and remove the ones we can't
6780 * set, or fill them with some default data.
6783 /* ~5 Mb/s real (802.11b) */
6784 range->throughput = 5 * 1000 * 1000;
6786 // range->sensitivity; /* signal level threshold range */
6788 range->max_qual.qual = 100;
6789 /* TODO: Find real max RSSI and stick here */
6790 range->max_qual.level = 0;
6791 range->max_qual.noise = 0;
6792 range->max_qual.updated = 7; /* Updated all three */
6794 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6795 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6796 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6797 range->avg_qual.noise = 0;
6798 range->avg_qual.updated = 7; /* Updated all three */
6800 range->num_bitrates = RATE_COUNT;
6802 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6803 range->bitrate[i] = ipw2100_rates_11b[i];
6806 range->min_rts = MIN_RTS_THRESHOLD;
6807 range->max_rts = MAX_RTS_THRESHOLD;
6808 range->min_frag = MIN_FRAG_THRESHOLD;
6809 range->max_frag = MAX_FRAG_THRESHOLD;
6811 range->min_pmp = period_duration[0]; /* Minimal PM period */
6812 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6813 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6814 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6816 /* How to decode max/min PM period */
6817 range->pmp_flags = IW_POWER_PERIOD;
6818 /* How to decode max/min PM period */
6819 range->pmt_flags = IW_POWER_TIMEOUT;
6820 /* What PM options are supported */
6821 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6823 range->encoding_size[0] = 5;
6824 range->encoding_size[1] = 13; /* Different token sizes */
6825 range->num_encoding_sizes = 2; /* Number of entry in the list */
6826 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6827 // range->encoding_login_index; /* token index for login token */
6829 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6830 range->txpower_capa = IW_TXPOW_DBM;
6831 range->num_txpower = IW_MAX_TXPOWER;
6832 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6835 ((IPW_TX_POWER_MAX_DBM -
6836 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6837 range->txpower[i] = level / 16;
6839 range->txpower_capa = 0;
6840 range->num_txpower = 0;
6843 /* Set the Wireless Extension versions */
6844 range->we_version_compiled = WIRELESS_EXT;
6845 range->we_version_source = 18;
6847 // range->retry_capa; /* What retry options are supported */
6848 // range->retry_flags; /* How to decode max/min retry limit */
6849 // range->r_time_flags; /* How to decode max/min retry life */
6850 // range->min_retry; /* Minimal number of retries */
6851 // range->max_retry; /* Maximal number of retries */
6852 // range->min_r_time; /* Minimal retry lifetime */
6853 // range->max_r_time; /* Maximal retry lifetime */
6855 range->num_channels = FREQ_COUNT;
6858 for (i = 0; i < FREQ_COUNT; i++) {
6859 // TODO: Include only legal frequencies for some countries
6860 // if (local->channel_mask & (1 << i)) {
6861 range->freq[val].i = i + 1;
6862 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6863 range->freq[val].e = 1;
6866 if (val == IW_MAX_FREQUENCIES)
6869 range->num_frequency = val;
6871 /* Event capability (kernel + driver) */
6872 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6873 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6874 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6876 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6877 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6879 IPW_DEBUG_WX("GET Range\n");
6884 static int ipw2100_wx_set_wap(struct net_device *dev,
6885 struct iw_request_info *info,
6886 union iwreq_data *wrqu, char *extra)
6888 struct ipw2100_priv *priv = ieee80211_priv(dev);
6891 static const unsigned char any[] = {
6892 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6894 static const unsigned char off[] = {
6895 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6899 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6902 mutex_lock(&priv->action_mutex);
6903 if (!(priv->status & STATUS_INITIALIZED)) {
6908 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6909 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6910 /* we disable mandatory BSSID association */
6911 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6912 priv->config &= ~CFG_STATIC_BSSID;
6913 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6917 priv->config |= CFG_STATIC_BSSID;
6918 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6920 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6922 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6923 wrqu->ap_addr.sa_data[0] & 0xff,
6924 wrqu->ap_addr.sa_data[1] & 0xff,
6925 wrqu->ap_addr.sa_data[2] & 0xff,
6926 wrqu->ap_addr.sa_data[3] & 0xff,
6927 wrqu->ap_addr.sa_data[4] & 0xff,
6928 wrqu->ap_addr.sa_data[5] & 0xff);
6931 mutex_unlock(&priv->action_mutex);
6935 static int ipw2100_wx_get_wap(struct net_device *dev,
6936 struct iw_request_info *info,
6937 union iwreq_data *wrqu, char *extra)
6940 * This can be called at any time. No action lock required
6943 struct ipw2100_priv *priv = ieee80211_priv(dev);
6945 /* If we are associated, trying to associate, or have a statically
6946 * configured BSSID then return that; otherwise return ANY */
6947 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6948 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6949 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6951 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6953 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6954 MAC_ARG(wrqu->ap_addr.sa_data));
6958 static int ipw2100_wx_set_essid(struct net_device *dev,
6959 struct iw_request_info *info,
6960 union iwreq_data *wrqu, char *extra)
6962 struct ipw2100_priv *priv = ieee80211_priv(dev);
6963 char *essid = ""; /* ANY */
6967 mutex_lock(&priv->action_mutex);
6968 if (!(priv->status & STATUS_INITIALIZED)) {
6973 if (wrqu->essid.flags && wrqu->essid.length) {
6974 length = wrqu->essid.length;
6979 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6980 priv->config &= ~CFG_STATIC_ESSID;
6981 err = ipw2100_set_essid(priv, NULL, 0, 0);
6985 length = min(length, IW_ESSID_MAX_SIZE);
6987 priv->config |= CFG_STATIC_ESSID;
6989 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6990 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6995 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6998 priv->essid_len = length;
6999 memcpy(priv->essid, essid, priv->essid_len);
7001 err = ipw2100_set_essid(priv, essid, length, 0);
7004 mutex_unlock(&priv->action_mutex);
7008 static int ipw2100_wx_get_essid(struct net_device *dev,
7009 struct iw_request_info *info,
7010 union iwreq_data *wrqu, char *extra)
7013 * This can be called at any time. No action lock required
7016 struct ipw2100_priv *priv = ieee80211_priv(dev);
7018 /* If we are associated, trying to associate, or have a statically
7019 * configured ESSID then return that; otherwise return ANY */
7020 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7021 IPW_DEBUG_WX("Getting essid: '%s'\n",
7022 escape_essid(priv->essid, priv->essid_len));
7023 memcpy(extra, priv->essid, priv->essid_len);
7024 wrqu->essid.length = priv->essid_len;
7025 wrqu->essid.flags = 1; /* active */
7027 IPW_DEBUG_WX("Getting essid: ANY\n");
7028 wrqu->essid.length = 0;
7029 wrqu->essid.flags = 0; /* active */
7035 static int ipw2100_wx_set_nick(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7040 * This can be called at any time. No action lock required
7043 struct ipw2100_priv *priv = ieee80211_priv(dev);
7045 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7048 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7049 memset(priv->nick, 0, sizeof(priv->nick));
7050 memcpy(priv->nick, extra, wrqu->data.length);
7052 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7057 static int ipw2100_wx_get_nick(struct net_device *dev,
7058 struct iw_request_info *info,
7059 union iwreq_data *wrqu, char *extra)
7062 * This can be called at any time. No action lock required
7065 struct ipw2100_priv *priv = ieee80211_priv(dev);
7067 wrqu->data.length = strlen(priv->nick);
7068 memcpy(extra, priv->nick, wrqu->data.length);
7069 wrqu->data.flags = 1; /* active */
7071 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7076 static int ipw2100_wx_set_rate(struct net_device *dev,
7077 struct iw_request_info *info,
7078 union iwreq_data *wrqu, char *extra)
7080 struct ipw2100_priv *priv = ieee80211_priv(dev);
7081 u32 target_rate = wrqu->bitrate.value;
7085 mutex_lock(&priv->action_mutex);
7086 if (!(priv->status & STATUS_INITIALIZED)) {
7093 if (target_rate == 1000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 1000000))
7095 rate |= TX_RATE_1_MBIT;
7096 if (target_rate == 2000000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 2000000))
7098 rate |= TX_RATE_2_MBIT;
7099 if (target_rate == 5500000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 5500000))
7101 rate |= TX_RATE_5_5_MBIT;
7102 if (target_rate == 11000000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 11000000))
7104 rate |= TX_RATE_11_MBIT;
7106 rate = DEFAULT_TX_RATES;
7108 err = ipw2100_set_tx_rates(priv, rate, 0);
7110 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7112 mutex_unlock(&priv->action_mutex);
7116 static int ipw2100_wx_get_rate(struct net_device *dev,
7117 struct iw_request_info *info,
7118 union iwreq_data *wrqu, char *extra)
7120 struct ipw2100_priv *priv = ieee80211_priv(dev);
7122 int len = sizeof(val);
7125 if (!(priv->status & STATUS_ENABLED) ||
7126 priv->status & STATUS_RF_KILL_MASK ||
7127 !(priv->status & STATUS_ASSOCIATED)) {
7128 wrqu->bitrate.value = 0;
7132 mutex_lock(&priv->action_mutex);
7133 if (!(priv->status & STATUS_INITIALIZED)) {
7138 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7140 IPW_DEBUG_WX("failed querying ordinals.\n");
7144 switch (val & TX_RATE_MASK) {
7145 case TX_RATE_1_MBIT:
7146 wrqu->bitrate.value = 1000000;
7148 case TX_RATE_2_MBIT:
7149 wrqu->bitrate.value = 2000000;
7151 case TX_RATE_5_5_MBIT:
7152 wrqu->bitrate.value = 5500000;
7154 case TX_RATE_11_MBIT:
7155 wrqu->bitrate.value = 11000000;
7158 wrqu->bitrate.value = 0;
7161 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7164 mutex_unlock(&priv->action_mutex);
7168 static int ipw2100_wx_set_rts(struct net_device *dev,
7169 struct iw_request_info *info,
7170 union iwreq_data *wrqu, char *extra)
7172 struct ipw2100_priv *priv = ieee80211_priv(dev);
7175 /* Auto RTS not yet supported */
7176 if (wrqu->rts.fixed == 0)
7179 mutex_lock(&priv->action_mutex);
7180 if (!(priv->status & STATUS_INITIALIZED)) {
7185 if (wrqu->rts.disabled)
7186 value = priv->rts_threshold | RTS_DISABLED;
7188 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7192 value = wrqu->rts.value;
7195 err = ipw2100_set_rts_threshold(priv, value);
7197 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7199 mutex_unlock(&priv->action_mutex);
7203 static int ipw2100_wx_get_rts(struct net_device *dev,
7204 struct iw_request_info *info,
7205 union iwreq_data *wrqu, char *extra)
7208 * This can be called at any time. No action lock required
7211 struct ipw2100_priv *priv = ieee80211_priv(dev);
7213 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7214 wrqu->rts.fixed = 1; /* no auto select */
7216 /* If RTS is set to the default value, then it is disabled */
7217 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7219 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7224 static int ipw2100_wx_set_txpow(struct net_device *dev,
7225 struct iw_request_info *info,
7226 union iwreq_data *wrqu, char *extra)
7228 struct ipw2100_priv *priv = ieee80211_priv(dev);
7231 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7232 return -EINPROGRESS;
7234 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7237 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7240 if (wrqu->txpower.fixed == 0)
7241 value = IPW_TX_POWER_DEFAULT;
7243 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7244 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7247 value = wrqu->txpower.value;
7250 mutex_lock(&priv->action_mutex);
7251 if (!(priv->status & STATUS_INITIALIZED)) {
7256 err = ipw2100_set_tx_power(priv, value);
7258 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7261 mutex_unlock(&priv->action_mutex);
7265 static int ipw2100_wx_get_txpow(struct net_device *dev,
7266 struct iw_request_info *info,
7267 union iwreq_data *wrqu, char *extra)
7270 * This can be called at any time. No action lock required
7273 struct ipw2100_priv *priv = ieee80211_priv(dev);
7275 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7277 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7278 wrqu->txpower.fixed = 0;
7279 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7281 wrqu->txpower.fixed = 1;
7282 wrqu->txpower.value = priv->tx_power;
7285 wrqu->txpower.flags = IW_TXPOW_DBM;
7287 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7292 static int ipw2100_wx_set_frag(struct net_device *dev,
7293 struct iw_request_info *info,
7294 union iwreq_data *wrqu, char *extra)
7297 * This can be called at any time. No action lock required
7300 struct ipw2100_priv *priv = ieee80211_priv(dev);
7302 if (!wrqu->frag.fixed)
7305 if (wrqu->frag.disabled) {
7306 priv->frag_threshold |= FRAG_DISABLED;
7307 priv->ieee->fts = DEFAULT_FTS;
7309 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7310 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7313 priv->ieee->fts = wrqu->frag.value & ~0x1;
7314 priv->frag_threshold = priv->ieee->fts;
7317 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7322 static int ipw2100_wx_get_frag(struct net_device *dev,
7323 struct iw_request_info *info,
7324 union iwreq_data *wrqu, char *extra)
7327 * This can be called at any time. No action lock required
7330 struct ipw2100_priv *priv = ieee80211_priv(dev);
7331 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7332 wrqu->frag.fixed = 0; /* no auto select */
7333 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7335 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7340 static int ipw2100_wx_set_retry(struct net_device *dev,
7341 struct iw_request_info *info,
7342 union iwreq_data *wrqu, char *extra)
7344 struct ipw2100_priv *priv = ieee80211_priv(dev);
7347 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7350 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7353 mutex_lock(&priv->action_mutex);
7354 if (!(priv->status & STATUS_INITIALIZED)) {
7359 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7360 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7366 if (wrqu->retry.flags & IW_RETRY_LONG) {
7367 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7373 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7377 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7380 mutex_unlock(&priv->action_mutex);
7384 static int ipw2100_wx_get_retry(struct net_device *dev,
7385 struct iw_request_info *info,
7386 union iwreq_data *wrqu, char *extra)
7389 * This can be called at any time. No action lock required
7392 struct ipw2100_priv *priv = ieee80211_priv(dev);
7394 wrqu->retry.disabled = 0; /* can't be disabled */
7396 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7399 if (wrqu->retry.flags & IW_RETRY_LONG) {
7400 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7401 wrqu->retry.value = priv->long_retry_limit;
7404 (priv->short_retry_limit !=
7405 priv->long_retry_limit) ?
7406 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7408 wrqu->retry.value = priv->short_retry_limit;
7411 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7416 static int ipw2100_wx_set_scan(struct net_device *dev,
7417 struct iw_request_info *info,
7418 union iwreq_data *wrqu, char *extra)
7420 struct ipw2100_priv *priv = ieee80211_priv(dev);
7423 mutex_lock(&priv->action_mutex);
7424 if (!(priv->status & STATUS_INITIALIZED)) {
7429 IPW_DEBUG_WX("Initiating scan...\n");
7430 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7431 IPW_DEBUG_WX("Start scan failed.\n");
7433 /* TODO: Mark a scan as pending so when hardware initialized
7438 mutex_unlock(&priv->action_mutex);
7442 static int ipw2100_wx_get_scan(struct net_device *dev,
7443 struct iw_request_info *info,
7444 union iwreq_data *wrqu, char *extra)
7447 * This can be called at any time. No action lock required
7450 struct ipw2100_priv *priv = ieee80211_priv(dev);
7451 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7455 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7457 static int ipw2100_wx_set_encode(struct net_device *dev,
7458 struct iw_request_info *info,
7459 union iwreq_data *wrqu, char *key)
7462 * No check of STATUS_INITIALIZED required
7465 struct ipw2100_priv *priv = ieee80211_priv(dev);
7466 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7469 static int ipw2100_wx_get_encode(struct net_device *dev,
7470 struct iw_request_info *info,
7471 union iwreq_data *wrqu, char *key)
7474 * This can be called at any time. No action lock required
7477 struct ipw2100_priv *priv = ieee80211_priv(dev);
7478 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7481 static int ipw2100_wx_set_power(struct net_device *dev,
7482 struct iw_request_info *info,
7483 union iwreq_data *wrqu, char *extra)
7485 struct ipw2100_priv *priv = ieee80211_priv(dev);
7488 mutex_lock(&priv->action_mutex);
7489 if (!(priv->status & STATUS_INITIALIZED)) {
7494 if (wrqu->power.disabled) {
7495 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7496 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7497 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7501 switch (wrqu->power.flags & IW_POWER_MODE) {
7502 case IW_POWER_ON: /* If not specified */
7503 case IW_POWER_MODE: /* If set all mask */
7504 case IW_POWER_ALL_R: /* If explicitely state all */
7506 default: /* Otherwise we don't support it */
7507 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7513 /* If the user hasn't specified a power management mode yet, default
7515 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7516 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7518 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7521 mutex_unlock(&priv->action_mutex);
7526 static int ipw2100_wx_get_power(struct net_device *dev,
7527 struct iw_request_info *info,
7528 union iwreq_data *wrqu, char *extra)
7531 * This can be called at any time. No action lock required
7534 struct ipw2100_priv *priv = ieee80211_priv(dev);
7536 if (!(priv->power_mode & IPW_POWER_ENABLED))
7537 wrqu->power.disabled = 1;
7539 wrqu->power.disabled = 0;
7540 wrqu->power.flags = 0;
7543 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7553 static int ipw2100_wx_set_genie(struct net_device *dev,
7554 struct iw_request_info *info,
7555 union iwreq_data *wrqu, char *extra)
7558 struct ipw2100_priv *priv = ieee80211_priv(dev);
7559 struct ieee80211_device *ieee = priv->ieee;
7562 if (!ieee->wpa_enabled)
7565 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7566 (wrqu->data.length && extra == NULL))
7569 if (wrqu->data.length) {
7570 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7574 kfree(ieee->wpa_ie);
7576 ieee->wpa_ie_len = wrqu->data.length;
7578 kfree(ieee->wpa_ie);
7579 ieee->wpa_ie = NULL;
7580 ieee->wpa_ie_len = 0;
7583 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7589 static int ipw2100_wx_get_genie(struct net_device *dev,
7590 struct iw_request_info *info,
7591 union iwreq_data *wrqu, char *extra)
7593 struct ipw2100_priv *priv = ieee80211_priv(dev);
7594 struct ieee80211_device *ieee = priv->ieee;
7596 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7597 wrqu->data.length = 0;
7601 if (wrqu->data.length < ieee->wpa_ie_len)
7604 wrqu->data.length = ieee->wpa_ie_len;
7605 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7611 static int ipw2100_wx_set_auth(struct net_device *dev,
7612 struct iw_request_info *info,
7613 union iwreq_data *wrqu, char *extra)
7615 struct ipw2100_priv *priv = ieee80211_priv(dev);
7616 struct ieee80211_device *ieee = priv->ieee;
7617 struct iw_param *param = &wrqu->param;
7618 struct ieee80211_crypt_data *crypt;
7619 unsigned long flags;
7622 switch (param->flags & IW_AUTH_INDEX) {
7623 case IW_AUTH_WPA_VERSION:
7624 case IW_AUTH_CIPHER_PAIRWISE:
7625 case IW_AUTH_CIPHER_GROUP:
7626 case IW_AUTH_KEY_MGMT:
7628 * ipw2200 does not use these parameters
7632 case IW_AUTH_TKIP_COUNTERMEASURES:
7633 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7634 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7637 flags = crypt->ops->get_flags(crypt->priv);
7640 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7642 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7644 crypt->ops->set_flags(flags, crypt->priv);
7648 case IW_AUTH_DROP_UNENCRYPTED:{
7651 * wpa_supplicant calls set_wpa_enabled when the driver
7652 * is loaded and unloaded, regardless of if WPA is being
7653 * used. No other calls are made which can be used to
7654 * determine if encryption will be used or not prior to
7655 * association being expected. If encryption is not being
7656 * used, drop_unencrypted is set to false, else true -- we
7657 * can use this to determine if the CAP_PRIVACY_ON bit should
7660 struct ieee80211_security sec = {
7661 .flags = SEC_ENABLED,
7662 .enabled = param->value,
7664 priv->ieee->drop_unencrypted = param->value;
7665 /* We only change SEC_LEVEL for open mode. Others
7666 * are set by ipw_wpa_set_encryption.
7668 if (!param->value) {
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_0;
7672 sec.flags |= SEC_LEVEL;
7673 sec.level = SEC_LEVEL_1;
7675 if (priv->ieee->set_security)
7676 priv->ieee->set_security(priv->ieee->dev, &sec);
7680 case IW_AUTH_80211_AUTH_ALG:
7681 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7684 case IW_AUTH_WPA_ENABLED:
7685 ret = ipw2100_wpa_enable(priv, param->value);
7688 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7689 ieee->ieee802_1x = param->value;
7692 //case IW_AUTH_ROAMING_CONTROL:
7693 case IW_AUTH_PRIVACY_INVOKED:
7694 ieee->privacy_invoked = param->value;
7704 static int ipw2100_wx_get_auth(struct net_device *dev,
7705 struct iw_request_info *info,
7706 union iwreq_data *wrqu, char *extra)
7708 struct ipw2100_priv *priv = ieee80211_priv(dev);
7709 struct ieee80211_device *ieee = priv->ieee;
7710 struct ieee80211_crypt_data *crypt;
7711 struct iw_param *param = &wrqu->param;
7714 switch (param->flags & IW_AUTH_INDEX) {
7715 case IW_AUTH_WPA_VERSION:
7716 case IW_AUTH_CIPHER_PAIRWISE:
7717 case IW_AUTH_CIPHER_GROUP:
7718 case IW_AUTH_KEY_MGMT:
7720 * wpa_supplicant will control these internally
7725 case IW_AUTH_TKIP_COUNTERMEASURES:
7726 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7727 if (!crypt || !crypt->ops->get_flags) {
7728 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7729 "crypt not set!\n");
7733 param->value = (crypt->ops->get_flags(crypt->priv) &
7734 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7738 case IW_AUTH_DROP_UNENCRYPTED:
7739 param->value = ieee->drop_unencrypted;
7742 case IW_AUTH_80211_AUTH_ALG:
7743 param->value = priv->ieee->sec.auth_mode;
7746 case IW_AUTH_WPA_ENABLED:
7747 param->value = ieee->wpa_enabled;
7750 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7751 param->value = ieee->ieee802_1x;
7754 case IW_AUTH_ROAMING_CONTROL:
7755 case IW_AUTH_PRIVACY_INVOKED:
7756 param->value = ieee->privacy_invoked;
7765 /* SIOCSIWENCODEEXT */
7766 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7767 struct iw_request_info *info,
7768 union iwreq_data *wrqu, char *extra)
7770 struct ipw2100_priv *priv = ieee80211_priv(dev);
7771 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7774 /* SIOCGIWENCODEEXT */
7775 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7779 struct ipw2100_priv *priv = ieee80211_priv(dev);
7780 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7784 static int ipw2100_wx_set_mlme(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7788 struct ipw2100_priv *priv = ieee80211_priv(dev);
7789 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7792 reason = cpu_to_le16(mlme->reason_code);
7794 switch (mlme->cmd) {
7795 case IW_MLME_DEAUTH:
7799 case IW_MLME_DISASSOC:
7800 ipw2100_disassociate_bssid(priv);
7814 #ifdef CONFIG_IPW2100_MONITOR
7815 static int ipw2100_wx_set_promisc(struct net_device *dev,
7816 struct iw_request_info *info,
7817 union iwreq_data *wrqu, char *extra)
7819 struct ipw2100_priv *priv = ieee80211_priv(dev);
7820 int *parms = (int *)extra;
7821 int enable = (parms[0] > 0);
7824 mutex_lock(&priv->action_mutex);
7825 if (!(priv->status & STATUS_INITIALIZED)) {
7831 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7832 err = ipw2100_set_channel(priv, parms[1], 0);
7835 priv->channel = parms[1];
7836 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7838 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7839 err = ipw2100_switch_mode(priv, priv->last_mode);
7842 mutex_unlock(&priv->action_mutex);
7846 static int ipw2100_wx_reset(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7850 struct ipw2100_priv *priv = ieee80211_priv(dev);
7851 if (priv->status & STATUS_INITIALIZED)
7852 schedule_reset(priv);
7858 static int ipw2100_wx_set_powermode(struct net_device *dev,
7859 struct iw_request_info *info,
7860 union iwreq_data *wrqu, char *extra)
7862 struct ipw2100_priv *priv = ieee80211_priv(dev);
7863 int err = 0, mode = *(int *)extra;
7865 mutex_lock(&priv->action_mutex);
7866 if (!(priv->status & STATUS_INITIALIZED)) {
7871 if ((mode < 1) || (mode > POWER_MODES))
7872 mode = IPW_POWER_AUTO;
7874 if (priv->power_mode != mode)
7875 err = ipw2100_set_power_mode(priv, mode);
7877 mutex_unlock(&priv->action_mutex);
7881 #define MAX_POWER_STRING 80
7882 static int ipw2100_wx_get_powermode(struct net_device *dev,
7883 struct iw_request_info *info,
7884 union iwreq_data *wrqu, char *extra)
7887 * This can be called at any time. No action lock required
7890 struct ipw2100_priv *priv = ieee80211_priv(dev);
7891 int level = IPW_POWER_LEVEL(priv->power_mode);
7892 s32 timeout, period;
7894 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7895 snprintf(extra, MAX_POWER_STRING,
7896 "Power save level: %d (Off)", level);
7899 case IPW_POWER_MODE_CAM:
7900 snprintf(extra, MAX_POWER_STRING,
7901 "Power save level: %d (None)", level);
7903 case IPW_POWER_AUTO:
7904 snprintf(extra, MAX_POWER_STRING,
7905 "Power save level: %d (Auto)", 0);
7908 timeout = timeout_duration[level - 1] / 1000;
7909 period = period_duration[level - 1] / 1000;
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d "
7912 "(Timeout %dms, Period %dms)",
7913 level, timeout, period);
7917 wrqu->data.length = strlen(extra) + 1;
7922 static int ipw2100_wx_set_preamble(struct net_device *dev,
7923 struct iw_request_info *info,
7924 union iwreq_data *wrqu, char *extra)
7926 struct ipw2100_priv *priv = ieee80211_priv(dev);
7927 int err, mode = *(int *)extra;
7929 mutex_lock(&priv->action_mutex);
7930 if (!(priv->status & STATUS_INITIALIZED)) {
7936 priv->config |= CFG_LONG_PREAMBLE;
7938 priv->config &= ~CFG_LONG_PREAMBLE;
7944 err = ipw2100_system_config(priv, 0);
7947 mutex_unlock(&priv->action_mutex);
7951 static int ipw2100_wx_get_preamble(struct net_device *dev,
7952 struct iw_request_info *info,
7953 union iwreq_data *wrqu, char *extra)
7956 * This can be called at any time. No action lock required
7959 struct ipw2100_priv *priv = ieee80211_priv(dev);
7961 if (priv->config & CFG_LONG_PREAMBLE)
7962 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7964 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7969 #ifdef CONFIG_IPW2100_MONITOR
7970 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7971 struct iw_request_info *info,
7972 union iwreq_data *wrqu, char *extra)
7974 struct ipw2100_priv *priv = ieee80211_priv(dev);
7975 int err, mode = *(int *)extra;
7977 mutex_lock(&priv->action_mutex);
7978 if (!(priv->status & STATUS_INITIALIZED)) {
7984 priv->config |= CFG_CRC_CHECK;
7986 priv->config &= ~CFG_CRC_CHECK;
7994 mutex_unlock(&priv->action_mutex);
7998 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7999 struct iw_request_info *info,
8000 union iwreq_data *wrqu, char *extra)
8003 * This can be called at any time. No action lock required
8006 struct ipw2100_priv *priv = ieee80211_priv(dev);
8008 if (priv->config & CFG_CRC_CHECK)
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8011 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8015 #endif /* CONFIG_IPW2100_MONITOR */
8017 static iw_handler ipw2100_wx_handlers[] = {
8018 NULL, /* SIOCSIWCOMMIT */
8019 ipw2100_wx_get_name, /* SIOCGIWNAME */
8020 NULL, /* SIOCSIWNWID */
8021 NULL, /* SIOCGIWNWID */
8022 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8023 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8024 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8025 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8026 NULL, /* SIOCSIWSENS */
8027 NULL, /* SIOCGIWSENS */
8028 NULL, /* SIOCSIWRANGE */
8029 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8030 NULL, /* SIOCSIWPRIV */
8031 NULL, /* SIOCGIWPRIV */
8032 NULL, /* SIOCSIWSTATS */
8033 NULL, /* SIOCGIWSTATS */
8034 NULL, /* SIOCSIWSPY */
8035 NULL, /* SIOCGIWSPY */
8036 NULL, /* SIOCGIWTHRSPY */
8037 NULL, /* SIOCWIWTHRSPY */
8038 ipw2100_wx_set_wap, /* SIOCSIWAP */
8039 ipw2100_wx_get_wap, /* SIOCGIWAP */
8040 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8041 NULL, /* SIOCGIWAPLIST -- deprecated */
8042 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8043 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8044 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8045 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8046 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8047 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8048 NULL, /* -- hole -- */
8049 NULL, /* -- hole -- */
8050 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8051 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8052 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8053 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8054 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8055 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8056 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8057 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8058 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8059 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8060 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8061 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8062 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8063 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8064 NULL, /* -- hole -- */
8065 NULL, /* -- hole -- */
8066 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8067 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8068 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8069 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8070 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8071 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8072 NULL, /* SIOCSIWPMKSA */
8075 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8076 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8077 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8078 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8079 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8080 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8081 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8082 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8084 static const struct iw_priv_args ipw2100_private_args[] = {
8086 #ifdef CONFIG_IPW2100_MONITOR
8088 IPW2100_PRIV_SET_MONITOR,
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8093 #endif /* CONFIG_IPW2100_MONITOR */
8096 IPW2100_PRIV_SET_POWER,
8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8099 IPW2100_PRIV_GET_POWER,
8100 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103 IPW2100_PRIV_SET_LONGPREAMBLE,
8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8106 IPW2100_PRIV_GET_LONGPREAMBLE,
8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8108 #ifdef CONFIG_IPW2100_MONITOR
8110 IPW2100_PRIV_SET_CRC_CHECK,
8111 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8113 IPW2100_PRIV_GET_CRC_CHECK,
8114 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8115 #endif /* CONFIG_IPW2100_MONITOR */
8118 static iw_handler ipw2100_private_handler[] = {
8119 #ifdef CONFIG_IPW2100_MONITOR
8120 ipw2100_wx_set_promisc,
8122 #else /* CONFIG_IPW2100_MONITOR */
8125 #endif /* CONFIG_IPW2100_MONITOR */
8126 ipw2100_wx_set_powermode,
8127 ipw2100_wx_get_powermode,
8128 ipw2100_wx_set_preamble,
8129 ipw2100_wx_get_preamble,
8130 #ifdef CONFIG_IPW2100_MONITOR
8131 ipw2100_wx_set_crc_check,
8132 ipw2100_wx_get_crc_check,
8133 #else /* CONFIG_IPW2100_MONITOR */
8136 #endif /* CONFIG_IPW2100_MONITOR */
8140 * Get wireless statistics.
8141 * Called by /proc/net/wireless
8142 * Also called by SIOCGIWSTATS
8144 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8158 struct ipw2100_priv *priv = ieee80211_priv(dev);
8159 struct iw_statistics *wstats;
8160 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8161 u32 ord_len = sizeof(u32);
8164 return (struct iw_statistics *)NULL;
8166 wstats = &priv->wstats;
8168 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8169 * ipw2100_wx_wireless_stats seems to be called before fw is
8170 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8171 * and associated; if not associcated, the values are all meaningless
8172 * anyway, so set them all to NULL and INVALID */
8173 if (!(priv->status & STATUS_ASSOCIATED)) {
8174 wstats->miss.beacon = 0;
8175 wstats->discard.retries = 0;
8176 wstats->qual.qual = 0;
8177 wstats->qual.level = 0;
8178 wstats->qual.noise = 0;
8179 wstats->qual.updated = 7;
8180 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8181 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8185 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8186 &missed_beacons, &ord_len))
8187 goto fail_get_ordinal;
8189 /* If we don't have a connection the quality and level is 0 */
8190 if (!(priv->status & STATUS_ASSOCIATED)) {
8191 wstats->qual.qual = 0;
8192 wstats->qual.level = 0;
8194 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8196 goto fail_get_ordinal;
8197 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8199 rssi_qual = rssi * POOR / 10;
8201 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8203 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8205 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8208 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8211 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8212 &tx_retries, &ord_len))
8213 goto fail_get_ordinal;
8215 if (tx_retries > 75)
8216 tx_qual = (90 - tx_retries) * POOR / 15;
8217 else if (tx_retries > 70)
8218 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8219 else if (tx_retries > 65)
8220 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8221 else if (tx_retries > 50)
8222 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8225 tx_qual = (50 - tx_retries) *
8226 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8228 if (missed_beacons > 50)
8229 beacon_qual = (60 - missed_beacons) * POOR / 10;
8230 else if (missed_beacons > 40)
8231 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8233 else if (missed_beacons > 32)
8234 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8236 else if (missed_beacons > 20)
8237 beacon_qual = (32 - missed_beacons) *
8238 (VERY_GOOD - GOOD) / 20 + GOOD;
8240 beacon_qual = (20 - missed_beacons) *
8241 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8243 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8245 #ifdef CONFIG_IPW2100_DEBUG
8246 if (beacon_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8248 else if (tx_qual == quality)
8249 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8250 else if (quality != 100)
8251 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8253 IPW_DEBUG_WX("Quality not clamped.\n");
8256 wstats->qual.qual = quality;
8257 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8260 wstats->qual.noise = 0;
8261 wstats->qual.updated = 7;
8262 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8264 /* FIXME: this is percent and not a # */
8265 wstats->miss.beacon = missed_beacons;
8267 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8268 &tx_failures, &ord_len))
8269 goto fail_get_ordinal;
8270 wstats->discard.retries = tx_failures;
8275 IPW_DEBUG_WX("failed querying ordinals.\n");
8277 return (struct iw_statistics *)NULL;
8280 static struct iw_handler_def ipw2100_wx_handler_def = {
8281 .standard = ipw2100_wx_handlers,
8282 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8283 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8284 .num_private_args = sizeof(ipw2100_private_args) /
8285 sizeof(struct iw_priv_args),
8286 .private = (iw_handler *) ipw2100_private_handler,
8287 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8288 .get_wireless_stats = ipw2100_wx_wireless_stats,
8291 static void ipw2100_wx_event_work(struct work_struct *work)
8293 struct ipw2100_priv *priv =
8294 container_of(work, struct ipw2100_priv, wx_event_work.work);
8295 union iwreq_data wrqu;
8298 if (priv->status & STATUS_STOPPING)
8301 mutex_lock(&priv->action_mutex);
8303 IPW_DEBUG_WX("enter\n");
8305 mutex_unlock(&priv->action_mutex);
8307 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8309 /* Fetch BSSID from the hardware */
8310 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311 priv->status & STATUS_RF_KILL_MASK ||
8312 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313 &priv->bssid, &len)) {
8314 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8316 /* We now have the BSSID, so can finish setting to the full
8317 * associated state */
8318 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320 priv->status &= ~STATUS_ASSOCIATING;
8321 priv->status |= STATUS_ASSOCIATED;
8322 netif_carrier_on(priv->net_dev);
8323 netif_wake_queue(priv->net_dev);
8326 if (!(priv->status & STATUS_ASSOCIATED)) {
8327 IPW_DEBUG_WX("Configuring ESSID\n");
8328 mutex_lock(&priv->action_mutex);
8329 /* This is a disassociation event, so kick the firmware to
8330 * look for another AP */
8331 if (priv->config & CFG_STATIC_ESSID)
8332 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8335 ipw2100_set_essid(priv, NULL, 0, 0);
8336 mutex_unlock(&priv->action_mutex);
8339 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349 IPW2100_FW_MAJOR_VERSION)
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8358 BINARY FIRMWARE HEADER FORMAT
8362 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8365 C fw_len firmware data
8366 12 + fw_len uc_len microcode data
8370 struct ipw2100_fw_header {
8373 unsigned int fw_size;
8374 unsigned int uc_size;
8375 } __attribute__ ((packed));
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8379 struct ipw2100_fw_header *h =
8380 (struct ipw2100_fw_header *)fw->fw_entry->data;
8382 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384 "(detected version id of %u). "
8385 "See Documentation/networking/README.ipw2100\n",
8390 fw->version = h->version;
8391 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392 fw->fw.size = h->fw_size;
8393 fw->uc.data = fw->fw.data + h->fw_size;
8394 fw->uc.size = h->uc_size;
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400 struct ipw2100_fw *fw)
8405 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406 priv->net_dev->name);
8408 switch (priv->ieee->iw_mode) {
8410 fw_name = IPW2100_FW_NAME("-i");
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 case IW_MODE_MONITOR:
8414 fw_name = IPW2100_FW_NAME("-p");
8419 fw_name = IPW2100_FW_NAME("");
8423 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8426 printk(KERN_ERR DRV_NAME ": "
8427 "%s: Firmware '%s' not available or load failed.\n",
8428 priv->net_dev->name, fw_name);
8431 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432 fw->fw_entry->size);
8434 ipw2100_mod_firmware_load(fw);
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8444 release_firmware(fw->fw_entry);
8445 fw->fw_entry = NULL;
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8451 char ver[MAX_FW_VERSION_LEN];
8452 u32 len = MAX_FW_VERSION_LEN;
8455 /* firmware version is an ascii string (max len of 14) */
8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8461 for (i = 0; i < len; i++)
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8471 u32 len = sizeof(ver);
8472 /* microcode version is a 32 bit integer */
8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8475 return snprintf(buf, max, "%08X", ver);
8479 * On exit, the firmware will have been freed from the fw list
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8483 /* firmware is constructed of N contiguous entries, each entry is
8487 * 0 4 address to write to
8488 * 4 2 length of data run
8494 const unsigned char *firmware_data = fw->fw.data;
8495 unsigned int firmware_data_left = fw->fw.size;
8497 while (firmware_data_left > 0) {
8498 addr = *(u32 *) (firmware_data);
8500 firmware_data_left -= 4;
8502 len = *(u16 *) (firmware_data);
8504 firmware_data_left -= 2;
8507 printk(KERN_ERR DRV_NAME ": "
8508 "Invalid firmware run-length of %d bytes\n",
8513 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514 firmware_data += len;
8515 firmware_data_left -= len;
8521 struct symbol_alive_response {
8530 u16 clock_settle_time; // 1us LSB
8531 u16 powerup_settle_time; // 1us LSB
8532 u16 hop_settle_time; // 1us LSB
8533 u8 date[3]; // month, day, year
8534 u8 time[2]; // hours, minutes
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539 struct ipw2100_fw *fw)
8541 struct net_device *dev = priv->net_dev;
8542 const unsigned char *microcode_data = fw->uc.data;
8543 unsigned int microcode_data_left = fw->uc.size;
8544 void __iomem *reg = (void __iomem *)dev->base_addr;
8546 struct symbol_alive_response response;
8550 /* Symbol control */
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8562 /* EN_CS_ACCESS bit to reset control store pointer */
8563 write_nic_byte(dev, 0x210000, 0x40);
8565 write_nic_byte(dev, 0x210000, 0x0);
8567 write_nic_byte(dev, 0x210000, 0x40);
8570 /* copy microcode from buffer into Symbol */
8572 while (microcode_data_left > 0) {
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 microcode_data_left -= 2;
8578 /* EN_CS_ACCESS bit to reset the control store pointer */
8579 write_nic_byte(dev, 0x210000, 0x0);
8582 /* Enable System (Reg 0)
8583 * first enable causes garbage in RX FIFO */
8584 write_nic_byte(dev, 0x210000, 0x0);
8586 write_nic_byte(dev, 0x210000, 0x80);
8589 /* Reset External Baseband Reg */
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8595 /* HW Config (Reg 5) */
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8601 /* Enable System (Reg 0)
8602 * second enable should be OK */
8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8607 /* check Symbol is enabled - upped this from 5 as it wasn't always
8608 * catching the update */
8609 for (i = 0; i < 10; i++) {
8612 /* check Dino is enabled bit */
8613 read_nic_byte(dev, 0x210000, &data);
8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8624 /* Get Symbol alive response */
8625 for (i = 0; i < 30; i++) {
8626 /* Read alive response structure */
8628 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8637 printk(KERN_ERR DRV_NAME
8638 ": %s: No response from Symbol - hw not alive\n",
8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));