Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772                                            round_jiffies(HZ));
1773                 }
1774
1775                 deferred = 1;
1776         }
1777
1778         /* Turn on the interrupt so that commands can be processed */
1779         ipw2100_enable_interrupts(priv);
1780
1781         /* Send all of the commands that must be sent prior to
1782          * HOST_COMPLETE */
1783         if (ipw2100_adapter_setup(priv)) {
1784                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         if (!deferred) {
1791                 /* Enable the adapter - sends HOST_COMPLETE */
1792                 if (ipw2100_enable_adapter(priv)) {
1793                         printk(KERN_ERR DRV_NAME ": "
1794                                "%s: failed in call to enable adapter.\n",
1795                                priv->net_dev->name);
1796                         ipw2100_hw_stop_adapter(priv);
1797                         rc = 1;
1798                         goto exit;
1799                 }
1800
1801                 /* Start a scan . . . */
1802                 ipw2100_set_scan_options(priv);
1803                 ipw2100_start_scan(priv);
1804         }
1805
1806       exit:
1807         return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813         struct ipw2100_priv *priv = ieee80211_priv(dev);
1814         return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819         unsigned long flags;
1820         union iwreq_data wrqu = {
1821                 .ap_addr = {
1822                             .sa_family = ARPHRD_ETHER}
1823         };
1824         int associated = priv->status & STATUS_ASSOCIATED;
1825
1826         /* Kill the RF switch timer */
1827         if (!priv->stop_rf_kill) {
1828                 priv->stop_rf_kill = 1;
1829                 cancel_delayed_work(&priv->rf_kill);
1830         }
1831
1832         /* Kill the firmare hang check timer */
1833         if (!priv->stop_hang_check) {
1834                 priv->stop_hang_check = 1;
1835                 cancel_delayed_work(&priv->hang_check);
1836         }
1837
1838         /* Kill any pending resets */
1839         if (priv->status & STATUS_RESET_PENDING)
1840                 cancel_delayed_work(&priv->reset_work);
1841
1842         /* Make sure the interrupt is on so that FW commands will be
1843          * processed correctly */
1844         spin_lock_irqsave(&priv->low_lock, flags);
1845         ipw2100_enable_interrupts(priv);
1846         spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848         if (ipw2100_hw_stop_adapter(priv))
1849                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850                        priv->net_dev->name);
1851
1852         /* Do not disable the interrupt until _after_ we disable
1853          * the adaptor.  Otherwise the CARD_DISABLE command will never
1854          * be ack'd by the firmware */
1855         spin_lock_irqsave(&priv->low_lock, flags);
1856         ipw2100_disable_interrupts(priv);
1857         spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862         if (priv->config & CFG_C3_DISABLED) {
1863                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864                 acpi_set_cstate_limit(priv->cstate_limit);
1865                 priv->config &= ~CFG_C3_DISABLED;
1866         }
1867 #endif
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret, len, essid_len;
1920         char essid[IW_ESSID_MAX_SIZE];
1921         u32 txrate;
1922         u32 chan;
1923         char *txratename;
1924         u8 bssid[ETH_ALEN];
1925
1926         /*
1927          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1928          *      an actual MAC of the AP. Seems like FW sets this
1929          *      address too late. Read it later and expose through
1930          *      /proc or schedule a later task to query and update
1931          */
1932
1933         essid_len = IW_ESSID_MAX_SIZE;
1934         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1935                                   essid, &essid_len);
1936         if (ret) {
1937                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1938                                __LINE__);
1939                 return;
1940         }
1941
1942         len = sizeof(u32);
1943         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1944         if (ret) {
1945                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1946                                __LINE__);
1947                 return;
1948         }
1949
1950         len = sizeof(u32);
1951         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1952         if (ret) {
1953                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954                                __LINE__);
1955                 return;
1956         }
1957         len = ETH_ALEN;
1958         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1959         if (ret) {
1960                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1961                                __LINE__);
1962                 return;
1963         }
1964         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1965
1966         switch (txrate) {
1967         case TX_RATE_1_MBIT:
1968                 txratename = "1Mbps";
1969                 break;
1970         case TX_RATE_2_MBIT:
1971                 txratename = "2Mbsp";
1972                 break;
1973         case TX_RATE_5_5_MBIT:
1974                 txratename = "5.5Mbps";
1975                 break;
1976         case TX_RATE_11_MBIT:
1977                 txratename = "11Mbps";
1978                 break;
1979         default:
1980                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1981                 txratename = "unknown rate";
1982                 break;
1983         }
1984
1985         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1986                        MAC_FMT ")\n",
1987                        priv->net_dev->name, escape_essid(essid, essid_len),
1988                        txratename, chan, MAC_ARG(bssid));
1989
1990         /* now we copy read ssid into dev */
1991         if (!(priv->config & CFG_STATIC_ESSID)) {
1992                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1993                 memcpy(priv->essid, essid, priv->essid_len);
1994         }
1995         priv->channel = chan;
1996         memcpy(priv->bssid, bssid, ETH_ALEN);
1997
1998         priv->status |= STATUS_ASSOCIATING;
1999         priv->connect_start = get_seconds();
2000
2001         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2002 }
2003
2004 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2005                              int length, int batch_mode)
2006 {
2007         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2008         struct host_command cmd = {
2009                 .host_command = SSID,
2010                 .host_command_sequence = 0,
2011                 .host_command_length = ssid_len
2012         };
2013         int err;
2014
2015         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2016
2017         if (ssid_len)
2018                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2019
2020         if (!batch_mode) {
2021                 err = ipw2100_disable_adapter(priv);
2022                 if (err)
2023                         return err;
2024         }
2025
2026         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2027          * disable auto association -- so we cheat by setting a bogus SSID */
2028         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2029                 int i;
2030                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2031                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2032                         bogus[i] = 0x18 + i;
2033                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2034         }
2035
2036         /* NOTE:  We always send the SSID command even if the provided ESSID is
2037          * the same as what we currently think is set. */
2038
2039         err = ipw2100_hw_send_command(priv, &cmd);
2040         if (!err) {
2041                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2042                 memcpy(priv->essid, essid, ssid_len);
2043                 priv->essid_len = ssid_len;
2044         }
2045
2046         if (!batch_mode) {
2047                 if (ipw2100_enable_adapter(priv))
2048                         err = -EIO;
2049         }
2050
2051         return err;
2052 }
2053
2054 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2057                   "disassociated: '%s' " MAC_FMT " \n",
2058                   escape_essid(priv->essid, priv->essid_len),
2059                   MAC_ARG(priv->bssid));
2060
2061         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2062
2063         if (priv->status & STATUS_STOPPING) {
2064                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2065                 return;
2066         }
2067
2068         memset(priv->bssid, 0, ETH_ALEN);
2069         memset(priv->ieee->bssid, 0, ETH_ALEN);
2070
2071         netif_carrier_off(priv->net_dev);
2072         netif_stop_queue(priv->net_dev);
2073
2074         if (!(priv->status & STATUS_RUNNING))
2075                 return;
2076
2077         if (priv->status & STATUS_SECURITY_UPDATED)
2078                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2079
2080         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2081 }
2082
2083 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2084 {
2085         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2086                        priv->net_dev->name);
2087
2088         /* RF_KILL is now enabled (else we wouldn't be here) */
2089         priv->status |= STATUS_RF_KILL_HW;
2090
2091 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2092         if (priv->config & CFG_C3_DISABLED) {
2093                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2094                 acpi_set_cstate_limit(priv->cstate_limit);
2095                 priv->config &= ~CFG_C3_DISABLED;
2096         }
2097 #endif
2098
2099         /* Make sure the RF Kill check timer is running */
2100         priv->stop_rf_kill = 0;
2101         cancel_delayed_work(&priv->rf_kill);
2102         queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2103 }
2104
2105 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2106 {
2107         IPW_DEBUG_SCAN("scan complete\n");
2108         /* Age the scan results... */
2109         priv->ieee->scans++;
2110         priv->status &= ~STATUS_SCANNING;
2111 }
2112
2113 #ifdef CONFIG_IPW2100_DEBUG
2114 #define IPW2100_HANDLER(v, f) { v, f, # v }
2115 struct ipw2100_status_indicator {
2116         int status;
2117         void (*cb) (struct ipw2100_priv * priv, u32 status);
2118         char *name;
2119 };
2120 #else
2121 #define IPW2100_HANDLER(v, f) { v, f }
2122 struct ipw2100_status_indicator {
2123         int status;
2124         void (*cb) (struct ipw2100_priv * priv, u32 status);
2125 };
2126 #endif                          /* CONFIG_IPW2100_DEBUG */
2127
2128 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2129 {
2130         IPW_DEBUG_SCAN("Scanning...\n");
2131         priv->status |= STATUS_SCANNING;
2132 }
2133
2134 static const struct ipw2100_status_indicator status_handlers[] = {
2135         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2136         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2137         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2138         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2139         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2140         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2141         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2142         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2143         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2144         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2145         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2146         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2147         IPW2100_HANDLER(-1, NULL)
2148 };
2149
2150 static void isr_status_change(struct ipw2100_priv *priv, int status)
2151 {
2152         int i;
2153
2154         if (status == IPW_STATE_SCANNING &&
2155             priv->status & STATUS_ASSOCIATED &&
2156             !(priv->status & STATUS_SCANNING)) {
2157                 IPW_DEBUG_INFO("Scan detected while associated, with "
2158                                "no scan request.  Restarting firmware.\n");
2159
2160                 /* Wake up any sleeping jobs */
2161                 schedule_reset(priv);
2162         }
2163
2164         for (i = 0; status_handlers[i].status != -1; i++) {
2165                 if (status == status_handlers[i].status) {
2166                         IPW_DEBUG_NOTIF("Status change: %s\n",
2167                                         status_handlers[i].name);
2168                         if (status_handlers[i].cb)
2169                                 status_handlers[i].cb(priv, status);
2170                         priv->wstats.status = status;
2171                         return;
2172                 }
2173         }
2174
2175         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2176 }
2177
2178 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2179                                     struct ipw2100_cmd_header *cmd)
2180 {
2181 #ifdef CONFIG_IPW2100_DEBUG
2182         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2183                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2184                              command_types[cmd->host_command_reg],
2185                              cmd->host_command_reg);
2186         }
2187 #endif
2188         if (cmd->host_command_reg == HOST_COMPLETE)
2189                 priv->status |= STATUS_ENABLED;
2190
2191         if (cmd->host_command_reg == CARD_DISABLE)
2192                 priv->status &= ~STATUS_ENABLED;
2193
2194         priv->status &= ~STATUS_CMD_ACTIVE;
2195
2196         wake_up_interruptible(&priv->wait_command_queue);
2197 }
2198
2199 #ifdef CONFIG_IPW2100_DEBUG
2200 static const char *frame_types[] = {
2201         "COMMAND_STATUS_VAL",
2202         "STATUS_CHANGE_VAL",
2203         "P80211_DATA_VAL",
2204         "P8023_DATA_VAL",
2205         "HOST_NOTIFICATION_VAL"
2206 };
2207 #endif
2208
2209 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2210                                     struct ipw2100_rx_packet *packet)
2211 {
2212         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2213         if (!packet->skb)
2214                 return -ENOMEM;
2215
2216         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2217         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2218                                           sizeof(struct ipw2100_rx),
2219                                           PCI_DMA_FROMDEVICE);
2220         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2221          *       dma_addr */
2222
2223         return 0;
2224 }
2225
2226 #define SEARCH_ERROR   0xffffffff
2227 #define SEARCH_FAIL    0xfffffffe
2228 #define SEARCH_SUCCESS 0xfffffff0
2229 #define SEARCH_DISCARD 0
2230 #define SEARCH_SNAPSHOT 1
2231
2232 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2233 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2234 {
2235         int i;
2236         if (!priv->snapshot[0])
2237                 return;
2238         for (i = 0; i < 0x30; i++)
2239                 kfree(priv->snapshot[i]);
2240         priv->snapshot[0] = NULL;
2241 }
2242
2243 #ifdef IPW2100_DEBUG_C3
2244 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2245 {
2246         int i;
2247         if (priv->snapshot[0])
2248                 return 1;
2249         for (i = 0; i < 0x30; i++) {
2250                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2251                 if (!priv->snapshot[i]) {
2252                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2253                                        "buffer %d\n", priv->net_dev->name, i);
2254                         while (i > 0)
2255                                 kfree(priv->snapshot[--i]);
2256                         priv->snapshot[0] = NULL;
2257                         return 0;
2258                 }
2259         }
2260
2261         return 1;
2262 }
2263
2264 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2265                                     size_t len, int mode)
2266 {
2267         u32 i, j;
2268         u32 tmp;
2269         u8 *s, *d;
2270         u32 ret;
2271
2272         s = in_buf;
2273         if (mode == SEARCH_SNAPSHOT) {
2274                 if (!ipw2100_snapshot_alloc(priv))
2275                         mode = SEARCH_DISCARD;
2276         }
2277
2278         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2279                 read_nic_dword(priv->net_dev, i, &tmp);
2280                 if (mode == SEARCH_SNAPSHOT)
2281                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2282                 if (ret == SEARCH_FAIL) {
2283                         d = (u8 *) & tmp;
2284                         for (j = 0; j < 4; j++) {
2285                                 if (*s != *d) {
2286                                         s = in_buf;
2287                                         continue;
2288                                 }
2289
2290                                 s++;
2291                                 d++;
2292
2293                                 if ((s - in_buf) == len)
2294                                         ret = (i + j) - len + 1;
2295                         }
2296                 } else if (mode == SEARCH_DISCARD)
2297                         return ret;
2298         }
2299
2300         return ret;
2301 }
2302 #endif
2303
2304 /*
2305  *
2306  * 0) Disconnect the SKB from the firmware (just unmap)
2307  * 1) Pack the ETH header into the SKB
2308  * 2) Pass the SKB to the network stack
2309  *
2310  * When packet is provided by the firmware, it contains the following:
2311  *
2312  * .  ieee80211_hdr
2313  * .  ieee80211_snap_hdr
2314  *
2315  * The size of the constructed ethernet
2316  *
2317  */
2318 #ifdef IPW2100_RX_DEBUG
2319 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2320 #endif
2321
2322 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2323 {
2324 #ifdef IPW2100_DEBUG_C3
2325         struct ipw2100_status *status = &priv->status_queue.drv[i];
2326         u32 match, reg;
2327         int j;
2328 #endif
2329 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2330         int limit;
2331 #endif
2332
2333         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2334                        i * sizeof(struct ipw2100_status));
2335
2336 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2337         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2338         limit = acpi_get_cstate_limit();
2339         if (limit > 2) {
2340                 priv->cstate_limit = limit;
2341                 acpi_set_cstate_limit(2);
2342                 priv->config |= CFG_C3_DISABLED;
2343         }
2344 #endif
2345
2346 #ifdef IPW2100_DEBUG_C3
2347         /* Halt the fimrware so we can get a good image */
2348         write_register(priv->net_dev, IPW_REG_RESET_REG,
2349                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2350         j = 5;
2351         do {
2352                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2353                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2354
2355                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2356                         break;
2357         } while (j--);
2358
2359         match = ipw2100_match_buf(priv, (u8 *) status,
2360                                   sizeof(struct ipw2100_status),
2361                                   SEARCH_SNAPSHOT);
2362         if (match < SEARCH_SUCCESS)
2363                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2364                                "offset 0x%06X, length %d:\n",
2365                                priv->net_dev->name, match,
2366                                sizeof(struct ipw2100_status));
2367         else
2368                 IPW_DEBUG_INFO("%s: No DMA status match in "
2369                                "Firmware.\n", priv->net_dev->name);
2370
2371         printk_buf((u8 *) priv->status_queue.drv,
2372                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2373 #endif
2374
2375         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2376         priv->ieee->stats.rx_errors++;
2377         schedule_reset(priv);
2378 }
2379
2380 static void isr_rx(struct ipw2100_priv *priv, int i,
2381                           struct ieee80211_rx_stats *stats)
2382 {
2383         struct ipw2100_status *status = &priv->status_queue.drv[i];
2384         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2385
2386         IPW_DEBUG_RX("Handler...\n");
2387
2388         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2389                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2390                                "  Dropping.\n",
2391                                priv->net_dev->name,
2392                                status->frame_size, skb_tailroom(packet->skb));
2393                 priv->ieee->stats.rx_errors++;
2394                 return;
2395         }
2396
2397         if (unlikely(!netif_running(priv->net_dev))) {
2398                 priv->ieee->stats.rx_errors++;
2399                 priv->wstats.discard.misc++;
2400                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2401                 return;
2402         }
2403
2404         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2405                      !(priv->status & STATUS_ASSOCIATED))) {
2406                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2407                 priv->wstats.discard.misc++;
2408                 return;
2409         }
2410
2411         pci_unmap_single(priv->pci_dev,
2412                          packet->dma_addr,
2413                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2414
2415         skb_put(packet->skb, status->frame_size);
2416
2417 #ifdef IPW2100_RX_DEBUG
2418         /* Make a copy of the frame so we can dump it to the logs if
2419          * ieee80211_rx fails */
2420         skb_copy_from_linear_data(packet->skb, packet_data,
2421                                   min_t(u32, status->frame_size,
2422                                              IPW_RX_NIC_BUFFER_LENGTH));
2423 #endif
2424
2425         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2426 #ifdef IPW2100_RX_DEBUG
2427                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2428                                priv->net_dev->name);
2429                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2430 #endif
2431                 priv->ieee->stats.rx_errors++;
2432
2433                 /* ieee80211_rx failed, so it didn't free the SKB */
2434                 dev_kfree_skb_any(packet->skb);
2435                 packet->skb = NULL;
2436         }
2437
2438         /* We need to allocate a new SKB and attach it to the RDB. */
2439         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2440                 printk(KERN_WARNING DRV_NAME ": "
2441                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2442                        "adapter.\n", priv->net_dev->name);
2443                 /* TODO: schedule adapter shutdown */
2444                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2445         }
2446
2447         /* Update the RDB entry */
2448         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2449 }
2450
2451 #ifdef CONFIG_IPW2100_MONITOR
2452
2453 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2454                    struct ieee80211_rx_stats *stats)
2455 {
2456         struct ipw2100_status *status = &priv->status_queue.drv[i];
2457         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2458
2459         /* Magic struct that slots into the radiotap header -- no reason
2460          * to build this manually element by element, we can write it much
2461          * more efficiently than we can parse it. ORDER MATTERS HERE */
2462         struct ipw_rt_hdr {
2463                 struct ieee80211_radiotap_header rt_hdr;
2464                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2465         } *ipw_rt;
2466
2467         IPW_DEBUG_RX("Handler...\n");
2468
2469         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2470                                 sizeof(struct ipw_rt_hdr))) {
2471                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472                                "  Dropping.\n",
2473                                priv->net_dev->name,
2474                                status->frame_size,
2475                                skb_tailroom(packet->skb));
2476                 priv->ieee->stats.rx_errors++;
2477                 return;
2478         }
2479
2480         if (unlikely(!netif_running(priv->net_dev))) {
2481                 priv->ieee->stats.rx_errors++;
2482                 priv->wstats.discard.misc++;
2483                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2484                 return;
2485         }
2486
2487         if (unlikely(priv->config & CFG_CRC_CHECK &&
2488                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2489                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2490                 priv->ieee->stats.rx_errors++;
2491                 return;
2492         }
2493
2494         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2495                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2497                 packet->skb->data, status->frame_size);
2498
2499         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2500
2501         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2502         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2503         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2504
2505         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2506
2507         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2508
2509         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2510
2511         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2512                 priv->ieee->stats.rx_errors++;
2513
2514                 /* ieee80211_rx failed, so it didn't free the SKB */
2515                 dev_kfree_skb_any(packet->skb);
2516                 packet->skb = NULL;
2517         }
2518
2519         /* We need to allocate a new SKB and attach it to the RDB. */
2520         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2521                 IPW_DEBUG_WARNING(
2522                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2523                         "adapter.\n", priv->net_dev->name);
2524                 /* TODO: schedule adapter shutdown */
2525                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2526         }
2527
2528         /* Update the RDB entry */
2529         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2530 }
2531
2532 #endif
2533
2534 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2535 {
2536         struct ipw2100_status *status = &priv->status_queue.drv[i];
2537         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2538         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2539
2540         switch (frame_type) {
2541         case COMMAND_STATUS_VAL:
2542                 return (status->frame_size != sizeof(u->rx_data.command));
2543         case STATUS_CHANGE_VAL:
2544                 return (status->frame_size != sizeof(u->rx_data.status));
2545         case HOST_NOTIFICATION_VAL:
2546                 return (status->frame_size < sizeof(u->rx_data.notification));
2547         case P80211_DATA_VAL:
2548         case P8023_DATA_VAL:
2549 #ifdef CONFIG_IPW2100_MONITOR
2550                 return 0;
2551 #else
2552                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2553                 case IEEE80211_FTYPE_MGMT:
2554                 case IEEE80211_FTYPE_CTL:
2555                         return 0;
2556                 case IEEE80211_FTYPE_DATA:
2557                         return (status->frame_size >
2558                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2559                 }
2560 #endif
2561         }
2562
2563         return 1;
2564 }
2565
2566 /*
2567  * ipw2100 interrupts are disabled at this point, and the ISR
2568  * is the only code that calls this method.  So, we do not need
2569  * to play with any locks.
2570  *
2571  * RX Queue works as follows:
2572  *
2573  * Read index - firmware places packet in entry identified by the
2574  *              Read index and advances Read index.  In this manner,
2575  *              Read index will always point to the next packet to
2576  *              be filled--but not yet valid.
2577  *
2578  * Write index - driver fills this entry with an unused RBD entry.
2579  *               This entry has not filled by the firmware yet.
2580  *
2581  * In between the W and R indexes are the RBDs that have been received
2582  * but not yet processed.
2583  *
2584  * The process of handling packets will start at WRITE + 1 and advance
2585  * until it reaches the READ index.
2586  *
2587  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2588  *
2589  */
2590 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2591 {
2592         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2593         struct ipw2100_status_queue *sq = &priv->status_queue;
2594         struct ipw2100_rx_packet *packet;
2595         u16 frame_type;
2596         u32 r, w, i, s;
2597         struct ipw2100_rx *u;
2598         struct ieee80211_rx_stats stats = {
2599                 .mac_time = jiffies,
2600         };
2601
2602         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2603         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2604
2605         if (r >= rxq->entries) {
2606                 IPW_DEBUG_RX("exit - bad read index\n");
2607                 return;
2608         }
2609
2610         i = (rxq->next + 1) % rxq->entries;
2611         s = i;
2612         while (i != r) {
2613                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2614                    r, rxq->next, i); */
2615
2616                 packet = &priv->rx_buffers[i];
2617
2618                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2619                  * the correct values */
2620                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2621                                             sq->nic +
2622                                             sizeof(struct ipw2100_status) * i,
2623                                             sizeof(struct ipw2100_status),
2624                                             PCI_DMA_FROMDEVICE);
2625
2626                 /* Sync the DMA for the RX buffer so CPU is sure to get
2627                  * the correct values */
2628                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2629                                             sizeof(struct ipw2100_rx),
2630                                             PCI_DMA_FROMDEVICE);
2631
2632                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2633                         ipw2100_corruption_detected(priv, i);
2634                         goto increment;
2635                 }
2636
2637                 u = packet->rxp;
2638                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2639                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2640                 stats.len = sq->drv[i].frame_size;
2641
2642                 stats.mask = 0;
2643                 if (stats.rssi != 0)
2644                         stats.mask |= IEEE80211_STATMASK_RSSI;
2645                 stats.freq = IEEE80211_24GHZ_BAND;
2646
2647                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2648                              priv->net_dev->name, frame_types[frame_type],
2649                              stats.len);
2650
2651                 switch (frame_type) {
2652                 case COMMAND_STATUS_VAL:
2653                         /* Reset Rx watchdog */
2654                         isr_rx_complete_command(priv, &u->rx_data.command);
2655                         break;
2656
2657                 case STATUS_CHANGE_VAL:
2658                         isr_status_change(priv, u->rx_data.status);
2659                         break;
2660
2661                 case P80211_DATA_VAL:
2662                 case P8023_DATA_VAL:
2663 #ifdef CONFIG_IPW2100_MONITOR
2664                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2665                                 isr_rx_monitor(priv, i, &stats);
2666                                 break;
2667                         }
2668 #endif
2669                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2670                                 break;
2671                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2672                         case IEEE80211_FTYPE_MGMT:
2673                                 ieee80211_rx_mgt(priv->ieee,
2674                                                  &u->rx_data.header, &stats);
2675                                 break;
2676
2677                         case IEEE80211_FTYPE_CTL:
2678                                 break;
2679
2680                         case IEEE80211_FTYPE_DATA:
2681                                 isr_rx(priv, i, &stats);
2682                                 break;
2683
2684                         }
2685                         break;
2686                 }
2687
2688               increment:
2689                 /* clear status field associated with this RBD */
2690                 rxq->drv[i].status.info.field = 0;
2691
2692                 i = (i + 1) % rxq->entries;
2693         }
2694
2695         if (i != s) {
2696                 /* backtrack one entry, wrapping to end if at 0 */
2697                 rxq->next = (i ? i : rxq->entries) - 1;
2698
2699                 write_register(priv->net_dev,
2700                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2701         }
2702 }
2703
2704 /*
2705  * __ipw2100_tx_process
2706  *
2707  * This routine will determine whether the next packet on
2708  * the fw_pend_list has been processed by the firmware yet.
2709  *
2710  * If not, then it does nothing and returns.
2711  *
2712  * If so, then it removes the item from the fw_pend_list, frees
2713  * any associated storage, and places the item back on the
2714  * free list of its source (either msg_free_list or tx_free_list)
2715  *
2716  * TX Queue works as follows:
2717  *
2718  * Read index - points to the next TBD that the firmware will
2719  *              process.  The firmware will read the data, and once
2720  *              done processing, it will advance the Read index.
2721  *
2722  * Write index - driver fills this entry with an constructed TBD
2723  *               entry.  The Write index is not advanced until the
2724  *               packet has been configured.
2725  *
2726  * In between the W and R indexes are the TBDs that have NOT been
2727  * processed.  Lagging behind the R index are packets that have
2728  * been processed but have not been freed by the driver.
2729  *
2730  * In order to free old storage, an internal index will be maintained
2731  * that points to the next packet to be freed.  When all used
2732  * packets have been freed, the oldest index will be the same as the
2733  * firmware's read index.
2734  *
2735  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2736  *
2737  * Because the TBD structure can not contain arbitrary data, the
2738  * driver must keep an internal queue of cached allocations such that
2739  * it can put that data back into the tx_free_list and msg_free_list
2740  * for use by future command and data packets.
2741  *
2742  */
2743 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2744 {
2745         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2746         struct ipw2100_bd *tbd;
2747         struct list_head *element;
2748         struct ipw2100_tx_packet *packet;
2749         int descriptors_used;
2750         int e, i;
2751         u32 r, w, frag_num = 0;
2752
2753         if (list_empty(&priv->fw_pend_list))
2754                 return 0;
2755
2756         element = priv->fw_pend_list.next;
2757
2758         packet = list_entry(element, struct ipw2100_tx_packet, list);
2759         tbd = &txq->drv[packet->index];
2760
2761         /* Determine how many TBD entries must be finished... */
2762         switch (packet->type) {
2763         case COMMAND:
2764                 /* COMMAND uses only one slot; don't advance */
2765                 descriptors_used = 1;
2766                 e = txq->oldest;
2767                 break;
2768
2769         case DATA:
2770                 /* DATA uses two slots; advance and loop position. */
2771                 descriptors_used = tbd->num_fragments;
2772                 frag_num = tbd->num_fragments - 1;
2773                 e = txq->oldest + frag_num;
2774                 e %= txq->entries;
2775                 break;
2776
2777         default:
2778                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2779                        priv->net_dev->name);
2780                 return 0;
2781         }
2782
2783         /* if the last TBD is not done by NIC yet, then packet is
2784          * not ready to be released.
2785          *
2786          */
2787         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2788                       &r);
2789         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2790                       &w);
2791         if (w != txq->next)
2792                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2793                        priv->net_dev->name);
2794
2795         /*
2796          * txq->next is the index of the last packet written txq->oldest is
2797          * the index of the r is the index of the next packet to be read by
2798          * firmware
2799          */
2800
2801         /*
2802          * Quick graphic to help you visualize the following
2803          * if / else statement
2804          *
2805          * ===>|                     s---->|===============
2806          *                               e>|
2807          * | a | b | c | d | e | f | g | h | i | j | k | l
2808          *       r---->|
2809          *               w
2810          *
2811          * w - updated by driver
2812          * r - updated by firmware
2813          * s - start of oldest BD entry (txq->oldest)
2814          * e - end of oldest BD entry
2815          *
2816          */
2817         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2818                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2819                 return 0;
2820         }
2821
2822         list_del(element);
2823         DEC_STAT(&priv->fw_pend_stat);
2824
2825 #ifdef CONFIG_IPW2100_DEBUG
2826         {
2827                 int i = txq->oldest;
2828                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2829                              &txq->drv[i],
2830                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2831                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2832
2833                 if (packet->type == DATA) {
2834                         i = (i + 1) % txq->entries;
2835
2836                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2837                                      &txq->drv[i],
2838                                      (u32) (txq->nic + i *
2839                                             sizeof(struct ipw2100_bd)),
2840                                      (u32) txq->drv[i].host_addr,
2841                                      txq->drv[i].buf_length);
2842                 }
2843         }
2844 #endif
2845
2846         switch (packet->type) {
2847         case DATA:
2848                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2849                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2850                                "Expecting DATA TBD but pulled "
2851                                "something else: ids %d=%d.\n",
2852                                priv->net_dev->name, txq->oldest, packet->index);
2853
2854                 /* DATA packet; we have to unmap and free the SKB */
2855                 for (i = 0; i < frag_num; i++) {
2856                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2857
2858                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2859                                      (packet->index + 1 + i) % txq->entries,
2860                                      tbd->host_addr, tbd->buf_length);
2861
2862                         pci_unmap_single(priv->pci_dev,
2863                                          tbd->host_addr,
2864                                          tbd->buf_length, PCI_DMA_TODEVICE);
2865                 }
2866
2867                 ieee80211_txb_free(packet->info.d_struct.txb);
2868                 packet->info.d_struct.txb = NULL;
2869
2870                 list_add_tail(element, &priv->tx_free_list);
2871                 INC_STAT(&priv->tx_free_stat);
2872
2873                 /* We have a free slot in the Tx queue, so wake up the
2874                  * transmit layer if it is stopped. */
2875                 if (priv->status & STATUS_ASSOCIATED)
2876                         netif_wake_queue(priv->net_dev);
2877
2878                 /* A packet was processed by the hardware, so update the
2879                  * watchdog */
2880                 priv->net_dev->trans_start = jiffies;
2881
2882                 break;
2883
2884         case COMMAND:
2885                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2886                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2887                                "Expecting COMMAND TBD but pulled "
2888                                "something else: ids %d=%d.\n",
2889                                priv->net_dev->name, txq->oldest, packet->index);
2890
2891 #ifdef CONFIG_IPW2100_DEBUG
2892                 if (packet->info.c_struct.cmd->host_command_reg <
2893                     ARRAY_SIZE(command_types))
2894                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2895                                      command_types[packet->info.c_struct.cmd->
2896                                                    host_command_reg],
2897                                      packet->info.c_struct.cmd->
2898                                      host_command_reg,
2899                                      packet->info.c_struct.cmd->cmd_status_reg);
2900 #endif
2901
2902                 list_add_tail(element, &priv->msg_free_list);
2903                 INC_STAT(&priv->msg_free_stat);
2904                 break;
2905         }
2906
2907         /* advance oldest used TBD pointer to start of next entry */
2908         txq->oldest = (e + 1) % txq->entries;
2909         /* increase available TBDs number */
2910         txq->available += descriptors_used;
2911         SET_STAT(&priv->txq_stat, txq->available);
2912
2913         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2914                      jiffies - packet->jiffy_start);
2915
2916         return (!list_empty(&priv->fw_pend_list));
2917 }
2918
2919 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2920 {
2921         int i = 0;
2922
2923         while (__ipw2100_tx_process(priv) && i < 200)
2924                 i++;
2925
2926         if (i == 200) {
2927                 printk(KERN_WARNING DRV_NAME ": "
2928                        "%s: Driver is running slow (%d iters).\n",
2929                        priv->net_dev->name, i);
2930         }
2931 }
2932
2933 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2934 {
2935         struct list_head *element;
2936         struct ipw2100_tx_packet *packet;
2937         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2938         struct ipw2100_bd *tbd;
2939         int next = txq->next;
2940
2941         while (!list_empty(&priv->msg_pend_list)) {
2942                 /* if there isn't enough space in TBD queue, then
2943                  * don't stuff a new one in.
2944                  * NOTE: 3 are needed as a command will take one,
2945                  *       and there is a minimum of 2 that must be
2946                  *       maintained between the r and w indexes
2947                  */
2948                 if (txq->available <= 3) {
2949                         IPW_DEBUG_TX("no room in tx_queue\n");
2950                         break;
2951                 }
2952
2953                 element = priv->msg_pend_list.next;
2954                 list_del(element);
2955                 DEC_STAT(&priv->msg_pend_stat);
2956
2957                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2958
2959                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2960                              &txq->drv[txq->next],
2961                              (void *)(txq->nic + txq->next *
2962                                       sizeof(struct ipw2100_bd)));
2963
2964                 packet->index = txq->next;
2965
2966                 tbd = &txq->drv[txq->next];
2967
2968                 /* initialize TBD */
2969                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2970                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2971                 /* not marking number of fragments causes problems
2972                  * with f/w debug version */
2973                 tbd->num_fragments = 1;
2974                 tbd->status.info.field =
2975                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2976                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2977
2978                 /* update TBD queue counters */
2979                 txq->next++;
2980                 txq->next %= txq->entries;
2981                 txq->available--;
2982                 DEC_STAT(&priv->txq_stat);
2983
2984                 list_add_tail(element, &priv->fw_pend_list);
2985                 INC_STAT(&priv->fw_pend_stat);
2986         }
2987
2988         if (txq->next != next) {
2989                 /* kick off the DMA by notifying firmware the
2990                  * write index has moved; make sure TBD stores are sync'd */
2991                 wmb();
2992                 write_register(priv->net_dev,
2993                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2994                                txq->next);
2995         }
2996 }
2997
2998 /*
2999  * ipw2100_tx_send_data
3000  *
3001  */
3002 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3003 {
3004         struct list_head *element;
3005         struct ipw2100_tx_packet *packet;
3006         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3007         struct ipw2100_bd *tbd;
3008         int next = txq->next;
3009         int i = 0;
3010         struct ipw2100_data_header *ipw_hdr;
3011         struct ieee80211_hdr_3addr *hdr;
3012
3013         while (!list_empty(&priv->tx_pend_list)) {
3014                 /* if there isn't enough space in TBD queue, then
3015                  * don't stuff a new one in.
3016                  * NOTE: 4 are needed as a data will take two,
3017                  *       and there is a minimum of 2 that must be
3018                  *       maintained between the r and w indexes
3019                  */
3020                 element = priv->tx_pend_list.next;
3021                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3022
3023                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3024                              IPW_MAX_BDS)) {
3025                         /* TODO: Support merging buffers if more than
3026                          * IPW_MAX_BDS are used */
3027                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3028                                        "Increase fragmentation level.\n",
3029                                        priv->net_dev->name);
3030                 }
3031
3032                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3033                         IPW_DEBUG_TX("no room in tx_queue\n");
3034                         break;
3035                 }
3036
3037                 list_del(element);
3038                 DEC_STAT(&priv->tx_pend_stat);
3039
3040                 tbd = &txq->drv[txq->next];
3041
3042                 packet->index = txq->next;
3043
3044                 ipw_hdr = packet->info.d_struct.data;
3045                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3046                     fragments[0]->data;
3047
3048                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3049                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3050                            Addr3 = DA */
3051                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3053                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3054                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3055                            Addr3 = BSSID */
3056                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3057                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3058                 }
3059
3060                 ipw_hdr->host_command_reg = SEND;
3061                 ipw_hdr->host_command_reg1 = 0;
3062
3063                 /* For now we only support host based encryption */
3064                 ipw_hdr->needs_encryption = 0;
3065                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3066                 if (packet->info.d_struct.txb->nr_frags > 1)
3067                         ipw_hdr->fragment_size =
3068                             packet->info.d_struct.txb->frag_size -
3069                             IEEE80211_3ADDR_LEN;
3070                 else
3071                         ipw_hdr->fragment_size = 0;
3072
3073                 tbd->host_addr = packet->info.d_struct.data_phys;
3074                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3075                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3076                 tbd->status.info.field =
3077                     IPW_BD_STATUS_TX_FRAME_802_3 |
3078                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3079                 txq->next++;
3080                 txq->next %= txq->entries;
3081
3082                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3083                              packet->index, tbd->host_addr, tbd->buf_length);
3084 #ifdef CONFIG_IPW2100_DEBUG
3085                 if (packet->info.d_struct.txb->nr_frags > 1)
3086                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3087                                        packet->info.d_struct.txb->nr_frags);
3088 #endif
3089
3090                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3091                         tbd = &txq->drv[txq->next];
3092                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3093                                 tbd->status.info.field =
3094                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3095                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3096                         else
3097                                 tbd->status.info.field =
3098                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3099                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3100
3101                         tbd->buf_length = packet->info.d_struct.txb->
3102                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3103
3104                         tbd->host_addr = pci_map_single(priv->pci_dev,
3105                                                         packet->info.d_struct.
3106                                                         txb->fragments[i]->
3107                                                         data +
3108                                                         IEEE80211_3ADDR_LEN,
3109                                                         tbd->buf_length,
3110                                                         PCI_DMA_TODEVICE);
3111
3112                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3113                                      txq->next, tbd->host_addr,
3114                                      tbd->buf_length);
3115
3116                         pci_dma_sync_single_for_device(priv->pci_dev,
3117                                                        tbd->host_addr,
3118                                                        tbd->buf_length,
3119                                                        PCI_DMA_TODEVICE);
3120
3121                         txq->next++;
3122                         txq->next %= txq->entries;
3123                 }
3124
3125                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3126                 SET_STAT(&priv->txq_stat, txq->available);
3127
3128                 list_add_tail(element, &priv->fw_pend_list);
3129                 INC_STAT(&priv->fw_pend_stat);
3130         }
3131
3132         if (txq->next != next) {
3133                 /* kick off the DMA by notifying firmware the
3134                  * write index has moved; make sure TBD stores are sync'd */
3135                 write_register(priv->net_dev,
3136                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3137                                txq->next);
3138         }
3139         return;
3140 }
3141
3142 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3143 {
3144         struct net_device *dev = priv->net_dev;
3145         unsigned long flags;
3146         u32 inta, tmp;
3147
3148         spin_lock_irqsave(&priv->low_lock, flags);
3149         ipw2100_disable_interrupts(priv);
3150
3151         read_register(dev, IPW_REG_INTA, &inta);
3152
3153         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3154                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3155
3156         priv->in_isr++;
3157         priv->interrupts++;
3158
3159         /* We do not loop and keep polling for more interrupts as this
3160          * is frowned upon and doesn't play nicely with other potentially
3161          * chained IRQs */
3162         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3163                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3164
3165         if (inta & IPW2100_INTA_FATAL_ERROR) {
3166                 printk(KERN_WARNING DRV_NAME
3167                        ": Fatal interrupt. Scheduling firmware restart.\n");
3168                 priv->inta_other++;
3169                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3170
3171                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3172                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3173                                priv->net_dev->name, priv->fatal_error);
3174
3175                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3176                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3177                                priv->net_dev->name, tmp);
3178
3179                 /* Wake up any sleeping jobs */
3180                 schedule_reset(priv);
3181         }
3182
3183         if (inta & IPW2100_INTA_PARITY_ERROR) {
3184                 printk(KERN_ERR DRV_NAME
3185                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3186                 priv->inta_other++;
3187                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3188         }
3189
3190         if (inta & IPW2100_INTA_RX_TRANSFER) {
3191                 IPW_DEBUG_ISR("RX interrupt\n");
3192
3193                 priv->rx_interrupts++;
3194
3195                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3196
3197                 __ipw2100_rx_process(priv);
3198                 __ipw2100_tx_complete(priv);
3199         }
3200
3201         if (inta & IPW2100_INTA_TX_TRANSFER) {
3202                 IPW_DEBUG_ISR("TX interrupt\n");
3203
3204                 priv->tx_interrupts++;
3205
3206                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3207
3208                 __ipw2100_tx_complete(priv);
3209                 ipw2100_tx_send_commands(priv);
3210                 ipw2100_tx_send_data(priv);
3211         }
3212
3213         if (inta & IPW2100_INTA_TX_COMPLETE) {
3214                 IPW_DEBUG_ISR("TX complete\n");
3215                 priv->inta_other++;
3216                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3217
3218                 __ipw2100_tx_complete(priv);
3219         }
3220
3221         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3222                 /* ipw2100_handle_event(dev); */
3223                 priv->inta_other++;
3224                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3225         }
3226
3227         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3228                 IPW_DEBUG_ISR("FW init done interrupt\n");
3229                 priv->inta_other++;
3230
3231                 read_register(dev, IPW_REG_INTA, &tmp);
3232                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3233                            IPW2100_INTA_PARITY_ERROR)) {
3234                         write_register(dev, IPW_REG_INTA,
3235                                        IPW2100_INTA_FATAL_ERROR |
3236                                        IPW2100_INTA_PARITY_ERROR);
3237                 }
3238
3239                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3240         }
3241
3242         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3243                 IPW_DEBUG_ISR("Status change interrupt\n");
3244                 priv->inta_other++;
3245                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3246         }
3247
3248         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3249                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3250                 priv->inta_other++;
3251                 write_register(dev, IPW_REG_INTA,
3252                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3253         }
3254
3255         priv->in_isr--;
3256         ipw2100_enable_interrupts(priv);
3257
3258         spin_unlock_irqrestore(&priv->low_lock, flags);
3259
3260         IPW_DEBUG_ISR("exit\n");
3261 }
3262
3263 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3264 {
3265         struct ipw2100_priv *priv = data;
3266         u32 inta, inta_mask;
3267
3268         if (!data)
3269                 return IRQ_NONE;
3270
3271         spin_lock(&priv->low_lock);
3272
3273         /* We check to see if we should be ignoring interrupts before
3274          * we touch the hardware.  During ucode load if we try and handle
3275          * an interrupt we can cause keyboard problems as well as cause
3276          * the ucode to fail to initialize */
3277         if (!(priv->status & STATUS_INT_ENABLED)) {
3278                 /* Shared IRQ */
3279                 goto none;
3280         }
3281
3282         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3283         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3284
3285         if (inta == 0xFFFFFFFF) {
3286                 /* Hardware disappeared */
3287                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3288                 goto none;
3289         }
3290
3291         inta &= IPW_INTERRUPT_MASK;
3292
3293         if (!(inta & inta_mask)) {
3294                 /* Shared interrupt */
3295                 goto none;
3296         }
3297
3298         /* We disable the hardware interrupt here just to prevent unneeded
3299          * calls to be made.  We disable this again within the actual
3300          * work tasklet, so if another part of the code re-enables the
3301          * interrupt, that is fine */
3302         ipw2100_disable_interrupts(priv);
3303
3304         tasklet_schedule(&priv->irq_tasklet);
3305         spin_unlock(&priv->low_lock);
3306
3307         return IRQ_HANDLED;
3308       none:
3309         spin_unlock(&priv->low_lock);
3310         return IRQ_NONE;
3311 }
3312
3313 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3314                       int pri)
3315 {
3316         struct ipw2100_priv *priv = ieee80211_priv(dev);
3317         struct list_head *element;
3318         struct ipw2100_tx_packet *packet;
3319         unsigned long flags;
3320
3321         spin_lock_irqsave(&priv->low_lock, flags);
3322
3323         if (!(priv->status & STATUS_ASSOCIATED)) {
3324                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3325                 priv->ieee->stats.tx_carrier_errors++;
3326                 netif_stop_queue(dev);
3327                 goto fail_unlock;
3328         }
3329
3330         if (list_empty(&priv->tx_free_list))
3331                 goto fail_unlock;
3332
3333         element = priv->tx_free_list.next;
3334         packet = list_entry(element, struct ipw2100_tx_packet, list);
3335
3336         packet->info.d_struct.txb = txb;
3337
3338         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3339         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3340
3341         packet->jiffy_start = jiffies;
3342
3343         list_del(element);
3344         DEC_STAT(&priv->tx_free_stat);
3345
3346         list_add_tail(element, &priv->tx_pend_list);
3347         INC_STAT(&priv->tx_pend_stat);
3348
3349         ipw2100_tx_send_data(priv);
3350
3351         spin_unlock_irqrestore(&priv->low_lock, flags);
3352         return 0;
3353
3354       fail_unlock:
3355         netif_stop_queue(dev);
3356         spin_unlock_irqrestore(&priv->low_lock, flags);
3357         return 1;
3358 }
3359
3360 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3361 {
3362         int i, j, err = -EINVAL;
3363         void *v;
3364         dma_addr_t p;
3365
3366         priv->msg_buffers =
3367             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3368                                                 sizeof(struct
3369                                                        ipw2100_tx_packet),
3370                                                 GFP_KERNEL);
3371         if (!priv->msg_buffers) {
3372                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3373                        "buffers.\n", priv->net_dev->name);
3374                 return -ENOMEM;
3375         }
3376
3377         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3378                 v = pci_alloc_consistent(priv->pci_dev,
3379                                          sizeof(struct ipw2100_cmd_header), &p);
3380                 if (!v) {
3381                         printk(KERN_ERR DRV_NAME ": "
3382                                "%s: PCI alloc failed for msg "
3383                                "buffers.\n", priv->net_dev->name);
3384                         err = -ENOMEM;
3385                         break;
3386                 }
3387
3388                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3389
3390                 priv->msg_buffers[i].type = COMMAND;
3391                 priv->msg_buffers[i].info.c_struct.cmd =
3392                     (struct ipw2100_cmd_header *)v;
3393                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3394         }
3395
3396         if (i == IPW_COMMAND_POOL_SIZE)
3397                 return 0;
3398
3399         for (j = 0; j < i; j++) {
3400                 pci_free_consistent(priv->pci_dev,
3401                                     sizeof(struct ipw2100_cmd_header),
3402                                     priv->msg_buffers[j].info.c_struct.cmd,
3403                                     priv->msg_buffers[j].info.c_struct.
3404                                     cmd_phys);
3405         }
3406
3407         kfree(priv->msg_buffers);
3408         priv->msg_buffers = NULL;
3409
3410         return err;
3411 }
3412
3413 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3414 {
3415         int i;
3416
3417         INIT_LIST_HEAD(&priv->msg_free_list);
3418         INIT_LIST_HEAD(&priv->msg_pend_list);
3419
3420         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3421                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3422         SET_STAT(&priv->msg_free_stat, i);
3423
3424         return 0;
3425 }
3426
3427 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3428 {
3429         int i;
3430
3431         if (!priv->msg_buffers)
3432                 return;
3433
3434         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3435                 pci_free_consistent(priv->pci_dev,
3436                                     sizeof(struct ipw2100_cmd_header),
3437                                     priv->msg_buffers[i].info.c_struct.cmd,
3438                                     priv->msg_buffers[i].info.c_struct.
3439                                     cmd_phys);
3440         }
3441
3442         kfree(priv->msg_buffers);
3443         priv->msg_buffers = NULL;
3444 }
3445
3446 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3447                         char *buf)
3448 {
3449         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3450         char *out = buf;
3451         int i, j;
3452         u32 val;
3453
3454         for (i = 0; i < 16; i++) {
3455                 out += sprintf(out, "[%08X] ", i * 16);
3456                 for (j = 0; j < 16; j += 4) {
3457                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3458                         out += sprintf(out, "%08X ", val);
3459                 }
3460                 out += sprintf(out, "\n");
3461         }
3462
3463         return out - buf;
3464 }
3465
3466 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3467
3468 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3469                         char *buf)
3470 {
3471         struct ipw2100_priv *p = d->driver_data;
3472         return sprintf(buf, "0x%08x\n", (int)p->config);
3473 }
3474
3475 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3476
3477 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3478                            char *buf)
3479 {
3480         struct ipw2100_priv *p = d->driver_data;
3481         return sprintf(buf, "0x%08x\n", (int)p->status);
3482 }
3483
3484 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3485
3486 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3487                                char *buf)
3488 {
3489         struct ipw2100_priv *p = d->driver_data;
3490         return sprintf(buf, "0x%08x\n", (int)p->capability);
3491 }
3492
3493 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3494
3495 #define IPW2100_REG(x) { IPW_ ##x, #x }
3496 static const struct {
3497         u32 addr;
3498         const char *name;
3499 } hw_data[] = {
3500 IPW2100_REG(REG_GP_CNTRL),
3501             IPW2100_REG(REG_GPIO),
3502             IPW2100_REG(REG_INTA),
3503             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3504 #define IPW2100_NIC(x, s) { x, #x, s }
3505 static const struct {
3506         u32 addr;
3507         const char *name;
3508         size_t size;
3509 } nic_data[] = {
3510 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3511             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3512 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3513 static const struct {
3514         u8 index;
3515         const char *name;
3516         const char *desc;
3517 } ord_data[] = {
3518 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3519             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3520                                 "successful Host Tx's (MSDU)"),
3521             IPW2100_ORD(STAT_TX_DIR_DATA,
3522                                 "successful Directed Tx's (MSDU)"),
3523             IPW2100_ORD(STAT_TX_DIR_DATA1,
3524                                 "successful Directed Tx's (MSDU) @ 1MB"),
3525             IPW2100_ORD(STAT_TX_DIR_DATA2,
3526                                 "successful Directed Tx's (MSDU) @ 2MB"),
3527             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3528                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3529             IPW2100_ORD(STAT_TX_DIR_DATA11,
3530                                 "successful Directed Tx's (MSDU) @ 11MB"),
3531             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3532                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3533             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3534                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3535             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3536                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3537             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3538                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3539             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3540             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3541             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3542             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3543             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3544             IPW2100_ORD(STAT_TX_ASSN_RESP,
3545                                 "successful Association response Tx's"),
3546             IPW2100_ORD(STAT_TX_REASSN,
3547                                 "successful Reassociation Tx's"),
3548             IPW2100_ORD(STAT_TX_REASSN_RESP,
3549                                 "successful Reassociation response Tx's"),
3550             IPW2100_ORD(STAT_TX_PROBE,
3551                                 "probes successfully transmitted"),
3552             IPW2100_ORD(STAT_TX_PROBE_RESP,
3553                                 "probe responses successfully transmitted"),
3554             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3555             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3556             IPW2100_ORD(STAT_TX_DISASSN,
3557                                 "successful Disassociation TX"),
3558             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3559             IPW2100_ORD(STAT_TX_DEAUTH,
3560                                 "successful Deauthentication TX"),
3561             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3562                                 "Total successful Tx data bytes"),
3563             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3564             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3565             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3566             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3567             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3568             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3569             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3570                                 "times max tries in a hop failed"),
3571             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3572                                 "times disassociation failed"),
3573             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3574             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3575             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3577             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3578             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3579             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3580                                 "directed packets at 5.5MB"),
3581             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3582             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3583             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3584                                 "nondirected packets at 1MB"),
3585             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3586                                 "nondirected packets at 2MB"),
3587             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3588                                 "nondirected packets at 5.5MB"),
3589             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3590                                 "nondirected packets at 11MB"),
3591             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3592             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3593                                                                     "Rx CTS"),
3594             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3595             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3596             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3597             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3598             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3599             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3600             IPW2100_ORD(STAT_RX_REASSN_RESP,
3601                                 "Reassociation response Rx's"),
3602             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3603             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3604             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3605             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3606             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3607             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3608             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3609             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3610                                 "Total rx data bytes received"),
3611             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3612             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3613             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3614             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3615             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3616             IPW2100_ORD(STAT_RX_DUPLICATE1,
3617                                 "duplicate rx packets at 1MB"),
3618             IPW2100_ORD(STAT_RX_DUPLICATE2,
3619                                 "duplicate rx packets at 2MB"),
3620             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3621                                 "duplicate rx packets at 5.5MB"),
3622             IPW2100_ORD(STAT_RX_DUPLICATE11,
3623                                 "duplicate rx packets at 11MB"),
3624             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3625             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3626             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3627             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3628             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3629                                 "rx frames with invalid protocol"),
3630             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3631             IPW2100_ORD(STAT_RX_NO_BUFFER,
3632                                 "rx frames rejected due to no buffer"),
3633             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3634                                 "rx frames dropped due to missing fragment"),
3635             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3636                                 "rx frames dropped due to non-sequential fragment"),
3637             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3638                                 "rx frames dropped due to unmatched 1st frame"),
3639             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3640                                 "rx frames dropped due to uncompleted frame"),
3641             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3642                                 "ICV errors during decryption"),
3643             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3644             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3645             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3646                                 "poll response timeouts"),
3647             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3648                                 "timeouts waiting for last {broad,multi}cast pkt"),
3649             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3650             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3651             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3652             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3653             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3654                                 "current calculation of % missed beacons"),
3655             IPW2100_ORD(STAT_PERCENT_RETRIES,
3656                                 "current calculation of % missed tx retries"),
3657             IPW2100_ORD(ASSOCIATED_AP_PTR,
3658                                 "0 if not associated, else pointer to AP table entry"),
3659             IPW2100_ORD(AVAILABLE_AP_CNT,
3660                                 "AP's decsribed in the AP table"),
3661             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3662             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3663             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3664             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3665                                 "failures due to response fail"),
3666             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3667             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3668             IPW2100_ORD(STAT_ROAM_INHIBIT,
3669                                 "times roaming was inhibited due to activity"),
3670             IPW2100_ORD(RSSI_AT_ASSN,
3671                                 "RSSI of associated AP at time of association"),
3672             IPW2100_ORD(STAT_ASSN_CAUSE1,
3673                                 "reassociation: no probe response or TX on hop"),
3674             IPW2100_ORD(STAT_ASSN_CAUSE2,
3675                                 "reassociation: poor tx/rx quality"),
3676             IPW2100_ORD(STAT_ASSN_CAUSE3,
3677                                 "reassociation: tx/rx quality (excessive AP load"),
3678             IPW2100_ORD(STAT_ASSN_CAUSE4,
3679                                 "reassociation: AP RSSI level"),
3680             IPW2100_ORD(STAT_ASSN_CAUSE5,
3681                                 "reassociations due to load leveling"),
3682             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3683             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3684                                 "times authentication response failed"),
3685             IPW2100_ORD(STATION_TABLE_CNT,
3686                                 "entries in association table"),
3687             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3688             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3689             IPW2100_ORD(COUNTRY_CODE,
3690                                 "IEEE country code as recv'd from beacon"),
3691             IPW2100_ORD(COUNTRY_CHANNELS,
3692                                 "channels suported by country"),
3693             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3694             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3695             IPW2100_ORD(ANTENNA_DIVERSITY,
3696                                 "TRUE if antenna diversity is disabled"),
3697             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3698             IPW2100_ORD(OUR_FREQ,
3699                                 "current radio freq lower digits - channel ID"),
3700             IPW2100_ORD(RTC_TIME, "current RTC time"),
3701             IPW2100_ORD(PORT_TYPE, "operating mode"),
3702             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3703             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3704             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3705             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3706             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3707             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3708             IPW2100_ORD(CAPABILITIES,
3709                                 "Management frame capability field"),
3710             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3711             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3712             IPW2100_ORD(RTS_THRESHOLD,
3713                                 "Min packet length for RTS handshaking"),
3714             IPW2100_ORD(INT_MODE, "International mode"),
3715             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3716                                 "protocol frag threshold"),
3717             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3718                                 "EEPROM offset in SRAM"),
3719             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3720                                 "EEPROM size in SRAM"),
3721             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3722             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3723                                 "EEPROM IBSS 11b channel set"),
3724             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3725             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3726             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3727             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3728             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3729
3730 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3731                               char *buf)
3732 {
3733         int i;
3734         struct ipw2100_priv *priv = dev_get_drvdata(d);
3735         struct net_device *dev = priv->net_dev;
3736         char *out = buf;
3737         u32 val = 0;
3738
3739         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3740
3741         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3742                 read_register(dev, hw_data[i].addr, &val);
3743                 out += sprintf(out, "%30s [%08X] : %08X\n",
3744                                hw_data[i].name, hw_data[i].addr, val);
3745         }
3746
3747         return out - buf;
3748 }
3749
3750 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3751
3752 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3753                              char *buf)
3754 {
3755         struct ipw2100_priv *priv = dev_get_drvdata(d);
3756         struct net_device *dev = priv->net_dev;
3757         char *out = buf;
3758         int i;
3759
3760         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3761
3762         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3763                 u8 tmp8;
3764                 u16 tmp16;
3765                 u32 tmp32;
3766
3767                 switch (nic_data[i].size) {
3768                 case 1:
3769                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3770                         out += sprintf(out, "%30s [%08X] : %02X\n",
3771                                        nic_data[i].name, nic_data[i].addr,
3772                                        tmp8);
3773                         break;
3774                 case 2:
3775                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3776                         out += sprintf(out, "%30s [%08X] : %04X\n",
3777                                        nic_data[i].name, nic_data[i].addr,
3778                                        tmp16);
3779                         break;
3780                 case 4:
3781                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3782                         out += sprintf(out, "%30s [%08X] : %08X\n",
3783                                        nic_data[i].name, nic_data[i].addr,
3784                                        tmp32);
3785                         break;
3786                 }
3787         }
3788         return out - buf;
3789 }
3790
3791 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3792
3793 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3794                            char *buf)
3795 {
3796         struct ipw2100_priv *priv = dev_get_drvdata(d);
3797         struct net_device *dev = priv->net_dev;
3798         static unsigned long loop = 0;
3799         int len = 0;
3800         u32 buffer[4];
3801         int i;
3802         char line[81];
3803
3804         if (loop >= 0x30000)
3805                 loop = 0;
3806
3807         /* sysfs provides us PAGE_SIZE buffer */
3808         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3809
3810                 if (priv->snapshot[0])
3811                         for (i = 0; i < 4; i++)
3812                                 buffer[i] =
3813                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3814                 else
3815                         for (i = 0; i < 4; i++)
3816                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3817
3818                 if (priv->dump_raw)
3819                         len += sprintf(buf + len,
3820                                        "%c%c%c%c"
3821                                        "%c%c%c%c"
3822                                        "%c%c%c%c"
3823                                        "%c%c%c%c",
3824                                        ((u8 *) buffer)[0x0],
3825                                        ((u8 *) buffer)[0x1],
3826                                        ((u8 *) buffer)[0x2],
3827                                        ((u8 *) buffer)[0x3],
3828                                        ((u8 *) buffer)[0x4],
3829                                        ((u8 *) buffer)[0x5],
3830                                        ((u8 *) buffer)[0x6],
3831                                        ((u8 *) buffer)[0x7],
3832                                        ((u8 *) buffer)[0x8],
3833                                        ((u8 *) buffer)[0x9],
3834                                        ((u8 *) buffer)[0xa],
3835                                        ((u8 *) buffer)[0xb],
3836                                        ((u8 *) buffer)[0xc],
3837                                        ((u8 *) buffer)[0xd],
3838                                        ((u8 *) buffer)[0xe],
3839                                        ((u8 *) buffer)[0xf]);
3840                 else
3841                         len += sprintf(buf + len, "%s\n",
3842                                        snprint_line(line, sizeof(line),
3843                                                     (u8 *) buffer, 16, loop));
3844                 loop += 16;
3845         }
3846
3847         return len;
3848 }
3849
3850 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3851                             const char *buf, size_t count)
3852 {
3853         struct ipw2100_priv *priv = dev_get_drvdata(d);
3854         struct net_device *dev = priv->net_dev;
3855         const char *p = buf;
3856
3857         (void)dev;              /* kill unused-var warning for debug-only code */
3858
3859         if (count < 1)
3860                 return count;
3861
3862         if (p[0] == '1' ||
3863             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3864                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3865                                dev->name);
3866                 priv->dump_raw = 1;
3867
3868         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3869                                    tolower(p[1]) == 'f')) {
3870                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3871                                dev->name);
3872                 priv->dump_raw = 0;
3873
3874         } else if (tolower(p[0]) == 'r') {
3875                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3876                 ipw2100_snapshot_free(priv);
3877
3878         } else
3879                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3880                                "reset = clear memory snapshot\n", dev->name);
3881
3882         return count;
3883 }
3884
3885 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3886
3887 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3888                              char *buf)
3889 {
3890         struct ipw2100_priv *priv = dev_get_drvdata(d);
3891         u32 val = 0;
3892         int len = 0;
3893         u32 val_len;
3894         static int loop = 0;
3895
3896         if (priv->status & STATUS_RF_KILL_MASK)
3897                 return 0;
3898
3899         if (loop >= ARRAY_SIZE(ord_data))
3900                 loop = 0;
3901
3902         /* sysfs provides us PAGE_SIZE buffer */
3903         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3904                 val_len = sizeof(u32);
3905
3906                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907                                         &val_len))
3908                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3909                                        ord_data[loop].index,
3910                                        ord_data[loop].desc);
3911                 else
3912                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913                                        ord_data[loop].index, val,
3914                                        ord_data[loop].desc);
3915                 loop++;
3916         }
3917
3918         return len;
3919 }
3920
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924                           char *buf)
3925 {
3926         struct ipw2100_priv *priv = dev_get_drvdata(d);
3927         char *out = buf;
3928
3929         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930                        priv->interrupts, priv->tx_interrupts,
3931                        priv->rx_interrupts, priv->inta_other);
3932         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935         out += sprintf(out, "packet mismatch image: %s\n",
3936                        priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3938
3939         return out - buf;
3940 }
3941
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3945 {
3946         int err;
3947
3948         if (mode == priv->ieee->iw_mode)
3949                 return 0;
3950
3951         err = ipw2100_disable_adapter(priv);
3952         if (err) {
3953                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954                        priv->net_dev->name, err);
3955                 return err;
3956         }
3957
3958         switch (mode) {
3959         case IW_MODE_INFRA:
3960                 priv->net_dev->type = ARPHRD_ETHER;
3961                 break;
3962         case IW_MODE_ADHOC:
3963                 priv->net_dev->type = ARPHRD_ETHER;
3964                 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966         case IW_MODE_MONITOR:
3967                 priv->last_mode = priv->ieee->iw_mode;
3968                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969                 break;
3970 #endif                          /* CONFIG_IPW2100_MONITOR */
3971         }
3972
3973         priv->ieee->iw_mode = mode;
3974
3975 #ifdef CONFIG_PM
3976         /* Indicate ipw2100_download_firmware download firmware
3977          * from disk instead of memory. */
3978         ipw2100_firmware.version = 0;
3979 #endif
3980
3981         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982         priv->reset_backoff = 0;
3983         schedule_reset(priv);
3984
3985         return 0;
3986 }
3987
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989                               char *buf)
3990 {
3991         struct ipw2100_priv *priv = dev_get_drvdata(d);
3992         int len = 0;
3993
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995
3996         if (priv->status & STATUS_ASSOCIATED)
3997                 len += sprintf(buf + len, "connected: %lu\n",
3998                                get_seconds() - priv->connect_start);
3999         else
4000                 len += sprintf(buf + len, "not connected\n");
4001
4002         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003         DUMP_VAR(status, "08lx");
4004         DUMP_VAR(config, "08lx");
4005         DUMP_VAR(capability, "08lx");
4006
4007         len +=
4008             sprintf(buf + len, "last_rtc: %lu\n",
4009                     (unsigned long)priv->last_rtc);
4010
4011         DUMP_VAR(fatal_error, "d");
4012         DUMP_VAR(stop_hang_check, "d");
4013         DUMP_VAR(stop_rf_kill, "d");
4014         DUMP_VAR(messages_sent, "d");
4015
4016         DUMP_VAR(tx_pend_stat.value, "d");
4017         DUMP_VAR(tx_pend_stat.hi, "d");
4018
4019         DUMP_VAR(tx_free_stat.value, "d");
4020         DUMP_VAR(tx_free_stat.lo, "d");
4021
4022         DUMP_VAR(msg_free_stat.value, "d");
4023         DUMP_VAR(msg_free_stat.lo, "d");
4024
4025         DUMP_VAR(msg_pend_stat.value, "d");
4026         DUMP_VAR(msg_pend_stat.hi, "d");
4027
4028         DUMP_VAR(fw_pend_stat.value, "d");
4029         DUMP_VAR(fw_pend_stat.hi, "d");
4030
4031         DUMP_VAR(txq_stat.value, "d");
4032         DUMP_VAR(txq_stat.lo, "d");
4033
4034         DUMP_VAR(ieee->scans, "d");
4035         DUMP_VAR(reset_backoff, "d");
4036
4037         return len;
4038 }
4039
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043                             char *buf)
4044 {
4045         struct ipw2100_priv *priv = dev_get_drvdata(d);
4046         char essid[IW_ESSID_MAX_SIZE + 1];
4047         u8 bssid[ETH_ALEN];
4048         u32 chan = 0;
4049         char *out = buf;
4050         int length;
4051         int ret;
4052
4053         if (priv->status & STATUS_RF_KILL_MASK)
4054                 return 0;
4055
4056         memset(essid, 0, sizeof(essid));
4057         memset(bssid, 0, sizeof(bssid));
4058
4059         length = IW_ESSID_MAX_SIZE;
4060         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061         if (ret)
4062                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063                                __LINE__);
4064
4065         length = sizeof(bssid);
4066         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067                                   bssid, &length);
4068         if (ret)
4069                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070                                __LINE__);
4071
4072         length = sizeof(u32);
4073         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074         if (ret)
4075                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076                                __LINE__);
4077
4078         out += sprintf(out, "ESSID: %s\n", essid);
4079         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4080                        bssid[0], bssid[1], bssid[2],
4081                        bssid[3], bssid[4], bssid[5]);
4082         out += sprintf(out, "Channel: %d\n", chan);
4083
4084         return out - buf;
4085 }
4086
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 {
4092         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 }
4094
4095 static ssize_t store_debug_level(struct device_driver *d,
4096                                  const char *buf, size_t count)
4097 {
4098         char *p = (char *)buf;
4099         u32 val;
4100
4101         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102                 p++;
4103                 if (p[0] == 'x' || p[0] == 'X')
4104                         p++;
4105                 val = simple_strtoul(p, &p, 16);
4106         } else
4107                 val = simple_strtoul(p, &p, 10);
4108         if (p == buf)
4109                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110         else
4111                 ipw2100_debug_level = val;
4112
4113         return strnlen(buf, count);
4114 }
4115
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117                    store_debug_level);
4118 #endif                          /* CONFIG_IPW2100_DEBUG */
4119
4120 static ssize_t show_fatal_error(struct device *d,
4121                                 struct device_attribute *attr, char *buf)
4122 {
4123         struct ipw2100_priv *priv = dev_get_drvdata(d);
4124         char *out = buf;
4125         int i;
4126
4127         if (priv->fatal_error)
4128                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129         else
4130                 out += sprintf(out, "0\n");
4131
4132         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134                                         IPW2100_ERROR_QUEUE])
4135                         continue;
4136
4137                 out += sprintf(out, "%d. 0x%08X\n", i,
4138                                priv->fatal_errors[(priv->fatal_index - i) %
4139                                                   IPW2100_ERROR_QUEUE]);
4140         }
4141
4142         return out - buf;
4143 }
4144
4145 static ssize_t store_fatal_error(struct device *d,
4146                                  struct device_attribute *attr, const char *buf,
4147                                  size_t count)
4148 {
4149         struct ipw2100_priv *priv = dev_get_drvdata(d);
4150         schedule_reset(priv);
4151         return count;
4152 }
4153
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155                    store_fatal_error);
4156
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158                              char *buf)
4159 {
4160         struct ipw2100_priv *priv = dev_get_drvdata(d);
4161         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 }
4163
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165                               const char *buf, size_t count)
4166 {
4167         struct ipw2100_priv *priv = dev_get_drvdata(d);
4168         struct net_device *dev = priv->net_dev;
4169         char buffer[] = "00000000";
4170         unsigned long len =
4171             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172         unsigned long val;
4173         char *p = buffer;
4174
4175         (void)dev;              /* kill unused-var warning for debug-only code */
4176
4177         IPW_DEBUG_INFO("enter\n");
4178
4179         strncpy(buffer, buf, len);
4180         buffer[len] = 0;
4181
4182         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183                 p++;
4184                 if (p[0] == 'x' || p[0] == 'X')
4185                         p++;
4186                 val = simple_strtoul(p, &p, 16);
4187         } else
4188                 val = simple_strtoul(p, &p, 10);
4189         if (p == buffer) {
4190                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191         } else {
4192                 priv->ieee->scan_age = val;
4193                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194         }
4195
4196         IPW_DEBUG_INFO("exit\n");
4197         return len;
4198 }
4199
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203                             char *buf)
4204 {
4205         /* 0 - RF kill not enabled
4206            1 - SW based RF kill active (sysfs)
4207            2 - HW based RF kill active
4208            3 - Both HW and SW baed RF kill active */
4209         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211             (rf_kill_active(priv) ? 0x2 : 0x0);
4212         return sprintf(buf, "%i\n", val);
4213 }
4214
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 {
4217         if ((disable_radio ? 1 : 0) ==
4218             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219                 return 0;
4220
4221         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4222                           disable_radio ? "OFF" : "ON");
4223
4224         mutex_lock(&priv->action_mutex);
4225
4226         if (disable_radio) {
4227                 priv->status |= STATUS_RF_KILL_SW;
4228                 ipw2100_down(priv);
4229         } else {
4230                 priv->status &= ~STATUS_RF_KILL_SW;
4231                 if (rf_kill_active(priv)) {
4232                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233                                           "disabled by HW switch\n");
4234                         /* Make sure the RF_KILL check timer is running */
4235                         priv->stop_rf_kill = 0;
4236                         cancel_delayed_work(&priv->rf_kill);
4237                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4238                                            round_jiffies(HZ));
4239                 } else
4240                         schedule_reset(priv);
4241         }
4242
4243         mutex_unlock(&priv->action_mutex);
4244         return 1;
4245 }
4246
4247 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4248                              const char *buf, size_t count)
4249 {
4250         struct ipw2100_priv *priv = dev_get_drvdata(d);
4251         ipw_radio_kill_sw(priv, buf[0] == '1');
4252         return count;
4253 }
4254
4255 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4256
4257 static struct attribute *ipw2100_sysfs_entries[] = {
4258         &dev_attr_hardware.attr,
4259         &dev_attr_registers.attr,
4260         &dev_attr_ordinals.attr,
4261         &dev_attr_pci.attr,
4262         &dev_attr_stats.attr,
4263         &dev_attr_internals.attr,
4264         &dev_attr_bssinfo.attr,
4265         &dev_attr_memory.attr,
4266         &dev_attr_scan_age.attr,
4267         &dev_attr_fatal_error.attr,
4268         &dev_attr_rf_kill.attr,
4269         &dev_attr_cfg.attr,
4270         &dev_attr_status.attr,
4271         &dev_attr_capability.attr,
4272         NULL,
4273 };
4274
4275 static struct attribute_group ipw2100_attribute_group = {
4276         .attrs = ipw2100_sysfs_entries,
4277 };
4278
4279 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4280 {
4281         struct ipw2100_status_queue *q = &priv->status_queue;
4282
4283         IPW_DEBUG_INFO("enter\n");
4284
4285         q->size = entries * sizeof(struct ipw2100_status);
4286         q->drv =
4287             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4288                                                           q->size, &q->nic);
4289         if (!q->drv) {
4290                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4291                 return -ENOMEM;
4292         }
4293
4294         memset(q->drv, 0, q->size);
4295
4296         IPW_DEBUG_INFO("exit\n");
4297
4298         return 0;
4299 }
4300
4301 static void status_queue_free(struct ipw2100_priv *priv)
4302 {
4303         IPW_DEBUG_INFO("enter\n");
4304
4305         if (priv->status_queue.drv) {
4306                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4307                                     priv->status_queue.drv,
4308                                     priv->status_queue.nic);
4309                 priv->status_queue.drv = NULL;
4310         }
4311
4312         IPW_DEBUG_INFO("exit\n");
4313 }
4314
4315 static int bd_queue_allocate(struct ipw2100_priv *priv,
4316                              struct ipw2100_bd_queue *q, int entries)
4317 {
4318         IPW_DEBUG_INFO("enter\n");
4319
4320         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4321
4322         q->entries = entries;
4323         q->size = entries * sizeof(struct ipw2100_bd);
4324         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4325         if (!q->drv) {
4326                 IPW_DEBUG_INFO
4327                     ("can't allocate shared memory for buffer descriptors\n");
4328                 return -ENOMEM;
4329         }
4330         memset(q->drv, 0, q->size);
4331
4332         IPW_DEBUG_INFO("exit\n");
4333
4334         return 0;
4335 }
4336
4337 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4338 {
4339         IPW_DEBUG_INFO("enter\n");
4340
4341         if (!q)
4342                 return;
4343
4344         if (q->drv) {
4345                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4346                 q->drv = NULL;
4347         }
4348
4349         IPW_DEBUG_INFO("exit\n");
4350 }
4351
4352 static void bd_queue_initialize(struct ipw2100_priv *priv,
4353                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4354                                 u32 r, u32 w)
4355 {
4356         IPW_DEBUG_INFO("enter\n");
4357
4358         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4359                        (u32) q->nic);
4360
4361         write_register(priv->net_dev, base, q->nic);
4362         write_register(priv->net_dev, size, q->entries);
4363         write_register(priv->net_dev, r, q->oldest);
4364         write_register(priv->net_dev, w, q->next);
4365
4366         IPW_DEBUG_INFO("exit\n");
4367 }
4368
4369 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4370 {
4371         if (priv->workqueue) {
4372                 priv->stop_rf_kill = 1;
4373                 priv->stop_hang_check = 1;
4374                 cancel_delayed_work(&priv->reset_work);
4375                 cancel_delayed_work(&priv->security_work);
4376                 cancel_delayed_work(&priv->wx_event_work);
4377                 cancel_delayed_work(&priv->hang_check);
4378                 cancel_delayed_work(&priv->rf_kill);
4379                 destroy_workqueue(priv->workqueue);
4380                 priv->workqueue = NULL;
4381         }
4382 }
4383
4384 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4385 {
4386         int i, j, err = -EINVAL;
4387         void *v;
4388         dma_addr_t p;
4389
4390         IPW_DEBUG_INFO("enter\n");
4391
4392         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4393         if (err) {
4394                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4395                                 priv->net_dev->name);
4396                 return err;
4397         }
4398
4399         priv->tx_buffers =
4400             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4401                                                 sizeof(struct
4402                                                        ipw2100_tx_packet),
4403                                                 GFP_ATOMIC);
4404         if (!priv->tx_buffers) {
4405                 printk(KERN_ERR DRV_NAME
4406                        ": %s: alloc failed form tx buffers.\n",
4407                        priv->net_dev->name);
4408                 bd_queue_free(priv, &priv->tx_queue);
4409                 return -ENOMEM;
4410         }
4411
4412         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4413                 v = pci_alloc_consistent(priv->pci_dev,
4414                                          sizeof(struct ipw2100_data_header),
4415                                          &p);
4416                 if (!v) {
4417                         printk(KERN_ERR DRV_NAME
4418                                ": %s: PCI alloc failed for tx " "buffers.\n",
4419                                priv->net_dev->name);
4420                         err = -ENOMEM;
4421                         break;
4422                 }
4423
4424                 priv->tx_buffers[i].type = DATA;
4425                 priv->tx_buffers[i].info.d_struct.data =
4426                     (struct ipw2100_data_header *)v;
4427                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4428                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4429         }
4430
4431         if (i == TX_PENDED_QUEUE_LENGTH)
4432                 return 0;
4433
4434         for (j = 0; j < i; j++) {
4435                 pci_free_consistent(priv->pci_dev,
4436                                     sizeof(struct ipw2100_data_header),
4437                                     priv->tx_buffers[j].info.d_struct.data,
4438                                     priv->tx_buffers[j].info.d_struct.
4439                                     data_phys);
4440         }
4441
4442         kfree(priv->tx_buffers);
4443         priv->tx_buffers = NULL;
4444
4445         return err;
4446 }
4447
4448 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4449 {
4450         int i;
4451
4452         IPW_DEBUG_INFO("enter\n");
4453
4454         /*
4455          * reinitialize packet info lists
4456          */
4457         INIT_LIST_HEAD(&priv->fw_pend_list);
4458         INIT_STAT(&priv->fw_pend_stat);
4459
4460         /*
4461          * reinitialize lists
4462          */
4463         INIT_LIST_HEAD(&priv->tx_pend_list);
4464         INIT_LIST_HEAD(&priv->tx_free_list);
4465         INIT_STAT(&priv->tx_pend_stat);
4466         INIT_STAT(&priv->tx_free_stat);
4467
4468         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4469                 /* We simply drop any SKBs that have been queued for
4470                  * transmit */
4471                 if (priv->tx_buffers[i].info.d_struct.txb) {
4472                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4473                                            txb);
4474                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4475                 }
4476
4477                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4478         }
4479
4480         SET_STAT(&priv->tx_free_stat, i);
4481
4482         priv->tx_queue.oldest = 0;
4483         priv->tx_queue.available = priv->tx_queue.entries;
4484         priv->tx_queue.next = 0;
4485         INIT_STAT(&priv->txq_stat);
4486         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4487
4488         bd_queue_initialize(priv, &priv->tx_queue,
4489                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4490                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4491                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4492                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4493
4494         IPW_DEBUG_INFO("exit\n");
4495
4496 }
4497
4498 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4499 {
4500         int i;
4501
4502         IPW_DEBUG_INFO("enter\n");
4503
4504         bd_queue_free(priv, &priv->tx_queue);
4505
4506         if (!priv->tx_buffers)
4507                 return;
4508
4509         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510                 if (priv->tx_buffers[i].info.d_struct.txb) {
4511                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4512                                            txb);
4513                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4514                 }
4515                 if (priv->tx_buffers[i].info.d_struct.data)
4516                         pci_free_consistent(priv->pci_dev,
4517                                             sizeof(struct ipw2100_data_header),
4518                                             priv->tx_buffers[i].info.d_struct.
4519                                             data,
4520                                             priv->tx_buffers[i].info.d_struct.
4521                                             data_phys);
4522         }
4523
4524         kfree(priv->tx_buffers);
4525         priv->tx_buffers = NULL;
4526
4527         IPW_DEBUG_INFO("exit\n");
4528 }
4529
4530 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4531 {
4532         int i, j, err = -EINVAL;
4533
4534         IPW_DEBUG_INFO("enter\n");
4535
4536         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4537         if (err) {
4538                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4539                 return err;
4540         }
4541
4542         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4543         if (err) {
4544                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4545                 bd_queue_free(priv, &priv->rx_queue);
4546                 return err;
4547         }
4548
4549         /*
4550          * allocate packets
4551          */
4552         priv->rx_buffers = (struct ipw2100_rx_packet *)
4553             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4554                     GFP_KERNEL);
4555         if (!priv->rx_buffers) {
4556                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4557
4558                 bd_queue_free(priv, &priv->rx_queue);
4559
4560                 status_queue_free(priv);
4561
4562                 return -ENOMEM;
4563         }
4564
4565         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4566                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4567
4568                 err = ipw2100_alloc_skb(priv, packet);
4569                 if (unlikely(err)) {
4570                         err = -ENOMEM;
4571                         break;
4572                 }
4573
4574                 /* The BD holds the cache aligned address */
4575                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4576                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4577                 priv->status_queue.drv[i].status_fields = 0;
4578         }
4579
4580         if (i == RX_QUEUE_LENGTH)
4581                 return 0;
4582
4583         for (j = 0; j < i; j++) {
4584                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4585                                  sizeof(struct ipw2100_rx_packet),
4586                                  PCI_DMA_FROMDEVICE);
4587                 dev_kfree_skb(priv->rx_buffers[j].skb);
4588         }
4589
4590         kfree(priv->rx_buffers);
4591         priv->rx_buffers = NULL;
4592
4593         bd_queue_free(priv, &priv->rx_queue);
4594
4595         status_queue_free(priv);
4596
4597         return err;
4598 }
4599
4600 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4601 {
4602         IPW_DEBUG_INFO("enter\n");
4603
4604         priv->rx_queue.oldest = 0;
4605         priv->rx_queue.available = priv->rx_queue.entries - 1;
4606         priv->rx_queue.next = priv->rx_queue.entries - 1;
4607
4608         INIT_STAT(&priv->rxq_stat);
4609         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4610
4611         bd_queue_initialize(priv, &priv->rx_queue,
4612                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4613                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4614                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4615                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4616
4617         /* set up the status queue */
4618         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4619                        priv->status_queue.nic);
4620
4621         IPW_DEBUG_INFO("exit\n");
4622 }
4623
4624 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4625 {
4626         int i;
4627
4628         IPW_DEBUG_INFO("enter\n");
4629
4630         bd_queue_free(priv, &priv->rx_queue);
4631         status_queue_free(priv);
4632
4633         if (!priv->rx_buffers)
4634                 return;
4635
4636         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4637                 if (priv->rx_buffers[i].rxp) {
4638                         pci_unmap_single(priv->pci_dev,
4639                                          priv->rx_buffers[i].dma_addr,
4640                                          sizeof(struct ipw2100_rx),
4641                                          PCI_DMA_FROMDEVICE);
4642                         dev_kfree_skb(priv->rx_buffers[i].skb);
4643                 }
4644         }
4645
4646         kfree(priv->rx_buffers);
4647         priv->rx_buffers = NULL;
4648
4649         IPW_DEBUG_INFO("exit\n");
4650 }
4651
4652 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4653 {
4654         u32 length = ETH_ALEN;
4655         u8 mac[ETH_ALEN];
4656
4657         int err;
4658
4659         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4660         if (err) {
4661                 IPW_DEBUG_INFO("MAC address read failed\n");
4662                 return -EIO;
4663         }
4664         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4665                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4666
4667         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4668
4669         return 0;
4670 }
4671
4672 /********************************************************************
4673  *
4674  * Firmware Commands
4675  *
4676  ********************************************************************/
4677
4678 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4679 {
4680         struct host_command cmd = {
4681                 .host_command = ADAPTER_ADDRESS,
4682                 .host_command_sequence = 0,
4683                 .host_command_length = ETH_ALEN
4684         };
4685         int err;
4686
4687         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4688
4689         IPW_DEBUG_INFO("enter\n");
4690
4691         if (priv->config & CFG_CUSTOM_MAC) {
4692                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4693                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4694         } else
4695                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4696                        ETH_ALEN);
4697
4698         err = ipw2100_hw_send_command(priv, &cmd);
4699
4700         IPW_DEBUG_INFO("exit\n");
4701         return err;
4702 }
4703
4704 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4705                                  int batch_mode)
4706 {
4707         struct host_command cmd = {
4708                 .host_command = PORT_TYPE,
4709                 .host_command_sequence = 0,
4710                 .host_command_length = sizeof(u32)
4711         };
4712         int err;
4713
4714         switch (port_type) {
4715         case IW_MODE_INFRA:
4716                 cmd.host_command_parameters[0] = IPW_BSS;
4717                 break;
4718         case IW_MODE_ADHOC:
4719                 cmd.host_command_parameters[0] = IPW_IBSS;
4720                 break;
4721         }
4722
4723         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4724                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4725
4726         if (!batch_mode) {
4727                 err = ipw2100_disable_adapter(priv);
4728                 if (err) {
4729                         printk(KERN_ERR DRV_NAME
4730                                ": %s: Could not disable adapter %d\n",
4731                                priv->net_dev->name, err);
4732                         return err;
4733                 }
4734         }
4735
4736         /* send cmd to firmware */
4737         err = ipw2100_hw_send_command(priv, &cmd);
4738
4739         if (!batch_mode)
4740                 ipw2100_enable_adapter(priv);
4741
4742         return err;
4743 }
4744
4745 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4746                                int batch_mode)
4747 {
4748         struct host_command cmd = {
4749                 .host_command = CHANNEL,
4750                 .host_command_sequence = 0,
4751                 .host_command_length = sizeof(u32)
4752         };
4753         int err;
4754
4755         cmd.host_command_parameters[0] = channel;
4756
4757         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4758
4759         /* If BSS then we don't support channel selection */
4760         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4761                 return 0;
4762
4763         if ((channel != 0) &&
4764             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4765                 return -EINVAL;
4766
4767         if (!batch_mode) {
4768                 err = ipw2100_disable_adapter(priv);
4769                 if (err)
4770                         return err;
4771         }
4772
4773         err = ipw2100_hw_send_command(priv, &cmd);
4774         if (err) {
4775                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4776                 return err;
4777         }
4778
4779         if (channel)
4780                 priv->config |= CFG_STATIC_CHANNEL;
4781         else
4782                 priv->config &= ~CFG_STATIC_CHANNEL;
4783
4784         priv->channel = channel;
4785
4786         if (!batch_mode) {
4787                 err = ipw2100_enable_adapter(priv);
4788                 if (err)
4789                         return err;
4790         }
4791
4792         return 0;
4793 }
4794
4795 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4796 {
4797         struct host_command cmd = {
4798                 .host_command = SYSTEM_CONFIG,
4799                 .host_command_sequence = 0,
4800                 .host_command_length = 12,
4801         };
4802         u32 ibss_mask, len = sizeof(u32);
4803         int err;
4804
4805         /* Set system configuration */
4806
4807         if (!batch_mode) {
4808                 err = ipw2100_disable_adapter(priv);
4809                 if (err)
4810                         return err;
4811         }
4812
4813         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4814                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4815
4816         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4817             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4818
4819         if (!(priv->config & CFG_LONG_PREAMBLE))
4820                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4821
4822         err = ipw2100_get_ordinal(priv,
4823                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4824                                   &ibss_mask, &len);
4825         if (err)
4826                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4827
4828         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4829         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4830
4831         /* 11b only */
4832         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4833
4834         err = ipw2100_hw_send_command(priv, &cmd);
4835         if (err)
4836                 return err;
4837
4838 /* If IPv6 is configured in the kernel then we don't want to filter out all
4839  * of the multicast packets as IPv6 needs some. */
4840 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4841         cmd.host_command = ADD_MULTICAST;
4842         cmd.host_command_sequence = 0;
4843         cmd.host_command_length = 0;
4844
4845         ipw2100_hw_send_command(priv, &cmd);
4846 #endif
4847         if (!batch_mode) {
4848                 err = ipw2100_enable_adapter(priv);
4849                 if (err)
4850                         return err;
4851         }
4852
4853         return 0;
4854 }
4855
4856 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4857                                 int batch_mode)
4858 {
4859         struct host_command cmd = {
4860                 .host_command = BASIC_TX_RATES,
4861                 .host_command_sequence = 0,
4862                 .host_command_length = 4
4863         };
4864         int err;
4865
4866         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_disable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         /* Set BASIC TX Rate first */
4875         ipw2100_hw_send_command(priv, &cmd);
4876
4877         /* Set TX Rate */
4878         cmd.host_command = TX_RATES;
4879         ipw2100_hw_send_command(priv, &cmd);
4880
4881         /* Set MSDU TX Rate */
4882         cmd.host_command = MSDU_TX_RATES;
4883         ipw2100_hw_send_command(priv, &cmd);
4884
4885         if (!batch_mode) {
4886                 err = ipw2100_enable_adapter(priv);
4887                 if (err)
4888                         return err;
4889         }
4890
4891         priv->tx_rates = rate;
4892
4893         return 0;
4894 }
4895
4896 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = POWER_MODE,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 4
4902         };
4903         int err;
4904
4905         cmd.host_command_parameters[0] = power_level;
4906
4907         err = ipw2100_hw_send_command(priv, &cmd);
4908         if (err)
4909                 return err;
4910
4911         if (power_level == IPW_POWER_MODE_CAM)
4912                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4913         else
4914                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4915
4916 #ifdef IPW2100_TX_POWER
4917         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4918                 /* Set beacon interval */
4919                 cmd.host_command = TX_POWER_INDEX;
4920                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4921
4922                 err = ipw2100_hw_send_command(priv, &cmd);
4923                 if (err)
4924                         return err;
4925         }
4926 #endif
4927
4928         return 0;
4929 }
4930
4931 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4932 {
4933         struct host_command cmd = {
4934                 .host_command = RTS_THRESHOLD,
4935                 .host_command_sequence = 0,
4936                 .host_command_length = 4
4937         };
4938         int err;
4939
4940         if (threshold & RTS_DISABLED)
4941                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4942         else
4943                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4944
4945         err = ipw2100_hw_send_command(priv, &cmd);
4946         if (err)
4947                 return err;
4948
4949         priv->rts_threshold = threshold;
4950
4951         return 0;
4952 }
4953
4954 #if 0
4955 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4956                                         u32 threshold, int batch_mode)
4957 {
4958         struct host_command cmd = {
4959                 .host_command = FRAG_THRESHOLD,
4960                 .host_command_sequence = 0,
4961                 .host_command_length = 4,
4962                 .host_command_parameters[0] = 0,
4963         };
4964         int err;
4965
4966         if (!batch_mode) {
4967                 err = ipw2100_disable_adapter(priv);
4968                 if (err)
4969                         return err;
4970         }
4971
4972         if (threshold == 0)
4973                 threshold = DEFAULT_FRAG_THRESHOLD;
4974         else {
4975                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4976                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4977         }
4978
4979         cmd.host_command_parameters[0] = threshold;
4980
4981         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4982
4983         err = ipw2100_hw_send_command(priv, &cmd);
4984
4985         if (!batch_mode)
4986                 ipw2100_enable_adapter(priv);
4987
4988         if (!err)
4989                 priv->frag_threshold = threshold;
4990
4991         return err;
4992 }
4993 #endif
4994
4995 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4996 {
4997         struct host_command cmd = {
4998                 .host_command = SHORT_RETRY_LIMIT,
4999                 .host_command_sequence = 0,
5000                 .host_command_length = 4
5001         };
5002         int err;
5003
5004         cmd.host_command_parameters[0] = retry;
5005
5006         err = ipw2100_hw_send_command(priv, &cmd);
5007         if (err)
5008                 return err;
5009
5010         priv->short_retry_limit = retry;
5011
5012         return 0;
5013 }
5014
5015 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5016 {
5017         struct host_command cmd = {
5018                 .host_command = LONG_RETRY_LIMIT,
5019                 .host_command_sequence = 0,
5020                 .host_command_length = 4
5021         };
5022         int err;
5023
5024         cmd.host_command_parameters[0] = retry;
5025
5026         err = ipw2100_hw_send_command(priv, &cmd);
5027         if (err)
5028                 return err;
5029
5030         priv->long_retry_limit = retry;
5031
5032         return 0;
5033 }
5034
5035 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5036                                        int batch_mode)
5037 {
5038         struct host_command cmd = {
5039                 .host_command = MANDATORY_BSSID,
5040                 .host_command_sequence = 0,
5041                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5042         };
5043         int err;
5044
5045 #ifdef CONFIG_IPW2100_DEBUG
5046         if (bssid != NULL)
5047                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5048                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5049                              bssid[5]);
5050         else
5051                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5052 #endif
5053         /* if BSSID is empty then we disable mandatory bssid mode */
5054         if (bssid != NULL)
5055                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5056
5057         if (!batch_mode) {
5058                 err = ipw2100_disable_adapter(priv);
5059                 if (err)
5060                         return err;
5061         }
5062
5063         err = ipw2100_hw_send_command(priv, &cmd);
5064
5065         if (!batch_mode)
5066                 ipw2100_enable_adapter(priv);
5067
5068         return err;
5069 }
5070
5071 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5072 {
5073         struct host_command cmd = {
5074                 .host_command = DISASSOCIATION_BSSID,
5075                 .host_command_sequence = 0,
5076                 .host_command_length = ETH_ALEN
5077         };
5078         int err;
5079         int len;
5080
5081         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5082
5083         len = ETH_ALEN;
5084         /* The Firmware currently ignores the BSSID and just disassociates from
5085          * the currently associated AP -- but in the off chance that a future
5086          * firmware does use the BSSID provided here, we go ahead and try and
5087          * set it to the currently associated AP's BSSID */
5088         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5089
5090         err = ipw2100_hw_send_command(priv, &cmd);
5091
5092         return err;
5093 }
5094
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5096                               struct ipw2100_wpa_assoc_frame *, int)
5097     __attribute__ ((unused));
5098
5099 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5100                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5101                               int batch_mode)
5102 {
5103         struct host_command cmd = {
5104                 .host_command = SET_WPA_IE,
5105                 .host_command_sequence = 0,
5106                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5107         };
5108         int err;
5109
5110         IPW_DEBUG_HC("SET_WPA_IE\n");
5111
5112         if (!batch_mode) {
5113                 err = ipw2100_disable_adapter(priv);
5114                 if (err)
5115                         return err;
5116         }
5117
5118         memcpy(cmd.host_command_parameters, wpa_frame,
5119                sizeof(struct ipw2100_wpa_assoc_frame));
5120
5121         err = ipw2100_hw_send_command(priv, &cmd);
5122
5123         if (!batch_mode) {
5124                 if (ipw2100_enable_adapter(priv))
5125                         err = -EIO;
5126         }
5127
5128         return err;
5129 }
5130
5131 struct security_info_params {
5132         u32 allowed_ciphers;
5133         u16 version;
5134         u8 auth_mode;
5135         u8 replay_counters_number;
5136         u8 unicast_using_group;
5137 } __attribute__ ((packed));
5138
5139 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5140                                             int auth_mode,
5141                                             int security_level,
5142                                             int unicast_using_group,
5143                                             int batch_mode)
5144 {
5145         struct host_command cmd = {
5146                 .host_command = SET_SECURITY_INFORMATION,
5147                 .host_command_sequence = 0,
5148                 .host_command_length = sizeof(struct security_info_params)
5149         };
5150         struct security_info_params *security =
5151             (struct security_info_params *)&cmd.host_command_parameters;
5152         int err;
5153         memset(security, 0, sizeof(*security));
5154
5155         /* If shared key AP authentication is turned on, then we need to
5156          * configure the firmware to try and use it.
5157          *
5158          * Actual data encryption/decryption is handled by the host. */
5159         security->auth_mode = auth_mode;
5160         security->unicast_using_group = unicast_using_group;
5161
5162         switch (security_level) {
5163         default:
5164         case SEC_LEVEL_0:
5165                 security->allowed_ciphers = IPW_NONE_CIPHER;
5166                 break;
5167         case SEC_LEVEL_1:
5168                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169                     IPW_WEP104_CIPHER;
5170                 break;
5171         case SEC_LEVEL_2:
5172                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5174                 break;
5175         case SEC_LEVEL_2_CKIP:
5176                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5178                 break;
5179         case SEC_LEVEL_3:
5180                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5181                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5182                 break;
5183         }
5184
5185         IPW_DEBUG_HC
5186             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5187              security->auth_mode, security->allowed_ciphers, security_level);
5188
5189         security->replay_counters_number = 0;
5190
5191         if (!batch_mode) {
5192                 err = ipw2100_disable_adapter(priv);
5193                 if (err)
5194                         return err;
5195         }
5196
5197         err = ipw2100_hw_send_command(priv, &cmd);
5198
5199         if (!batch_mode)
5200                 ipw2100_enable_adapter(priv);
5201
5202         return err;
5203 }
5204
5205 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5206 {
5207         struct host_command cmd = {
5208                 .host_command = TX_POWER_INDEX,
5209                 .host_command_sequence = 0,
5210                 .host_command_length = 4
5211         };
5212         int err = 0;
5213         u32 tmp = tx_power;
5214
5215         if (tx_power != IPW_TX_POWER_DEFAULT)
5216                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5217                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5218
5219         cmd.host_command_parameters[0] = tmp;
5220
5221         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5222                 err = ipw2100_hw_send_command(priv, &cmd);
5223         if (!err)
5224                 priv->tx_power = tx_power;
5225
5226         return 0;
5227 }
5228
5229 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5230                                             u32 interval, int batch_mode)
5231 {
5232         struct host_command cmd = {
5233                 .host_command = BEACON_INTERVAL,
5234                 .host_command_sequence = 0,
5235                 .host_command_length = 4
5236         };
5237         int err;
5238
5239         cmd.host_command_parameters[0] = interval;
5240
5241         IPW_DEBUG_INFO("enter\n");
5242
5243         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5244                 if (!batch_mode) {
5245                         err = ipw2100_disable_adapter(priv);
5246                         if (err)
5247                                 return err;
5248                 }
5249
5250                 ipw2100_hw_send_command(priv, &cmd);
5251
5252                 if (!batch_mode) {
5253                         err = ipw2100_enable_adapter(priv);
5254                         if (err)
5255                                 return err;
5256                 }
5257         }
5258
5259         IPW_DEBUG_INFO("exit\n");
5260
5261         return 0;
5262 }
5263
5264 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5265 {
5266         ipw2100_tx_initialize(priv);
5267         ipw2100_rx_initialize(priv);
5268         ipw2100_msg_initialize(priv);
5269 }
5270
5271 void ipw2100_queues_free(struct ipw2100_priv *priv)
5272 {
5273         ipw2100_tx_free(priv);
5274         ipw2100_rx_free(priv);
5275         ipw2100_msg_free(priv);
5276 }
5277
5278 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5279 {
5280         if (ipw2100_tx_allocate(priv) ||
5281             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5282                 goto fail;
5283
5284         return 0;
5285
5286       fail:
5287         ipw2100_tx_free(priv);
5288         ipw2100_rx_free(priv);
5289         ipw2100_msg_free(priv);
5290         return -ENOMEM;
5291 }
5292
5293 #define IPW_PRIVACY_CAPABLE 0x0008
5294
5295 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5296                                  int batch_mode)
5297 {
5298         struct host_command cmd = {
5299                 .host_command = WEP_FLAGS,
5300                 .host_command_sequence = 0,
5301                 .host_command_length = 4
5302         };
5303         int err;
5304
5305         cmd.host_command_parameters[0] = flags;
5306
5307         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5308
5309         if (!batch_mode) {
5310                 err = ipw2100_disable_adapter(priv);
5311                 if (err) {
5312                         printk(KERN_ERR DRV_NAME
5313                                ": %s: Could not disable adapter %d\n",
5314                                priv->net_dev->name, err);
5315                         return err;
5316                 }
5317         }
5318
5319         /* send cmd to firmware */
5320         err = ipw2100_hw_send_command(priv, &cmd);
5321
5322         if (!batch_mode)
5323                 ipw2100_enable_adapter(priv);
5324
5325         return err;
5326 }
5327
5328 struct ipw2100_wep_key {
5329         u8 idx;
5330         u8 len;
5331         u8 key[13];
5332 };
5333
5334 /* Macros to ease up priting WEP keys */
5335 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5336 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5337 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5338 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5339
5340 /**
5341  * Set a the wep key
5342  *
5343  * @priv: struct to work on
5344  * @idx: index of the key we want to set
5345  * @key: ptr to the key data to set
5346  * @len: length of the buffer at @key
5347  * @batch_mode: FIXME perform the operation in batch mode, not
5348  *              disabling the device.
5349  *
5350  * @returns 0 if OK, < 0 errno code on error.
5351  *
5352  * Fill out a command structure with the new wep key, length an
5353  * index and send it down the wire.
5354  */
5355 static int ipw2100_set_key(struct ipw2100_priv *priv,
5356                            int idx, char *key, int len, int batch_mode)
5357 {
5358         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5359         struct host_command cmd = {
5360                 .host_command = WEP_KEY_INFO,
5361                 .host_command_sequence = 0,
5362                 .host_command_length = sizeof(struct ipw2100_wep_key),
5363         };
5364         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5365         int err;
5366
5367         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5368                      idx, keylen, len);
5369
5370         /* NOTE: We don't check cached values in case the firmware was reset
5371          * or some other problem is occurring.  If the user is setting the key,
5372          * then we push the change */
5373
5374         wep_key->idx = idx;
5375         wep_key->len = keylen;
5376
5377         if (keylen) {
5378                 memcpy(wep_key->key, key, len);
5379                 memset(wep_key->key + len, 0, keylen - len);
5380         }
5381
5382         /* Will be optimized out on debug not being configured in */
5383         if (keylen == 0)
5384                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5385                               priv->net_dev->name, wep_key->idx);
5386         else if (keylen == 5)
5387                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5388                               priv->net_dev->name, wep_key->idx, wep_key->len,
5389                               WEP_STR_64(wep_key->key));
5390         else
5391                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5392                               "\n",
5393                               priv->net_dev->name, wep_key->idx, wep_key->len,
5394                               WEP_STR_128(wep_key->key));
5395
5396         if (!batch_mode) {
5397                 err = ipw2100_disable_adapter(priv);
5398                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5399                 if (err) {
5400                         printk(KERN_ERR DRV_NAME
5401                                ": %s: Could not disable adapter %d\n",
5402                                priv->net_dev->name, err);
5403                         return err;
5404                 }
5405         }
5406
5407         /* send cmd to firmware */
5408         err = ipw2100_hw_send_command(priv, &cmd);
5409
5410         if (!batch_mode) {
5411                 int err2 = ipw2100_enable_adapter(priv);
5412                 if (err == 0)
5413                         err = err2;
5414         }
5415         return err;
5416 }
5417
5418 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5419                                  int idx, int batch_mode)
5420 {
5421         struct host_command cmd = {
5422                 .host_command = WEP_KEY_INDEX,
5423                 .host_command_sequence = 0,
5424                 .host_command_length = 4,
5425                 .host_command_parameters = {idx},
5426         };
5427         int err;
5428
5429         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5430
5431         if (idx < 0 || idx > 3)
5432                 return -EINVAL;
5433
5434         if (!batch_mode) {
5435                 err = ipw2100_disable_adapter(priv);
5436                 if (err) {
5437                         printk(KERN_ERR DRV_NAME
5438                                ": %s: Could not disable adapter %d\n",
5439                                priv->net_dev->name, err);
5440                         return err;
5441                 }
5442         }
5443
5444         /* send cmd to firmware */
5445         err = ipw2100_hw_send_command(priv, &cmd);
5446
5447         if (!batch_mode)
5448                 ipw2100_enable_adapter(priv);
5449
5450         return err;
5451 }
5452
5453 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5454 {
5455         int i, err, auth_mode, sec_level, use_group;
5456
5457         if (!(priv->status & STATUS_RUNNING))
5458                 return 0;
5459
5460         if (!batch_mode) {
5461                 err = ipw2100_disable_adapter(priv);
5462                 if (err)
5463                         return err;
5464         }
5465
5466         if (!priv->ieee->sec.enabled) {
5467                 err =
5468                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5469                                                      SEC_LEVEL_0, 0, 1);
5470         } else {
5471                 auth_mode = IPW_AUTH_OPEN;
5472                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5473                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5474                                 auth_mode = IPW_AUTH_SHARED;
5475                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5476                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5477                 }
5478
5479                 sec_level = SEC_LEVEL_0;
5480                 if (priv->ieee->sec.flags & SEC_LEVEL)
5481                         sec_level = priv->ieee->sec.level;
5482
5483                 use_group = 0;
5484                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5485                         use_group = priv->ieee->sec.unicast_uses_group;
5486
5487                 err =
5488                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5489                                                      use_group, 1);
5490         }
5491
5492         if (err)
5493                 goto exit;
5494
5495         if (priv->ieee->sec.enabled) {
5496                 for (i = 0; i < 4; i++) {
5497                         if (!(priv->ieee->sec.flags & (1 << i))) {
5498                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5499                                 priv->ieee->sec.key_sizes[i] = 0;
5500                         } else {
5501                                 err = ipw2100_set_key(priv, i,
5502                                                       priv->ieee->sec.keys[i],
5503                                                       priv->ieee->sec.
5504                                                       key_sizes[i], 1);
5505                                 if (err)
5506                                         goto exit;
5507                         }
5508                 }
5509
5510                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5511         }
5512
5513         /* Always enable privacy so the Host can filter WEP packets if
5514          * encrypted data is sent up */
5515         err =
5516             ipw2100_set_wep_flags(priv,
5517                                   priv->ieee->sec.
5518                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5519         if (err)
5520                 goto exit;
5521
5522         priv->status &= ~STATUS_SECURITY_UPDATED;
5523
5524       exit:
5525         if (!batch_mode)
5526                 ipw2100_enable_adapter(priv);
5527
5528         return err;
5529 }
5530
5531 static void ipw2100_security_work(struct work_struct *work)
5532 {
5533         struct ipw2100_priv *priv =
5534                 container_of(work, struct ipw2100_priv, security_work.work);
5535
5536         /* If we happen to have reconnected before we get a chance to
5537          * process this, then update the security settings--which causes
5538          * a disassociation to occur */
5539         if (!(priv->status & STATUS_ASSOCIATED) &&
5540             priv->status & STATUS_SECURITY_UPDATED)
5541                 ipw2100_configure_security(priv, 0);
5542 }
5543
5544 static void shim__set_security(struct net_device *dev,
5545                                struct ieee80211_security *sec)
5546 {
5547         struct ipw2100_priv *priv = ieee80211_priv(dev);
5548         int i, force_update = 0;
5549
5550         mutex_lock(&priv->action_mutex);
5551         if (!(priv->status & STATUS_INITIALIZED))
5552                 goto done;
5553
5554         for (i = 0; i < 4; i++) {
5555                 if (sec->flags & (1 << i)) {
5556                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5557                         if (sec->key_sizes[i] == 0)
5558                                 priv->ieee->sec.flags &= ~(1 << i);
5559                         else
5560                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5561                                        sec->key_sizes[i]);
5562                         if (sec->level == SEC_LEVEL_1) {
5563                                 priv->ieee->sec.flags |= (1 << i);
5564                                 priv->status |= STATUS_SECURITY_UPDATED;
5565                         } else
5566                                 priv->ieee->sec.flags &= ~(1 << i);
5567                 }
5568         }
5569
5570         if ((sec->flags & SEC_ACTIVE_KEY) &&
5571             priv->ieee->sec.active_key != sec->active_key) {
5572                 if (sec->active_key <= 3) {
5573                         priv->ieee->sec.active_key = sec->active_key;
5574                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5575                 } else
5576                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5577
5578                 priv->status |= STATUS_SECURITY_UPDATED;
5579         }
5580
5581         if ((sec->flags & SEC_AUTH_MODE) &&
5582             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5583                 priv->ieee->sec.auth_mode = sec->auth_mode;
5584                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5585                 priv->status |= STATUS_SECURITY_UPDATED;
5586         }
5587
5588         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5589                 priv->ieee->sec.flags |= SEC_ENABLED;
5590                 priv->ieee->sec.enabled = sec->enabled;
5591                 priv->status |= STATUS_SECURITY_UPDATED;
5592                 force_update = 1;
5593         }
5594
5595         if (sec->flags & SEC_ENCRYPT)
5596                 priv->ieee->sec.encrypt = sec->encrypt;
5597
5598         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599                 priv->ieee->sec.level = sec->level;
5600                 priv->ieee->sec.flags |= SEC_LEVEL;
5601                 priv->status |= STATUS_SECURITY_UPDATED;
5602         }
5603
5604         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5614
5615 /* As a temporary work around to enable WPA until we figure out why
5616  * wpa_supplicant toggles the security capability of the driver, which
5617  * forces a disassocation with force_update...
5618  *
5619  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621                 ipw2100_configure_security(priv, 0);
5622       done:
5623         mutex_unlock(&priv->action_mutex);
5624 }
5625
5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5627 {
5628         int err;
5629         int batch_mode = 1;
5630         u8 *bssid;
5631
5632         IPW_DEBUG_INFO("enter\n");
5633
5634         err = ipw2100_disable_adapter(priv);
5635         if (err)
5636                 return err;
5637 #ifdef CONFIG_IPW2100_MONITOR
5638         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5640                 if (err)
5641                         return err;
5642
5643                 IPW_DEBUG_INFO("exit\n");
5644
5645                 return 0;
5646         }
5647 #endif                          /* CONFIG_IPW2100_MONITOR */
5648
5649         err = ipw2100_read_mac_address(priv);
5650         if (err)
5651                 return -EIO;
5652
5653         err = ipw2100_set_mac_address(priv, batch_mode);
5654         if (err)
5655                 return err;
5656
5657         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5658         if (err)
5659                 return err;
5660
5661         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5663                 if (err)
5664                         return err;
5665         }
5666
5667         err = ipw2100_system_config(priv, batch_mode);
5668         if (err)
5669                 return err;
5670
5671         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5672         if (err)
5673                 return err;
5674
5675         /* Default to power mode OFF */
5676         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5677         if (err)
5678                 return err;
5679
5680         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5681         if (err)
5682                 return err;
5683
5684         if (priv->config & CFG_STATIC_BSSID)
5685                 bssid = priv->bssid;
5686         else
5687                 bssid = NULL;
5688         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5689         if (err)
5690                 return err;
5691
5692         if (priv->config & CFG_STATIC_ESSID)
5693                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694                                         batch_mode);
5695         else
5696                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5697         if (err)
5698                 return err;
5699
5700         err = ipw2100_configure_security(priv, batch_mode);
5701         if (err)
5702                 return err;
5703
5704         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5705                 err =
5706                     ipw2100_set_ibss_beacon_interval(priv,
5707                                                      priv->beacon_interval,
5708                                                      batch_mode);
5709                 if (err)
5710                         return err;
5711
5712                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5713                 if (err)
5714                         return err;
5715         }
5716
5717         /*
5718            err = ipw2100_set_fragmentation_threshold(
5719            priv, priv->frag_threshold, batch_mode);
5720            if (err)
5721            return err;
5722          */
5723
5724         IPW_DEBUG_INFO("exit\n");
5725
5726         return 0;
5727 }
5728
5729 /*************************************************************************
5730  *
5731  * EXTERNALLY CALLED METHODS
5732  *
5733  *************************************************************************/
5734
5735 /* This method is called by the network layer -- not to be confused with
5736  * ipw2100_set_mac_address() declared above called by this driver (and this
5737  * method as well) to talk to the firmware */
5738 static int ipw2100_set_address(struct net_device *dev, void *p)
5739 {
5740         struct ipw2100_priv *priv = ieee80211_priv(dev);
5741         struct sockaddr *addr = p;
5742         int err = 0;
5743
5744         if (!is_valid_ether_addr(addr->sa_data))
5745                 return -EADDRNOTAVAIL;
5746
5747         mutex_lock(&priv->action_mutex);
5748
5749         priv->config |= CFG_CUSTOM_MAC;
5750         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5751
5752         err = ipw2100_set_mac_address(priv, 0);
5753         if (err)
5754                 goto done;
5755
5756         priv->reset_backoff = 0;
5757         mutex_unlock(&priv->action_mutex);
5758         ipw2100_reset_adapter(&priv->reset_work.work);
5759         return 0;
5760
5761       done:
5762         mutex_unlock(&priv->action_mutex);
5763         return err;
5764 }
5765
5766 static int ipw2100_open(struct net_device *dev)
5767 {
5768         struct ipw2100_priv *priv = ieee80211_priv(dev);
5769         unsigned long flags;
5770         IPW_DEBUG_INFO("dev->open\n");
5771
5772         spin_lock_irqsave(&priv->low_lock, flags);
5773         if (priv->status & STATUS_ASSOCIATED) {
5774                 netif_carrier_on(dev);
5775                 netif_start_queue(dev);
5776         }
5777         spin_unlock_irqrestore(&priv->low_lock, flags);
5778
5779         return 0;
5780 }
5781
5782 static int ipw2100_close(struct net_device *dev)
5783 {
5784         struct ipw2100_priv *priv = ieee80211_priv(dev);
5785         unsigned long flags;
5786         struct list_head *element;
5787         struct ipw2100_tx_packet *packet;
5788
5789         IPW_DEBUG_INFO("enter\n");
5790
5791         spin_lock_irqsave(&priv->low_lock, flags);
5792
5793         if (priv->status & STATUS_ASSOCIATED)
5794                 netif_carrier_off(dev);
5795         netif_stop_queue(dev);
5796
5797         /* Flush the TX queue ... */
5798         while (!list_empty(&priv->tx_pend_list)) {
5799                 element = priv->tx_pend_list.next;
5800                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5801
5802                 list_del(element);
5803                 DEC_STAT(&priv->tx_pend_stat);
5804
5805                 ieee80211_txb_free(packet->info.d_struct.txb);
5806                 packet->info.d_struct.txb = NULL;
5807
5808                 list_add_tail(element, &priv->tx_free_list);
5809                 INC_STAT(&priv->tx_free_stat);
5810         }
5811         spin_unlock_irqrestore(&priv->low_lock, flags);
5812
5813         IPW_DEBUG_INFO("exit\n");
5814
5815         return 0;
5816 }
5817
5818 /*
5819  * TODO:  Fix this function... its just wrong
5820  */
5821 static void ipw2100_tx_timeout(struct net_device *dev)
5822 {
5823         struct ipw2100_priv *priv = ieee80211_priv(dev);
5824
5825         priv->ieee->stats.tx_errors++;
5826
5827 #ifdef CONFIG_IPW2100_MONITOR
5828         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5829                 return;
5830 #endif
5831
5832         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5833                        dev->name);
5834         schedule_reset(priv);
5835 }
5836
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 {
5839         /* This is called when wpa_supplicant loads and closes the driver
5840          * interface. */
5841         priv->ieee->wpa_enabled = value;
5842         return 0;
5843 }
5844
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 {
5847
5848         struct ieee80211_device *ieee = priv->ieee;
5849         struct ieee80211_security sec = {
5850                 .flags = SEC_AUTH_MODE,
5851         };
5852         int ret = 0;
5853
5854         if (value & IW_AUTH_ALG_SHARED_KEY) {
5855                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856                 ieee->open_wep = 0;
5857         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858                 sec.auth_mode = WLAN_AUTH_OPEN;
5859                 ieee->open_wep = 1;
5860         } else if (value & IW_AUTH_ALG_LEAP) {
5861                 sec.auth_mode = WLAN_AUTH_LEAP;
5862                 ieee->open_wep = 1;
5863         } else
5864                 return -EINVAL;
5865
5866         if (ieee->set_security)
5867                 ieee->set_security(ieee->dev, &sec);
5868         else
5869                 ret = -EOPNOTSUPP;
5870
5871         return ret;
5872 }
5873
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875                                     char *wpa_ie, int wpa_ie_len)
5876 {
5877
5878         struct ipw2100_wpa_assoc_frame frame;
5879
5880         frame.fixed_ie_mask = 0;
5881
5882         /* copy WPA IE */
5883         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884         frame.var_ie_len = wpa_ie_len;
5885
5886         /* make sure WPA is enabled */
5887         ipw2100_wpa_enable(priv, 1);
5888         ipw2100_set_wpa_ie(priv, &frame, 0);
5889 }
5890
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892                                     struct ethtool_drvinfo *info)
5893 {
5894         struct ipw2100_priv *priv = ieee80211_priv(dev);
5895         char fw_ver[64], ucode_ver[64];
5896
5897         strcpy(info->driver, DRV_NAME);
5898         strcpy(info->version, DRV_VERSION);
5899
5900         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5902
5903         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904                  fw_ver, priv->eeprom_version, ucode_ver);
5905
5906         strcpy(info->bus_info, pci_name(priv->pci_dev));
5907 }
5908
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5910 {
5911         struct ipw2100_priv *priv = ieee80211_priv(dev);
5912         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5913 }
5914
5915 static const struct ethtool_ops ipw2100_ethtool_ops = {
5916         .get_link = ipw2100_ethtool_get_link,
5917         .get_drvinfo = ipw_ethtool_get_drvinfo,
5918 };
5919
5920 static void ipw2100_hang_check(struct work_struct *work)
5921 {
5922         struct ipw2100_priv *priv =
5923                 container_of(work, struct ipw2100_priv, hang_check.work);
5924         unsigned long flags;
5925         u32 rtc = 0xa5a5a5a5;
5926         u32 len = sizeof(rtc);
5927         int restart = 0;
5928
5929         spin_lock_irqsave(&priv->low_lock, flags);
5930
5931         if (priv->fatal_error != 0) {
5932                 /* If fatal_error is set then we need to restart */
5933                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5934                                priv->net_dev->name);
5935
5936                 restart = 1;
5937         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5938                    (rtc == priv->last_rtc)) {
5939                 /* Check if firmware is hung */
5940                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5941                                priv->net_dev->name);
5942
5943                 restart = 1;
5944         }
5945
5946         if (restart) {
5947                 /* Kill timer */
5948                 priv->stop_hang_check = 1;
5949                 priv->hangs++;
5950
5951                 /* Restart the NIC */
5952                 schedule_reset(priv);
5953         }
5954
5955         priv->last_rtc = rtc;
5956
5957         if (!priv->stop_hang_check)
5958                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5959
5960         spin_unlock_irqrestore(&priv->low_lock, flags);
5961 }
5962
5963 static void ipw2100_rf_kill(struct work_struct *work)
5964 {
5965         struct ipw2100_priv *priv =
5966                 container_of(work, struct ipw2100_priv, rf_kill.work);
5967         unsigned long flags;
5968
5969         spin_lock_irqsave(&priv->low_lock, flags);
5970
5971         if (rf_kill_active(priv)) {
5972                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5973                 if (!priv->stop_rf_kill)
5974                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5975                                            round_jiffies(HZ));
5976                 goto exit_unlock;
5977         }
5978
5979         /* RF Kill is now disabled, so bring the device back up */
5980
5981         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5982                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5983                                   "device\n");
5984                 schedule_reset(priv);
5985         } else
5986                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5987                                   "enabled\n");
5988
5989       exit_unlock:
5990         spin_unlock_irqrestore(&priv->low_lock, flags);
5991 }
5992
5993 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5994
5995 /* Look into using netdev destructor to shutdown ieee80211? */
5996
5997 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5998                                                void __iomem * base_addr,
5999                                                unsigned long mem_start,
6000                                                unsigned long mem_len)
6001 {
6002         struct ipw2100_priv *priv;
6003         struct net_device *dev;
6004
6005         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6006         if (!dev)
6007                 return NULL;
6008         priv = ieee80211_priv(dev);
6009         priv->ieee = netdev_priv(dev);
6010         priv->pci_dev = pci_dev;
6011         priv->net_dev = dev;
6012
6013         priv->ieee->hard_start_xmit = ipw2100_tx;
6014         priv->ieee->set_security = shim__set_security;
6015
6016         priv->ieee->perfect_rssi = -20;
6017         priv->ieee->worst_rssi = -85;
6018
6019         dev->open = ipw2100_open;
6020         dev->stop = ipw2100_close;
6021         dev->init = ipw2100_net_init;
6022         dev->ethtool_ops = &ipw2100_ethtool_ops;
6023         dev->tx_timeout = ipw2100_tx_timeout;
6024         dev->wireless_handlers = &ipw2100_wx_handler_def;
6025         priv->wireless_data.ieee80211 = priv->ieee;
6026         dev->wireless_data = &priv->wireless_data;
6027         dev->set_mac_address = ipw2100_set_address;
6028         dev->watchdog_timeo = 3 * HZ;
6029         dev->irq = 0;
6030
6031         dev->base_addr = (unsigned long)base_addr;
6032         dev->mem_start = mem_start;
6033         dev->mem_end = dev->mem_start + mem_len - 1;
6034
6035         /* NOTE: We don't use the wireless_handlers hook
6036          * in dev as the system will start throwing WX requests
6037          * to us before we're actually initialized and it just
6038          * ends up causing problems.  So, we just handle
6039          * the WX extensions through the ipw2100_ioctl interface */
6040
6041         /* memset() puts everything to 0, so we only have explicitely set
6042          * those values that need to be something else */
6043
6044         /* If power management is turned on, default to AUTO mode */
6045         priv->power_mode = IPW_POWER_AUTO;
6046
6047 #ifdef CONFIG_IPW2100_MONITOR
6048         priv->config |= CFG_CRC_CHECK;
6049 #endif
6050         priv->ieee->wpa_enabled = 0;
6051         priv->ieee->drop_unencrypted = 0;
6052         priv->ieee->privacy_invoked = 0;
6053         priv->ieee->ieee802_1x = 1;
6054
6055         /* Set module parameters */
6056         switch (mode) {
6057         case 1:
6058                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6059                 break;
6060 #ifdef CONFIG_IPW2100_MONITOR
6061         case 2:
6062                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6063                 break;
6064 #endif
6065         default:
6066         case 0:
6067                 priv->ieee->iw_mode = IW_MODE_INFRA;
6068                 break;
6069         }
6070
6071         if (disable == 1)
6072                 priv->status |= STATUS_RF_KILL_SW;
6073
6074         if (channel != 0 &&
6075             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076                 priv->config |= CFG_STATIC_CHANNEL;
6077                 priv->channel = channel;
6078         }
6079
6080         if (associate)
6081                 priv->config |= CFG_ASSOCIATE;
6082
6083         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088         priv->tx_power = IPW_TX_POWER_DEFAULT;
6089         priv->tx_rates = DEFAULT_TX_RATES;
6090
6091         strcpy(priv->nick, "ipw2100");
6092
6093         spin_lock_init(&priv->low_lock);
6094         mutex_init(&priv->action_mutex);
6095         mutex_init(&priv->adapter_mutex);
6096
6097         init_waitqueue_head(&priv->wait_command_queue);
6098
6099         netif_carrier_off(dev);
6100
6101         INIT_LIST_HEAD(&priv->msg_free_list);
6102         INIT_LIST_HEAD(&priv->msg_pend_list);
6103         INIT_STAT(&priv->msg_free_stat);
6104         INIT_STAT(&priv->msg_pend_stat);
6105
6106         INIT_LIST_HEAD(&priv->tx_free_list);
6107         INIT_LIST_HEAD(&priv->tx_pend_list);
6108         INIT_STAT(&priv->tx_free_stat);
6109         INIT_STAT(&priv->tx_pend_stat);
6110
6111         INIT_LIST_HEAD(&priv->fw_pend_list);
6112         INIT_STAT(&priv->fw_pend_stat);
6113
6114         priv->workqueue = create_workqueue(DRV_NAME);
6115
6116         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6117         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6118         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6119         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6120         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6121
6122         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123                      ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125         /* NOTE:  We do not start the deferred work for status checks yet */
6126         priv->stop_rf_kill = 1;
6127         priv->stop_hang_check = 1;
6128
6129         return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133                                 const struct pci_device_id *ent)
6134 {
6135         unsigned long mem_start, mem_len, mem_flags;
6136         void __iomem *base_addr = NULL;
6137         struct net_device *dev = NULL;
6138         struct ipw2100_priv *priv = NULL;
6139         int err = 0;
6140         int registered = 0;
6141         u32 val;
6142
6143         IPW_DEBUG_INFO("enter\n");
6144
6145         mem_start = pci_resource_start(pci_dev, 0);
6146         mem_len = pci_resource_len(pci_dev, 0);
6147         mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151                 err = -ENODEV;
6152                 goto fail;
6153         }
6154
6155         base_addr = ioremap_nocache(mem_start, mem_len);
6156         if (!base_addr) {
6157                 printk(KERN_WARNING DRV_NAME
6158                        "Error calling ioremap_nocache.\n");
6159                 err = -EIO;
6160                 goto fail;
6161         }
6162
6163         /* allocate and initialize our net_device */
6164         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165         if (!dev) {
6166                 printk(KERN_WARNING DRV_NAME
6167                        "Error calling ipw2100_alloc_device.\n");
6168                 err = -ENOMEM;
6169                 goto fail;
6170         }
6171
6172         /* set up PCI mappings for device */
6173         err = pci_enable_device(pci_dev);
6174         if (err) {
6175                 printk(KERN_WARNING DRV_NAME
6176                        "Error calling pci_enable_device.\n");
6177                 return err;
6178         }
6179
6180         priv = ieee80211_priv(dev);
6181
6182         pci_set_master(pci_dev);
6183         pci_set_drvdata(pci_dev, priv);
6184
6185         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_set_dma_mask.\n");
6189                 pci_disable_device(pci_dev);
6190                 return err;
6191         }
6192
6193         err = pci_request_regions(pci_dev, DRV_NAME);
6194         if (err) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling pci_request_regions.\n");
6197                 pci_disable_device(pci_dev);
6198                 return err;
6199         }
6200
6201         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202          * PCI Tx retries from interfering with C3 CPU state */
6203         pci_read_config_dword(pci_dev, 0x40, &val);
6204         if ((val & 0x0000ff00) != 0)
6205                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207         pci_set_power_state(pci_dev, PCI_D0);
6208
6209         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210                 printk(KERN_WARNING DRV_NAME
6211                        "Device not found via register read.\n");
6212                 err = -ENODEV;
6213                 goto fail;
6214         }
6215
6216         SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218         /* Force interrupts to be shut off on the device */
6219         priv->status |= STATUS_INT_ENABLED;
6220         ipw2100_disable_interrupts(priv);
6221
6222         /* Allocate and initialize the Tx/Rx queues and lists */
6223         if (ipw2100_queues_allocate(priv)) {
6224                 printk(KERN_WARNING DRV_NAME
6225                        "Error calling ipw2100_queues_allocate.\n");
6226                 err = -ENOMEM;
6227                 goto fail;
6228         }
6229         ipw2100_queues_initialize(priv);
6230
6231         err = request_irq(pci_dev->irq,
6232                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233         if (err) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling request_irq: %d.\n", pci_dev->irq);
6236                 goto fail;
6237         }
6238         dev->irq = pci_dev->irq;
6239
6240         IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242         SET_MODULE_OWNER(dev);
6243
6244         printk(KERN_INFO DRV_NAME
6245                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247         /* Bring up the interface.  Pre 0.46, after we registered the
6248          * network device we would call ipw2100_up.  This introduced a race
6249          * condition with newer hotplug configurations (network was coming
6250          * up and making calls before the device was initialized).
6251          *
6252          * If we called ipw2100_up before we registered the device, then the
6253          * device name wasn't registered.  So, we instead use the net_dev->init
6254          * member to call a function that then just turns and calls ipw2100_up.
6255          * net_dev->init is called after name allocation but before the
6256          * notifier chain is called */
6257         err = register_netdev(dev);
6258         if (err) {
6259                 printk(KERN_WARNING DRV_NAME
6260                        "Error calling register_netdev.\n");
6261                 goto fail;
6262         }
6263
6264         mutex_lock(&priv->action_mutex);
6265         registered = 1;
6266
6267         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269         /* perform this after register_netdev so that dev->name is set */
6270         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271         if (err)
6272                 goto fail_unlock;
6273
6274         /* If the RF Kill switch is disabled, go ahead and complete the
6275          * startup sequence */
6276         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6277                 /* Enable the adapter - sends HOST_COMPLETE */
6278                 if (ipw2100_enable_adapter(priv)) {
6279                         printk(KERN_WARNING DRV_NAME
6280                                ": %s: failed in call to enable adapter.\n",
6281                                priv->net_dev->name);
6282                         ipw2100_hw_stop_adapter(priv);
6283                         err = -EIO;
6284                         goto fail_unlock;
6285                 }
6286
6287                 /* Start a scan . . . */
6288                 ipw2100_set_scan_options(priv);
6289                 ipw2100_start_scan(priv);
6290         }
6291
6292         IPW_DEBUG_INFO("exit\n");
6293
6294         priv->status |= STATUS_INITIALIZED;
6295
6296         mutex_unlock(&priv->action_mutex);
6297
6298         return 0;
6299
6300       fail_unlock:
6301         mutex_unlock(&priv->action_mutex);
6302
6303       fail:
6304         if (dev) {
6305                 if (registered)
6306                         unregister_netdev(dev);
6307
6308                 ipw2100_hw_stop_adapter(priv);
6309
6310                 ipw2100_disable_interrupts(priv);
6311
6312                 if (dev->irq)
6313                         free_irq(dev->irq, priv);
6314
6315                 ipw2100_kill_workqueue(priv);
6316
6317                 /* These are safe to call even if they weren't allocated */
6318                 ipw2100_queues_free(priv);
6319                 sysfs_remove_group(&pci_dev->dev.kobj,
6320                                    &ipw2100_attribute_group);
6321
6322                 free_ieee80211(dev);
6323                 pci_set_drvdata(pci_dev, NULL);
6324         }
6325
6326         if (base_addr)
6327                 iounmap(base_addr);
6328
6329         pci_release_regions(pci_dev);
6330         pci_disable_device(pci_dev);
6331
6332         return err;
6333 }
6334
6335 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6336 {
6337         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6338         struct net_device *dev;
6339
6340         if (priv) {
6341                 mutex_lock(&priv->action_mutex);
6342
6343                 priv->status &= ~STATUS_INITIALIZED;
6344
6345                 dev = priv->net_dev;
6346                 sysfs_remove_group(&pci_dev->dev.kobj,
6347                                    &ipw2100_attribute_group);
6348
6349 #ifdef CONFIG_PM
6350                 if (ipw2100_firmware.version)
6351                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6352 #endif
6353                 /* Take down the hardware */
6354                 ipw2100_down(priv);
6355
6356                 /* Release the mutex so that the network subsystem can
6357                  * complete any needed calls into the driver... */
6358                 mutex_unlock(&priv->action_mutex);
6359
6360                 /* Unregister the device first - this results in close()
6361                  * being called if the device is open.  If we free storage
6362                  * first, then close() will crash. */
6363                 unregister_netdev(dev);
6364
6365                 /* ipw2100_down will ensure that there is no more pending work
6366                  * in the workqueue's, so we can safely remove them now. */
6367                 ipw2100_kill_workqueue(priv);
6368
6369                 ipw2100_queues_free(priv);
6370
6371                 /* Free potential debugging firmware snapshot */
6372                 ipw2100_snapshot_free(priv);
6373
6374                 if (dev->irq)
6375                         free_irq(dev->irq, priv);
6376
6377                 if (dev->base_addr)
6378                         iounmap((void __iomem *)dev->base_addr);
6379
6380                 free_ieee80211(dev);
6381         }
6382
6383         pci_release_regions(pci_dev);
6384         pci_disable_device(pci_dev);
6385
6386         IPW_DEBUG_INFO("exit\n");
6387 }
6388
6389 #ifdef CONFIG_PM
6390 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6391 {
6392         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6393         struct net_device *dev = priv->net_dev;
6394
6395         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6396
6397         mutex_lock(&priv->action_mutex);
6398         if (priv->status & STATUS_INITIALIZED) {
6399                 /* Take down the device; powers it off, etc. */
6400                 ipw2100_down(priv);
6401         }
6402
6403         /* Remove the PRESENT state of the device */
6404         netif_device_detach(dev);
6405
6406         pci_save_state(pci_dev);
6407         pci_disable_device(pci_dev);
6408         pci_set_power_state(pci_dev, PCI_D3hot);
6409
6410         mutex_unlock(&priv->action_mutex);
6411
6412         return 0;
6413 }
6414
6415 static int ipw2100_resume(struct pci_dev *pci_dev)
6416 {
6417         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418         struct net_device *dev = priv->net_dev;
6419         int err;
6420         u32 val;
6421
6422         if (IPW2100_PM_DISABLED)
6423                 return 0;
6424
6425         mutex_lock(&priv->action_mutex);
6426
6427         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6428
6429         pci_set_power_state(pci_dev, PCI_D0);
6430         err = pci_enable_device(pci_dev);
6431         if (err) {
6432                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6433                        dev->name);
6434                 return err;
6435         }
6436         pci_restore_state(pci_dev);
6437
6438         /*
6439          * Suspend/Resume resets the PCI configuration space, so we have to
6440          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6441          * from interfering with C3 CPU state. pci_restore_state won't help
6442          * here since it only restores the first 64 bytes pci config header.
6443          */
6444         pci_read_config_dword(pci_dev, 0x40, &val);
6445         if ((val & 0x0000ff00) != 0)
6446                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6447
6448         /* Set the device back into the PRESENT state; this will also wake
6449          * the queue of needed */
6450         netif_device_attach(dev);
6451
6452         /* Bring the device back up */
6453         if (!(priv->status & STATUS_RF_KILL_SW))
6454                 ipw2100_up(priv, 0);
6455
6456         mutex_unlock(&priv->action_mutex);
6457
6458         return 0;
6459 }
6460 #endif
6461
6462 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6463
6464 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6465         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6466         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6467         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6468         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6469         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6470         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6471         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6472         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6473         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6476         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6477         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6478
6479         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6480         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6481         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6484
6485         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6486         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6487         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6488         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6489         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6490         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6491         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6492
6493         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6494
6495         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6496         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6497         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6498         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6499         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6501         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6502
6503         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6504         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6506         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6507         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6509
6510         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6511         {0,},
6512 };
6513
6514 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6515
6516 static struct pci_driver ipw2100_pci_driver = {
6517         .name = DRV_NAME,
6518         .id_table = ipw2100_pci_id_table,
6519         .probe = ipw2100_pci_init_one,
6520         .remove = __devexit_p(ipw2100_pci_remove_one),
6521 #ifdef CONFIG_PM
6522         .suspend = ipw2100_suspend,
6523         .resume = ipw2100_resume,
6524 #endif
6525 };
6526
6527 /**
6528  * Initialize the ipw2100 driver/module
6529  *
6530  * @returns 0 if ok, < 0 errno node con error.
6531  *
6532  * Note: we cannot init the /proc stuff until the PCI driver is there,
6533  * or we risk an unlikely race condition on someone accessing
6534  * uninitialized data in the PCI dev struct through /proc.
6535  */
6536 static int __init ipw2100_init(void)
6537 {
6538         int ret;
6539
6540         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6541         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6542
6543         ret = pci_register_driver(&ipw2100_pci_driver);
6544         if (ret)
6545                 goto out;
6546
6547         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6548 #ifdef CONFIG_IPW2100_DEBUG
6549         ipw2100_debug_level = debug;
6550         ret = driver_create_file(&ipw2100_pci_driver.driver,
6551                                  &driver_attr_debug_level);
6552 #endif
6553
6554 out:
6555         return ret;
6556 }
6557
6558 /**
6559  * Cleanup ipw2100 driver registration
6560  */
6561 static void __exit ipw2100_exit(void)
6562 {
6563         /* FIXME: IPG: check that we have no instances of the devices open */
6564 #ifdef CONFIG_IPW2100_DEBUG
6565         driver_remove_file(&ipw2100_pci_driver.driver,
6566                            &driver_attr_debug_level);
6567 #endif
6568         pci_unregister_driver(&ipw2100_pci_driver);
6569         remove_acceptable_latency("ipw2100");
6570 }
6571
6572 module_init(ipw2100_init);
6573 module_exit(ipw2100_exit);
6574
6575 #define WEXT_USECHANNELS 1
6576
6577 static const long ipw2100_frequencies[] = {
6578         2412, 2417, 2422, 2427,
6579         2432, 2437, 2442, 2447,
6580         2452, 2457, 2462, 2467,
6581         2472, 2484
6582 };
6583
6584 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6585                     sizeof(ipw2100_frequencies[0]))
6586
6587 static const long ipw2100_rates_11b[] = {
6588         1000000,
6589         2000000,
6590         5500000,
6591         11000000
6592 };
6593
6594 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6595
6596 static int ipw2100_wx_get_name(struct net_device *dev,
6597                                struct iw_request_info *info,
6598                                union iwreq_data *wrqu, char *extra)
6599 {
6600         /*
6601          * This can be called at any time.  No action lock required
6602          */
6603
6604         struct ipw2100_priv *priv = ieee80211_priv(dev);
6605         if (!(priv->status & STATUS_ASSOCIATED))
6606                 strcpy(wrqu->name, "unassociated");
6607         else
6608                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6609
6610         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6611         return 0;
6612 }
6613
6614 static int ipw2100_wx_set_freq(struct net_device *dev,
6615                                struct iw_request_info *info,
6616                                union iwreq_data *wrqu, char *extra)
6617 {
6618         struct ipw2100_priv *priv = ieee80211_priv(dev);
6619         struct iw_freq *fwrq = &wrqu->freq;
6620         int err = 0;
6621
6622         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6623                 return -EOPNOTSUPP;
6624
6625         mutex_lock(&priv->action_mutex);
6626         if (!(priv->status & STATUS_INITIALIZED)) {
6627                 err = -EIO;
6628                 goto done;
6629         }
6630
6631         /* if setting by freq convert to channel */
6632         if (fwrq->e == 1) {
6633                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6634                         int f = fwrq->m / 100000;
6635                         int c = 0;
6636
6637                         while ((c < REG_MAX_CHANNEL) &&
6638                                (f != ipw2100_frequencies[c]))
6639                                 c++;
6640
6641                         /* hack to fall through */
6642                         fwrq->e = 0;
6643                         fwrq->m = c + 1;
6644                 }
6645         }
6646
6647         if (fwrq->e > 0 || fwrq->m > 1000) {
6648                 err = -EOPNOTSUPP;
6649                 goto done;
6650         } else {                /* Set the channel */
6651                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6652                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6653         }
6654
6655       done:
6656         mutex_unlock(&priv->action_mutex);
6657         return err;
6658 }
6659
6660 static int ipw2100_wx_get_freq(struct net_device *dev,
6661                                struct iw_request_info *info,
6662                                union iwreq_data *wrqu, char *extra)
6663 {
6664         /*
6665          * This can be called at any time.  No action lock required
6666          */
6667
6668         struct ipw2100_priv *priv = ieee80211_priv(dev);
6669
6670         wrqu->freq.e = 0;
6671
6672         /* If we are associated, trying to associate, or have a statically
6673          * configured CHANNEL then return that; otherwise return ANY */
6674         if (priv->config & CFG_STATIC_CHANNEL ||
6675             priv->status & STATUS_ASSOCIATED)
6676                 wrqu->freq.m = priv->channel;
6677         else
6678                 wrqu->freq.m = 0;
6679
6680         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6681         return 0;
6682
6683 }
6684
6685 static int ipw2100_wx_set_mode(struct net_device *dev,
6686                                struct iw_request_info *info,
6687                                union iwreq_data *wrqu, char *extra)
6688 {
6689         struct ipw2100_priv *priv = ieee80211_priv(dev);
6690         int err = 0;
6691
6692         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6693
6694         if (wrqu->mode == priv->ieee->iw_mode)
6695                 return 0;
6696
6697         mutex_lock(&priv->action_mutex);
6698         if (!(priv->status & STATUS_INITIALIZED)) {
6699                 err = -EIO;
6700                 goto done;
6701         }
6702
6703         switch (wrqu->mode) {
6704 #ifdef CONFIG_IPW2100_MONITOR
6705         case IW_MODE_MONITOR:
6706                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6707                 break;
6708 #endif                          /* CONFIG_IPW2100_MONITOR */
6709         case IW_MODE_ADHOC:
6710                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6711                 break;
6712         case IW_MODE_INFRA:
6713         case IW_MODE_AUTO:
6714         default:
6715                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6716                 break;
6717         }
6718
6719       done:
6720         mutex_unlock(&priv->action_mutex);
6721         return err;
6722 }
6723
6724 static int ipw2100_wx_get_mode(struct net_device *dev,
6725                                struct iw_request_info *info,
6726                                union iwreq_data *wrqu, char *extra)
6727 {
6728         /*
6729          * This can be called at any time.  No action lock required
6730          */
6731
6732         struct ipw2100_priv *priv = ieee80211_priv(dev);
6733
6734         wrqu->mode = priv->ieee->iw_mode;
6735         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6736
6737         return 0;
6738 }
6739
6740 #define POWER_MODES 5
6741
6742 /* Values are in microsecond */
6743 static const s32 timeout_duration[POWER_MODES] = {
6744         350000,
6745         250000,
6746         75000,
6747         37000,
6748         25000,
6749 };
6750
6751 static const s32 period_duration[POWER_MODES] = {
6752         400000,
6753         700000,
6754         1000000,
6755         1000000,
6756         1000000
6757 };
6758
6759 static int ipw2100_wx_get_range(struct net_device *dev,
6760                                 struct iw_request_info *info,
6761                                 union iwreq_data *wrqu, char *extra)
6762 {
6763         /*
6764          * This can be called at any time.  No action lock required
6765          */
6766
6767         struct ipw2100_priv *priv = ieee80211_priv(dev);
6768         struct iw_range *range = (struct iw_range *)extra;
6769         u16 val;
6770         int i, level;
6771
6772         wrqu->data.length = sizeof(*range);
6773         memset(range, 0, sizeof(*range));
6774
6775         /* Let's try to keep this struct in the same order as in
6776          * linux/include/wireless.h
6777          */
6778
6779         /* TODO: See what values we can set, and remove the ones we can't
6780          * set, or fill them with some default data.
6781          */
6782
6783         /* ~5 Mb/s real (802.11b) */
6784         range->throughput = 5 * 1000 * 1000;
6785
6786 //      range->sensitivity;     /* signal level threshold range */
6787
6788         range->max_qual.qual = 100;
6789         /* TODO: Find real max RSSI and stick here */
6790         range->max_qual.level = 0;
6791         range->max_qual.noise = 0;
6792         range->max_qual.updated = 7;    /* Updated all three */
6793
6794         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6795         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6796         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6797         range->avg_qual.noise = 0;
6798         range->avg_qual.updated = 7;    /* Updated all three */
6799
6800         range->num_bitrates = RATE_COUNT;
6801
6802         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6803                 range->bitrate[i] = ipw2100_rates_11b[i];
6804         }
6805
6806         range->min_rts = MIN_RTS_THRESHOLD;
6807         range->max_rts = MAX_RTS_THRESHOLD;
6808         range->min_frag = MIN_FRAG_THRESHOLD;
6809         range->max_frag = MAX_FRAG_THRESHOLD;
6810
6811         range->min_pmp = period_duration[0];    /* Minimal PM period */
6812         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6813         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6814         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6815
6816         /* How to decode max/min PM period */
6817         range->pmp_flags = IW_POWER_PERIOD;
6818         /* How to decode max/min PM period */
6819         range->pmt_flags = IW_POWER_TIMEOUT;
6820         /* What PM options are supported */
6821         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6822
6823         range->encoding_size[0] = 5;
6824         range->encoding_size[1] = 13;   /* Different token sizes */
6825         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6826         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6827 //      range->encoding_login_index;            /* token index for login token */
6828
6829         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6830                 range->txpower_capa = IW_TXPOW_DBM;
6831                 range->num_txpower = IW_MAX_TXPOWER;
6832                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6833                      i < IW_MAX_TXPOWER;
6834                      i++, level -=
6835                      ((IPW_TX_POWER_MAX_DBM -
6836                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6837                         range->txpower[i] = level / 16;
6838         } else {
6839                 range->txpower_capa = 0;
6840                 range->num_txpower = 0;
6841         }
6842
6843         /* Set the Wireless Extension versions */
6844         range->we_version_compiled = WIRELESS_EXT;
6845         range->we_version_source = 18;
6846
6847 //      range->retry_capa;      /* What retry options are supported */
6848 //      range->retry_flags;     /* How to decode max/min retry limit */
6849 //      range->r_time_flags;    /* How to decode max/min retry life */
6850 //      range->min_retry;       /* Minimal number of retries */
6851 //      range->max_retry;       /* Maximal number of retries */
6852 //      range->min_r_time;      /* Minimal retry lifetime */
6853 //      range->max_r_time;      /* Maximal retry lifetime */
6854
6855         range->num_channels = FREQ_COUNT;
6856
6857         val = 0;
6858         for (i = 0; i < FREQ_COUNT; i++) {
6859                 // TODO: Include only legal frequencies for some countries
6860 //              if (local->channel_mask & (1 << i)) {
6861                 range->freq[val].i = i + 1;
6862                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6863                 range->freq[val].e = 1;
6864                 val++;
6865 //              }
6866                 if (val == IW_MAX_FREQUENCIES)
6867                         break;
6868         }
6869         range->num_frequency = val;
6870
6871         /* Event capability (kernel + driver) */
6872         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6873                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6874         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6875
6876         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6877                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6878
6879         IPW_DEBUG_WX("GET Range\n");
6880
6881         return 0;
6882 }
6883
6884 static int ipw2100_wx_set_wap(struct net_device *dev,
6885                               struct iw_request_info *info,
6886                               union iwreq_data *wrqu, char *extra)
6887 {
6888         struct ipw2100_priv *priv = ieee80211_priv(dev);
6889         int err = 0;
6890
6891         static const unsigned char any[] = {
6892                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6893         };
6894         static const unsigned char off[] = {
6895                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6896         };
6897
6898         // sanity checks
6899         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6900                 return -EINVAL;
6901
6902         mutex_lock(&priv->action_mutex);
6903         if (!(priv->status & STATUS_INITIALIZED)) {
6904                 err = -EIO;
6905                 goto done;
6906         }
6907
6908         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6909             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6910                 /* we disable mandatory BSSID association */
6911                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6912                 priv->config &= ~CFG_STATIC_BSSID;
6913                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6914                 goto done;
6915         }
6916
6917         priv->config |= CFG_STATIC_BSSID;
6918         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6919
6920         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6921
6922         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6923                      wrqu->ap_addr.sa_data[0] & 0xff,
6924                      wrqu->ap_addr.sa_data[1] & 0xff,
6925                      wrqu->ap_addr.sa_data[2] & 0xff,
6926                      wrqu->ap_addr.sa_data[3] & 0xff,
6927                      wrqu->ap_addr.sa_data[4] & 0xff,
6928                      wrqu->ap_addr.sa_data[5] & 0xff);
6929
6930       done:
6931         mutex_unlock(&priv->action_mutex);
6932         return err;
6933 }
6934
6935 static int ipw2100_wx_get_wap(struct net_device *dev,
6936                               struct iw_request_info *info,
6937                               union iwreq_data *wrqu, char *extra)
6938 {
6939         /*
6940          * This can be called at any time.  No action lock required
6941          */
6942
6943         struct ipw2100_priv *priv = ieee80211_priv(dev);
6944
6945         /* If we are associated, trying to associate, or have a statically
6946          * configured BSSID then return that; otherwise return ANY */
6947         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6948                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6949                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6950         } else
6951                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6952
6953         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6954                      MAC_ARG(wrqu->ap_addr.sa_data));
6955         return 0;
6956 }
6957
6958 static int ipw2100_wx_set_essid(struct net_device *dev,
6959                                 struct iw_request_info *info,
6960                                 union iwreq_data *wrqu, char *extra)
6961 {
6962         struct ipw2100_priv *priv = ieee80211_priv(dev);
6963         char *essid = "";       /* ANY */
6964         int length = 0;
6965         int err = 0;
6966
6967         mutex_lock(&priv->action_mutex);
6968         if (!(priv->status & STATUS_INITIALIZED)) {
6969                 err = -EIO;
6970                 goto done;
6971         }
6972
6973         if (wrqu->essid.flags && wrqu->essid.length) {
6974                 length = wrqu->essid.length;
6975                 essid = extra;
6976         }
6977
6978         if (length == 0) {
6979                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6980                 priv->config &= ~CFG_STATIC_ESSID;
6981                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6982                 goto done;
6983         }
6984
6985         length = min(length, IW_ESSID_MAX_SIZE);
6986
6987         priv->config |= CFG_STATIC_ESSID;
6988
6989         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6990                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6991                 err = 0;
6992                 goto done;
6993         }
6994
6995         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6996                      length);
6997
6998         priv->essid_len = length;
6999         memcpy(priv->essid, essid, priv->essid_len);
7000
7001         err = ipw2100_set_essid(priv, essid, length, 0);
7002
7003       done:
7004         mutex_unlock(&priv->action_mutex);
7005         return err;
7006 }
7007
7008 static int ipw2100_wx_get_essid(struct net_device *dev,
7009                                 struct iw_request_info *info,
7010                                 union iwreq_data *wrqu, char *extra)
7011 {
7012         /*
7013          * This can be called at any time.  No action lock required
7014          */
7015
7016         struct ipw2100_priv *priv = ieee80211_priv(dev);
7017
7018         /* If we are associated, trying to associate, or have a statically
7019          * configured ESSID then return that; otherwise return ANY */
7020         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7021                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7022                              escape_essid(priv->essid, priv->essid_len));
7023                 memcpy(extra, priv->essid, priv->essid_len);
7024                 wrqu->essid.length = priv->essid_len;
7025                 wrqu->essid.flags = 1;  /* active */
7026         } else {
7027                 IPW_DEBUG_WX("Getting essid: ANY\n");
7028                 wrqu->essid.length = 0;
7029                 wrqu->essid.flags = 0;  /* active */
7030         }
7031
7032         return 0;
7033 }
7034
7035 static int ipw2100_wx_set_nick(struct net_device *dev,
7036                                struct iw_request_info *info,
7037                                union iwreq_data *wrqu, char *extra)
7038 {
7039         /*
7040          * This can be called at any time.  No action lock required
7041          */
7042
7043         struct ipw2100_priv *priv = ieee80211_priv(dev);
7044
7045         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7046                 return -E2BIG;
7047
7048         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7049         memset(priv->nick, 0, sizeof(priv->nick));
7050         memcpy(priv->nick, extra, wrqu->data.length);
7051
7052         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7053
7054         return 0;
7055 }
7056
7057 static int ipw2100_wx_get_nick(struct net_device *dev,
7058                                struct iw_request_info *info,
7059                                union iwreq_data *wrqu, char *extra)
7060 {
7061         /*
7062          * This can be called at any time.  No action lock required
7063          */
7064
7065         struct ipw2100_priv *priv = ieee80211_priv(dev);
7066
7067         wrqu->data.length = strlen(priv->nick);
7068         memcpy(extra, priv->nick, wrqu->data.length);
7069         wrqu->data.flags = 1;   /* active */
7070
7071         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7072
7073         return 0;
7074 }
7075
7076 static int ipw2100_wx_set_rate(struct net_device *dev,
7077                                struct iw_request_info *info,
7078                                union iwreq_data *wrqu, char *extra)
7079 {
7080         struct ipw2100_priv *priv = ieee80211_priv(dev);
7081         u32 target_rate = wrqu->bitrate.value;
7082         u32 rate;
7083         int err = 0;
7084
7085         mutex_lock(&priv->action_mutex);
7086         if (!(priv->status & STATUS_INITIALIZED)) {
7087                 err = -EIO;
7088                 goto done;
7089         }
7090
7091         rate = 0;
7092
7093         if (target_rate == 1000000 ||
7094             (!wrqu->bitrate.fixed && target_rate > 1000000))
7095                 rate |= TX_RATE_1_MBIT;
7096         if (target_rate == 2000000 ||
7097             (!wrqu->bitrate.fixed && target_rate > 2000000))
7098                 rate |= TX_RATE_2_MBIT;
7099         if (target_rate == 5500000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 5500000))
7101                 rate |= TX_RATE_5_5_MBIT;
7102         if (target_rate == 11000000 ||
7103             (!wrqu->bitrate.fixed && target_rate > 11000000))
7104                 rate |= TX_RATE_11_MBIT;
7105         if (rate == 0)
7106                 rate = DEFAULT_TX_RATES;
7107
7108         err = ipw2100_set_tx_rates(priv, rate, 0);
7109
7110         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7111       done:
7112         mutex_unlock(&priv->action_mutex);
7113         return err;
7114 }
7115
7116 static int ipw2100_wx_get_rate(struct net_device *dev,
7117                                struct iw_request_info *info,
7118                                union iwreq_data *wrqu, char *extra)
7119 {
7120         struct ipw2100_priv *priv = ieee80211_priv(dev);
7121         int val;
7122         int len = sizeof(val);
7123         int err = 0;
7124
7125         if (!(priv->status & STATUS_ENABLED) ||
7126             priv->status & STATUS_RF_KILL_MASK ||
7127             !(priv->status & STATUS_ASSOCIATED)) {
7128                 wrqu->bitrate.value = 0;
7129                 return 0;
7130         }
7131
7132         mutex_lock(&priv->action_mutex);
7133         if (!(priv->status & STATUS_INITIALIZED)) {
7134                 err = -EIO;
7135                 goto done;
7136         }
7137
7138         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7139         if (err) {
7140                 IPW_DEBUG_WX("failed querying ordinals.\n");
7141                 return err;
7142         }
7143
7144         switch (val & TX_RATE_MASK) {
7145         case TX_RATE_1_MBIT:
7146                 wrqu->bitrate.value = 1000000;
7147                 break;
7148         case TX_RATE_2_MBIT:
7149                 wrqu->bitrate.value = 2000000;
7150                 break;
7151         case TX_RATE_5_5_MBIT:
7152                 wrqu->bitrate.value = 5500000;
7153                 break;
7154         case TX_RATE_11_MBIT:
7155                 wrqu->bitrate.value = 11000000;
7156                 break;
7157         default:
7158                 wrqu->bitrate.value = 0;
7159         }
7160
7161         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7162
7163       done:
7164         mutex_unlock(&priv->action_mutex);
7165         return err;
7166 }
7167
7168 static int ipw2100_wx_set_rts(struct net_device *dev,
7169                               struct iw_request_info *info,
7170                               union iwreq_data *wrqu, char *extra)
7171 {
7172         struct ipw2100_priv *priv = ieee80211_priv(dev);
7173         int value, err;
7174
7175         /* Auto RTS not yet supported */
7176         if (wrqu->rts.fixed == 0)
7177                 return -EINVAL;
7178
7179         mutex_lock(&priv->action_mutex);
7180         if (!(priv->status & STATUS_INITIALIZED)) {
7181                 err = -EIO;
7182                 goto done;
7183         }
7184
7185         if (wrqu->rts.disabled)
7186                 value = priv->rts_threshold | RTS_DISABLED;
7187         else {
7188                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7189                         err = -EINVAL;
7190                         goto done;
7191                 }
7192                 value = wrqu->rts.value;
7193         }
7194
7195         err = ipw2100_set_rts_threshold(priv, value);
7196
7197         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7198       done:
7199         mutex_unlock(&priv->action_mutex);
7200         return err;
7201 }
7202
7203 static int ipw2100_wx_get_rts(struct net_device *dev,
7204                               struct iw_request_info *info,
7205                               union iwreq_data *wrqu, char *extra)
7206 {
7207         /*
7208          * This can be called at any time.  No action lock required
7209          */
7210
7211         struct ipw2100_priv *priv = ieee80211_priv(dev);
7212
7213         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7214         wrqu->rts.fixed = 1;    /* no auto select */
7215
7216         /* If RTS is set to the default value, then it is disabled */
7217         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7218
7219         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7220
7221         return 0;
7222 }
7223
7224 static int ipw2100_wx_set_txpow(struct net_device *dev,
7225                                 struct iw_request_info *info,
7226                                 union iwreq_data *wrqu, char *extra)
7227 {
7228         struct ipw2100_priv *priv = ieee80211_priv(dev);
7229         int err = 0, value;
7230         
7231         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7232                 return -EINPROGRESS;
7233
7234         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7235                 return 0;
7236
7237         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7238                 return -EINVAL;
7239
7240         if (wrqu->txpower.fixed == 0)
7241                 value = IPW_TX_POWER_DEFAULT;
7242         else {
7243                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7244                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7245                         return -EINVAL;
7246
7247                 value = wrqu->txpower.value;
7248         }
7249
7250         mutex_lock(&priv->action_mutex);
7251         if (!(priv->status & STATUS_INITIALIZED)) {
7252                 err = -EIO;
7253                 goto done;
7254         }
7255
7256         err = ipw2100_set_tx_power(priv, value);
7257
7258         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7259
7260       done:
7261         mutex_unlock(&priv->action_mutex);
7262         return err;
7263 }
7264
7265 static int ipw2100_wx_get_txpow(struct net_device *dev,
7266                                 struct iw_request_info *info,
7267                                 union iwreq_data *wrqu, char *extra)
7268 {
7269         /*
7270          * This can be called at any time.  No action lock required
7271          */
7272
7273         struct ipw2100_priv *priv = ieee80211_priv(dev);
7274
7275         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7276
7277         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7278                 wrqu->txpower.fixed = 0;
7279                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7280         } else {
7281                 wrqu->txpower.fixed = 1;
7282                 wrqu->txpower.value = priv->tx_power;
7283         }
7284
7285         wrqu->txpower.flags = IW_TXPOW_DBM;
7286
7287         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7288
7289         return 0;
7290 }
7291
7292 static int ipw2100_wx_set_frag(struct net_device *dev,
7293                                struct iw_request_info *info,
7294                                union iwreq_data *wrqu, char *extra)
7295 {
7296         /*
7297          * This can be called at any time.  No action lock required
7298          */
7299
7300         struct ipw2100_priv *priv = ieee80211_priv(dev);
7301
7302         if (!wrqu->frag.fixed)
7303                 return -EINVAL;
7304
7305         if (wrqu->frag.disabled) {
7306                 priv->frag_threshold |= FRAG_DISABLED;
7307                 priv->ieee->fts = DEFAULT_FTS;
7308         } else {
7309                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7310                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7311                         return -EINVAL;
7312
7313                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7314                 priv->frag_threshold = priv->ieee->fts;
7315         }
7316
7317         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7318
7319         return 0;
7320 }
7321
7322 static int ipw2100_wx_get_frag(struct net_device *dev,
7323                                struct iw_request_info *info,
7324                                union iwreq_data *wrqu, char *extra)
7325 {
7326         /*
7327          * This can be called at any time.  No action lock required
7328          */
7329
7330         struct ipw2100_priv *priv = ieee80211_priv(dev);
7331         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7332         wrqu->frag.fixed = 0;   /* no auto select */
7333         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7334
7335         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7336
7337         return 0;
7338 }
7339
7340 static int ipw2100_wx_set_retry(struct net_device *dev,
7341                                 struct iw_request_info *info,
7342                                 union iwreq_data *wrqu, char *extra)
7343 {
7344         struct ipw2100_priv *priv = ieee80211_priv(dev);
7345         int err = 0;
7346
7347         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7348                 return -EINVAL;
7349
7350         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7351                 return 0;
7352
7353         mutex_lock(&priv->action_mutex);
7354         if (!(priv->status & STATUS_INITIALIZED)) {
7355                 err = -EIO;
7356                 goto done;
7357         }
7358
7359         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7360                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7362                              wrqu->retry.value);
7363                 goto done;
7364         }
7365
7366         if (wrqu->retry.flags & IW_RETRY_LONG) {
7367                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7369                              wrqu->retry.value);
7370                 goto done;
7371         }
7372
7373         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374         if (!err)
7375                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7376
7377         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7378
7379       done:
7380         mutex_unlock(&priv->action_mutex);
7381         return err;
7382 }
7383
7384 static int ipw2100_wx_get_retry(struct net_device *dev,
7385                                 struct iw_request_info *info,
7386                                 union iwreq_data *wrqu, char *extra)
7387 {
7388         /*
7389          * This can be called at any time.  No action lock required
7390          */
7391
7392         struct ipw2100_priv *priv = ieee80211_priv(dev);
7393
7394         wrqu->retry.disabled = 0;       /* can't be disabled */
7395
7396         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7397                 return -EINVAL;
7398
7399         if (wrqu->retry.flags & IW_RETRY_LONG) {
7400                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7401                 wrqu->retry.value = priv->long_retry_limit;
7402         } else {
7403                 wrqu->retry.flags =
7404                     (priv->short_retry_limit !=
7405                      priv->long_retry_limit) ?
7406                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7407
7408                 wrqu->retry.value = priv->short_retry_limit;
7409         }
7410
7411         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7412
7413         return 0;
7414 }
7415
7416 static int ipw2100_wx_set_scan(struct net_device *dev,
7417                                struct iw_request_info *info,
7418                                union iwreq_data *wrqu, char *extra)
7419 {
7420         struct ipw2100_priv *priv = ieee80211_priv(dev);
7421         int err = 0;
7422
7423         mutex_lock(&priv->action_mutex);
7424         if (!(priv->status & STATUS_INITIALIZED)) {
7425                 err = -EIO;
7426                 goto done;
7427         }
7428
7429         IPW_DEBUG_WX("Initiating scan...\n");
7430         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7431                 IPW_DEBUG_WX("Start scan failed.\n");
7432
7433                 /* TODO: Mark a scan as pending so when hardware initialized
7434                  *       a scan starts */
7435         }
7436
7437       done:
7438         mutex_unlock(&priv->action_mutex);
7439         return err;
7440 }
7441
7442 static int ipw2100_wx_get_scan(struct net_device *dev,
7443                                struct iw_request_info *info,
7444                                union iwreq_data *wrqu, char *extra)
7445 {
7446         /*
7447          * This can be called at any time.  No action lock required
7448          */
7449
7450         struct ipw2100_priv *priv = ieee80211_priv(dev);
7451         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7452 }
7453
7454 /*
7455  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7456  */
7457 static int ipw2100_wx_set_encode(struct net_device *dev,
7458                                  struct iw_request_info *info,
7459                                  union iwreq_data *wrqu, char *key)
7460 {
7461         /*
7462          * No check of STATUS_INITIALIZED required
7463          */
7464
7465         struct ipw2100_priv *priv = ieee80211_priv(dev);
7466         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7467 }
7468
7469 static int ipw2100_wx_get_encode(struct net_device *dev,
7470                                  struct iw_request_info *info,
7471                                  union iwreq_data *wrqu, char *key)
7472 {
7473         /*
7474          * This can be called at any time.  No action lock required
7475          */
7476
7477         struct ipw2100_priv *priv = ieee80211_priv(dev);
7478         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7479 }
7480
7481 static int ipw2100_wx_set_power(struct net_device *dev,
7482                                 struct iw_request_info *info,
7483                                 union iwreq_data *wrqu, char *extra)
7484 {
7485         struct ipw2100_priv *priv = ieee80211_priv(dev);
7486         int err = 0;
7487
7488         mutex_lock(&priv->action_mutex);
7489         if (!(priv->status & STATUS_INITIALIZED)) {
7490                 err = -EIO;
7491                 goto done;
7492         }
7493
7494         if (wrqu->power.disabled) {
7495                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7496                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7497                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7498                 goto done;
7499         }
7500
7501         switch (wrqu->power.flags & IW_POWER_MODE) {
7502         case IW_POWER_ON:       /* If not specified */
7503         case IW_POWER_MODE:     /* If set all mask */
7504         case IW_POWER_ALL_R:    /* If explicitely state all */
7505                 break;
7506         default:                /* Otherwise we don't support it */
7507                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7508                              wrqu->power.flags);
7509                 err = -EOPNOTSUPP;
7510                 goto done;
7511         }
7512
7513         /* If the user hasn't specified a power management mode yet, default
7514          * to BATTERY */
7515         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7516         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7517
7518         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7519
7520       done:
7521         mutex_unlock(&priv->action_mutex);
7522         return err;
7523
7524 }
7525
7526 static int ipw2100_wx_get_power(struct net_device *dev,
7527                                 struct iw_request_info *info,
7528                                 union iwreq_data *wrqu, char *extra)
7529 {
7530         /*
7531          * This can be called at any time.  No action lock required
7532          */
7533
7534         struct ipw2100_priv *priv = ieee80211_priv(dev);
7535
7536         if (!(priv->power_mode & IPW_POWER_ENABLED))
7537                 wrqu->power.disabled = 1;
7538         else {
7539                 wrqu->power.disabled = 0;
7540                 wrqu->power.flags = 0;
7541         }
7542
7543         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7544
7545         return 0;
7546 }
7547
7548 /*
7549  * WE-18 WPA support
7550  */
7551
7552 /* SIOCSIWGENIE */
7553 static int ipw2100_wx_set_genie(struct net_device *dev,
7554                                 struct iw_request_info *info,
7555                                 union iwreq_data *wrqu, char *extra)
7556 {
7557
7558         struct ipw2100_priv *priv = ieee80211_priv(dev);
7559         struct ieee80211_device *ieee = priv->ieee;
7560         u8 *buf;
7561
7562         if (!ieee->wpa_enabled)
7563                 return -EOPNOTSUPP;
7564
7565         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7566             (wrqu->data.length && extra == NULL))
7567                 return -EINVAL;
7568
7569         if (wrqu->data.length) {
7570                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7571                 if (buf == NULL)
7572                         return -ENOMEM;
7573
7574                 kfree(ieee->wpa_ie);
7575                 ieee->wpa_ie = buf;
7576                 ieee->wpa_ie_len = wrqu->data.length;
7577         } else {
7578                 kfree(ieee->wpa_ie);
7579                 ieee->wpa_ie = NULL;
7580                 ieee->wpa_ie_len = 0;
7581         }
7582
7583         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7584
7585         return 0;
7586 }
7587
7588 /* SIOCGIWGENIE */
7589 static int ipw2100_wx_get_genie(struct net_device *dev,
7590                                 struct iw_request_info *info,
7591                                 union iwreq_data *wrqu, char *extra)
7592 {
7593         struct ipw2100_priv *priv = ieee80211_priv(dev);
7594         struct ieee80211_device *ieee = priv->ieee;
7595
7596         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7597                 wrqu->data.length = 0;
7598                 return 0;
7599         }
7600
7601         if (wrqu->data.length < ieee->wpa_ie_len)
7602                 return -E2BIG;
7603
7604         wrqu->data.length = ieee->wpa_ie_len;
7605         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7606
7607         return 0;
7608 }
7609
7610 /* SIOCSIWAUTH */
7611 static int ipw2100_wx_set_auth(struct net_device *dev,
7612                                struct iw_request_info *info,
7613                                union iwreq_data *wrqu, char *extra)
7614 {
7615         struct ipw2100_priv *priv = ieee80211_priv(dev);
7616         struct ieee80211_device *ieee = priv->ieee;
7617         struct iw_param *param = &wrqu->param;
7618         struct ieee80211_crypt_data *crypt;
7619         unsigned long flags;
7620         int ret = 0;
7621
7622         switch (param->flags & IW_AUTH_INDEX) {
7623         case IW_AUTH_WPA_VERSION:
7624         case IW_AUTH_CIPHER_PAIRWISE:
7625         case IW_AUTH_CIPHER_GROUP:
7626         case IW_AUTH_KEY_MGMT:
7627                 /*
7628                  * ipw2200 does not use these parameters
7629                  */
7630                 break;
7631
7632         case IW_AUTH_TKIP_COUNTERMEASURES:
7633                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7634                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7635                         break;
7636
7637                 flags = crypt->ops->get_flags(crypt->priv);
7638
7639                 if (param->value)
7640                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641                 else
7642                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7643
7644                 crypt->ops->set_flags(flags, crypt->priv);
7645
7646                 break;
7647
7648         case IW_AUTH_DROP_UNENCRYPTED:{
7649                         /* HACK:
7650                          *
7651                          * wpa_supplicant calls set_wpa_enabled when the driver
7652                          * is loaded and unloaded, regardless of if WPA is being
7653                          * used.  No other calls are made which can be used to
7654                          * determine if encryption will be used or not prior to
7655                          * association being expected.  If encryption is not being
7656                          * used, drop_unencrypted is set to false, else true -- we
7657                          * can use this to determine if the CAP_PRIVACY_ON bit should
7658                          * be set.
7659                          */
7660                         struct ieee80211_security sec = {
7661                                 .flags = SEC_ENABLED,
7662                                 .enabled = param->value,
7663                         };
7664                         priv->ieee->drop_unencrypted = param->value;
7665                         /* We only change SEC_LEVEL for open mode. Others
7666                          * are set by ipw_wpa_set_encryption.
7667                          */
7668                         if (!param->value) {
7669                                 sec.flags |= SEC_LEVEL;
7670                                 sec.level = SEC_LEVEL_0;
7671                         } else {
7672                                 sec.flags |= SEC_LEVEL;
7673                                 sec.level = SEC_LEVEL_1;
7674                         }
7675                         if (priv->ieee->set_security)
7676                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7677                         break;
7678                 }
7679
7680         case IW_AUTH_80211_AUTH_ALG:
7681                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7682                 break;
7683
7684         case IW_AUTH_WPA_ENABLED:
7685                 ret = ipw2100_wpa_enable(priv, param->value);
7686                 break;
7687
7688         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7689                 ieee->ieee802_1x = param->value;
7690                 break;
7691
7692                 //case IW_AUTH_ROAMING_CONTROL:
7693         case IW_AUTH_PRIVACY_INVOKED:
7694                 ieee->privacy_invoked = param->value;
7695                 break;
7696
7697         default:
7698                 return -EOPNOTSUPP;
7699         }
7700         return ret;
7701 }
7702
7703 /* SIOCGIWAUTH */
7704 static int ipw2100_wx_get_auth(struct net_device *dev,
7705                                struct iw_request_info *info,
7706                                union iwreq_data *wrqu, char *extra)
7707 {
7708         struct ipw2100_priv *priv = ieee80211_priv(dev);
7709         struct ieee80211_device *ieee = priv->ieee;
7710         struct ieee80211_crypt_data *crypt;
7711         struct iw_param *param = &wrqu->param;
7712         int ret = 0;
7713
7714         switch (param->flags & IW_AUTH_INDEX) {
7715         case IW_AUTH_WPA_VERSION:
7716         case IW_AUTH_CIPHER_PAIRWISE:
7717         case IW_AUTH_CIPHER_GROUP:
7718         case IW_AUTH_KEY_MGMT:
7719                 /*
7720                  * wpa_supplicant will control these internally
7721                  */
7722                 ret = -EOPNOTSUPP;
7723                 break;
7724
7725         case IW_AUTH_TKIP_COUNTERMEASURES:
7726                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7727                 if (!crypt || !crypt->ops->get_flags) {
7728                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7729                                           "crypt not set!\n");
7730                         break;
7731                 }
7732
7733                 param->value = (crypt->ops->get_flags(crypt->priv) &
7734                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7735
7736                 break;
7737
7738         case IW_AUTH_DROP_UNENCRYPTED:
7739                 param->value = ieee->drop_unencrypted;
7740                 break;
7741
7742         case IW_AUTH_80211_AUTH_ALG:
7743                 param->value = priv->ieee->sec.auth_mode;
7744                 break;
7745
7746         case IW_AUTH_WPA_ENABLED:
7747                 param->value = ieee->wpa_enabled;
7748                 break;
7749
7750         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7751                 param->value = ieee->ieee802_1x;
7752                 break;
7753
7754         case IW_AUTH_ROAMING_CONTROL:
7755         case IW_AUTH_PRIVACY_INVOKED:
7756                 param->value = ieee->privacy_invoked;
7757                 break;
7758
7759         default:
7760                 return -EOPNOTSUPP;
7761         }
7762         return 0;
7763 }
7764
7765 /* SIOCSIWENCODEEXT */
7766 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7767                                     struct iw_request_info *info,
7768                                     union iwreq_data *wrqu, char *extra)
7769 {
7770         struct ipw2100_priv *priv = ieee80211_priv(dev);
7771         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7772 }
7773
7774 /* SIOCGIWENCODEEXT */
7775 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7776                                     struct iw_request_info *info,
7777                                     union iwreq_data *wrqu, char *extra)
7778 {
7779         struct ipw2100_priv *priv = ieee80211_priv(dev);
7780         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7781 }
7782
7783 /* SIOCSIWMLME */
7784 static int ipw2100_wx_set_mlme(struct net_device *dev,
7785                                struct iw_request_info *info,
7786                                union iwreq_data *wrqu, char *extra)
7787 {
7788         struct ipw2100_priv *priv = ieee80211_priv(dev);
7789         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7790         u16 reason;
7791
7792         reason = cpu_to_le16(mlme->reason_code);
7793
7794         switch (mlme->cmd) {
7795         case IW_MLME_DEAUTH:
7796                 // silently ignore
7797                 break;
7798
7799         case IW_MLME_DISASSOC:
7800                 ipw2100_disassociate_bssid(priv);
7801                 break;
7802
7803         default:
7804                 return -EOPNOTSUPP;
7805         }
7806         return 0;
7807 }
7808
7809 /*
7810  *
7811  * IWPRIV handlers
7812  *
7813  */
7814 #ifdef CONFIG_IPW2100_MONITOR
7815 static int ipw2100_wx_set_promisc(struct net_device *dev,
7816                                   struct iw_request_info *info,
7817                                   union iwreq_data *wrqu, char *extra)
7818 {
7819         struct ipw2100_priv *priv = ieee80211_priv(dev);
7820         int *parms = (int *)extra;
7821         int enable = (parms[0] > 0);
7822         int err = 0;
7823
7824         mutex_lock(&priv->action_mutex);
7825         if (!(priv->status & STATUS_INITIALIZED)) {
7826                 err = -EIO;
7827                 goto done;
7828         }
7829
7830         if (enable) {
7831                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7832                         err = ipw2100_set_channel(priv, parms[1], 0);
7833                         goto done;
7834                 }
7835                 priv->channel = parms[1];
7836                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7837         } else {
7838                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7839                         err = ipw2100_switch_mode(priv, priv->last_mode);
7840         }
7841       done:
7842         mutex_unlock(&priv->action_mutex);
7843         return err;
7844 }
7845
7846 static int ipw2100_wx_reset(struct net_device *dev,
7847                             struct iw_request_info *info,
7848                             union iwreq_data *wrqu, char *extra)
7849 {
7850         struct ipw2100_priv *priv = ieee80211_priv(dev);
7851         if (priv->status & STATUS_INITIALIZED)
7852                 schedule_reset(priv);
7853         return 0;
7854 }
7855
7856 #endif
7857
7858 static int ipw2100_wx_set_powermode(struct net_device *dev,
7859                                     struct iw_request_info *info,
7860                                     union iwreq_data *wrqu, char *extra)
7861 {
7862         struct ipw2100_priv *priv = ieee80211_priv(dev);
7863         int err = 0, mode = *(int *)extra;
7864
7865         mutex_lock(&priv->action_mutex);
7866         if (!(priv->status & STATUS_INITIALIZED)) {
7867                 err = -EIO;
7868                 goto done;
7869         }
7870
7871         if ((mode < 1) || (mode > POWER_MODES))
7872                 mode = IPW_POWER_AUTO;
7873
7874         if (priv->power_mode != mode)
7875                 err = ipw2100_set_power_mode(priv, mode);
7876       done:
7877         mutex_unlock(&priv->action_mutex);
7878         return err;
7879 }
7880
7881 #define MAX_POWER_STRING 80
7882 static int ipw2100_wx_get_powermode(struct net_device *dev,
7883                                     struct iw_request_info *info,
7884                                     union iwreq_data *wrqu, char *extra)
7885 {
7886         /*
7887          * This can be called at any time.  No action lock required
7888          */
7889
7890         struct ipw2100_priv *priv = ieee80211_priv(dev);
7891         int level = IPW_POWER_LEVEL(priv->power_mode);
7892         s32 timeout, period;
7893
7894         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7895                 snprintf(extra, MAX_POWER_STRING,
7896                          "Power save level: %d (Off)", level);
7897         } else {
7898                 switch (level) {
7899                 case IPW_POWER_MODE_CAM:
7900                         snprintf(extra, MAX_POWER_STRING,
7901                                  "Power save level: %d (None)", level);
7902                         break;
7903                 case IPW_POWER_AUTO:
7904                         snprintf(extra, MAX_POWER_STRING,
7905                                  "Power save level: %d (Auto)", 0);
7906                         break;
7907                 default:
7908                         timeout = timeout_duration[level - 1] / 1000;
7909                         period = period_duration[level - 1] / 1000;
7910                         snprintf(extra, MAX_POWER_STRING,
7911                                  "Power save level: %d "
7912                                  "(Timeout %dms, Period %dms)",
7913                                  level, timeout, period);
7914                 }
7915         }
7916
7917         wrqu->data.length = strlen(extra) + 1;
7918
7919         return 0;
7920 }
7921
7922 static int ipw2100_wx_set_preamble(struct net_device *dev,
7923                                    struct iw_request_info *info,
7924                                    union iwreq_data *wrqu, char *extra)
7925 {
7926         struct ipw2100_priv *priv = ieee80211_priv(dev);
7927         int err, mode = *(int *)extra;
7928
7929         mutex_lock(&priv->action_mutex);
7930         if (!(priv->status & STATUS_INITIALIZED)) {
7931                 err = -EIO;
7932                 goto done;
7933         }
7934
7935         if (mode == 1)
7936                 priv->config |= CFG_LONG_PREAMBLE;
7937         else if (mode == 0)
7938                 priv->config &= ~CFG_LONG_PREAMBLE;
7939         else {
7940                 err = -EINVAL;
7941                 goto done;
7942         }
7943
7944         err = ipw2100_system_config(priv, 0);
7945
7946       done:
7947         mutex_unlock(&priv->action_mutex);
7948         return err;
7949 }
7950
7951 static int ipw2100_wx_get_preamble(struct net_device *dev,
7952                                    struct iw_request_info *info,
7953                                    union iwreq_data *wrqu, char *extra)
7954 {
7955         /*
7956          * This can be called at any time.  No action lock required
7957          */
7958
7959         struct ipw2100_priv *priv = ieee80211_priv(dev);
7960
7961         if (priv->config & CFG_LONG_PREAMBLE)
7962                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7963         else
7964                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7965
7966         return 0;
7967 }
7968
7969 #ifdef CONFIG_IPW2100_MONITOR
7970 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7971                                     struct iw_request_info *info,
7972                                     union iwreq_data *wrqu, char *extra)
7973 {
7974         struct ipw2100_priv *priv = ieee80211_priv(dev);
7975         int err, mode = *(int *)extra;
7976
7977         mutex_lock(&priv->action_mutex);
7978         if (!(priv->status & STATUS_INITIALIZED)) {
7979                 err = -EIO;
7980                 goto done;
7981         }
7982
7983         if (mode == 1)
7984                 priv->config |= CFG_CRC_CHECK;
7985         else if (mode == 0)
7986                 priv->config &= ~CFG_CRC_CHECK;
7987         else {
7988                 err = -EINVAL;
7989                 goto done;
7990         }
7991         err = 0;
7992
7993       done:
7994         mutex_unlock(&priv->action_mutex);
7995         return err;
7996 }
7997
7998 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7999                                     struct iw_request_info *info,
8000                                     union iwreq_data *wrqu, char *extra)
8001 {
8002         /*
8003          * This can be called at any time.  No action lock required
8004          */
8005
8006         struct ipw2100_priv *priv = ieee80211_priv(dev);
8007
8008         if (priv->config & CFG_CRC_CHECK)
8009                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8010         else
8011                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8012
8013         return 0;
8014 }
8015 #endif                          /* CONFIG_IPW2100_MONITOR */
8016
8017 static iw_handler ipw2100_wx_handlers[] = {
8018         NULL,                   /* SIOCSIWCOMMIT */
8019         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8020         NULL,                   /* SIOCSIWNWID */
8021         NULL,                   /* SIOCGIWNWID */
8022         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8023         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8024         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8025         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8026         NULL,                   /* SIOCSIWSENS */
8027         NULL,                   /* SIOCGIWSENS */
8028         NULL,                   /* SIOCSIWRANGE */
8029         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8030         NULL,                   /* SIOCSIWPRIV */
8031         NULL,                   /* SIOCGIWPRIV */
8032         NULL,                   /* SIOCSIWSTATS */
8033         NULL,                   /* SIOCGIWSTATS */
8034         NULL,                   /* SIOCSIWSPY */
8035         NULL,                   /* SIOCGIWSPY */
8036         NULL,                   /* SIOCGIWTHRSPY */
8037         NULL,                   /* SIOCWIWTHRSPY */
8038         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8039         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8040         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8041         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8042         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8043         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8044         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8045         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8046         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8047         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8048         NULL,                   /* -- hole -- */
8049         NULL,                   /* -- hole -- */
8050         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8051         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8052         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8053         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8054         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8055         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8056         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8057         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8058         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8059         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8060         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8061         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8062         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8063         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8064         NULL,                   /* -- hole -- */
8065         NULL,                   /* -- hole -- */
8066         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8067         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8068         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8069         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8070         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8071         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8072         NULL,                   /* SIOCSIWPMKSA */
8073 };
8074
8075 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8076 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8077 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8078 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8079 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8080 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8081 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8082 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8083
8084 static const struct iw_priv_args ipw2100_private_args[] = {
8085
8086 #ifdef CONFIG_IPW2100_MONITOR
8087         {
8088          IPW2100_PRIV_SET_MONITOR,
8089          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8090         {
8091          IPW2100_PRIV_RESET,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8093 #endif                          /* CONFIG_IPW2100_MONITOR */
8094
8095         {
8096          IPW2100_PRIV_SET_POWER,
8097          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8098         {
8099          IPW2100_PRIV_GET_POWER,
8100          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8101          "get_power"},
8102         {
8103          IPW2100_PRIV_SET_LONGPREAMBLE,
8104          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8105         {
8106          IPW2100_PRIV_GET_LONGPREAMBLE,
8107          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8108 #ifdef CONFIG_IPW2100_MONITOR
8109         {
8110          IPW2100_PRIV_SET_CRC_CHECK,
8111          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8112         {
8113          IPW2100_PRIV_GET_CRC_CHECK,
8114          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8115 #endif                          /* CONFIG_IPW2100_MONITOR */
8116 };
8117
8118 static iw_handler ipw2100_private_handler[] = {
8119 #ifdef CONFIG_IPW2100_MONITOR
8120         ipw2100_wx_set_promisc,
8121         ipw2100_wx_reset,
8122 #else                           /* CONFIG_IPW2100_MONITOR */
8123         NULL,
8124         NULL,
8125 #endif                          /* CONFIG_IPW2100_MONITOR */
8126         ipw2100_wx_set_powermode,
8127         ipw2100_wx_get_powermode,
8128         ipw2100_wx_set_preamble,
8129         ipw2100_wx_get_preamble,
8130 #ifdef CONFIG_IPW2100_MONITOR
8131         ipw2100_wx_set_crc_check,
8132         ipw2100_wx_get_crc_check,
8133 #else                           /* CONFIG_IPW2100_MONITOR */
8134         NULL,
8135         NULL,
8136 #endif                          /* CONFIG_IPW2100_MONITOR */
8137 };
8138
8139 /*
8140  * Get wireless statistics.
8141  * Called by /proc/net/wireless
8142  * Also called by SIOCGIWSTATS
8143  */
8144 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8145 {
8146         enum {
8147                 POOR = 30,
8148                 FAIR = 60,
8149                 GOOD = 80,
8150                 VERY_GOOD = 90,
8151                 EXCELLENT = 95,
8152                 PERFECT = 100
8153         };
8154         int rssi_qual;
8155         int tx_qual;
8156         int beacon_qual;
8157
8158         struct ipw2100_priv *priv = ieee80211_priv(dev);
8159         struct iw_statistics *wstats;
8160         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8161         u32 ord_len = sizeof(u32);
8162
8163         if (!priv)
8164                 return (struct iw_statistics *)NULL;
8165
8166         wstats = &priv->wstats;
8167
8168         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8169          * ipw2100_wx_wireless_stats seems to be called before fw is
8170          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8171          * and associated; if not associcated, the values are all meaningless
8172          * anyway, so set them all to NULL and INVALID */
8173         if (!(priv->status & STATUS_ASSOCIATED)) {
8174                 wstats->miss.beacon = 0;
8175                 wstats->discard.retries = 0;
8176                 wstats->qual.qual = 0;
8177                 wstats->qual.level = 0;
8178                 wstats->qual.noise = 0;
8179                 wstats->qual.updated = 7;
8180                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8181                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8182                 return wstats;
8183         }
8184
8185         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8186                                 &missed_beacons, &ord_len))
8187                 goto fail_get_ordinal;
8188
8189         /* If we don't have a connection the quality and level is 0 */
8190         if (!(priv->status & STATUS_ASSOCIATED)) {
8191                 wstats->qual.qual = 0;
8192                 wstats->qual.level = 0;
8193         } else {
8194                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8195                                         &rssi, &ord_len))
8196                         goto fail_get_ordinal;
8197                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8198                 if (rssi < 10)
8199                         rssi_qual = rssi * POOR / 10;
8200                 else if (rssi < 15)
8201                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8202                 else if (rssi < 20)
8203                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8204                 else if (rssi < 30)
8205                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8206                             10 + GOOD;
8207                 else
8208                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8209                             10 + VERY_GOOD;
8210
8211                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8212                                         &tx_retries, &ord_len))
8213                         goto fail_get_ordinal;
8214
8215                 if (tx_retries > 75)
8216                         tx_qual = (90 - tx_retries) * POOR / 15;
8217                 else if (tx_retries > 70)
8218                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8219                 else if (tx_retries > 65)
8220                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8221                 else if (tx_retries > 50)
8222                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8223                             15 + GOOD;
8224                 else
8225                         tx_qual = (50 - tx_retries) *
8226                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8227
8228                 if (missed_beacons > 50)
8229                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8230                 else if (missed_beacons > 40)
8231                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8232                             10 + POOR;
8233                 else if (missed_beacons > 32)
8234                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8235                             18 + FAIR;
8236                 else if (missed_beacons > 20)
8237                         beacon_qual = (32 - missed_beacons) *
8238                             (VERY_GOOD - GOOD) / 20 + GOOD;
8239                 else
8240                         beacon_qual = (20 - missed_beacons) *
8241                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8242
8243                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8244
8245 #ifdef CONFIG_IPW2100_DEBUG
8246                 if (beacon_qual == quality)
8247                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8248                 else if (tx_qual == quality)
8249                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8250                 else if (quality != 100)
8251                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8252                 else
8253                         IPW_DEBUG_WX("Quality not clamped.\n");
8254 #endif
8255
8256                 wstats->qual.qual = quality;
8257                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8258         }
8259
8260         wstats->qual.noise = 0;
8261         wstats->qual.updated = 7;
8262         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8263
8264         /* FIXME: this is percent and not a # */
8265         wstats->miss.beacon = missed_beacons;
8266
8267         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8268                                 &tx_failures, &ord_len))
8269                 goto fail_get_ordinal;
8270         wstats->discard.retries = tx_failures;
8271
8272         return wstats;
8273
8274       fail_get_ordinal:
8275         IPW_DEBUG_WX("failed querying ordinals.\n");
8276
8277         return (struct iw_statistics *)NULL;
8278 }
8279
8280 static struct iw_handler_def ipw2100_wx_handler_def = {
8281         .standard = ipw2100_wx_handlers,
8282         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8283         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8284         .num_private_args = sizeof(ipw2100_private_args) /
8285             sizeof(struct iw_priv_args),
8286         .private = (iw_handler *) ipw2100_private_handler,
8287         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8288         .get_wireless_stats = ipw2100_wx_wireless_stats,
8289 };
8290
8291 static void ipw2100_wx_event_work(struct work_struct *work)
8292 {
8293         struct ipw2100_priv *priv =
8294                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8295         union iwreq_data wrqu;
8296         int len = ETH_ALEN;
8297
8298         if (priv->status & STATUS_STOPPING)
8299                 return;
8300
8301         mutex_lock(&priv->action_mutex);
8302
8303         IPW_DEBUG_WX("enter\n");
8304
8305         mutex_unlock(&priv->action_mutex);
8306
8307         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8308
8309         /* Fetch BSSID from the hardware */
8310         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311             priv->status & STATUS_RF_KILL_MASK ||
8312             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313                                 &priv->bssid, &len)) {
8314                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315         } else {
8316                 /* We now have the BSSID, so can finish setting to the full
8317                  * associated state */
8318                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320                 priv->status &= ~STATUS_ASSOCIATING;
8321                 priv->status |= STATUS_ASSOCIATED;
8322                 netif_carrier_on(priv->net_dev);
8323                 netif_wake_queue(priv->net_dev);
8324         }
8325
8326         if (!(priv->status & STATUS_ASSOCIATED)) {
8327                 IPW_DEBUG_WX("Configuring ESSID\n");
8328                 mutex_lock(&priv->action_mutex);
8329                 /* This is a disassociation event, so kick the firmware to
8330                  * look for another AP */
8331                 if (priv->config & CFG_STATIC_ESSID)
8332                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8333                                           0);
8334                 else
8335                         ipw2100_set_essid(priv, NULL, 0, 0);
8336                 mutex_unlock(&priv->action_mutex);
8337         }
8338
8339         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8340 }
8341
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8344
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8347
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349                              IPW2100_FW_MAJOR_VERSION)
8350
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8353
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355
8356 /*
8357
8358 BINARY FIRMWARE HEADER FORMAT
8359
8360 offset      length   desc
8361 0           2        version
8362 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8363 4           4        fw_len
8364 8           4        uc_len
8365 C           fw_len   firmware data
8366 12 + fw_len uc_len   microcode data
8367
8368 */
8369
8370 struct ipw2100_fw_header {
8371         short version;
8372         short mode;
8373         unsigned int fw_size;
8374         unsigned int uc_size;
8375 } __attribute__ ((packed));
8376
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8378 {
8379         struct ipw2100_fw_header *h =
8380             (struct ipw2100_fw_header *)fw->fw_entry->data;
8381
8382         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384                        "(detected version id of %u). "
8385                        "See Documentation/networking/README.ipw2100\n",
8386                        h->version);
8387                 return 1;
8388         }
8389
8390         fw->version = h->version;
8391         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392         fw->fw.size = h->fw_size;
8393         fw->uc.data = fw->fw.data + h->fw_size;
8394         fw->uc.size = h->uc_size;
8395
8396         return 0;
8397 }
8398
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400                                 struct ipw2100_fw *fw)
8401 {
8402         char *fw_name;
8403         int rc;
8404
8405         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406                        priv->net_dev->name);
8407
8408         switch (priv->ieee->iw_mode) {
8409         case IW_MODE_ADHOC:
8410                 fw_name = IPW2100_FW_NAME("-i");
8411                 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413         case IW_MODE_MONITOR:
8414                 fw_name = IPW2100_FW_NAME("-p");
8415                 break;
8416 #endif
8417         case IW_MODE_INFRA:
8418         default:
8419                 fw_name = IPW2100_FW_NAME("");
8420                 break;
8421         }
8422
8423         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8424
8425         if (rc < 0) {
8426                 printk(KERN_ERR DRV_NAME ": "
8427                        "%s: Firmware '%s' not available or load failed.\n",
8428                        priv->net_dev->name, fw_name);
8429                 return rc;
8430         }
8431         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432                        fw->fw_entry->size);
8433
8434         ipw2100_mod_firmware_load(fw);
8435
8436         return 0;
8437 }
8438
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440                                      struct ipw2100_fw *fw)
8441 {
8442         fw->version = 0;
8443         if (fw->fw_entry)
8444                 release_firmware(fw->fw_entry);
8445         fw->fw_entry = NULL;
8446 }
8447
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449                                  size_t max)
8450 {
8451         char ver[MAX_FW_VERSION_LEN];
8452         u32 len = MAX_FW_VERSION_LEN;
8453         u32 tmp;
8454         int i;
8455         /* firmware version is an ascii string (max len of 14) */
8456         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457                 return -EIO;
8458         tmp = max;
8459         if (len >= max)
8460                 len = max - 1;
8461         for (i = 0; i < len; i++)
8462                 buf[i] = ver[i];
8463         buf[i] = '\0';
8464         return tmp;
8465 }
8466
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468                                     size_t max)
8469 {
8470         u32 ver;
8471         u32 len = sizeof(ver);
8472         /* microcode version is a 32 bit integer */
8473         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474                 return -EIO;
8475         return snprintf(buf, max, "%08X", ver);
8476 }
8477
8478 /*
8479  * On exit, the firmware will have been freed from the fw list
8480  */
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8482 {
8483         /* firmware is constructed of N contiguous entries, each entry is
8484          * structured as:
8485          *
8486          * offset    sie         desc
8487          * 0         4           address to write to
8488          * 4         2           length of data run
8489          * 6         length      data
8490          */
8491         unsigned int addr;
8492         unsigned short len;
8493
8494         const unsigned char *firmware_data = fw->fw.data;
8495         unsigned int firmware_data_left = fw->fw.size;
8496
8497         while (firmware_data_left > 0) {
8498                 addr = *(u32 *) (firmware_data);
8499                 firmware_data += 4;
8500                 firmware_data_left -= 4;
8501
8502                 len = *(u16 *) (firmware_data);
8503                 firmware_data += 2;
8504                 firmware_data_left -= 2;
8505
8506                 if (len > 32) {
8507                         printk(KERN_ERR DRV_NAME ": "
8508                                "Invalid firmware run-length of %d bytes\n",
8509                                len);
8510                         return -EINVAL;
8511                 }
8512
8513                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514                 firmware_data += len;
8515                 firmware_data_left -= len;
8516         }
8517
8518         return 0;
8519 }
8520
8521 struct symbol_alive_response {
8522         u8 cmd_id;
8523         u8 seq_num;
8524         u8 ucode_rev;
8525         u8 eeprom_valid;
8526         u16 valid_flags;
8527         u8 IEEE_addr[6];
8528         u16 flags;
8529         u16 pcb_rev;
8530         u16 clock_settle_time;  // 1us LSB
8531         u16 powerup_settle_time;        // 1us LSB
8532         u16 hop_settle_time;    // 1us LSB
8533         u8 date[3];             // month, day, year
8534         u8 time[2];             // hours, minutes
8535         u8 ucode_valid;
8536 };
8537
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539                                   struct ipw2100_fw *fw)
8540 {
8541         struct net_device *dev = priv->net_dev;
8542         const unsigned char *microcode_data = fw->uc.data;
8543         unsigned int microcode_data_left = fw->uc.size;
8544         void __iomem *reg = (void __iomem *)dev->base_addr;
8545
8546         struct symbol_alive_response response;
8547         int i, j;
8548         u8 data;
8549
8550         /* Symbol control */
8551         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552         readl(reg);
8553         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554         readl(reg);
8555
8556         /* HW config */
8557         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8558         readl(reg);
8559         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8560         readl(reg);
8561
8562         /* EN_CS_ACCESS bit to reset control store pointer */
8563         write_nic_byte(dev, 0x210000, 0x40);
8564         readl(reg);
8565         write_nic_byte(dev, 0x210000, 0x0);
8566         readl(reg);
8567         write_nic_byte(dev, 0x210000, 0x40);
8568         readl(reg);
8569
8570         /* copy microcode from buffer into Symbol */
8571
8572         while (microcode_data_left > 0) {
8573                 write_nic_byte(dev, 0x210010, *microcode_data++);
8574                 write_nic_byte(dev, 0x210010, *microcode_data++);
8575                 microcode_data_left -= 2;
8576         }
8577
8578         /* EN_CS_ACCESS bit to reset the control store pointer */
8579         write_nic_byte(dev, 0x210000, 0x0);
8580         readl(reg);
8581
8582         /* Enable System (Reg 0)
8583          * first enable causes garbage in RX FIFO */
8584         write_nic_byte(dev, 0x210000, 0x0);
8585         readl(reg);
8586         write_nic_byte(dev, 0x210000, 0x80);
8587         readl(reg);
8588
8589         /* Reset External Baseband Reg */
8590         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591         readl(reg);
8592         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593         readl(reg);
8594
8595         /* HW Config (Reg 5) */
8596         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8597         readl(reg);
8598         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8599         readl(reg);
8600
8601         /* Enable System (Reg 0)
8602          * second enable should be OK */
8603         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8604         readl(reg);
8605         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8606
8607         /* check Symbol is enabled - upped this from 5 as it wasn't always
8608          * catching the update */
8609         for (i = 0; i < 10; i++) {
8610                 udelay(10);
8611
8612                 /* check Dino is enabled bit */
8613                 read_nic_byte(dev, 0x210000, &data);
8614                 if (data & 0x1)
8615                         break;
8616         }
8617
8618         if (i == 10) {
8619                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620                        dev->name);
8621                 return -EIO;
8622         }
8623
8624         /* Get Symbol alive response */
8625         for (i = 0; i < 30; i++) {
8626                 /* Read alive response structure */
8627                 for (j = 0;
8628                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8630
8631                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632                         break;
8633                 udelay(10);
8634         }
8635
8636         if (i == 30) {
8637                 printk(KERN_ERR DRV_NAME
8638                        ": %s: No response from Symbol - hw not alive\n",
8639                        dev->name);
8640                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641                 return -EIO;
8642         }
8643
8644         return 0;
8645 }