Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / scsi / libata-core.c
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *                  Please ALWAYS copy linux-ide@vger.kernel.org
6  *                  on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi.h"
55 #include "scsi_priv.h"
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65                                     unsigned long tmout_pat,
66                                     unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74                                 u8 *xfer_mode_out,
75                                 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
77
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
80
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
89
90 /**
91  *      ata_tf_load_pio - send taskfile registers to host controller
92  *      @ap: Port to which output is sent
93  *      @tf: ATA taskfile register set
94  *
95  *      Outputs ATA taskfile to standard ATA host controller.
96  *
97  *      LOCKING:
98  *      Inherited from caller.
99  */
100
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
102 {
103         struct ata_ioports *ioaddr = &ap->ioaddr;
104         unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105
106         if (tf->ctl != ap->last_ctl) {
107                 outb(tf->ctl, ioaddr->ctl_addr);
108                 ap->last_ctl = tf->ctl;
109                 ata_wait_idle(ap);
110         }
111
112         if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113                 outb(tf->hob_feature, ioaddr->feature_addr);
114                 outb(tf->hob_nsect, ioaddr->nsect_addr);
115                 outb(tf->hob_lbal, ioaddr->lbal_addr);
116                 outb(tf->hob_lbam, ioaddr->lbam_addr);
117                 outb(tf->hob_lbah, ioaddr->lbah_addr);
118                 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119                         tf->hob_feature,
120                         tf->hob_nsect,
121                         tf->hob_lbal,
122                         tf->hob_lbam,
123                         tf->hob_lbah);
124         }
125
126         if (is_addr) {
127                 outb(tf->feature, ioaddr->feature_addr);
128                 outb(tf->nsect, ioaddr->nsect_addr);
129                 outb(tf->lbal, ioaddr->lbal_addr);
130                 outb(tf->lbam, ioaddr->lbam_addr);
131                 outb(tf->lbah, ioaddr->lbah_addr);
132                 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133                         tf->feature,
134                         tf->nsect,
135                         tf->lbal,
136                         tf->lbam,
137                         tf->lbah);
138         }
139
140         if (tf->flags & ATA_TFLAG_DEVICE) {
141                 outb(tf->device, ioaddr->device_addr);
142                 VPRINTK("device 0x%X\n", tf->device);
143         }
144
145         ata_wait_idle(ap);
146 }
147
148 /**
149  *      ata_tf_load_mmio - send taskfile registers to host controller
150  *      @ap: Port to which output is sent
151  *      @tf: ATA taskfile register set
152  *
153  *      Outputs ATA taskfile to standard ATA host controller using MMIO.
154  *
155  *      LOCKING:
156  *      Inherited from caller.
157  */
158
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
160 {
161         struct ata_ioports *ioaddr = &ap->ioaddr;
162         unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164         if (tf->ctl != ap->last_ctl) {
165                 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166                 ap->last_ctl = tf->ctl;
167                 ata_wait_idle(ap);
168         }
169
170         if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171                 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172                 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173                 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174                 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175                 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176                 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177                         tf->hob_feature,
178                         tf->hob_nsect,
179                         tf->hob_lbal,
180                         tf->hob_lbam,
181                         tf->hob_lbah);
182         }
183
184         if (is_addr) {
185                 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186                 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187                 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188                 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189                 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190                 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191                         tf->feature,
192                         tf->nsect,
193                         tf->lbal,
194                         tf->lbam,
195                         tf->lbah);
196         }
197
198         if (tf->flags & ATA_TFLAG_DEVICE) {
199                 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200                 VPRINTK("device 0x%X\n", tf->device);
201         }
202
203         ata_wait_idle(ap);
204 }
205
206
207 /**
208  *      ata_tf_load - send taskfile registers to host controller
209  *      @ap: Port to which output is sent
210  *      @tf: ATA taskfile register set
211  *
212  *      Outputs ATA taskfile to standard ATA host controller using MMIO
213  *      or PIO as indicated by the ATA_FLAG_MMIO flag.
214  *      Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215  *      Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216  *      hob_lbal, hob_lbam, and hob_lbah.
217  *
218  *      This function waits for idle (!BUSY and !DRQ) after writing
219  *      registers.  If the control register has a new value, this
220  *      function also waits for idle after writing control and before
221  *      writing the remaining registers.
222  *
223  *      May be used as the tf_load() entry in ata_port_operations.
224  *
225  *      LOCKING:
226  *      Inherited from caller.
227  */
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
229 {
230         if (ap->flags & ATA_FLAG_MMIO)
231                 ata_tf_load_mmio(ap, tf);
232         else
233                 ata_tf_load_pio(ap, tf);
234 }
235
236 /**
237  *      ata_exec_command_pio - issue ATA command to host controller
238  *      @ap: port to which command is being issued
239  *      @tf: ATA taskfile register set
240  *
241  *      Issues PIO write to ATA command register, with proper
242  *      synchronization with interrupt handler / other threads.
243  *
244  *      LOCKING:
245  *      spin_lock_irqsave(host_set lock)
246  */
247
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
249 {
250         DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251
252         outb(tf->command, ap->ioaddr.command_addr);
253         ata_pause(ap);
254 }
255
256
257 /**
258  *      ata_exec_command_mmio - issue ATA command to host controller
259  *      @ap: port to which command is being issued
260  *      @tf: ATA taskfile register set
261  *
262  *      Issues MMIO write to ATA command register, with proper
263  *      synchronization with interrupt handler / other threads.
264  *
265  *      LOCKING:
266  *      spin_lock_irqsave(host_set lock)
267  */
268
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
270 {
271         DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272
273         writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274         ata_pause(ap);
275 }
276
277
278 /**
279  *      ata_exec_command - issue ATA command to host controller
280  *      @ap: port to which command is being issued
281  *      @tf: ATA taskfile register set
282  *
283  *      Issues PIO/MMIO write to ATA command register, with proper
284  *      synchronization with interrupt handler / other threads.
285  *
286  *      LOCKING:
287  *      spin_lock_irqsave(host_set lock)
288  */
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
290 {
291         if (ap->flags & ATA_FLAG_MMIO)
292                 ata_exec_command_mmio(ap, tf);
293         else
294                 ata_exec_command_pio(ap, tf);
295 }
296
297 /**
298  *      ata_exec - issue ATA command to host controller
299  *      @ap: port to which command is being issued
300  *      @tf: ATA taskfile register set
301  *
302  *      Issues PIO/MMIO write to ATA command register, with proper
303  *      synchronization with interrupt handler / other threads.
304  *
305  *      LOCKING:
306  *      Obtains host_set lock.
307  */
308
309 static inline void ata_exec(struct ata_port *ap, const struct ata_taskfile *tf)
310 {
311         unsigned long flags;
312
313         DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
314         spin_lock_irqsave(&ap->host_set->lock, flags);
315         ap->ops->exec_command(ap, tf);
316         spin_unlock_irqrestore(&ap->host_set->lock, flags);
317 }
318
319 /**
320  *      ata_tf_to_host - issue ATA taskfile to host controller
321  *      @ap: port to which command is being issued
322  *      @tf: ATA taskfile register set
323  *
324  *      Issues ATA taskfile register set to ATA host controller,
325  *      with proper synchronization with interrupt handler and
326  *      other threads.
327  *
328  *      LOCKING:
329  *      Obtains host_set lock.
330  */
331
332 static void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf)
333 {
334         ap->ops->tf_load(ap, tf);
335
336         ata_exec(ap, tf);
337 }
338
339 /**
340  *      ata_tf_to_host_nolock - issue ATA taskfile to host controller
341  *      @ap: port to which command is being issued
342  *      @tf: ATA taskfile register set
343  *
344  *      Issues ATA taskfile register set to ATA host controller,
345  *      with proper synchronization with interrupt handler and
346  *      other threads.
347  *
348  *      LOCKING:
349  *      spin_lock_irqsave(host_set lock)
350  */
351
352 void ata_tf_to_host_nolock(struct ata_port *ap, const struct ata_taskfile *tf)
353 {
354         ap->ops->tf_load(ap, tf);
355         ap->ops->exec_command(ap, tf);
356 }
357
358 /**
359  *      ata_tf_read_pio - input device's ATA taskfile shadow registers
360  *      @ap: Port from which input is read
361  *      @tf: ATA taskfile register set for storing input
362  *
363  *      Reads ATA taskfile registers for currently-selected device
364  *      into @tf.
365  *
366  *      LOCKING:
367  *      Inherited from caller.
368  */
369
370 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
371 {
372         struct ata_ioports *ioaddr = &ap->ioaddr;
373
374         tf->command = ata_check_status(ap);
375         tf->feature = inb(ioaddr->error_addr);
376         tf->nsect = inb(ioaddr->nsect_addr);
377         tf->lbal = inb(ioaddr->lbal_addr);
378         tf->lbam = inb(ioaddr->lbam_addr);
379         tf->lbah = inb(ioaddr->lbah_addr);
380         tf->device = inb(ioaddr->device_addr);
381
382         if (tf->flags & ATA_TFLAG_LBA48) {
383                 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
384                 tf->hob_feature = inb(ioaddr->error_addr);
385                 tf->hob_nsect = inb(ioaddr->nsect_addr);
386                 tf->hob_lbal = inb(ioaddr->lbal_addr);
387                 tf->hob_lbam = inb(ioaddr->lbam_addr);
388                 tf->hob_lbah = inb(ioaddr->lbah_addr);
389         }
390 }
391
392 /**
393  *      ata_tf_read_mmio - input device's ATA taskfile shadow registers
394  *      @ap: Port from which input is read
395  *      @tf: ATA taskfile register set for storing input
396  *
397  *      Reads ATA taskfile registers for currently-selected device
398  *      into @tf via MMIO.
399  *
400  *      LOCKING:
401  *      Inherited from caller.
402  */
403
404 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
405 {
406         struct ata_ioports *ioaddr = &ap->ioaddr;
407
408         tf->command = ata_check_status(ap);
409         tf->feature = readb((void __iomem *)ioaddr->error_addr);
410         tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
411         tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
412         tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
413         tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
414         tf->device = readb((void __iomem *)ioaddr->device_addr);
415
416         if (tf->flags & ATA_TFLAG_LBA48) {
417                 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
418                 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
419                 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
420                 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
421                 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
422                 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
423         }
424 }
425
426
427 /**
428  *      ata_tf_read - input device's ATA taskfile shadow registers
429  *      @ap: Port from which input is read
430  *      @tf: ATA taskfile register set for storing input
431  *
432  *      Reads ATA taskfile registers for currently-selected device
433  *      into @tf.
434  *
435  *      Reads nsect, lbal, lbam, lbah, and device.  If ATA_TFLAG_LBA48
436  *      is set, also reads the hob registers.
437  *
438  *      May be used as the tf_read() entry in ata_port_operations.
439  *
440  *      LOCKING:
441  *      Inherited from caller.
442  */
443 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
444 {
445         if (ap->flags & ATA_FLAG_MMIO)
446                 ata_tf_read_mmio(ap, tf);
447         else
448                 ata_tf_read_pio(ap, tf);
449 }
450
451 /**
452  *      ata_check_status_pio - Read device status reg & clear interrupt
453  *      @ap: port where the device is
454  *
455  *      Reads ATA taskfile status register for currently-selected device
456  *      and return its value. This also clears pending interrupts
457  *      from this device
458  *
459  *      LOCKING:
460  *      Inherited from caller.
461  */
462 static u8 ata_check_status_pio(struct ata_port *ap)
463 {
464         return inb(ap->ioaddr.status_addr);
465 }
466
467 /**
468  *      ata_check_status_mmio - Read device status reg & clear interrupt
469  *      @ap: port where the device is
470  *
471  *      Reads ATA taskfile status register for currently-selected device
472  *      via MMIO and return its value. This also clears pending interrupts
473  *      from this device
474  *
475  *      LOCKING:
476  *      Inherited from caller.
477  */
478 static u8 ata_check_status_mmio(struct ata_port *ap)
479 {
480         return readb((void __iomem *) ap->ioaddr.status_addr);
481 }
482
483
484 /**
485  *      ata_check_status - Read device status reg & clear interrupt
486  *      @ap: port where the device is
487  *
488  *      Reads ATA taskfile status register for currently-selected device
489  *      and return its value. This also clears pending interrupts
490  *      from this device
491  *
492  *      May be used as the check_status() entry in ata_port_operations.
493  *
494  *      LOCKING:
495  *      Inherited from caller.
496  */
497 u8 ata_check_status(struct ata_port *ap)
498 {
499         if (ap->flags & ATA_FLAG_MMIO)
500                 return ata_check_status_mmio(ap);
501         return ata_check_status_pio(ap);
502 }
503
504
505 /**
506  *      ata_altstatus - Read device alternate status reg
507  *      @ap: port where the device is
508  *
509  *      Reads ATA taskfile alternate status register for
510  *      currently-selected device and return its value.
511  *
512  *      Note: may NOT be used as the check_altstatus() entry in
513  *      ata_port_operations.
514  *
515  *      LOCKING:
516  *      Inherited from caller.
517  */
518 u8 ata_altstatus(struct ata_port *ap)
519 {
520         if (ap->ops->check_altstatus)
521                 return ap->ops->check_altstatus(ap);
522
523         if (ap->flags & ATA_FLAG_MMIO)
524                 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
525         return inb(ap->ioaddr.altstatus_addr);
526 }
527
528
529 /**
530  *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
531  *      @tf: Taskfile to convert
532  *      @fis: Buffer into which data will output
533  *      @pmp: Port multiplier port
534  *
535  *      Converts a standard ATA taskfile to a Serial ATA
536  *      FIS structure (Register - Host to Device).
537  *
538  *      LOCKING:
539  *      Inherited from caller.
540  */
541
542 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
543 {
544         fis[0] = 0x27;  /* Register - Host to Device FIS */
545         fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
546                                             bit 7 indicates Command FIS */
547         fis[2] = tf->command;
548         fis[3] = tf->feature;
549
550         fis[4] = tf->lbal;
551         fis[5] = tf->lbam;
552         fis[6] = tf->lbah;
553         fis[7] = tf->device;
554
555         fis[8] = tf->hob_lbal;
556         fis[9] = tf->hob_lbam;
557         fis[10] = tf->hob_lbah;
558         fis[11] = tf->hob_feature;
559
560         fis[12] = tf->nsect;
561         fis[13] = tf->hob_nsect;
562         fis[14] = 0;
563         fis[15] = tf->ctl;
564
565         fis[16] = 0;
566         fis[17] = 0;
567         fis[18] = 0;
568         fis[19] = 0;
569 }
570
571 /**
572  *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
573  *      @fis: Buffer from which data will be input
574  *      @tf: Taskfile to output
575  *
576  *      Converts a standard ATA taskfile to a Serial ATA
577  *      FIS structure (Register - Host to Device).
578  *
579  *      LOCKING:
580  *      Inherited from caller.
581  */
582
583 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
584 {
585         tf->command     = fis[2];       /* status */
586         tf->feature     = fis[3];       /* error */
587
588         tf->lbal        = fis[4];
589         tf->lbam        = fis[5];
590         tf->lbah        = fis[6];
591         tf->device      = fis[7];
592
593         tf->hob_lbal    = fis[8];
594         tf->hob_lbam    = fis[9];
595         tf->hob_lbah    = fis[10];
596
597         tf->nsect       = fis[12];
598         tf->hob_nsect   = fis[13];
599 }
600
601 static const u8 ata_rw_cmds[] = {
602         /* pio multi */
603         ATA_CMD_READ_MULTI,
604         ATA_CMD_WRITE_MULTI,
605         ATA_CMD_READ_MULTI_EXT,
606         ATA_CMD_WRITE_MULTI_EXT,
607         /* pio */
608         ATA_CMD_PIO_READ,
609         ATA_CMD_PIO_WRITE,
610         ATA_CMD_PIO_READ_EXT,
611         ATA_CMD_PIO_WRITE_EXT,
612         /* dma */
613         ATA_CMD_READ,
614         ATA_CMD_WRITE,
615         ATA_CMD_READ_EXT,
616         ATA_CMD_WRITE_EXT
617 };
618
619 /**
620  *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
621  *      @qc: command to examine and configure
622  *
623  *      Examine the device configuration and tf->flags to calculate 
624  *      the proper read/write commands and protocol to use.
625  *
626  *      LOCKING:
627  *      caller.
628  */
629 void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
630 {
631         struct ata_taskfile *tf = &qc->tf;
632         struct ata_device *dev = qc->dev;
633
634         int index, lba48, write;
635  
636         lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
637         write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
638
639         if (dev->flags & ATA_DFLAG_PIO) {
640                 tf->protocol = ATA_PROT_PIO;
641                 index = dev->multi_count ? 0 : 4;
642         } else {
643                 tf->protocol = ATA_PROT_DMA;
644                 index = 8;
645         }
646
647         tf->command = ata_rw_cmds[index + lba48 + write];
648 }
649
650 static const char * xfer_mode_str[] = {
651         "UDMA/16",
652         "UDMA/25",
653         "UDMA/33",
654         "UDMA/44",
655         "UDMA/66",
656         "UDMA/100",
657         "UDMA/133",
658         "UDMA7",
659         "MWDMA0",
660         "MWDMA1",
661         "MWDMA2",
662         "PIO0",
663         "PIO1",
664         "PIO2",
665         "PIO3",
666         "PIO4",
667 };
668
669 /**
670  *      ata_udma_string - convert UDMA bit offset to string
671  *      @mask: mask of bits supported; only highest bit counts.
672  *
673  *      Determine string which represents the highest speed
674  *      (highest bit in @udma_mask).
675  *
676  *      LOCKING:
677  *      None.
678  *
679  *      RETURNS:
680  *      Constant C string representing highest speed listed in
681  *      @udma_mask, or the constant C string "<n/a>".
682  */
683
684 static const char *ata_mode_string(unsigned int mask)
685 {
686         int i;
687
688         for (i = 7; i >= 0; i--)
689                 if (mask & (1 << i))
690                         goto out;
691         for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
692                 if (mask & (1 << i))
693                         goto out;
694         for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
695                 if (mask & (1 << i))
696                         goto out;
697
698         return "<n/a>";
699
700 out:
701         return xfer_mode_str[i];
702 }
703
704 /**
705  *      ata_pio_devchk - PATA device presence detection
706  *      @ap: ATA channel to examine
707  *      @device: Device to examine (starting at zero)
708  *
709  *      This technique was originally described in
710  *      Hale Landis's ATADRVR (www.ata-atapi.com), and
711  *      later found its way into the ATA/ATAPI spec.
712  *
713  *      Write a pattern to the ATA shadow registers,
714  *      and if a device is present, it will respond by
715  *      correctly storing and echoing back the
716  *      ATA shadow register contents.
717  *
718  *      LOCKING:
719  *      caller.
720  */
721
722 static unsigned int ata_pio_devchk(struct ata_port *ap,
723                                    unsigned int device)
724 {
725         struct ata_ioports *ioaddr = &ap->ioaddr;
726         u8 nsect, lbal;
727
728         ap->ops->dev_select(ap, device);
729
730         outb(0x55, ioaddr->nsect_addr);
731         outb(0xaa, ioaddr->lbal_addr);
732
733         outb(0xaa, ioaddr->nsect_addr);
734         outb(0x55, ioaddr->lbal_addr);
735
736         outb(0x55, ioaddr->nsect_addr);
737         outb(0xaa, ioaddr->lbal_addr);
738
739         nsect = inb(ioaddr->nsect_addr);
740         lbal = inb(ioaddr->lbal_addr);
741
742         if ((nsect == 0x55) && (lbal == 0xaa))
743                 return 1;       /* we found a device */
744
745         return 0;               /* nothing found */
746 }
747
748 /**
749  *      ata_mmio_devchk - PATA device presence detection
750  *      @ap: ATA channel to examine
751  *      @device: Device to examine (starting at zero)
752  *
753  *      This technique was originally described in
754  *      Hale Landis's ATADRVR (www.ata-atapi.com), and
755  *      later found its way into the ATA/ATAPI spec.
756  *
757  *      Write a pattern to the ATA shadow registers,
758  *      and if a device is present, it will respond by
759  *      correctly storing and echoing back the
760  *      ATA shadow register contents.
761  *
762  *      LOCKING:
763  *      caller.
764  */
765
766 static unsigned int ata_mmio_devchk(struct ata_port *ap,
767                                     unsigned int device)
768 {
769         struct ata_ioports *ioaddr = &ap->ioaddr;
770         u8 nsect, lbal;
771
772         ap->ops->dev_select(ap, device);
773
774         writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
775         writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
776
777         writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
778         writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
779
780         writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
781         writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
782
783         nsect = readb((void __iomem *) ioaddr->nsect_addr);
784         lbal = readb((void __iomem *) ioaddr->lbal_addr);
785
786         if ((nsect == 0x55) && (lbal == 0xaa))
787                 return 1;       /* we found a device */
788
789         return 0;               /* nothing found */
790 }
791
792 /**
793  *      ata_devchk - PATA device presence detection
794  *      @ap: ATA channel to examine
795  *      @device: Device to examine (starting at zero)
796  *
797  *      Dispatch ATA device presence detection, depending
798  *      on whether we are using PIO or MMIO to talk to the
799  *      ATA shadow registers.
800  *
801  *      LOCKING:
802  *      caller.
803  */
804
805 static unsigned int ata_devchk(struct ata_port *ap,
806                                     unsigned int device)
807 {
808         if (ap->flags & ATA_FLAG_MMIO)
809                 return ata_mmio_devchk(ap, device);
810         return ata_pio_devchk(ap, device);
811 }
812
813 /**
814  *      ata_dev_classify - determine device type based on ATA-spec signature
815  *      @tf: ATA taskfile register set for device to be identified
816  *
817  *      Determine from taskfile register contents whether a device is
818  *      ATA or ATAPI, as per "Signature and persistence" section
819  *      of ATA/PI spec (volume 1, sect 5.14).
820  *
821  *      LOCKING:
822  *      None.
823  *
824  *      RETURNS:
825  *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
826  *      the event of failure.
827  */
828
829 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
830 {
831         /* Apple's open source Darwin code hints that some devices only
832          * put a proper signature into the LBA mid/high registers,
833          * So, we only check those.  It's sufficient for uniqueness.
834          */
835
836         if (((tf->lbam == 0) && (tf->lbah == 0)) ||
837             ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
838                 DPRINTK("found ATA device by sig\n");
839                 return ATA_DEV_ATA;
840         }
841
842         if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
843             ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
844                 DPRINTK("found ATAPI device by sig\n");
845                 return ATA_DEV_ATAPI;
846         }
847
848         DPRINTK("unknown device\n");
849         return ATA_DEV_UNKNOWN;
850 }
851
852 /**
853  *      ata_dev_try_classify - Parse returned ATA device signature
854  *      @ap: ATA channel to examine
855  *      @device: Device to examine (starting at zero)
856  *
857  *      After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
858  *      an ATA/ATAPI-defined set of values is placed in the ATA
859  *      shadow registers, indicating the results of device detection
860  *      and diagnostics.
861  *
862  *      Select the ATA device, and read the values from the ATA shadow
863  *      registers.  Then parse according to the Error register value,
864  *      and the spec-defined values examined by ata_dev_classify().
865  *
866  *      LOCKING:
867  *      caller.
868  */
869
870 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
871 {
872         struct ata_device *dev = &ap->device[device];
873         struct ata_taskfile tf;
874         unsigned int class;
875         u8 err;
876
877         ap->ops->dev_select(ap, device);
878
879         memset(&tf, 0, sizeof(tf));
880
881         ap->ops->tf_read(ap, &tf);
882         err = tf.feature;
883
884         dev->class = ATA_DEV_NONE;
885
886         /* see if device passed diags */
887         if (err == 1)
888                 /* do nothing */ ;
889         else if ((device == 0) && (err == 0x81))
890                 /* do nothing */ ;
891         else
892                 return err;
893
894         /* determine if device if ATA or ATAPI */
895         class = ata_dev_classify(&tf);
896         if (class == ATA_DEV_UNKNOWN)
897                 return err;
898         if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
899                 return err;
900
901         dev->class = class;
902
903         return err;
904 }
905
906 /**
907  *      ata_dev_id_string - Convert IDENTIFY DEVICE page into string
908  *      @id: IDENTIFY DEVICE results we will examine
909  *      @s: string into which data is output
910  *      @ofs: offset into identify device page
911  *      @len: length of string to return. must be an even number.
912  *
913  *      The strings in the IDENTIFY DEVICE page are broken up into
914  *      16-bit chunks.  Run through the string, and output each
915  *      8-bit chunk linearly, regardless of platform.
916  *
917  *      LOCKING:
918  *      caller.
919  */
920
921 void ata_dev_id_string(const u16 *id, unsigned char *s,
922                        unsigned int ofs, unsigned int len)
923 {
924         unsigned int c;
925
926         while (len > 0) {
927                 c = id[ofs] >> 8;
928                 *s = c;
929                 s++;
930
931                 c = id[ofs] & 0xff;
932                 *s = c;
933                 s++;
934
935                 ofs++;
936                 len -= 2;
937         }
938 }
939
940
941 /**
942  *      ata_noop_dev_select - Select device 0/1 on ATA bus
943  *      @ap: ATA channel to manipulate
944  *      @device: ATA device (numbered from zero) to select
945  *
946  *      This function performs no actual function.
947  *
948  *      May be used as the dev_select() entry in ata_port_operations.
949  *
950  *      LOCKING:
951  *      caller.
952  */
953 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
954 {
955 }
956
957
958 /**
959  *      ata_std_dev_select - Select device 0/1 on ATA bus
960  *      @ap: ATA channel to manipulate
961  *      @device: ATA device (numbered from zero) to select
962  *
963  *      Use the method defined in the ATA specification to
964  *      make either device 0, or device 1, active on the
965  *      ATA channel.  Works with both PIO and MMIO.
966  *
967  *      May be used as the dev_select() entry in ata_port_operations.
968  *
969  *      LOCKING:
970  *      caller.
971  */
972
973 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
974 {
975         u8 tmp;
976
977         if (device == 0)
978                 tmp = ATA_DEVICE_OBS;
979         else
980                 tmp = ATA_DEVICE_OBS | ATA_DEV1;
981
982         if (ap->flags & ATA_FLAG_MMIO) {
983                 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
984         } else {
985                 outb(tmp, ap->ioaddr.device_addr);
986         }
987         ata_pause(ap);          /* needed; also flushes, for mmio */
988 }
989
990 /**
991  *      ata_dev_select - Select device 0/1 on ATA bus
992  *      @ap: ATA channel to manipulate
993  *      @device: ATA device (numbered from zero) to select
994  *      @wait: non-zero to wait for Status register BSY bit to clear
995  *      @can_sleep: non-zero if context allows sleeping
996  *
997  *      Use the method defined in the ATA specification to
998  *      make either device 0, or device 1, active on the
999  *      ATA channel.
1000  *
1001  *      This is a high-level version of ata_std_dev_select(),
1002  *      which additionally provides the services of inserting
1003  *      the proper pauses and status polling, where needed.
1004  *
1005  *      LOCKING:
1006  *      caller.
1007  */
1008
1009 void ata_dev_select(struct ata_port *ap, unsigned int device,
1010                            unsigned int wait, unsigned int can_sleep)
1011 {
1012         VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1013                 ap->id, device, wait);
1014
1015         if (wait)
1016                 ata_wait_idle(ap);
1017
1018         ap->ops->dev_select(ap, device);
1019
1020         if (wait) {
1021                 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1022                         msleep(150);
1023                 ata_wait_idle(ap);
1024         }
1025 }
1026
1027 /**
1028  *      ata_dump_id - IDENTIFY DEVICE info debugging output
1029  *      @dev: Device whose IDENTIFY DEVICE page we will dump
1030  *
1031  *      Dump selected 16-bit words from a detected device's
1032  *      IDENTIFY PAGE page.
1033  *
1034  *      LOCKING:
1035  *      caller.
1036  */
1037
1038 static inline void ata_dump_id(const struct ata_device *dev)
1039 {
1040         DPRINTK("49==0x%04x  "
1041                 "53==0x%04x  "
1042                 "63==0x%04x  "
1043                 "64==0x%04x  "
1044                 "75==0x%04x  \n",
1045                 dev->id[49],
1046                 dev->id[53],
1047                 dev->id[63],
1048                 dev->id[64],
1049                 dev->id[75]);
1050         DPRINTK("80==0x%04x  "
1051                 "81==0x%04x  "
1052                 "82==0x%04x  "
1053                 "83==0x%04x  "
1054                 "84==0x%04x  \n",
1055                 dev->id[80],
1056                 dev->id[81],
1057                 dev->id[82],
1058                 dev->id[83],
1059                 dev->id[84]);
1060         DPRINTK("88==0x%04x  "
1061                 "93==0x%04x\n",
1062                 dev->id[88],
1063                 dev->id[93]);
1064 }
1065
1066 /*
1067  *      Compute the PIO modes available for this device. This is not as
1068  *      trivial as it seems if we must consider early devices correctly.
1069  *
1070  *      FIXME: pre IDE drive timing (do we care ?). 
1071  */
1072
1073 static unsigned int ata_pio_modes(const struct ata_device *adev)
1074 {
1075         u16 modes;
1076
1077         /* Usual case. Word 53 indicates word 88 is valid */
1078         if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1079                 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1080                 modes <<= 3;
1081                 modes |= 0x7;
1082                 return modes;
1083         }
1084
1085         /* If word 88 isn't valid then Word 51 holds the PIO timing number
1086            for the maximum. Turn it into a mask and return it */
1087         modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1088         return modes;
1089 }
1090
1091 /**
1092  *      ata_dev_identify - obtain IDENTIFY x DEVICE page
1093  *      @ap: port on which device we wish to probe resides
1094  *      @device: device bus address, starting at zero
1095  *
1096  *      Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1097  *      command, and read back the 512-byte device information page.
1098  *      The device information page is fed to us via the standard
1099  *      PIO-IN protocol, but we hand-code it here. (TODO: investigate
1100  *      using standard PIO-IN paths)
1101  *
1102  *      After reading the device information page, we use several
1103  *      bits of information from it to initialize data structures
1104  *      that will be used during the lifetime of the ata_device.
1105  *      Other data from the info page is used to disqualify certain
1106  *      older ATA devices we do not wish to support.
1107  *
1108  *      LOCKING:
1109  *      Inherited from caller.  Some functions called by this function
1110  *      obtain the host_set lock.
1111  */
1112
1113 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1114 {
1115         struct ata_device *dev = &ap->device[device];
1116         unsigned int major_version;
1117         u16 tmp;
1118         unsigned long xfer_modes;
1119         unsigned int using_edd;
1120         DECLARE_COMPLETION(wait);
1121         struct ata_queued_cmd *qc;
1122         unsigned long flags;
1123         int rc;
1124
1125         if (!ata_dev_present(dev)) {
1126                 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1127                         ap->id, device);
1128                 return;
1129         }
1130
1131         if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1132                 using_edd = 0;
1133         else
1134                 using_edd = 1;
1135
1136         DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1137
1138         assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1139                 dev->class == ATA_DEV_NONE);
1140
1141         ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1142
1143         qc = ata_qc_new_init(ap, dev);
1144         BUG_ON(qc == NULL);
1145
1146         ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1147         qc->dma_dir = DMA_FROM_DEVICE;
1148         qc->tf.protocol = ATA_PROT_PIO;
1149         qc->nsect = 1;
1150
1151 retry:
1152         if (dev->class == ATA_DEV_ATA) {
1153                 qc->tf.command = ATA_CMD_ID_ATA;
1154                 DPRINTK("do ATA identify\n");
1155         } else {
1156                 qc->tf.command = ATA_CMD_ID_ATAPI;
1157                 DPRINTK("do ATAPI identify\n");
1158         }
1159
1160         qc->waiting = &wait;
1161         qc->complete_fn = ata_qc_complete_noop;
1162
1163         spin_lock_irqsave(&ap->host_set->lock, flags);
1164         rc = ata_qc_issue(qc);
1165         spin_unlock_irqrestore(&ap->host_set->lock, flags);
1166
1167         if (rc)
1168                 goto err_out;
1169         else
1170                 wait_for_completion(&wait);
1171
1172         spin_lock_irqsave(&ap->host_set->lock, flags);
1173         ap->ops->tf_read(ap, &qc->tf);
1174         spin_unlock_irqrestore(&ap->host_set->lock, flags);
1175
1176         if (qc->tf.command & ATA_ERR) {
1177                 /*
1178                  * arg!  EDD works for all test cases, but seems to return
1179                  * the ATA signature for some ATAPI devices.  Until the
1180                  * reason for this is found and fixed, we fix up the mess
1181                  * here.  If IDENTIFY DEVICE returns command aborted
1182                  * (as ATAPI devices do), then we issue an
1183                  * IDENTIFY PACKET DEVICE.
1184                  *
1185                  * ATA software reset (SRST, the default) does not appear
1186                  * to have this problem.
1187                  */
1188                 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1189                         u8 err = qc->tf.feature;
1190                         if (err & ATA_ABORTED) {
1191                                 dev->class = ATA_DEV_ATAPI;
1192                                 qc->cursg = 0;
1193                                 qc->cursg_ofs = 0;
1194                                 qc->cursect = 0;
1195                                 qc->nsect = 1;
1196                                 goto retry;
1197                         }
1198                 }
1199                 goto err_out;
1200         }
1201
1202         swap_buf_le16(dev->id, ATA_ID_WORDS);
1203
1204         /* print device capabilities */
1205         printk(KERN_DEBUG "ata%u: dev %u cfg "
1206                "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1207                ap->id, device, dev->id[49],
1208                dev->id[82], dev->id[83], dev->id[84],
1209                dev->id[85], dev->id[86], dev->id[87],
1210                dev->id[88]);
1211
1212         /*
1213          * common ATA, ATAPI feature tests
1214          */
1215
1216         /* we require DMA support (bits 8 of word 49) */
1217         if (!ata_id_has_dma(dev->id)) {
1218                 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1219                 goto err_out_nosup;
1220         }
1221
1222         /* quick-n-dirty find max transfer mode; for printk only */
1223         xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1224         if (!xfer_modes)
1225                 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1226         if (!xfer_modes)
1227                 xfer_modes = ata_pio_modes(dev);
1228
1229         ata_dump_id(dev);
1230
1231         /* ATA-specific feature tests */
1232         if (dev->class == ATA_DEV_ATA) {
1233                 if (!ata_id_is_ata(dev->id))    /* sanity check */
1234                         goto err_out_nosup;
1235
1236                 /* get major version */
1237                 tmp = dev->id[ATA_ID_MAJOR_VER];
1238                 for (major_version = 14; major_version >= 1; major_version--)
1239                         if (tmp & (1 << major_version))
1240                                 break;
1241
1242                 /*
1243                  * The exact sequence expected by certain pre-ATA4 drives is:
1244                  * SRST RESET
1245                  * IDENTIFY
1246                  * INITIALIZE DEVICE PARAMETERS
1247                  * anything else..
1248                  * Some drives were very specific about that exact sequence.
1249                  */
1250                 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1251                         ata_dev_init_params(ap, dev);
1252
1253                         /* current CHS translation info (id[53-58]) might be
1254                          * changed. reread the identify device info.
1255                          */
1256                         ata_dev_reread_id(ap, dev);
1257                 }
1258
1259                 if (ata_id_has_lba(dev->id)) {
1260                         dev->flags |= ATA_DFLAG_LBA;
1261
1262                         if (ata_id_has_lba48(dev->id)) {
1263                                 dev->flags |= ATA_DFLAG_LBA48;
1264                                 dev->n_sectors = ata_id_u64(dev->id, 100);
1265                         } else {
1266                                 dev->n_sectors = ata_id_u32(dev->id, 60);
1267                         }
1268
1269                         /* print device info to dmesg */
1270                         printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1271                                ap->id, device,
1272                                major_version,
1273                                ata_mode_string(xfer_modes),
1274                                (unsigned long long)dev->n_sectors,
1275                                dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1276                 } else { 
1277                         /* CHS */
1278
1279                         /* Default translation */
1280                         dev->cylinders  = dev->id[1];
1281                         dev->heads      = dev->id[3];
1282                         dev->sectors    = dev->id[6];
1283                         dev->n_sectors  = dev->cylinders * dev->heads * dev->sectors;
1284
1285                         if (ata_id_current_chs_valid(dev->id)) {
1286                                 /* Current CHS translation is valid. */
1287                                 dev->cylinders = dev->id[54];
1288                                 dev->heads     = dev->id[55];
1289                                 dev->sectors   = dev->id[56];
1290                                 
1291                                 dev->n_sectors = ata_id_u32(dev->id, 57);
1292                         }
1293
1294                         /* print device info to dmesg */
1295                         printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1296                                ap->id, device,
1297                                major_version,
1298                                ata_mode_string(xfer_modes),
1299                                (unsigned long long)dev->n_sectors,
1300                                (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1301
1302                 }
1303
1304                 ap->host->max_cmd_len = 16;
1305         }
1306
1307         /* ATAPI-specific feature tests */
1308         else {
1309                 if (ata_id_is_ata(dev->id))             /* sanity check */
1310                         goto err_out_nosup;
1311
1312                 rc = atapi_cdb_len(dev->id);
1313                 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1314                         printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1315                         goto err_out_nosup;
1316                 }
1317                 ap->cdb_len = (unsigned int) rc;
1318                 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1319
1320                 /* print device info to dmesg */
1321                 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1322                        ap->id, device,
1323                        ata_mode_string(xfer_modes));
1324         }
1325
1326         DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1327         return;
1328
1329 err_out_nosup:
1330         printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1331                ap->id, device);
1332 err_out:
1333         dev->class++;   /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1334         DPRINTK("EXIT, err\n");
1335 }
1336
1337
1338 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1339 {
1340         return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1341 }
1342
1343 /**
1344  *      ata_dev_config - Run device specific handlers and check for
1345  *                       SATA->PATA bridges
1346  *      @ap: Bus
1347  *      @i:  Device
1348  *
1349  *      LOCKING:
1350  */
1351
1352 void ata_dev_config(struct ata_port *ap, unsigned int i)
1353 {
1354         /* limit bridge transfers to udma5, 200 sectors */
1355         if (ata_dev_knobble(ap)) {
1356                 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1357                         ap->id, ap->device->devno);
1358                 ap->udma_mask &= ATA_UDMA5;
1359                 ap->host->max_sectors = ATA_MAX_SECTORS;
1360                 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1361                 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1362         }
1363
1364         if (ap->ops->dev_config)
1365                 ap->ops->dev_config(ap, &ap->device[i]);
1366 }
1367
1368 /**
1369  *      ata_bus_probe - Reset and probe ATA bus
1370  *      @ap: Bus to probe
1371  *
1372  *      Master ATA bus probing function.  Initiates a hardware-dependent
1373  *      bus reset, then attempts to identify any devices found on
1374  *      the bus.
1375  *
1376  *      LOCKING:
1377  *      PCI/etc. bus probe sem.
1378  *
1379  *      RETURNS:
1380  *      Zero on success, non-zero on error.
1381  */
1382
1383 static int ata_bus_probe(struct ata_port *ap)
1384 {
1385         unsigned int i, found = 0;
1386
1387         ap->ops->phy_reset(ap);
1388         if (ap->flags & ATA_FLAG_PORT_DISABLED)
1389                 goto err_out;
1390
1391         for (i = 0; i < ATA_MAX_DEVICES; i++) {
1392                 ata_dev_identify(ap, i);
1393                 if (ata_dev_present(&ap->device[i])) {
1394                         found = 1;
1395                         ata_dev_config(ap,i);
1396                 }
1397         }
1398
1399         if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1400                 goto err_out_disable;
1401
1402         ata_set_mode(ap);
1403         if (ap->flags & ATA_FLAG_PORT_DISABLED)
1404                 goto err_out_disable;
1405
1406         return 0;
1407
1408 err_out_disable:
1409         ap->ops->port_disable(ap);
1410 err_out:
1411         return -1;
1412 }
1413
1414 /**
1415  *      ata_port_probe - Mark port as enabled
1416  *      @ap: Port for which we indicate enablement
1417  *
1418  *      Modify @ap data structure such that the system
1419  *      thinks that the entire port is enabled.
1420  *
1421  *      LOCKING: host_set lock, or some other form of
1422  *      serialization.
1423  */
1424
1425 void ata_port_probe(struct ata_port *ap)
1426 {
1427         ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1428 }
1429
1430 /**
1431  *      __sata_phy_reset - Wake/reset a low-level SATA PHY
1432  *      @ap: SATA port associated with target SATA PHY.
1433  *
1434  *      This function issues commands to standard SATA Sxxx
1435  *      PHY registers, to wake up the phy (and device), and
1436  *      clear any reset condition.
1437  *
1438  *      LOCKING:
1439  *      PCI/etc. bus probe sem.
1440  *
1441  */
1442 void __sata_phy_reset(struct ata_port *ap)
1443 {
1444         u32 sstatus;
1445         unsigned long timeout = jiffies + (HZ * 5);
1446
1447         if (ap->flags & ATA_FLAG_SATA_RESET) {
1448                 /* issue phy wake/reset */
1449                 scr_write_flush(ap, SCR_CONTROL, 0x301);
1450                 /* Couldn't find anything in SATA I/II specs, but
1451                  * AHCI-1.1 10.4.2 says at least 1 ms. */
1452                 mdelay(1);
1453         }
1454         scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1455
1456         /* wait for phy to become ready, if necessary */
1457         do {
1458                 msleep(200);
1459                 sstatus = scr_read(ap, SCR_STATUS);
1460                 if ((sstatus & 0xf) != 1)
1461                         break;
1462         } while (time_before(jiffies, timeout));
1463
1464         /* TODO: phy layer with polling, timeouts, etc. */
1465         if (sata_dev_present(ap))
1466                 ata_port_probe(ap);
1467         else {
1468                 sstatus = scr_read(ap, SCR_STATUS);
1469                 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1470                        ap->id, sstatus);
1471                 ata_port_disable(ap);
1472         }
1473
1474         if (ap->flags & ATA_FLAG_PORT_DISABLED)
1475                 return;
1476
1477         if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1478                 ata_port_disable(ap);
1479                 return;
1480         }
1481
1482         ap->cbl = ATA_CBL_SATA;
1483 }
1484
1485 /**
1486  *      sata_phy_reset - Reset SATA bus.
1487  *      @ap: SATA port associated with target SATA PHY.
1488  *
1489  *      This function resets the SATA bus, and then probes
1490  *      the bus for devices.
1491  *
1492  *      LOCKING:
1493  *      PCI/etc. bus probe sem.
1494  *
1495  */
1496 void sata_phy_reset(struct ata_port *ap)
1497 {
1498         __sata_phy_reset(ap);
1499         if (ap->flags & ATA_FLAG_PORT_DISABLED)
1500                 return;
1501         ata_bus_reset(ap);
1502 }
1503
1504 /**
1505  *      ata_port_disable - Disable port.
1506  *      @ap: Port to be disabled.
1507  *
1508  *      Modify @ap data structure such that the system
1509  *      thinks that the entire port is disabled, and should
1510  *      never attempt to probe or communicate with devices
1511  *      on this port.
1512  *
1513  *      LOCKING: host_set lock, or some other form of
1514  *      serialization.
1515  */
1516
1517 void ata_port_disable(struct ata_port *ap)
1518 {
1519         ap->device[0].class = ATA_DEV_NONE;
1520         ap->device[1].class = ATA_DEV_NONE;
1521         ap->flags |= ATA_FLAG_PORT_DISABLED;
1522 }
1523
1524 /*
1525  * This mode timing computation functionality is ported over from
1526  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1527  */
1528 /*
1529  * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1530  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1531  * for PIO 5, which is a nonstandard extension and UDMA6, which
1532  * is currently supported only by Maxtor drives. 
1533  */
1534
1535 static const struct ata_timing ata_timing[] = {
1536
1537         { XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
1538         { XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
1539         { XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
1540         { XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
1541
1542         { XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
1543         { XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
1544         { XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
1545
1546 /*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0,   0, 150 }, */
1547                                           
1548         { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
1549         { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
1550         { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
1551                                           
1552         { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
1553         { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
1554         { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
1555
1556 /*      { XFER_PIO_5,     20,  50,  30, 100,  50,  30, 100,   0 }, */
1557         { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
1558         { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
1559
1560         { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
1561         { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
1562         { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
1563
1564 /*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 }, */
1565
1566         { 0xFF }
1567 };
1568
1569 #define ENOUGH(v,unit)          (((v)-1)/(unit)+1)
1570 #define EZ(v,unit)              ((v)?ENOUGH(v,unit):0)
1571
1572 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1573 {
1574         q->setup   = EZ(t->setup   * 1000,  T);
1575         q->act8b   = EZ(t->act8b   * 1000,  T);
1576         q->rec8b   = EZ(t->rec8b   * 1000,  T);
1577         q->cyc8b   = EZ(t->cyc8b   * 1000,  T);
1578         q->active  = EZ(t->active  * 1000,  T);
1579         q->recover = EZ(t->recover * 1000,  T);
1580         q->cycle   = EZ(t->cycle   * 1000,  T);
1581         q->udma    = EZ(t->udma    * 1000, UT);
1582 }
1583
1584 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1585                       struct ata_timing *m, unsigned int what)
1586 {
1587         if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
1588         if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
1589         if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
1590         if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
1591         if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
1592         if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1593         if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
1594         if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
1595 }
1596
1597 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1598 {
1599         const struct ata_timing *t;
1600
1601         for (t = ata_timing; t->mode != speed; t++)
1602                 if (t->mode == 0xFF)
1603                         return NULL;
1604         return t; 
1605 }
1606
1607 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1608                        struct ata_timing *t, int T, int UT)
1609 {
1610         const struct ata_timing *s;
1611         struct ata_timing p;
1612
1613         /*
1614          * Find the mode. 
1615         */
1616
1617         if (!(s = ata_timing_find_mode(speed)))
1618                 return -EINVAL;
1619
1620         /*
1621          * If the drive is an EIDE drive, it can tell us it needs extended
1622          * PIO/MW_DMA cycle timing.
1623          */
1624
1625         if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1626                 memset(&p, 0, sizeof(p));
1627                 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1628                         if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1629                                             else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1630                 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1631                         p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1632                 }
1633                 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1634         }
1635
1636         /*
1637          * Convert the timing to bus clock counts.
1638          */
1639
1640         ata_timing_quantize(s, t, T, UT);
1641
1642         /*
1643          * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1644          * and some other commands. We have to ensure that the DMA cycle timing is
1645          * slower/equal than the fastest PIO timing.
1646          */
1647
1648         if (speed > XFER_PIO_4) {
1649                 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1650                 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1651         }
1652
1653         /*
1654          * Lenghten active & recovery time so that cycle time is correct.
1655          */
1656
1657         if (t->act8b + t->rec8b < t->cyc8b) {
1658                 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1659                 t->rec8b = t->cyc8b - t->act8b;
1660         }
1661
1662         if (t->active + t->recover < t->cycle) {
1663                 t->active += (t->cycle - (t->active + t->recover)) / 2;
1664                 t->recover = t->cycle - t->active;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static const struct {
1671         unsigned int shift;
1672         u8 base;
1673 } xfer_mode_classes[] = {
1674         { ATA_SHIFT_UDMA,       XFER_UDMA_0 },
1675         { ATA_SHIFT_MWDMA,      XFER_MW_DMA_0 },
1676         { ATA_SHIFT_PIO,        XFER_PIO_0 },
1677 };
1678
1679 static inline u8 base_from_shift(unsigned int shift)
1680 {
1681         int i;
1682
1683         for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1684                 if (xfer_mode_classes[i].shift == shift)
1685                         return xfer_mode_classes[i].base;
1686
1687         return 0xff;
1688 }
1689
1690 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1691 {
1692         int ofs, idx;
1693         u8 base;
1694
1695         if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1696                 return;
1697
1698         if (dev->xfer_shift == ATA_SHIFT_PIO)
1699                 dev->flags |= ATA_DFLAG_PIO;
1700
1701         ata_dev_set_xfermode(ap, dev);
1702
1703         base = base_from_shift(dev->xfer_shift);
1704         ofs = dev->xfer_mode - base;
1705         idx = ofs + dev->xfer_shift;
1706         WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1707
1708         DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1709                 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1710
1711         printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1712                 ap->id, dev->devno, xfer_mode_str[idx]);
1713 }
1714
1715 static int ata_host_set_pio(struct ata_port *ap)
1716 {
1717         unsigned int mask;
1718         int x, i;
1719         u8 base, xfer_mode;
1720
1721         mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1722         x = fgb(mask);
1723         if (x < 0) {
1724                 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1725                 return -1;
1726         }
1727
1728         base = base_from_shift(ATA_SHIFT_PIO);
1729         xfer_mode = base + x;
1730
1731         DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1732                 (int)base, (int)xfer_mode, mask, x);
1733
1734         for (i = 0; i < ATA_MAX_DEVICES; i++) {
1735                 struct ata_device *dev = &ap->device[i];
1736                 if (ata_dev_present(dev)) {
1737                         dev->pio_mode = xfer_mode;
1738                         dev->xfer_mode = xfer_mode;
1739                         dev->xfer_shift = ATA_SHIFT_PIO;
1740                         if (ap->ops->set_piomode)
1741                                 ap->ops->set_piomode(ap, dev);
1742                 }
1743         }
1744
1745         return 0;
1746 }
1747
1748 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1749                             unsigned int xfer_shift)
1750 {
1751         int i;
1752
1753         for (i = 0; i < ATA_MAX_DEVICES; i++) {
1754                 struct ata_device *dev = &ap->device[i];
1755                 if (ata_dev_present(dev)) {
1756                         dev->dma_mode = xfer_mode;
1757                         dev->xfer_mode = xfer_mode;
1758                         dev->xfer_shift = xfer_shift;
1759                         if (ap->ops->set_dmamode)
1760                                 ap->ops->set_dmamode(ap, dev);
1761                 }
1762         }
1763 }
1764
1765 /**
1766  *      ata_set_mode - Program timings and issue SET FEATURES - XFER
1767  *      @ap: port on which timings will be programmed
1768  *
1769  *      Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1770  *
1771  *      LOCKING:
1772  *      PCI/etc. bus probe sem.
1773  *
1774  */
1775 static void ata_set_mode(struct ata_port *ap)
1776 {
1777         unsigned int xfer_shift;
1778         u8 xfer_mode;
1779         int rc;
1780
1781         /* step 1: always set host PIO timings */
1782         rc = ata_host_set_pio(ap);
1783         if (rc)
1784                 goto err_out;
1785
1786         /* step 2: choose the best data xfer mode */
1787         xfer_mode = xfer_shift = 0;
1788         rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1789         if (rc)
1790                 goto err_out;
1791
1792         /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1793         if (xfer_shift != ATA_SHIFT_PIO)
1794                 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1795
1796         /* step 4: update devices' xfer mode */
1797         ata_dev_set_mode(ap, &ap->device[0]);
1798         ata_dev_set_mode(ap, &ap->device[1]);
1799
1800         if (ap->flags & ATA_FLAG_PORT_DISABLED)
1801                 return;
1802
1803         if (ap->ops->post_set_mode)
1804                 ap->ops->post_set_mode(ap);
1805
1806         return;
1807
1808 err_out:
1809         ata_port_disable(ap);
1810 }
1811
1812 /**
1813  *      ata_busy_sleep - sleep until BSY clears, or timeout
1814  *      @ap: port containing status register to be polled
1815  *      @tmout_pat: impatience timeout
1816  *      @tmout: overall timeout
1817  *
1818  *      Sleep until ATA Status register bit BSY clears,
1819  *      or a timeout occurs.
1820  *
1821  *      LOCKING: None.
1822  *
1823  */
1824
1825 static unsigned int ata_busy_sleep (struct ata_port *ap,
1826                                     unsigned long tmout_pat,
1827                                     unsigned long tmout)
1828 {
1829         unsigned long timer_start, timeout;
1830         u8 status;
1831
1832         status = ata_busy_wait(ap, ATA_BUSY, 300);
1833         timer_start = jiffies;
1834         timeout = timer_start + tmout_pat;
1835         while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1836                 msleep(50);
1837                 status = ata_busy_wait(ap, ATA_BUSY, 3);
1838         }
1839
1840         if (status & ATA_BUSY)
1841                 printk(KERN_WARNING "ata%u is slow to respond, "
1842                        "please be patient\n", ap->id);
1843
1844         timeout = timer_start + tmout;
1845         while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1846                 msleep(50);
1847                 status = ata_chk_status(ap);
1848         }
1849
1850         if (status & ATA_BUSY) {
1851                 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1852                        ap->id, tmout / HZ);
1853                 return 1;
1854         }
1855
1856         return 0;
1857 }
1858
1859 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1860 {
1861         struct ata_ioports *ioaddr = &ap->ioaddr;
1862         unsigned int dev0 = devmask & (1 << 0);
1863         unsigned int dev1 = devmask & (1 << 1);
1864         unsigned long timeout;
1865
1866         /* if device 0 was found in ata_devchk, wait for its
1867          * BSY bit to clear
1868          */
1869         if (dev0)
1870                 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1871
1872         /* if device 1 was found in ata_devchk, wait for
1873          * register access, then wait for BSY to clear
1874          */
1875         timeout = jiffies + ATA_TMOUT_BOOT;
1876         while (dev1) {
1877                 u8 nsect, lbal;
1878
1879                 ap->ops->dev_select(ap, 1);
1880                 if (ap->flags & ATA_FLAG_MMIO) {
1881                         nsect = readb((void __iomem *) ioaddr->nsect_addr);
1882                         lbal = readb((void __iomem *) ioaddr->lbal_addr);
1883                 } else {
1884                         nsect = inb(ioaddr->nsect_addr);
1885                         lbal = inb(ioaddr->lbal_addr);
1886                 }
1887                 if ((nsect == 1) && (lbal == 1))
1888                         break;
1889                 if (time_after(jiffies, timeout)) {
1890                         dev1 = 0;
1891                         break;
1892                 }
1893                 msleep(50);     /* give drive a breather */
1894         }
1895         if (dev1)
1896                 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1897
1898         /* is all this really necessary? */
1899         ap->ops->dev_select(ap, 0);
1900         if (dev1)
1901                 ap->ops->dev_select(ap, 1);
1902         if (dev0)
1903                 ap->ops->dev_select(ap, 0);
1904 }
1905
1906 /**
1907  *      ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1908  *      @ap: Port to reset and probe
1909  *
1910  *      Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1911  *      probe the bus.  Not often used these days.
1912  *
1913  *      LOCKING:
1914  *      PCI/etc. bus probe sem.
1915  *
1916  */
1917
1918 static unsigned int ata_bus_edd(struct ata_port *ap)
1919 {
1920         struct ata_taskfile tf;
1921
1922         /* set up execute-device-diag (bus reset) taskfile */
1923         /* also, take interrupts to a known state (disabled) */
1924         DPRINTK("execute-device-diag\n");
1925         ata_tf_init(ap, &tf, 0);
1926         tf.ctl |= ATA_NIEN;
1927         tf.command = ATA_CMD_EDD;
1928         tf.protocol = ATA_PROT_NODATA;
1929
1930         /* do bus reset */
1931         ata_tf_to_host(ap, &tf);
1932
1933         /* spec says at least 2ms.  but who knows with those
1934          * crazy ATAPI devices...
1935          */
1936         msleep(150);
1937
1938         return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1939 }
1940
1941 static unsigned int ata_bus_softreset(struct ata_port *ap,
1942                                       unsigned int devmask)
1943 {
1944         struct ata_ioports *ioaddr = &ap->ioaddr;
1945
1946         DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1947
1948         /* software reset.  causes dev0 to be selected */
1949         if (ap->flags & ATA_FLAG_MMIO) {
1950                 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1951                 udelay(20);     /* FIXME: flush */
1952                 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1953                 udelay(20);     /* FIXME: flush */
1954                 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1955         } else {
1956                 outb(ap->ctl, ioaddr->ctl_addr);
1957                 udelay(10);
1958                 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1959                 udelay(10);
1960                 outb(ap->ctl, ioaddr->ctl_addr);
1961         }
1962
1963         /* spec mandates ">= 2ms" before checking status.
1964          * We wait 150ms, because that was the magic delay used for
1965          * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1966          * between when the ATA command register is written, and then
1967          * status is checked.  Because waiting for "a while" before
1968          * checking status is fine, post SRST, we perform this magic
1969          * delay here as well.
1970          */
1971         msleep(150);
1972
1973         ata_bus_post_reset(ap, devmask);
1974
1975         return 0;
1976 }
1977
1978 /**
1979  *      ata_bus_reset - reset host port and associated ATA channel
1980  *      @ap: port to reset
1981  *
1982  *      This is typically the first time we actually start issuing
1983  *      commands to the ATA channel.  We wait for BSY to clear, then
1984  *      issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1985  *      result.  Determine what devices, if any, are on the channel
1986  *      by looking at the device 0/1 error register.  Look at the signature
1987  *      stored in each device's taskfile registers, to determine if
1988  *      the device is ATA or ATAPI.
1989  *
1990  *      LOCKING:
1991  *      PCI/etc. bus probe sem.
1992  *      Obtains host_set lock.
1993  *
1994  *      SIDE EFFECTS:
1995  *      Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1996  */
1997
1998 void ata_bus_reset(struct ata_port *ap)
1999 {
2000         struct ata_ioports *ioaddr = &ap->ioaddr;
2001         unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2002         u8 err;
2003         unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2004
2005         DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2006
2007         /* determine if device 0/1 are present */
2008         if (ap->flags & ATA_FLAG_SATA_RESET)
2009                 dev0 = 1;
2010         else {
2011                 dev0 = ata_devchk(ap, 0);
2012                 if (slave_possible)
2013                         dev1 = ata_devchk(ap, 1);
2014         }
2015
2016         if (dev0)
2017                 devmask |= (1 << 0);
2018         if (dev1)
2019                 devmask |= (1 << 1);
2020
2021         /* select device 0 again */
2022         ap->ops->dev_select(ap, 0);
2023
2024         /* issue bus reset */
2025         if (ap->flags & ATA_FLAG_SRST)
2026                 rc = ata_bus_softreset(ap, devmask);
2027         else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2028                 /* set up device control */
2029                 if (ap->flags & ATA_FLAG_MMIO)
2030                         writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2031                 else
2032                         outb(ap->ctl, ioaddr->ctl_addr);
2033                 rc = ata_bus_edd(ap);
2034         }
2035
2036         if (rc)
2037                 goto err_out;
2038
2039         /*
2040          * determine by signature whether we have ATA or ATAPI devices
2041          */
2042         err = ata_dev_try_classify(ap, 0);
2043         if ((slave_possible) && (err != 0x81))
2044                 ata_dev_try_classify(ap, 1);
2045
2046         /* re-enable interrupts */
2047         if (ap->ioaddr.ctl_addr)        /* FIXME: hack. create a hook instead */
2048                 ata_irq_on(ap);
2049
2050         /* is double-select really necessary? */
2051         if (ap->device[1].class != ATA_DEV_NONE)
2052                 ap->ops->dev_select(ap, 1);
2053         if (ap->device[0].class != ATA_DEV_NONE)
2054                 ap->ops->dev_select(ap, 0);
2055
2056         /* if no devices were detected, disable this port */
2057         if ((ap->device[0].class == ATA_DEV_NONE) &&
2058             (ap->device[1].class == ATA_DEV_NONE))
2059                 goto err_out;
2060
2061         if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2062                 /* set up device control for ATA_FLAG_SATA_RESET */
2063                 if (ap->flags & ATA_FLAG_MMIO)
2064                         writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2065                 else
2066                         outb(ap->ctl, ioaddr->ctl_addr);
2067         }
2068
2069         DPRINTK("EXIT\n");
2070         return;
2071
2072 err_out:
2073         printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2074         ap->ops->port_disable(ap);
2075
2076         DPRINTK("EXIT\n");
2077 }
2078
2079 static void ata_pr_blacklisted(const struct ata_port *ap,
2080                                const struct ata_device *dev)
2081 {
2082         printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2083                 ap->id, dev->devno);
2084 }
2085
2086 static const char * ata_dma_blacklist [] = {
2087         "WDC AC11000H",
2088         "WDC AC22100H",
2089         "WDC AC32500H",
2090         "WDC AC33100H",
2091         "WDC AC31600H",
2092         "WDC AC32100H",
2093         "WDC AC23200L",
2094         "Compaq CRD-8241B",
2095         "CRD-8400B",
2096         "CRD-8480B",
2097         "CRD-8482B",
2098         "CRD-84",
2099         "SanDisk SDP3B",
2100         "SanDisk SDP3B-64",
2101         "SANYO CD-ROM CRD",
2102         "HITACHI CDR-8",
2103         "HITACHI CDR-8335",
2104         "HITACHI CDR-8435",
2105         "Toshiba CD-ROM XM-6202B",
2106         "TOSHIBA CD-ROM XM-1702BC",
2107         "CD-532E-A",
2108         "E-IDE CD-ROM CR-840",
2109         "CD-ROM Drive/F5A",
2110         "WPI CDD-820",
2111         "SAMSUNG CD-ROM SC-148C",
2112         "SAMSUNG CD-ROM SC",
2113         "SanDisk SDP3B-64",
2114         "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2115         "_NEC DV5800A",
2116 };
2117
2118 static int ata_dma_blacklisted(const struct ata_device *dev)
2119 {
2120         unsigned char model_num[40];
2121         char *s;
2122         unsigned int len;
2123         int i;
2124
2125         ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2126                           sizeof(model_num));
2127         s = &model_num[0];
2128         len = strnlen(s, sizeof(model_num));
2129
2130         /* ATAPI specifies that empty space is blank-filled; remove blanks */
2131         while ((len > 0) && (s[len - 1] == ' ')) {
2132                 len--;
2133                 s[len] = 0;
2134         }
2135
2136         for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2137                 if (!strncmp(ata_dma_blacklist[i], s, len))
2138                         return 1;
2139
2140         return 0;
2141 }
2142
2143 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2144 {
2145         const struct ata_device *master, *slave;
2146         unsigned int mask;
2147
2148         master = &ap->device[0];
2149         slave = &ap->device[1];
2150
2151         assert (ata_dev_present(master) || ata_dev_present(slave));
2152
2153         if (shift == ATA_SHIFT_UDMA) {
2154                 mask = ap->udma_mask;
2155                 if (ata_dev_present(master)) {
2156                         mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2157                         if (ata_dma_blacklisted(master)) {
2158                                 mask = 0;
2159                                 ata_pr_blacklisted(ap, master);
2160                         }
2161                 }
2162                 if (ata_dev_present(slave)) {
2163                         mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2164                         if (ata_dma_blacklisted(slave)) {
2165                                 mask = 0;
2166                                 ata_pr_blacklisted(ap, slave);
2167                         }
2168                 }
2169         }
2170         else if (shift == ATA_SHIFT_MWDMA) {
2171                 mask = ap->mwdma_mask;
2172                 if (ata_dev_present(master)) {
2173                         mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2174                         if (ata_dma_blacklisted(master)) {
2175                                 mask = 0;
2176                                 ata_pr_blacklisted(ap, master);
2177                         }
2178                 }
2179                 if (ata_dev_present(slave)) {
2180                         mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2181                         if (ata_dma_blacklisted(slave)) {
2182                                 mask = 0;
2183                                 ata_pr_blacklisted(ap, slave);
2184                         }
2185                 }
2186         }
2187         else if (shift == ATA_SHIFT_PIO) {
2188                 mask = ap->pio_mask;
2189                 if (ata_dev_present(master)) {
2190                         /* spec doesn't return explicit support for
2191                          * PIO0-2, so we fake it
2192                          */
2193                         u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2194                         tmp_mode <<= 3;
2195                         tmp_mode |= 0x7;
2196                         mask &= tmp_mode;
2197                 }
2198                 if (ata_dev_present(slave)) {
2199                         /* spec doesn't return explicit support for
2200                          * PIO0-2, so we fake it
2201                          */
2202                         u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2203                         tmp_mode <<= 3;
2204                         tmp_mode |= 0x7;
2205                         mask &= tmp_mode;
2206                 }
2207         }
2208         else {
2209                 mask = 0xffffffff; /* shut up compiler warning */
2210                 BUG();
2211         }
2212
2213         return mask;
2214 }
2215
2216 /* find greatest bit */
2217 static int fgb(u32 bitmap)
2218 {
2219         unsigned int i;
2220         int x = -1;
2221
2222         for (i = 0; i < 32; i++)
2223                 if (bitmap & (1 << i))
2224                         x = i;
2225
2226         return x;
2227 }
2228
2229 /**
2230  *      ata_choose_xfer_mode - attempt to find best transfer mode
2231  *      @ap: Port for which an xfer mode will be selected
2232  *      @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2233  *      @xfer_shift_out: (output) bit shift that selects this mode
2234  *
2235  *      Based on host and device capabilities, determine the
2236  *      maximum transfer mode that is amenable to all.
2237  *
2238  *      LOCKING:
2239  *      PCI/etc. bus probe sem.
2240  *
2241  *      RETURNS:
2242  *      Zero on success, negative on error.
2243  */
2244
2245 static int ata_choose_xfer_mode(const struct ata_port *ap,
2246                                 u8 *xfer_mode_out,
2247                                 unsigned int *xfer_shift_out)
2248 {
2249         unsigned int mask, shift;
2250         int x, i;
2251
2252         for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2253                 shift = xfer_mode_classes[i].shift;
2254                 mask = ata_get_mode_mask(ap, shift);
2255
2256                 x = fgb(mask);
2257                 if (x >= 0) {
2258                         *xfer_mode_out = xfer_mode_classes[i].base + x;
2259                         *xfer_shift_out = shift;
2260                         return 0;
2261                 }
2262         }
2263
2264         return -1;
2265 }
2266
2267 /**
2268  *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2269  *      @ap: Port associated with device @dev
2270  *      @dev: Device to which command will be sent
2271  *
2272  *      Issue SET FEATURES - XFER MODE command to device @dev
2273  *      on port @ap.
2274  *
2275  *      LOCKING:
2276  *      PCI/etc. bus probe sem.
2277  */
2278
2279 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2280 {
2281         DECLARE_COMPLETION(wait);
2282         struct ata_queued_cmd *qc;
2283         int rc;
2284         unsigned long flags;
2285
2286         /* set up set-features taskfile */
2287         DPRINTK("set features - xfer mode\n");
2288
2289         qc = ata_qc_new_init(ap, dev);
2290         BUG_ON(qc == NULL);
2291
2292         qc->tf.command = ATA_CMD_SET_FEATURES;
2293         qc->tf.feature = SETFEATURES_XFER;
2294         qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2295         qc->tf.protocol = ATA_PROT_NODATA;
2296         qc->tf.nsect = dev->xfer_mode;
2297
2298         qc->waiting = &wait;
2299         qc->complete_fn = ata_qc_complete_noop;
2300
2301         spin_lock_irqsave(&ap->host_set->lock, flags);
2302         rc = ata_qc_issue(qc);
2303         spin_unlock_irqrestore(&ap->host_set->lock, flags);
2304
2305         if (rc)
2306                 ata_port_disable(ap);
2307         else
2308                 wait_for_completion(&wait);
2309
2310         DPRINTK("EXIT\n");
2311 }
2312
2313 /**
2314  *      ata_dev_reread_id - Reread the device identify device info
2315  *      @ap: port where the device is
2316  *      @dev: device to reread the identify device info
2317  *
2318  *      LOCKING:
2319  */
2320
2321 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2322 {
2323         DECLARE_COMPLETION(wait);
2324         struct ata_queued_cmd *qc;
2325         unsigned long flags;
2326         int rc;
2327
2328         qc = ata_qc_new_init(ap, dev);
2329         BUG_ON(qc == NULL);
2330
2331         ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2332         qc->dma_dir = DMA_FROM_DEVICE;
2333
2334         if (dev->class == ATA_DEV_ATA) {
2335                 qc->tf.command = ATA_CMD_ID_ATA;
2336                 DPRINTK("do ATA identify\n");
2337         } else {
2338                 qc->tf.command = ATA_CMD_ID_ATAPI;
2339                 DPRINTK("do ATAPI identify\n");
2340         }
2341
2342         qc->tf.flags |= ATA_TFLAG_DEVICE;
2343         qc->tf.protocol = ATA_PROT_PIO;
2344         qc->nsect = 1;
2345
2346         qc->waiting = &wait;
2347         qc->complete_fn = ata_qc_complete_noop;
2348
2349         spin_lock_irqsave(&ap->host_set->lock, flags);
2350         rc = ata_qc_issue(qc);
2351         spin_unlock_irqrestore(&ap->host_set->lock, flags);
2352
2353         if (rc)
2354                 goto err_out;
2355
2356         wait_for_completion(&wait);
2357
2358         swap_buf_le16(dev->id, ATA_ID_WORDS);
2359
2360         ata_dump_id(dev);
2361
2362         DPRINTK("EXIT\n");
2363
2364         return;
2365 err_out:
2366         ata_port_disable(ap);
2367 }
2368
2369 /**
2370  *      ata_dev_init_params - Issue INIT DEV PARAMS command
2371  *      @ap: Port associated with device @dev
2372  *      @dev: Device to which command will be sent
2373  *
2374  *      LOCKING:
2375  */
2376
2377 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2378 {
2379         DECLARE_COMPLETION(wait);
2380         struct ata_queued_cmd *qc;
2381         int rc;
2382         unsigned long flags;
2383         u16 sectors = dev->id[6];
2384         u16 heads   = dev->id[3];
2385
2386         /* Number of sectors per track 1-255. Number of heads 1-16 */
2387         if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2388                 return;
2389
2390         /* set up init dev params taskfile */
2391         DPRINTK("init dev params \n");
2392
2393         qc = ata_qc_new_init(ap, dev);
2394         BUG_ON(qc == NULL);
2395
2396         qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2397         qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2398         qc->tf.protocol = ATA_PROT_NODATA;
2399         qc->tf.nsect = sectors;
2400         qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2401
2402         qc->waiting = &wait;
2403         qc->complete_fn = ata_qc_complete_noop;
2404
2405         spin_lock_irqsave(&ap->host_set->lock, flags);
2406         rc = ata_qc_issue(qc);
2407         spin_unlock_irqrestore(&ap->host_set->lock, flags);
2408
2409         if (rc)
2410                 ata_port_disable(ap);
2411         else
2412                 wait_for_completion(&wait);
2413
2414         DPRINTK("EXIT\n");
2415 }
2416
2417 /**
2418  *      ata_sg_clean - Unmap DMA memory associated with command
2419  *      @qc: Command containing DMA memory to be released
2420  *
2421  *      Unmap all mapped DMA memory associated with this command.
2422  *
2423  *      LOCKING:
2424  *      spin_lock_irqsave(host_set lock)
2425  */
2426
2427 static void ata_sg_clean(struct ata_queued_cmd *qc)
2428 {
2429         struct ata_port *ap = qc->ap;
2430         struct scatterlist *sg = qc->sg;
2431         int dir = qc->dma_dir;
2432
2433         assert(qc->flags & ATA_QCFLAG_DMAMAP);
2434         assert(sg != NULL);
2435
2436         if (qc->flags & ATA_QCFLAG_SINGLE)
2437                 assert(qc->n_elem == 1);
2438
2439         DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2440
2441         if (qc->flags & ATA_QCFLAG_SG)
2442                 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2443         else
2444                 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2445                                  sg_dma_len(&sg[0]), dir);
2446
2447         qc->flags &= ~ATA_QCFLAG_DMAMAP;
2448         qc->sg = NULL;
2449 }
2450
2451 /**
2452  *      ata_fill_sg - Fill PCI IDE PRD table
2453  *      @qc: Metadata associated with taskfile to be transferred
2454  *
2455  *      Fill PCI IDE PRD (scatter-gather) table with segments
2456  *      associated with the current disk command.
2457  *
2458  *      LOCKING:
2459  *      spin_lock_irqsave(host_set lock)
2460  *
2461  */
2462 static void ata_fill_sg(struct ata_queued_cmd *qc)
2463 {
2464         struct scatterlist *sg = qc->sg;
2465         struct ata_port *ap = qc->ap;
2466         unsigned int idx, nelem;
2467
2468         assert(sg != NULL);
2469         assert(qc->n_elem > 0);
2470
2471         idx = 0;
2472         for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2473                 u32 addr, offset;
2474                 u32 sg_len, len;
2475
2476                 /* determine if physical DMA addr spans 64K boundary.
2477                  * Note h/w doesn't support 64-bit, so we unconditionally
2478                  * truncate dma_addr_t to u32.
2479                  */
2480                 addr = (u32) sg_dma_address(sg);
2481                 sg_len = sg_dma_len(sg);
2482
2483                 while (sg_len) {
2484                         offset = addr & 0xffff;
2485                         len = sg_len;
2486                         if ((offset + sg_len) > 0x10000)
2487                                 len = 0x10000 - offset;
2488
2489                         ap->prd[idx].addr = cpu_to_le32(addr);
2490                         ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2491                         VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2492
2493                         idx++;
2494                         sg_len -= len;
2495                         addr += len;
2496                 }
2497         }
2498
2499         if (idx)
2500                 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2501 }
2502 /**
2503  *      ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2504  *      @qc: Metadata associated with taskfile to check
2505  *
2506  *      Allow low-level driver to filter ATA PACKET commands, returning
2507  *      a status indicating whether or not it is OK to use DMA for the
2508  *      supplied PACKET command.
2509  *
2510  *      LOCKING:
2511  *      spin_lock_irqsave(host_set lock)
2512  *
2513  *      RETURNS: 0 when ATAPI DMA can be used
2514  *               nonzero otherwise
2515  */
2516 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2517 {
2518         struct ata_port *ap = qc->ap;
2519         int rc = 0; /* Assume ATAPI DMA is OK by default */
2520
2521         if (ap->ops->check_atapi_dma)
2522                 rc = ap->ops->check_atapi_dma(qc);
2523
2524         return rc;
2525 }
2526 /**
2527  *      ata_qc_prep - Prepare taskfile for submission
2528  *      @qc: Metadata associated with taskfile to be prepared
2529  *
2530  *      Prepare ATA taskfile for submission.
2531  *
2532  *      LOCKING:
2533  *      spin_lock_irqsave(host_set lock)
2534  */
2535 void ata_qc_prep(struct ata_queued_cmd *qc)
2536 {
2537         if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2538                 return;
2539
2540         ata_fill_sg(qc);
2541 }
2542
2543 /**
2544  *      ata_sg_init_one - Associate command with memory buffer
2545  *      @qc: Command to be associated
2546  *      @buf: Memory buffer
2547  *      @buflen: Length of memory buffer, in bytes.
2548  *
2549  *      Initialize the data-related elements of queued_cmd @qc
2550  *      to point to a single memory buffer, @buf of byte length @buflen.
2551  *
2552  *      LOCKING:
2553  *      spin_lock_irqsave(host_set lock)
2554  */
2555
2556 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2557 {
2558         qc->flags |= ATA_QCFLAG_SINGLE;
2559
2560         qc->sg = &qc->sgent;
2561         qc->n_elem = 1;
2562         qc->buf_virt = buf;
2563         sg_init_one(qc->sg, buf, buflen);
2564 }
2565
2566 /**
2567  *      ata_sg_init - Associate command with scatter-gather table.
2568  *      @qc: Command to be associated
2569  *      @sg: Scatter-gather table.
2570  *      @n_elem: Number of elements in s/g table.
2571  *
2572  *      Initialize the data-related elements of queued_cmd @qc
2573  *      to point to a scatter-gather table @sg, containing @n_elem
2574  *      elements.
2575  *
2576  *      LOCKING:
2577  *      spin_lock_irqsave(host_set lock)
2578  */
2579
2580 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2581                  unsigned int n_elem)
2582 {
2583         qc->flags |= ATA_QCFLAG_SG;
2584         qc->sg = sg;
2585         qc->n_elem = n_elem;
2586 }
2587
2588 /**
2589  *      ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2590  *      @qc: Command with memory buffer to be mapped.
2591  *
2592  *      DMA-map the memory buffer associated with queued_cmd @qc.
2593  *
2594  *      LOCKING:
2595  *      spin_lock_irqsave(host_set lock)
2596  *
2597  *      RETURNS:
2598  *      Zero on success, negative on error.
2599  */
2600
2601 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2602 {
2603         struct ata_port *ap = qc->ap;
2604         int dir = qc->dma_dir;
2605         struct scatterlist *sg = qc->sg;
2606         dma_addr_t dma_address;
2607
2608         dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2609                                      sg->length, dir);
2610         if (dma_mapping_error(dma_address))
2611                 return -1;
2612
2613         sg_dma_address(sg) = dma_address;
2614         sg_dma_len(sg) = sg->length;
2615
2616         DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2617                 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2618
2619         return 0;
2620 }
2621
2622 /**
2623  *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2624  *      @qc: Command with scatter-gather table to be mapped.
2625  *
2626  *      DMA-map the scatter-gather table associated with queued_cmd @qc.
2627  *
2628  *      LOCKING:
2629  *      spin_lock_irqsave(host_set lock)
2630  *
2631  *      RETURNS:
2632  *      Zero on success, negative on error.
2633  *
2634  */
2635
2636 static int ata_sg_setup(struct ata_queued_cmd *qc)
2637 {
2638         struct ata_port *ap = qc->ap;
2639         struct scatterlist *sg = qc->sg;
2640         int n_elem, dir;
2641
2642         VPRINTK("ENTER, ata%u\n", ap->id);
2643         assert(qc->flags & ATA_QCFLAG_SG);
2644
2645         dir = qc->dma_dir;
2646         n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2647         if (n_elem < 1)
2648                 return -1;
2649
2650         DPRINTK("%d sg elements mapped\n", n_elem);
2651
2652         qc->n_elem = n_elem;
2653
2654         return 0;
2655 }
2656
2657 /**
2658  *      ata_poll_qc_complete - turn irq back on and finish qc
2659  *      @qc: Command to complete
2660  *      @drv_stat: ATA status register content
2661  *
2662  *      LOCKING:
2663  *      None.  (grabs host lock)
2664  */
2665
2666 void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
2667 {
2668         struct ata_port *ap = qc->ap;
2669         unsigned long flags;
2670
2671         spin_lock_irqsave(&ap->host_set->lock, flags);
2672         ap->flags &= ~ATA_FLAG_NOINTR;
2673         ata_irq_on(ap);
2674         ata_qc_complete(qc, err_mask);
2675         spin_unlock_irqrestore(&ap->host_set->lock, flags);
2676 }
2677
2678 /**
2679  *      ata_pio_poll -
2680  *      @ap: the target ata_port
2681  *
2682  *      LOCKING:
2683  *      None.  (executing in kernel thread context)
2684  *
2685  *      RETURNS:
2686  *      timeout value to use
2687  */
2688
2689 static unsigned long ata_pio_poll(struct ata_port *ap)
2690 {
2691         u8 status;
2692         unsigned int poll_state = HSM_ST_UNKNOWN;
2693         unsigned int reg_state = HSM_ST_UNKNOWN;
2694         const unsigned int tmout_state = HSM_ST_TMOUT;
2695
2696         switch (ap->hsm_task_state) {
2697         case HSM_ST:
2698         case HSM_ST_POLL:
2699                 poll_state = HSM_ST_POLL;
2700                 reg_state = HSM_ST;
2701                 break;
2702         case HSM_ST_LAST:
2703         case HSM_ST_LAST_POLL:
2704                 poll_state = HSM_ST_LAST_POLL;
2705                 reg_state = HSM_ST_LAST;
2706                 break;
2707         default:
2708                 BUG();
2709                 break;
2710         }
2711
2712         status = ata_chk_status(ap);
2713         if (status & ATA_BUSY) {
2714                 if (time_after(jiffies, ap->pio_task_timeout)) {
2715                         ap->hsm_task_state = tmout_state;
2716                         return 0;
2717                 }
2718                 ap->hsm_task_state = poll_state;
2719                 return ATA_SHORT_PAUSE;
2720         }
2721
2722         ap->hsm_task_state = reg_state;
2723         return 0;
2724 }
2725
2726 /**
2727  *      ata_pio_complete - check if drive is busy or idle
2728  *      @ap: the target ata_port
2729  *
2730  *      LOCKING:
2731  *      None.  (executing in kernel thread context)
2732  *
2733  *      RETURNS:
2734  *      Non-zero if qc completed, zero otherwise.
2735  */
2736
2737 static int ata_pio_complete (struct ata_port *ap)
2738 {
2739         struct ata_queued_cmd *qc;
2740         u8 drv_stat;
2741
2742         /*
2743          * This is purely heuristic.  This is a fast path.  Sometimes when
2744          * we enter, BSY will be cleared in a chk-status or two.  If not,
2745          * the drive is probably seeking or something.  Snooze for a couple
2746          * msecs, then chk-status again.  If still busy, fall back to
2747          * HSM_ST_POLL state.
2748          */
2749         drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2750         if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2751                 msleep(2);
2752                 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2753                 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2754                         ap->hsm_task_state = HSM_ST_LAST_POLL;
2755                         ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2756                         return 0;
2757                 }
2758         }
2759
2760         drv_stat = ata_wait_idle(ap);
2761         if (!ata_ok(drv_stat)) {
2762                 ap->hsm_task_state = HSM_ST_ERR;
2763                 return 0;
2764         }
2765
2766         qc = ata_qc_from_tag(ap, ap->active_tag);
2767         assert(qc != NULL);
2768
2769         ap->hsm_task_state = HSM_ST_IDLE;
2770
2771         ata_poll_qc_complete(qc, 0);
2772
2773         /* another command may start at this point */
2774
2775         return 1;
2776 }
2777
2778
2779 /**
2780  *      swap_buf_le16 - swap halves of 16-words in place
2781  *      @buf:  Buffer to swap
2782  *      @buf_words:  Number of 16-bit words in buffer.
2783  *
2784  *      Swap halves of 16-bit words if needed to convert from
2785  *      little-endian byte order to native cpu byte order, or
2786  *      vice-versa.
2787  *
2788  *      LOCKING:
2789  *      Inherited from caller.
2790  */
2791 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2792 {
2793 #ifdef __BIG_ENDIAN
2794         unsigned int i;
2795
2796         for (i = 0; i < buf_words; i++)
2797                 buf[i] = le16_to_cpu(buf[i]);
2798 #endif /* __BIG_ENDIAN */
2799 }
2800
2801 /**
2802  *      ata_mmio_data_xfer - Transfer data by MMIO
2803  *      @ap: port to read/write
2804  *      @buf: data buffer
2805  *      @buflen: buffer length
2806  *      @write_data: read/write
2807  *
2808  *      Transfer data from/to the device data register by MMIO.
2809  *
2810  *      LOCKING:
2811  *      Inherited from caller.
2812  */
2813
2814 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2815                                unsigned int buflen, int write_data)
2816 {
2817         unsigned int i;
2818         unsigned int words = buflen >> 1;
2819         u16 *buf16 = (u16 *) buf;
2820         void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2821
2822         /* Transfer multiple of 2 bytes */
2823         if (write_data) {
2824                 for (i = 0; i < words; i++)
2825                         writew(le16_to_cpu(buf16[i]), mmio);
2826         } else {
2827                 for (i = 0; i < words; i++)
2828                         buf16[i] = cpu_to_le16(readw(mmio));
2829         }
2830
2831         /* Transfer trailing 1 byte, if any. */
2832         if (unlikely(buflen & 0x01)) {
2833                 u16 align_buf[1] = { 0 };
2834                 unsigned char *trailing_buf = buf + buflen - 1;
2835
2836                 if (write_data) {
2837                         memcpy(align_buf, trailing_buf, 1);
2838                         writew(le16_to_cpu(align_buf[0]), mmio);
2839                 } else {
2840                         align_buf[0] = cpu_to_le16(readw(mmio));
2841                         memcpy(trailing_buf, align_buf, 1);
2842                 }
2843         }
2844 }
2845
2846 /**
2847  *      ata_pio_data_xfer - Transfer data by PIO
2848  *      @ap: port to read/write
2849  *      @buf: data buffer
2850  *      @buflen: buffer length
2851  *      @write_data: read/write
2852  *
2853  *      Transfer data from/to the device data register by PIO.
2854  *
2855  *      LOCKING:
2856  *      Inherited from caller.
2857  */
2858
2859 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2860                               unsigned int buflen, int write_data)
2861 {
2862         unsigned int words = buflen >> 1;
2863
2864         /* Transfer multiple of 2 bytes */
2865         if (write_data)
2866                 outsw(ap->ioaddr.data_addr, buf, words);
2867         else
2868                 insw(ap->ioaddr.data_addr, buf, words);
2869
2870         /* Transfer trailing 1 byte, if any. */
2871         if (unlikely(buflen & 0x01)) {
2872                 u16 align_buf[1] = { 0 };
2873                 unsigned char *trailing_buf = buf + buflen - 1;
2874
2875                 if (write_data) {
2876                         memcpy(align_buf, trailing_buf, 1);
2877                         outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2878                 } else {
2879                         align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2880                         memcpy(trailing_buf, align_buf, 1);
2881                 }
2882         }
2883 }
2884
2885 /**
2886  *      ata_data_xfer - Transfer data from/to the data register.
2887  *      @ap: port to read/write
2888  *      @buf: data buffer
2889  *      @buflen: buffer length
2890  *      @do_write: read/write
2891  *
2892  *      Transfer data from/to the device data register.
2893  *
2894  *      LOCKING:
2895  *      Inherited from caller.
2896  */
2897
2898 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2899                           unsigned int buflen, int do_write)
2900 {
2901         if (ap->flags & ATA_FLAG_MMIO)
2902                 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2903         else
2904                 ata_pio_data_xfer(ap, buf, buflen, do_write);
2905 }
2906
2907 /**
2908  *      ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2909  *      @qc: Command on going
2910  *
2911  *      Transfer ATA_SECT_SIZE of data from/to the ATA device.
2912  *
2913  *      LOCKING:
2914  *      Inherited from caller.
2915  */
2916
2917 static void ata_pio_sector(struct ata_queued_cmd *qc)
2918 {
2919         int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2920         struct scatterlist *sg = qc->sg;
2921         struct ata_port *ap = qc->ap;
2922         struct page *page;
2923         unsigned int offset;
2924         unsigned char *buf;
2925
2926         if (qc->cursect == (qc->nsect - 1))
2927                 ap->hsm_task_state = HSM_ST_LAST;
2928
2929         page = sg[qc->cursg].page;
2930         offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2931
2932         /* get the current page and offset */
2933         page = nth_page(page, (offset >> PAGE_SHIFT));
2934         offset %= PAGE_SIZE;
2935
2936         buf = kmap(page) + offset;
2937
2938         qc->cursect++;
2939         qc->cursg_ofs++;
2940
2941         if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2942                 qc->cursg++;
2943                 qc->cursg_ofs = 0;
2944         }
2945
2946         DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2947
2948         /* do the actual data transfer */
2949         do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2950         ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2951
2952         kunmap(page);
2953 }
2954
2955 /**
2956  *      __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2957  *      @qc: Command on going
2958  *      @bytes: number of bytes
2959  *
2960  *      Transfer Transfer data from/to the ATAPI device.
2961  *
2962  *      LOCKING:
2963  *      Inherited from caller.
2964  *
2965  */
2966
2967 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2968 {
2969         int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2970         struct scatterlist *sg = qc->sg;
2971         struct ata_port *ap = qc->ap;
2972         struct page *page;
2973         unsigned char *buf;
2974         unsigned int offset, count;
2975
2976         if (qc->curbytes + bytes >= qc->nbytes)
2977                 ap->hsm_task_state = HSM_ST_LAST;
2978
2979 next_sg:
2980         if (unlikely(qc->cursg >= qc->n_elem)) {
2981                 /*
2982                  * The end of qc->sg is reached and the device expects
2983                  * more data to transfer. In order not to overrun qc->sg
2984                  * and fulfill length specified in the byte count register,
2985                  *    - for read case, discard trailing data from the device
2986                  *    - for write case, padding zero data to the device
2987                  */
2988                 u16 pad_buf[1] = { 0 };
2989                 unsigned int words = bytes >> 1;
2990                 unsigned int i;
2991
2992                 if (words) /* warning if bytes > 1 */
2993                         printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
2994                                ap->id, bytes);
2995
2996                 for (i = 0; i < words; i++)
2997                         ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
2998
2999                 ap->hsm_task_state = HSM_ST_LAST;
3000                 return;
3001         }
3002
3003         sg = &qc->sg[qc->cursg];
3004
3005         page = sg->page;
3006         offset = sg->offset + qc->cursg_ofs;
3007
3008         /* get the current page and offset */
3009         page = nth_page(page, (offset >> PAGE_SHIFT));
3010         offset %= PAGE_SIZE;
3011
3012         /* don't overrun current sg */
3013         count = min(sg->length - qc->cursg_ofs, bytes);
3014
3015         /* don't cross page boundaries */
3016         count = min(count, (unsigned int)PAGE_SIZE - offset);
3017
3018         buf = kmap(page) + offset;
3019
3020         bytes -= count;
3021         qc->curbytes += count;
3022         qc->cursg_ofs += count;
3023
3024         if (qc->cursg_ofs == sg->length) {
3025                 qc->cursg++;
3026                 qc->cursg_ofs = 0;
3027         }
3028
3029         DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3030
3031         /* do the actual data transfer */
3032         ata_data_xfer(ap, buf, count, do_write);
3033
3034         kunmap(page);
3035
3036         if (bytes)
3037                 goto next_sg;
3038 }
3039
3040 /**
3041  *      atapi_pio_bytes - Transfer data from/to the ATAPI device.
3042  *      @qc: Command on going
3043  *
3044  *      Transfer Transfer data from/to the ATAPI device.
3045  *
3046  *      LOCKING:
3047  *      Inherited from caller.
3048  */
3049
3050 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3051 {
3052         struct ata_port *ap = qc->ap;
3053         struct ata_device *dev = qc->dev;
3054         unsigned int ireason, bc_lo, bc_hi, bytes;
3055         int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3056
3057         ap->ops->tf_read(ap, &qc->tf);
3058         ireason = qc->tf.nsect;
3059         bc_lo = qc->tf.lbam;
3060         bc_hi = qc->tf.lbah;
3061         bytes = (bc_hi << 8) | bc_lo;
3062
3063         /* shall be cleared to zero, indicating xfer of data */
3064         if (ireason & (1 << 0))
3065                 goto err_out;
3066
3067         /* make sure transfer direction matches expected */
3068         i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3069         if (do_write != i_write)
3070                 goto err_out;
3071
3072         __atapi_pio_bytes(qc, bytes);
3073
3074         return;
3075
3076 err_out:
3077         printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3078               ap->id, dev->devno);
3079         ap->hsm_task_state = HSM_ST_ERR;
3080 }
3081
3082 /**
3083  *      ata_pio_block - start PIO on a block
3084  *      @ap: the target ata_port
3085  *
3086  *      LOCKING:
3087  *      None.  (executing in kernel thread context)
3088  */
3089
3090 static void ata_pio_block(struct ata_port *ap)
3091 {
3092         struct ata_queued_cmd *qc;
3093         u8 status;
3094
3095         /*
3096          * This is purely heuristic.  This is a fast path.
3097          * Sometimes when we enter, BSY will be cleared in
3098          * a chk-status or two.  If not, the drive is probably seeking
3099          * or something.  Snooze for a couple msecs, then
3100          * chk-status again.  If still busy, fall back to
3101          * HSM_ST_POLL state.
3102          */
3103         status = ata_busy_wait(ap, ATA_BUSY, 5);
3104         if (status & ATA_BUSY) {
3105                 msleep(2);
3106                 status = ata_busy_wait(ap, ATA_BUSY, 10);
3107                 if (status & ATA_BUSY) {
3108                         ap->hsm_task_state = HSM_ST_POLL;
3109                         ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3110                         return;
3111                 }
3112         }
3113
3114         qc = ata_qc_from_tag(ap, ap->active_tag);
3115         assert(qc != NULL);
3116
3117         if (is_atapi_taskfile(&qc->tf)) {
3118                 /* no more data to transfer or unsupported ATAPI command */
3119                 if ((status & ATA_DRQ) == 0) {
3120                         ap->hsm_task_state = HSM_ST_LAST;
3121                         return;
3122                 }
3123
3124                 atapi_pio_bytes(qc);
3125         } else {
3126                 /* handle BSY=0, DRQ=0 as error */
3127                 if ((status & ATA_DRQ) == 0) {
3128                         ap->hsm_task_state = HSM_ST_ERR;
3129                         return;
3130                 }
3131
3132                 ata_pio_sector(qc);
3133         }
3134 }
3135
3136 static void ata_pio_error(struct ata_port *ap)
3137 {
3138         struct ata_queued_cmd *qc;
3139
3140         printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3141
3142         qc = ata_qc_from_tag(ap, ap->active_tag);
3143         assert(qc != NULL);
3144
3145         ap->hsm_task_state = HSM_ST_IDLE;
3146
3147         ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
3148 }
3149
3150 static void ata_pio_task(void *_data)
3151 {
3152         struct ata_port *ap = _data;
3153         unsigned long timeout;
3154         int qc_completed;
3155
3156 fsm_start:
3157         timeout = 0;
3158         qc_completed = 0;
3159
3160         switch (ap->hsm_task_state) {
3161         case HSM_ST_IDLE:
3162                 return;
3163
3164         case HSM_ST:
3165                 ata_pio_block(ap);
3166                 break;
3167
3168         case HSM_ST_LAST:
3169                 qc_completed = ata_pio_complete(ap);
3170                 break;
3171
3172         case HSM_ST_POLL:
3173         case HSM_ST_LAST_POLL:
3174                 timeout = ata_pio_poll(ap);
3175                 break;
3176
3177         case HSM_ST_TMOUT:
3178         case HSM_ST_ERR:
3179                 ata_pio_error(ap);
3180                 return;
3181         }
3182
3183         if (timeout)
3184                 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3185         else if (!qc_completed)
3186                 goto fsm_start;
3187 }
3188
3189 /**
3190  *      ata_qc_timeout - Handle timeout of queued command
3191  *      @qc: Command that timed out
3192  *
3193  *      Some part of the kernel (currently, only the SCSI layer)
3194  *      has noticed that the active command on port @ap has not
3195  *      completed after a specified length of time.  Handle this
3196  *      condition by disabling DMA (if necessary) and completing
3197  *      transactions, with error if necessary.
3198  *
3199  *      This also handles the case of the "lost interrupt", where
3200  *      for some reason (possibly hardware bug, possibly driver bug)
3201  *      an interrupt was not delivered to the driver, even though the
3202  *      transaction completed successfully.
3203  *
3204  *      LOCKING:
3205  *      Inherited from SCSI layer (none, can sleep)
3206  */
3207
3208 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3209 {
3210         struct ata_port *ap = qc->ap;
3211         struct ata_host_set *host_set = ap->host_set;
3212         struct ata_device *dev = qc->dev;
3213         u8 host_stat = 0, drv_stat;
3214         unsigned long flags;
3215
3216         DPRINTK("ENTER\n");
3217
3218         /* FIXME: doesn't this conflict with timeout handling? */
3219         if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
3220                 struct scsi_cmnd *cmd = qc->scsicmd;
3221
3222                 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
3223
3224                         /* finish completing original command */
3225                         spin_lock_irqsave(&host_set->lock, flags);
3226                         __ata_qc_complete(qc);
3227                         spin_unlock_irqrestore(&host_set->lock, flags);
3228
3229                         atapi_request_sense(ap, dev, cmd);
3230
3231                         cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3232                         scsi_finish_command(cmd);
3233
3234                         goto out;
3235                 }
3236         }
3237
3238         spin_lock_irqsave(&host_set->lock, flags);
3239
3240         /* hack alert!  We cannot use the supplied completion
3241          * function from inside the ->eh_strategy_handler() thread.
3242          * libata is the only user of ->eh_strategy_handler() in
3243          * any kernel, so the default scsi_done() assumes it is
3244          * not being called from the SCSI EH.
3245          */
3246         qc->scsidone = scsi_finish_command;
3247
3248         switch (qc->tf.protocol) {
3249
3250         case ATA_PROT_DMA:
3251         case ATA_PROT_ATAPI_DMA:
3252                 host_stat = ap->ops->bmdma_status(ap);
3253
3254                 /* before we do anything else, clear DMA-Start bit */
3255                 ap->ops->bmdma_stop(qc);
3256
3257                 /* fall through */
3258
3259         default:
3260                 ata_altstatus(ap);
3261                 drv_stat = ata_chk_status(ap);
3262
3263                 /* ack bmdma irq events */
3264                 ap->ops->irq_clear(ap);
3265
3266                 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3267                        ap->id, qc->tf.command, drv_stat, host_stat);
3268
3269                 /* complete taskfile transaction */
3270                 ata_qc_complete(qc, ac_err_mask(drv_stat));
3271                 break;
3272         }
3273
3274         spin_unlock_irqrestore(&host_set->lock, flags);
3275
3276 out:
3277         DPRINTK("EXIT\n");
3278 }
3279
3280 /**
3281  *      ata_eng_timeout - Handle timeout of queued command
3282  *      @ap: Port on which timed-out command is active
3283  *
3284  *      Some part of the kernel (currently, only the SCSI layer)
3285  *      has noticed that the active command on port @ap has not
3286  *      completed after a specified length of time.  Handle this
3287  *      condition by disabling DMA (if necessary) and completing
3288  *      transactions, with error if necessary.
3289  *
3290  *      This also handles the case of the "lost interrupt", where
3291  *      for some reason (possibly hardware bug, possibly driver bug)
3292  *      an interrupt was not delivered to the driver, even though the
3293  *      transaction completed successfully.
3294  *
3295  *      LOCKING:
3296  *      Inherited from SCSI layer (none, can sleep)
3297  */
3298
3299 void ata_eng_timeout(struct ata_port *ap)
3300 {
3301         struct ata_queued_cmd *qc;
3302
3303         DPRINTK("ENTER\n");
3304
3305         qc = ata_qc_from_tag(ap, ap->active_tag);
3306         if (qc)
3307                 ata_qc_timeout(qc);
3308         else {
3309                 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3310                        ap->id);
3311                 goto out;
3312         }
3313
3314 out:
3315         DPRINTK("EXIT\n");
3316 }
3317
3318 /**
3319  *      ata_qc_new - Request an available ATA command, for queueing
3320  *      @ap: Port associated with device @dev
3321  *      @dev: Device from whom we request an available command structure
3322  *
3323  *      LOCKING:
3324  *      None.
3325  */
3326
3327 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3328 {
3329         struct ata_queued_cmd *qc = NULL;
3330         unsigned int i;
3331
3332         for (i = 0; i < ATA_MAX_QUEUE; i++)
3333                 if (!test_and_set_bit(i, &ap->qactive)) {
3334                         qc = ata_qc_from_tag(ap, i);
3335                         break;
3336                 }
3337
3338         if (qc)
3339                 qc->tag = i;
3340
3341         return qc;
3342 }
3343
3344 /**
3345  *      ata_qc_new_init - Request an available ATA command, and initialize it
3346  *      @ap: Port associated with device @dev
3347  *      @dev: Device from whom we request an available command structure
3348  *
3349  *      LOCKING:
3350  *      None.
3351  */
3352
3353 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3354                                       struct ata_device *dev)
3355 {
3356         struct ata_queued_cmd *qc;
3357
3358         qc = ata_qc_new(ap);
3359         if (qc) {
3360                 qc->sg = NULL;
3361                 qc->flags = 0;
3362                 qc->scsicmd = NULL;
3363                 qc->ap = ap;
3364                 qc->dev = dev;
3365                 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3366                 qc->nsect = 0;
3367                 qc->nbytes = qc->curbytes = 0;
3368
3369                 ata_tf_init(ap, &qc->tf, dev->devno);
3370         }
3371
3372         return qc;
3373 }
3374
3375 int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask)
3376 {
3377         return 0;
3378 }
3379
3380 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3381 {
3382         struct ata_port *ap = qc->ap;
3383         unsigned int tag, do_clear = 0;
3384
3385         qc->flags = 0;
3386         tag = qc->tag;
3387         if (likely(ata_tag_valid(tag))) {
3388                 if (tag == ap->active_tag)
3389                         ap->active_tag = ATA_TAG_POISON;
3390                 qc->tag = ATA_TAG_POISON;
3391                 do_clear = 1;
3392         }
3393
3394         if (qc->waiting) {
3395                 struct completion *waiting = qc->waiting;
3396                 qc->waiting = NULL;
3397                 complete(waiting);
3398         }
3399
3400         if (likely(do_clear))
3401                 clear_bit(tag, &ap->qactive);
3402 }
3403
3404 /**
3405  *      ata_qc_free - free unused ata_queued_cmd
3406  *      @qc: Command to complete
3407  *
3408  *      Designed to free unused ata_queued_cmd object
3409  *      in case something prevents using it.
3410  *
3411  *      LOCKING:
3412  *      spin_lock_irqsave(host_set lock)
3413  */
3414 void ata_qc_free(struct ata_queued_cmd *qc)
3415 {
3416         assert(qc != NULL);     /* ata_qc_from_tag _might_ return NULL */
3417         assert(qc->waiting == NULL);    /* nothing should be waiting */
3418
3419         __ata_qc_complete(qc);
3420 }
3421
3422 /**
3423  *      ata_qc_complete - Complete an active ATA command
3424  *      @qc: Command to complete
3425  *      @drv_stat: ATA Status register contents
3426  *
3427  *      Indicate to the mid and upper layers that an ATA
3428  *      command has completed, with either an ok or not-ok status.
3429  *
3430  *      LOCKING:
3431  *      spin_lock_irqsave(host_set lock)
3432  */
3433
3434 void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
3435 {
3436         int rc;
3437
3438         assert(qc != NULL);     /* ata_qc_from_tag _might_ return NULL */
3439         assert(qc->flags & ATA_QCFLAG_ACTIVE);
3440
3441         if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3442                 ata_sg_clean(qc);
3443
3444         /* atapi: mark qc as inactive to prevent the interrupt handler
3445          * from completing the command twice later, before the error handler
3446          * is called. (when rc != 0 and atapi request sense is needed)
3447          */
3448         qc->flags &= ~ATA_QCFLAG_ACTIVE;
3449
3450         /* call completion callback */
3451         rc = qc->complete_fn(qc, err_mask);
3452
3453         /* if callback indicates not to complete command (non-zero),
3454          * return immediately
3455          */
3456         if (rc != 0)
3457                 return;
3458
3459         __ata_qc_complete(qc);
3460
3461         VPRINTK("EXIT\n");
3462 }
3463
3464 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3465 {
3466         struct ata_port *ap = qc->ap;
3467
3468         switch (qc->tf.protocol) {
3469         case ATA_PROT_DMA:
3470         case ATA_PROT_ATAPI_DMA:
3471                 return 1;
3472
3473         case ATA_PROT_ATAPI:
3474         case ATA_PROT_PIO:
3475         case ATA_PROT_PIO_MULT:
3476                 if (ap->flags & ATA_FLAG_PIO_DMA)
3477                         return 1;
3478
3479                 /* fall through */
3480
3481         default:
3482                 return 0;
3483         }
3484
3485         /* never reached */
3486 }
3487
3488 /**
3489  *      ata_qc_issue - issue taskfile to device
3490  *      @qc: command to issue to device
3491  *
3492  *      Prepare an ATA command to submission to device.
3493  *      This includes mapping the data into a DMA-able
3494  *      area, filling in the S/G table, and finally
3495  *      writing the taskfile to hardware, starting the command.
3496  *
3497  *      LOCKING:
3498  *      spin_lock_irqsave(host_set lock)
3499  *
3500  *      RETURNS:
3501  *      Zero on success, negative on error.
3502  */
3503
3504 int ata_qc_issue(struct ata_queued_cmd *qc)
3505 {
3506         struct ata_port *ap = qc->ap;
3507
3508         if (ata_should_dma_map(qc)) {
3509                 if (qc->flags & ATA_QCFLAG_SG) {
3510                         if (ata_sg_setup(qc))
3511                                 goto err_out;
3512                 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3513                         if (ata_sg_setup_one(qc))
3514                                 goto err_out;
3515                 }
3516         } else {
3517                 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3518         }
3519
3520         ap->ops->qc_prep(qc);
3521
3522         qc->ap->active_tag = qc->tag;
3523         qc->flags |= ATA_QCFLAG_ACTIVE;
3524
3525         return ap->ops->qc_issue(qc);
3526
3527 err_out:
3528         return -1;
3529 }
3530
3531
3532 /**
3533  *      ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3534  *      @qc: command to issue to device
3535  *
3536  *      Using various libata functions and hooks, this function
3537  *      starts an ATA command.  ATA commands are grouped into
3538  *      classes called "protocols", and issuing each type of protocol
3539  *      is slightly different.
3540  *
3541  *      May be used as the qc_issue() entry in ata_port_operations.
3542  *
3543  *      LOCKING:
3544  *      spin_lock_irqsave(host_set lock)
3545  *
3546  *      RETURNS:
3547  *      Zero on success, negative on error.
3548  */
3549
3550 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3551 {
3552         struct ata_port *ap = qc->ap;
3553
3554         ata_dev_select(ap, qc->dev->devno, 1, 0);
3555
3556         switch (qc->tf.protocol) {
3557         case ATA_PROT_NODATA:
3558                 ata_tf_to_host_nolock(ap, &qc->tf);
3559                 break;
3560
3561         case ATA_PROT_DMA:
3562                 ap->ops->tf_load(ap, &qc->tf);   /* load tf registers */
3563                 ap->ops->bmdma_setup(qc);           /* set up bmdma */
3564                 ap->ops->bmdma_start(qc);           /* initiate bmdma */
3565                 break;
3566
3567         case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3568                 ata_qc_set_polling(qc);
3569                 ata_tf_to_host_nolock(ap, &qc->tf);
3570                 ap->hsm_task_state = HSM_ST;
3571                 queue_work(ata_wq, &ap->pio_task);
3572                 break;
3573
3574         case ATA_PROT_ATAPI:
3575                 ata_qc_set_polling(qc);
3576                 ata_tf_to_host_nolock(ap, &qc->tf);
3577                 queue_work(ata_wq, &ap->packet_task);
3578                 break;
3579
3580         case ATA_PROT_ATAPI_NODATA:
3581                 ap->flags |= ATA_FLAG_NOINTR;
3582                 ata_tf_to_host_nolock(ap, &qc->tf);
3583                 queue_work(ata_wq, &ap->packet_task);
3584                 break;
3585
3586         case ATA_PROT_ATAPI_DMA:
3587                 ap->flags |= ATA_FLAG_NOINTR;
3588                 ap->ops->tf_load(ap, &qc->tf);   /* load tf registers */
3589                 ap->ops->bmdma_setup(qc);           /* set up bmdma */
3590                 queue_work(ata_wq, &ap->packet_task);
3591                 break;
3592
3593         default:
3594                 WARN_ON(1);
3595                 return -1;
3596         }
3597
3598         return 0;
3599 }
3600
3601 /**
3602  *      ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3603  *      @qc: Info associated with this ATA transaction.
3604  *
3605  *      LOCKING:
3606  *      spin_lock_irqsave(host_set lock)
3607  */
3608
3609 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3610 {
3611         struct ata_port *ap = qc->ap;
3612         unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3613         u8 dmactl;
3614         void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3615
3616         /* load PRD table addr. */
3617         mb();   /* make sure PRD table writes are visible to controller */
3618         writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3619
3620         /* specify data direction, triple-check start bit is clear */
3621         dmactl = readb(mmio + ATA_DMA_CMD);
3622         dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3623         if (!rw)
3624                 dmactl |= ATA_DMA_WR;
3625         writeb(dmactl, mmio + ATA_DMA_CMD);
3626
3627         /* issue r/w command */
3628         ap->ops->exec_command(ap, &qc->tf);
3629 }
3630
3631 /**
3632  *      ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3633  *      @qc: Info associated with this ATA transaction.
3634  *
3635  *      LOCKING:
3636  *      spin_lock_irqsave(host_set lock)
3637  */
3638
3639 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3640 {
3641         struct ata_port *ap = qc->ap;
3642         void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3643         u8 dmactl;
3644
3645         /* start host DMA transaction */
3646         dmactl = readb(mmio + ATA_DMA_CMD);
3647         writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3648
3649         /* Strictly, one may wish to issue a readb() here, to
3650          * flush the mmio write.  However, control also passes
3651          * to the hardware at this point, and it will interrupt
3652          * us when we are to resume control.  So, in effect,
3653          * we don't care when the mmio write flushes.
3654          * Further, a read of the DMA status register _immediately_
3655          * following the write may not be what certain flaky hardware
3656          * is expected, so I think it is best to not add a readb()
3657          * without first all the MMIO ATA cards/mobos.
3658          * Or maybe I'm just being paranoid.
3659          */
3660 }
3661
3662 /**
3663  *      ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3664  *      @qc: Info associated with this ATA transaction.
3665  *
3666  *      LOCKING:
3667  *      spin_lock_irqsave(host_set lock)
3668  */
3669
3670 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3671 {
3672         struct ata_port *ap = qc->ap;
3673         unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3674         u8 dmactl;
3675
3676         /* load PRD table addr. */
3677         outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3678
3679         /* specify data direction, triple-check start bit is clear */
3680         dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3681         dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3682         if (!rw)
3683                 dmactl |= ATA_DMA_WR;
3684         outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3685
3686         /* issue r/w command */
3687         ap->ops->exec_command(ap, &qc->tf);
3688 }
3689
3690 /**
3691  *      ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3692  *      @qc: Info associated with this ATA transaction.
3693  *
3694  *      LOCKING:
3695  *      spin_lock_irqsave(host_set lock)
3696  */
3697
3698 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3699 {
3700         struct ata_port *ap = qc->ap;
3701         u8 dmactl;
3702
3703         /* start host DMA transaction */
3704         dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3705         outb(dmactl | ATA_DMA_START,
3706              ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3707 }
3708
3709
3710 /**
3711  *      ata_bmdma_start - Start a PCI IDE BMDMA transaction
3712  *      @qc: Info associated with this ATA transaction.
3713  *
3714  *      Writes the ATA_DMA_START flag to the DMA command register.
3715  *
3716  *      May be used as the bmdma_start() entry in ata_port_operations.
3717  *
3718  *      LOCKING:
3719  *      spin_lock_irqsave(host_set lock)
3720  */
3721 void ata_bmdma_start(struct ata_queued_cmd *qc)
3722 {
3723         if (qc->ap->flags & ATA_FLAG_MMIO)
3724                 ata_bmdma_start_mmio(qc);
3725         else
3726                 ata_bmdma_start_pio(qc);
3727 }
3728
3729
3730 /**
3731  *      ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3732  *      @qc: Info associated with this ATA transaction.
3733  *
3734  *      Writes address of PRD table to device's PRD Table Address
3735  *      register, sets the DMA control register, and calls
3736  *      ops->exec_command() to start the transfer.
3737  *
3738  *      May be used as the bmdma_setup() entry in ata_port_operations.
3739  *
3740  *      LOCKING:
3741  *      spin_lock_irqsave(host_set lock)
3742  */
3743 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3744 {
3745         if (qc->ap->flags & ATA_FLAG_MMIO)
3746                 ata_bmdma_setup_mmio(qc);
3747         else
3748                 ata_bmdma_setup_pio(qc);
3749 }
3750
3751
3752 /**
3753  *      ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3754  *      @ap: Port associated with this ATA transaction.
3755  *
3756  *      Clear interrupt and error flags in DMA status register.
3757  *
3758  *      May be used as the irq_clear() entry in ata_port_operations.
3759  *
3760  *      LOCKING:
3761  *      spin_lock_irqsave(host_set lock)
3762  */
3763
3764 void ata_bmdma_irq_clear(struct ata_port *ap)
3765 {
3766     if (ap->flags & ATA_FLAG_MMIO) {
3767         void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3768         writeb(readb(mmio), mmio);
3769     } else {
3770         unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3771         outb(inb(addr), addr);
3772     }
3773
3774 }
3775
3776
3777 /**
3778  *      ata_bmdma_status - Read PCI IDE BMDMA status
3779  *      @ap: Port associated with this ATA transaction.
3780  *
3781  *      Read and return BMDMA status register.
3782  *
3783  *      May be used as the bmdma_status() entry in ata_port_operations.
3784  *
3785  *      LOCKING:
3786  *      spin_lock_irqsave(host_set lock)
3787  */
3788
3789 u8 ata_bmdma_status(struct ata_port *ap)
3790 {
3791         u8 host_stat;
3792         if (ap->flags & ATA_FLAG_MMIO) {
3793                 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3794                 host_stat = readb(mmio + ATA_DMA_STATUS);
3795         } else
3796                 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3797         return host_stat;
3798 }
3799
3800
3801 /**
3802  *      ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3803  *      @qc: Command we are ending DMA for
3804  *
3805  *      Clears the ATA_DMA_START flag in the dma control register
3806  *
3807  *      May be used as the bmdma_stop() entry in ata_port_operations.
3808  *
3809  *      LOCKING:
3810  *      spin_lock_irqsave(host_set lock)
3811  */
3812
3813 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3814 {
3815         struct ata_port *ap = qc->ap;
3816         if (ap->flags & ATA_FLAG_MMIO) {
3817                 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3818
3819                 /* clear start/stop bit */
3820                 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3821                         mmio + ATA_DMA_CMD);
3822         } else {
3823                 /* clear start/stop bit */
3824                 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3825                         ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3826         }
3827
3828         /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3829         ata_altstatus(ap);        /* dummy read */
3830 }
3831
3832 /**
3833  *      ata_host_intr - Handle host interrupt for given (port, task)
3834  *      @ap: Port on which interrupt arrived (possibly...)
3835  *      @qc: Taskfile currently active in engine
3836  *
3837  *      Handle host interrupt for given queued command.  Currently,
3838  *      only DMA interrupts are handled.  All other commands are
3839  *      handled via polling with interrupts disabled (nIEN bit).
3840  *
3841  *      LOCKING:
3842  *      spin_lock_irqsave(host_set lock)
3843  *
3844  *      RETURNS:
3845  *      One if interrupt was handled, zero if not (shared irq).
3846  */
3847
3848 inline unsigned int ata_host_intr (struct ata_port *ap,
3849                                    struct ata_queued_cmd *qc)
3850 {
3851         u8 status, host_stat;
3852
3853         switch (qc->tf.protocol) {
3854
3855         case ATA_PROT_DMA:
3856         case ATA_PROT_ATAPI_DMA:
3857         case ATA_PROT_ATAPI:
3858                 /* check status of DMA engine */
3859                 host_stat = ap->ops->bmdma_status(ap);
3860                 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3861
3862                 /* if it's not our irq... */
3863                 if (!(host_stat & ATA_DMA_INTR))
3864                         goto idle_irq;
3865
3866                 /* before we do anything else, clear DMA-Start bit */
3867                 ap->ops->bmdma_stop(qc);
3868
3869                 /* fall through */
3870
3871         case ATA_PROT_ATAPI_NODATA:
3872         case ATA_PROT_NODATA:
3873                 /* check altstatus */
3874                 status = ata_altstatus(ap);
3875                 if (status & ATA_BUSY)
3876                         goto idle_irq;
3877
3878                 /* check main status, clearing INTRQ */
3879                 status = ata_chk_status(ap);
3880                 if (unlikely(status & ATA_BUSY))
3881                         goto idle_irq;
3882                 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3883                         ap->id, qc->tf.protocol, status);
3884
3885                 /* ack bmdma irq events */
3886                 ap->ops->irq_clear(ap);
3887
3888                 /* complete taskfile transaction */
3889                 ata_qc_complete(qc, ac_err_mask(status));
3890                 break;
3891
3892         default:
3893                 goto idle_irq;
3894         }
3895
3896         return 1;       /* irq handled */
3897
3898 idle_irq:
3899         ap->stats.idle_irq++;
3900
3901 #ifdef ATA_IRQ_TRAP
3902         if ((ap->stats.idle_irq % 1000) == 0) {
3903                 handled = 1;
3904                 ata_irq_ack(ap, 0); /* debug trap */
3905                 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3906         }
3907 #endif
3908         return 0;       /* irq not handled */
3909 }
3910
3911 /**
3912  *      ata_interrupt - Default ATA host interrupt handler
3913  *      @irq: irq line (unused)
3914  *      @dev_instance: pointer to our ata_host_set information structure
3915  *      @regs: unused
3916  *
3917  *      Default interrupt handler for PCI IDE devices.  Calls
3918  *      ata_host_intr() for each port that is not disabled.
3919  *
3920  *      LOCKING:
3921  *      Obtains host_set lock during operation.
3922  *
3923  *      RETURNS:
3924  *      IRQ_NONE or IRQ_HANDLED.
3925  */
3926
3927 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3928 {
3929         struct ata_host_set *host_set = dev_instance;
3930         unsigned int i;
3931         unsigned int handled = 0;
3932         unsigned long flags;
3933
3934         /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3935         spin_lock_irqsave(&host_set->lock, flags);
3936
3937         for (i = 0; i < host_set->n_ports; i++) {
3938                 struct ata_port *ap;
3939
3940                 ap = host_set->ports[i];
3941                 if (ap &&
3942                     !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
3943                         struct ata_queued_cmd *qc;
3944
3945                         qc = ata_qc_from_tag(ap, ap->active_tag);
3946                         if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3947                             (qc->flags & ATA_QCFLAG_ACTIVE))
3948                                 handled |= ata_host_intr(ap, qc);
3949                 }
3950         }
3951
3952         spin_unlock_irqrestore(&host_set->lock, flags);
3953
3954         return IRQ_RETVAL(handled);
3955 }
3956
3957 /**
3958  *      atapi_packet_task - Write CDB bytes to hardware
3959  *      @_data: Port to which ATAPI device is attached.
3960  *
3961  *      When device has indicated its readiness to accept
3962  *      a CDB, this function is called.  Send the CDB.
3963  *      If DMA is to be performed, exit immediately.
3964  *      Otherwise, we are in polling mode, so poll
3965  *      status under operation succeeds or fails.
3966  *
3967  *      LOCKING:
3968  *      Kernel thread context (may sleep)
3969  */
3970
3971 static void atapi_packet_task(void *_data)
3972 {
3973         struct ata_port *ap = _data;
3974         struct ata_queued_cmd *qc;
3975         u8 status;
3976
3977         qc = ata_qc_from_tag(ap, ap->active_tag);
3978         assert(qc != NULL);
3979         assert(qc->flags & ATA_QCFLAG_ACTIVE);
3980
3981         /* sleep-wait for BSY to clear */
3982         DPRINTK("busy wait\n");
3983         if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
3984                 goto err_out_status;
3985
3986         /* make sure DRQ is set */
3987         status = ata_chk_status(ap);
3988         if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
3989                 goto err_out;
3990
3991         /* send SCSI cdb */
3992         DPRINTK("send cdb\n");
3993         assert(ap->cdb_len >= 12);
3994
3995         if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3996             qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3997                 unsigned long flags;
3998
3999                 /* Once we're done issuing command and kicking bmdma,
4000                  * irq handler takes over.  To not lose irq, we need
4001                  * to clear NOINTR flag before sending cdb, but
4002                  * interrupt handler shouldn't be invoked before we're
4003                  * finished.  Hence, the following locking.
4004                  */
4005                 spin_lock_irqsave(&ap->host_set->lock, flags);
4006                 ap->flags &= ~ATA_FLAG_NOINTR;
4007                 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4008                 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4009                         ap->ops->bmdma_start(qc);       /* initiate bmdma */
4010                 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4011         } else {
4012                 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4013
4014                 /* PIO commands are handled by polling */
4015                 ap->hsm_task_state = HSM_ST;
4016                 queue_work(ata_wq, &ap->pio_task);
4017         }
4018
4019         return;
4020
4021 err_out_status:
4022         status = ata_chk_status(ap);
4023 err_out:
4024         ata_poll_qc_complete(qc, __ac_err_mask(status));
4025 }
4026
4027
4028 /**
4029  *      ata_port_start - Set port up for dma.
4030  *      @ap: Port to initialize
4031  *
4032  *      Called just after data structures for each port are
4033  *      initialized.  Allocates space for PRD table.
4034  *
4035  *      May be used as the port_start() entry in ata_port_operations.
4036  *
4037  *      LOCKING:
4038  *      Inherited from caller.
4039  */
4040
4041 int ata_port_start (struct ata_port *ap)
4042 {
4043         struct device *dev = ap->host_set->dev;
4044
4045         ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4046         if (!ap->prd)
4047                 return -ENOMEM;
4048
4049         DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4050
4051         return 0;
4052 }
4053
4054
4055 /**
4056  *      ata_port_stop - Undo ata_port_start()
4057  *      @ap: Port to shut down
4058  *
4059  *      Frees the PRD table.
4060  *
4061  *      May be used as the port_stop() entry in ata_port_operations.
4062  *
4063  *      LOCKING:
4064  *      Inherited from caller.
4065  */
4066
4067 void ata_port_stop (struct ata_port *ap)
4068 {
4069         struct device *dev = ap->host_set->dev;
4070
4071         dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4072 }
4073
4074 void ata_host_stop (struct ata_host_set *host_set)
4075 {
4076         if (host_set->mmio_base)
4077                 iounmap(host_set->mmio_base);
4078 }
4079
4080
4081 /**
4082  *      ata_host_remove - Unregister SCSI host structure with upper layers
4083  *      @ap: Port to unregister
4084  *      @do_unregister: 1 if we fully unregister, 0 to just stop the port
4085  *
4086  *      LOCKING:
4087  *      Inherited from caller.
4088  */
4089
4090 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4091 {
4092         struct Scsi_Host *sh = ap->host;
4093
4094         DPRINTK("ENTER\n");
4095
4096         if (do_unregister)
4097                 scsi_remove_host(sh);
4098
4099         ap->ops->port_stop(ap);
4100 }
4101
4102 /**
4103  *      ata_host_init - Initialize an ata_port structure
4104  *      @ap: Structure to initialize
4105  *      @host: associated SCSI mid-layer structure
4106  *      @host_set: Collection of hosts to which @ap belongs
4107  *      @ent: Probe information provided by low-level driver
4108  *      @port_no: Port number associated with this ata_port
4109  *
4110  *      Initialize a new ata_port structure, and its associated
4111  *      scsi_host.
4112  *
4113  *      LOCKING:
4114  *      Inherited from caller.
4115  */
4116
4117 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4118                           struct ata_host_set *host_set,
4119                           const struct ata_probe_ent *ent, unsigned int port_no)
4120 {
4121         unsigned int i;
4122
4123         host->max_id = 16;
4124         host->max_lun = 1;
4125         host->max_channel = 1;
4126         host->unique_id = ata_unique_id++;
4127         host->max_cmd_len = 12;
4128
4129         scsi_assign_lock(host, &host_set->lock);
4130
4131         ap->flags = ATA_FLAG_PORT_DISABLED;
4132         ap->id = host->unique_id;
4133         ap->host = host;
4134         ap->ctl = ATA_DEVCTL_OBS;
4135         ap->host_set = host_set;
4136         ap->port_no = port_no;
4137         ap->hard_port_no =
4138                 ent->legacy_mode ? ent->hard_port_no : port_no;
4139         ap->pio_mask = ent->pio_mask;
4140         ap->mwdma_mask = ent->mwdma_mask;
4141         ap->udma_mask = ent->udma_mask;
4142         ap->flags |= ent->host_flags;
4143         ap->ops = ent->port_ops;
4144         ap->cbl = ATA_CBL_NONE;
4145         ap->active_tag = ATA_TAG_POISON;
4146         ap->last_ctl = 0xFF;
4147
4148         INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4149         INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4150
4151         for (i = 0; i < ATA_MAX_DEVICES; i++)
4152                 ap->device[i].devno = i;
4153
4154 #ifdef ATA_IRQ_TRAP
4155         ap->stats.unhandled_irq = 1;
4156         ap->stats.idle_irq = 1;
4157 #endif
4158
4159         memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4160 }
4161
4162 /**
4163  *      ata_host_add - Attach low-level ATA driver to system
4164  *      @ent: Information provided by low-level driver
4165  *      @host_set: Collections of ports to which we add
4166  *      @port_no: Port number associated with this host
4167  *
4168  *      Attach low-level ATA driver to system.
4169  *
4170  *      LOCKING:
4171  *      PCI/etc. bus probe sem.
4172  *
4173  *      RETURNS:
4174  *      New ata_port on success, for NULL on error.
4175  */
4176
4177 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4178                                       struct ata_host_set *host_set,
4179                                       unsigned int port_no)
4180 {
4181         struct Scsi_Host *host;
4182         struct ata_port *ap;
4183         int rc;
4184
4185         DPRINTK("ENTER\n");
4186         host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4187         if (!host)
4188                 return NULL;
4189
4190         ap = (struct ata_port *) &host->hostdata[0];
4191
4192         ata_host_init(ap, host, host_set, ent, port_no);
4193
4194         rc = ap->ops->port_start(ap);
4195         if (rc)
4196                 goto err_out;
4197
4198         return ap;
4199
4200 err_out:
4201         scsi_host_put(host);
4202         return NULL;
4203 }
4204
4205 /**
4206  *      ata_device_add - Register hardware device with ATA and SCSI layers
4207  *      @ent: Probe information describing hardware device to be registered
4208  *
4209  *      This function processes the information provided in the probe
4210  *      information struct @ent, allocates the necessary ATA and SCSI
4211  *      host information structures, initializes them, and registers
4212  *      everything with requisite kernel subsystems.
4213  *
4214  *      This function requests irqs, probes the ATA bus, and probes
4215  *      the SCSI bus.
4216  *
4217  *      LOCKING:
4218  *      PCI/etc. bus probe sem.
4219  *
4220  *      RETURNS:
4221  *      Number of ports registered.  Zero on error (no ports registered).
4222  */
4223
4224 int ata_device_add(const struct ata_probe_ent *ent)
4225 {
4226         unsigned int count = 0, i;
4227         struct device *dev = ent->dev;
4228         struct ata_host_set *host_set;
4229
4230         DPRINTK("ENTER\n");
4231         /* alloc a container for our list of ATA ports (buses) */
4232         host_set = kzalloc(sizeof(struct ata_host_set) +
4233                            (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4234         if (!host_set)
4235                 return 0;
4236         spin_lock_init(&host_set->lock);
4237
4238         host_set->dev = dev;
4239         host_set->n_ports = ent->n_ports;
4240         host_set->irq = ent->irq;
4241         host_set->mmio_base = ent->mmio_base;
4242         host_set->private_data = ent->private_data;
4243         host_set->ops = ent->port_ops;
4244
4245         /* register each port bound to this device */
4246         for (i = 0; i < ent->n_ports; i++) {
4247                 struct ata_port *ap;
4248                 unsigned long xfer_mode_mask;
4249
4250                 ap = ata_host_add(ent, host_set, i);
4251                 if (!ap)
4252                         goto err_out;
4253
4254                 host_set->ports[i] = ap;
4255                 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4256                                 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4257                                 (ap->pio_mask << ATA_SHIFT_PIO);
4258
4259                 /* print per-port info to dmesg */
4260                 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4261                                  "bmdma 0x%lX irq %lu\n",
4262                         ap->id,
4263                         ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4264                         ata_mode_string(xfer_mode_mask),
4265                         ap->ioaddr.cmd_addr,
4266                         ap->ioaddr.ctl_addr,
4267                         ap->ioaddr.bmdma_addr,
4268                         ent->irq);
4269
4270                 ata_chk_status(ap);
4271                 host_set->ops->irq_clear(ap);
4272                 count++;
4273         }
4274
4275         if (!count)
4276                 goto err_free_ret;
4277
4278         /* obtain irq, that is shared between channels */
4279         if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4280                         DRV_NAME, host_set))
4281                 goto err_out;
4282
4283         /* perform each probe synchronously */
4284         DPRINTK("probe begin\n");
4285         for (i = 0; i < count; i++) {
4286                 struct ata_port *ap;
4287                 int rc;
4288
4289                 ap = host_set->ports[i];
4290
4291                 DPRINTK("ata%u: probe begin\n", ap->id);
4292                 rc = ata_bus_probe(ap);
4293                 DPRINTK("ata%u: probe end\n", ap->id);
4294
4295                 if (rc) {
4296                         /* FIXME: do something useful here?
4297                          * Current libata behavior will
4298                          * tear down everything when
4299                          * the module is removed
4300                          * or the h/w is unplugged.
4301                          */
4302                 }
4303
4304                 rc = scsi_add_host(ap->host, dev);
4305                 if (rc) {
4306                         printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4307                                ap->id);
4308                         /* FIXME: do something useful here */
4309                         /* FIXME: handle unconditional calls to
4310                          * scsi_scan_host and ata_host_remove, below,
4311                          * at the very least
4312                          */
4313                 }
4314         }
4315
4316         /* probes are done, now scan each port's disk(s) */
4317         DPRINTK("probe begin\n");
4318         for (i = 0; i < count; i++) {
4319                 struct ata_port *ap = host_set->ports[i];
4320
4321                 ata_scsi_scan_host(ap);
4322         }
4323
4324         dev_set_drvdata(dev, host_set);
4325
4326         VPRINTK("EXIT, returning %u\n", ent->n_ports);
4327         return ent->n_ports; /* success */
4328
4329 err_out:
4330         for (i = 0; i < count; i++) {
4331                 ata_host_remove(host_set->ports[i], 1);
4332                 scsi_host_put(host_set->ports[i]->host);
4333         }
4334 err_free_ret:
4335         kfree(host_set);
4336         VPRINTK("EXIT, returning 0\n");
4337         return 0;
4338 }
4339
4340 /**
4341  *      ata_host_set_remove - PCI layer callback for device removal
4342  *      @host_set: ATA host set that was removed
4343  *
4344  *      Unregister all objects associated with this host set. Free those 
4345  *      objects.
4346  *
4347  *      LOCKING:
4348  *      Inherited from calling layer (may sleep).
4349  */
4350
4351 void ata_host_set_remove(struct ata_host_set *host_set)
4352 {
4353         struct ata_port *ap;
4354         unsigned int i;
4355
4356         for (i = 0; i < host_set->n_ports; i++) {
4357                 ap = host_set->ports[i];
4358                 scsi_remove_host(ap->host);
4359         }
4360
4361         free_irq(host_set->irq, host_set);
4362
4363         for (i = 0; i < host_set->n_ports; i++) {
4364                 ap = host_set->ports[i];
4365
4366                 ata_scsi_release(ap->host);
4367
4368                 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4369                         struct ata_ioports *ioaddr = &ap->ioaddr;
4370
4371                         if (ioaddr->cmd_addr == 0x1f0)
4372                                 release_region(0x1f0, 8);
4373                         else if (ioaddr->cmd_addr == 0x170)
4374                                 release_region(0x170, 8);
4375                 }
4376
4377                 scsi_host_put(ap->host);
4378         }
4379
4380         if (host_set->ops->host_stop)
4381                 host_set->ops->host_stop(host_set);
4382
4383         kfree(host_set);
4384 }
4385
4386 /**
4387  *      ata_scsi_release - SCSI layer callback hook for host unload
4388  *      @host: libata host to be unloaded
4389  *
4390  *      Performs all duties necessary to shut down a libata port...
4391  *      Kill port kthread, disable port, and release resources.
4392  *
4393  *      LOCKING:
4394  *      Inherited from SCSI layer.
4395  *
4396  *      RETURNS:
4397  *      One.
4398  */
4399
4400 int ata_scsi_release(struct Scsi_Host *host)
4401 {
4402         struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4403
4404         DPRINTK("ENTER\n");
4405
4406         ap->ops->port_disable(ap);
4407         ata_host_remove(ap, 0);
4408
4409         DPRINTK("EXIT\n");
4410         return 1;
4411 }
4412
4413 /**
4414  *      ata_std_ports - initialize ioaddr with standard port offsets.
4415  *      @ioaddr: IO address structure to be initialized
4416  *
4417  *      Utility function which initializes data_addr, error_addr,
4418  *      feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4419  *      device_addr, status_addr, and command_addr to standard offsets
4420  *      relative to cmd_addr.
4421  *
4422  *      Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4423  */
4424
4425 void ata_std_ports(struct ata_ioports *ioaddr)
4426 {
4427         ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4428         ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4429         ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4430         ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4431         ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4432         ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4433         ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4434         ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4435         ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4436         ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4437 }
4438
4439 static struct ata_probe_ent *
4440 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4441 {
4442         struct ata_probe_ent *probe_ent;
4443
4444         probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4445         if (!probe_ent) {
4446                 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4447                        kobject_name(&(dev->kobj)));
4448                 return NULL;
4449         }
4450
4451         INIT_LIST_HEAD(&probe_ent->node);
4452         probe_ent->dev = dev;
4453
4454         probe_ent->sht = port->sht;
4455         probe_ent->host_flags = port->host_flags;
4456         probe_ent->pio_mask = port->pio_mask;
4457         probe_ent->mwdma_mask = port->mwdma_mask;
4458         probe_ent->udma_mask = port->udma_mask;
4459         probe_ent->port_ops = port->port_ops;
4460
4461         return probe_ent;
4462 }
4463
4464
4465
4466 #ifdef CONFIG_PCI
4467
4468 void ata_pci_host_stop (struct ata_host_set *host_set)
4469 {
4470         struct pci_dev *pdev = to_pci_dev(host_set->dev);
4471
4472         pci_iounmap(pdev, host_set->mmio_base);
4473 }
4474
4475 /**
4476  *      ata_pci_init_native_mode - Initialize native-mode driver
4477  *      @pdev:  pci device to be initialized
4478  *      @port:  array[2] of pointers to port info structures.
4479  *      @ports: bitmap of ports present
4480  *
4481  *      Utility function which allocates and initializes an
4482  *      ata_probe_ent structure for a standard dual-port
4483  *      PIO-based IDE controller.  The returned ata_probe_ent
4484  *      structure can be passed to ata_device_add().  The returned
4485  *      ata_probe_ent structure should then be freed with kfree().
4486  *
4487  *      The caller need only pass the address of the primary port, the
4488  *      secondary will be deduced automatically. If the device has non
4489  *      standard secondary port mappings this function can be called twice,
4490  *      once for each interface.
4491  */
4492
4493 struct ata_probe_ent *
4494 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4495 {
4496         struct ata_probe_ent *probe_ent =
4497                 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4498         int p = 0;
4499
4500         if (!probe_ent)
4501                 return NULL;
4502
4503         probe_ent->irq = pdev->irq;
4504         probe_ent->irq_flags = SA_SHIRQ;
4505
4506         if (ports & ATA_PORT_PRIMARY) {
4507                 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4508                 probe_ent->port[p].altstatus_addr =
4509                 probe_ent->port[p].ctl_addr =
4510                         pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4511                 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4512                 ata_std_ports(&probe_ent->port[p]);
4513                 p++;
4514         }
4515
4516         if (ports & ATA_PORT_SECONDARY) {
4517                 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4518                 probe_ent->port[p].altstatus_addr =
4519                 probe_ent->port[p].ctl_addr =
4520                         pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4521                 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4522                 ata_std_ports(&probe_ent->port[p]);
4523                 p++;
4524         }
4525
4526         probe_ent->n_ports = p;
4527         return probe_ent;
4528 }
4529
4530 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4531 {
4532         struct ata_probe_ent *probe_ent;
4533
4534         probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4535         if (!probe_ent)
4536                 return NULL;
4537
4538         probe_ent->legacy_mode = 1;
4539         probe_ent->n_ports = 1;
4540         probe_ent->hard_port_no = port_num;
4541
4542         switch(port_num)
4543         {
4544                 case 0:
4545                         probe_ent->irq = 14;
4546                         probe_ent->port[0].cmd_addr = 0x1f0;
4547                         probe_ent->port[0].altstatus_addr =
4548                         probe_ent->port[0].ctl_addr = 0x3f6;
4549                         break;
4550                 case 1:
4551                         probe_ent->irq = 15;
4552                         probe_ent->port[0].cmd_addr = 0x170;
4553                         probe_ent->port[0].altstatus_addr =
4554                         probe_ent->port[0].ctl_addr = 0x376;
4555                         break;
4556         }
4557         probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4558         ata_std_ports(&probe_ent->port[0]);
4559         return probe_ent;
4560 }
4561
4562 /**
4563  *      ata_pci_init_one - Initialize/register PCI IDE host controller
4564  *      @pdev: Controller to be initialized
4565  *      @port_info: Information from low-level host driver
4566  *      @n_ports: Number of ports attached to host controller
4567  *
4568  *      This is a helper function which can be called from a driver's
4569  *      xxx_init_one() probe function if the hardware uses traditional
4570  *      IDE taskfile registers.
4571  *
4572  *      This function calls pci_enable_device(), reserves its register
4573  *      regions, sets the dma mask, enables bus master mode, and calls
4574  *      ata_device_add()
4575  *
4576  *      LOCKING:
4577  *      Inherited from PCI layer (may sleep).
4578  *
4579  *      RETURNS:
4580  *      Zero on success, negative on errno-based value on error.
4581  */
4582
4583 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4584                       unsigned int n_ports)
4585 {
4586         struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4587         struct ata_port_info *port[2];
4588         u8 tmp8, mask;
4589         unsigned int legacy_mode = 0;
4590         int disable_dev_on_err = 1;
4591         int rc;
4592
4593         DPRINTK("ENTER\n");
4594
4595         port[0] = port_info[0];
4596         if (n_ports > 1)
4597                 port[1] = port_info[1];
4598         else
4599                 port[1] = port[0];
4600
4601         if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4602             && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4603                 /* TODO: What if one channel is in native mode ... */
4604                 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4605                 mask = (1 << 2) | (1 << 0);
4606                 if ((tmp8 & mask) != mask)
4607                         legacy_mode = (1 << 3);
4608         }
4609
4610         /* FIXME... */
4611         if ((!legacy_mode) && (n_ports > 2)) {
4612                 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4613                 n_ports = 2;
4614                 /* For now */
4615         }
4616
4617         /* FIXME: Really for ATA it isn't safe because the device may be
4618            multi-purpose and we want to leave it alone if it was already
4619            enabled. Secondly for shared use as Arjan says we want refcounting
4620            
4621            Checking dev->is_enabled is insufficient as this is not set at
4622            boot for the primary video which is BIOS enabled
4623          */
4624          
4625         rc = pci_enable_device(pdev);
4626         if (rc)
4627                 return rc;
4628
4629         rc = pci_request_regions(pdev, DRV_NAME);
4630         if (rc) {
4631                 disable_dev_on_err = 0;
4632                 goto err_out;
4633         }
4634
4635         /* FIXME: Should use platform specific mappers for legacy port ranges */
4636         if (legacy_mode) {
4637                 if (!request_region(0x1f0, 8, "libata")) {
4638                         struct resource *conflict, res;
4639                         res.start = 0x1f0;
4640                         res.end = 0x1f0 + 8 - 1;
4641                         conflict = ____request_resource(&ioport_resource, &res);
4642                         if (!strcmp(conflict->name, "libata"))
4643                                 legacy_mode |= (1 << 0);
4644                         else {
4645                                 disable_dev_on_err = 0;
4646                                 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4647                         }
4648                 } else
4649                         legacy_mode |= (1 << 0);
4650
4651                 if (!request_region(0x170, 8, "libata")) {
4652                         struct resource *conflict, res;
4653                         res.start = 0x170;
4654                         res.end = 0x170 + 8 - 1;
4655                         conflict = ____request_resource(&ioport_resource, &res);
4656                         if (!strcmp(conflict->name, "libata"))
4657                                 legacy_mode |= (1 << 1);
4658                         else {
4659                                 disable_dev_on_err = 0;
4660                                 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4661                         }
4662                 } else
4663                         legacy_mode |= (1 << 1);
4664         }
4665
4666         /* we have legacy mode, but all ports are unavailable */
4667         if (legacy_mode == (1 << 3)) {
4668                 rc = -EBUSY;
4669                 goto err_out_regions;
4670         }
4671
4672         rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4673         if (rc)
4674                 goto err_out_regions;
4675         rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4676         if (rc)
4677                 goto err_out_regions;
4678
4679         if (legacy_mode) {
4680                 if (legacy_mode & (1 << 0))
4681                         probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4682                 if (legacy_mode & (1 << 1))
4683                         probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4684         } else {
4685                 if (n_ports == 2)
4686                         probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4687                 else
4688                         probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4689         }
4690         if (!probe_ent && !probe_ent2) {
4691                 rc = -ENOMEM;
4692                 goto err_out_regions;
4693         }
4694
4695         pci_set_master(pdev);
4696
4697         /* FIXME: check ata_device_add return */
4698         if (legacy_mode) {
4699                 if (legacy_mode & (1 << 0))
4700                         ata_device_add(probe_ent);
4701                 if (legacy_mode & (1 << 1))
4702                         ata_device_add(probe_ent2);
4703         } else
4704                 ata_device_add(probe_ent);
4705
4706         kfree(probe_ent);
4707         kfree(probe_ent2);
4708
4709         return 0;
4710
4711 err_out_regions:
4712         if (legacy_mode & (1 << 0))
4713                 release_region(0x1f0, 8);
4714         if (legacy_mode & (1 << 1))
4715                 release_region(0x170, 8);
4716         pci_release_regions(pdev);
4717 err_out:
4718         if (disable_dev_on_err)
4719                 pci_disable_device(pdev);
4720         return rc;
4721 }
4722
4723 /**
4724  *      ata_pci_remove_one - PCI layer callback for device removal
4725  *      @pdev: PCI device that was removed
4726  *
4727  *      PCI layer indicates to libata via this hook that
4728  *      hot-unplug or module unload event has occurred.
4729  *      Handle this by unregistering all objects associated
4730  *      with this PCI device.  Free those objects.  Then finally
4731  *      release PCI resources and disable device.
4732  *
4733  *      LOCKING:
4734  *      Inherited from PCI layer (may sleep).
4735  */
4736
4737 void ata_pci_remove_one (struct pci_dev *pdev)
4738 {
4739         struct device *dev = pci_dev_to_dev(pdev);
4740         struct ata_host_set *host_set = dev_get_drvdata(dev);
4741
4742         ata_host_set_remove(host_set);
4743         pci_release_regions(pdev);
4744         pci_disable_device(pdev);
4745         dev_set_drvdata(dev, NULL);
4746 }
4747
4748 /* move to PCI subsystem */
4749 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4750 {
4751         unsigned long tmp = 0;
4752
4753         switch (bits->width) {
4754         case 1: {
4755                 u8 tmp8 = 0;
4756                 pci_read_config_byte(pdev, bits->reg, &tmp8);
4757                 tmp = tmp8;
4758                 break;
4759         }
4760         case 2: {
4761                 u16 tmp16 = 0;
4762                 pci_read_config_word(pdev, bits->reg, &tmp16);
4763                 tmp = tmp16;
4764                 break;
4765         }
4766         case 4: {
4767                 u32 tmp32 = 0;
4768                 pci_read_config_dword(pdev, bits->reg, &tmp32);
4769                 tmp = tmp32;
4770                 break;
4771         }
4772
4773         default:
4774                 return -EINVAL;
4775         }
4776
4777         tmp &= bits->mask;
4778
4779         return (tmp == bits->val) ? 1 : 0;
4780 }
4781 #endif /* CONFIG_PCI */
4782
4783
4784 static int __init ata_init(void)
4785 {
4786         ata_wq = create_workqueue("ata");
4787         if (!ata_wq)
4788                 return -ENOMEM;
4789
4790         printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4791         return 0;
4792 }
4793
4794 static void __exit ata_exit(void)
4795 {
4796         destroy_workqueue(ata_wq);
4797 }
4798
4799 module_init(ata_init);
4800 module_exit(ata_exit);
4801
4802 static unsigned long ratelimit_time;
4803 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4804
4805 int ata_ratelimit(void)
4806 {
4807         int rc;
4808         unsigned long flags;
4809
4810         spin_lock_irqsave(&ata_ratelimit_lock, flags);
4811
4812         if (time_after(jiffies, ratelimit_time)) {
4813                 rc = 1;
4814                 ratelimit_time = jiffies + (HZ/5);
4815         } else
4816                 rc = 0;
4817
4818         spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4819
4820         return rc;
4821 }
4822
4823 /*
4824  * libata is essentially a library of internal helper functions for
4825  * low-level ATA host controller drivers.  As such, the API/ABI is
4826  * likely to change as new drivers are added and updated.
4827  * Do not depend on ABI/API stability.
4828  */
4829
4830 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4831 EXPORT_SYMBOL_GPL(ata_std_ports);
4832 EXPORT_SYMBOL_GPL(ata_device_add);
4833 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4834 EXPORT_SYMBOL_GPL(ata_sg_init);
4835 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4836 EXPORT_SYMBOL_GPL(ata_qc_complete);
4837 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4838 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4839 EXPORT_SYMBOL_GPL(ata_tf_load);
4840 EXPORT_SYMBOL_GPL(ata_tf_read);
4841 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4842 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4843 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4844 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4845 EXPORT_SYMBOL_GPL(ata_check_status);
4846 EXPORT_SYMBOL_GPL(ata_altstatus);
4847 EXPORT_SYMBOL_GPL(ata_exec_command);
4848 EXPORT_SYMBOL_GPL(ata_port_start);
4849 EXPORT_SYMBOL_GPL(ata_port_stop);
4850 EXPORT_SYMBOL_GPL(ata_host_stop);
4851 EXPORT_SYMBOL_GPL(ata_interrupt);
4852 EXPORT_SYMBOL_GPL(ata_qc_prep);
4853 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4854 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4855 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4856 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4857 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4858 EXPORT_SYMBOL_GPL(ata_port_probe);
4859 EXPORT_SYMBOL_GPL(sata_phy_reset);
4860 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4861 EXPORT_SYMBOL_GPL(ata_bus_reset);
4862 EXPORT_SYMBOL_GPL(ata_port_disable);
4863 EXPORT_SYMBOL_GPL(ata_ratelimit);
4864 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4865 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4866 EXPORT_SYMBOL_GPL(ata_scsi_error);
4867 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4868 EXPORT_SYMBOL_GPL(ata_scsi_release);
4869 EXPORT_SYMBOL_GPL(ata_host_intr);
4870 EXPORT_SYMBOL_GPL(ata_dev_classify);
4871 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4872 EXPORT_SYMBOL_GPL(ata_dev_config);
4873 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4874
4875 EXPORT_SYMBOL_GPL(ata_timing_compute);
4876 EXPORT_SYMBOL_GPL(ata_timing_merge);
4877
4878 #ifdef CONFIG_PCI
4879 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4880 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4881 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4882 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4883 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4884 #endif /* CONFIG_PCI */