2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE 50
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH 8
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS 0
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG 0
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG 0
82 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log = CONFIG_NANDSIM_LOG;
94 static uint dbg = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
102 static unsigned int rptwear = 0;
103 static unsigned int overridesize = 0;
105 module_param(first_id_byte, uint, 0400);
106 module_param(second_id_byte, uint, 0400);
107 module_param(third_id_byte, uint, 0400);
108 module_param(fourth_id_byte, uint, 0400);
109 module_param(access_delay, uint, 0400);
110 module_param(programm_delay, uint, 0400);
111 module_param(erase_delay, uint, 0400);
112 module_param(output_cycle, uint, 0400);
113 module_param(input_cycle, uint, 0400);
114 module_param(bus_width, uint, 0400);
115 module_param(do_delays, uint, 0400);
116 module_param(log, uint, 0400);
117 module_param(dbg, uint, 0400);
118 module_param_array(parts, ulong, &parts_num, 0400);
119 module_param(badblocks, charp, 0400);
120 module_param(weakblocks, charp, 0400);
121 module_param(weakpages, charp, 0400);
122 module_param(bitflips, uint, 0400);
123 module_param(gravepages, charp, 0400);
124 module_param(rptwear, uint, 0400);
125 module_param(overridesize, uint, 0400);
127 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
128 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
129 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
131 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
132 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
133 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
134 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
135 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
136 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
137 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
138 MODULE_PARM_DESC(log, "Perform logging if not zero");
139 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
140 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
141 /* Page and erase block positions for the following parameters are independent of any partitions */
142 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
143 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
144 " separated by commas e.g. 113:2 means eb 113"
145 " can be erased only twice before failing");
146 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
147 " separated by commas e.g. 1401:2 means page 1401"
148 " can be written only twice before failing");
149 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
150 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
151 " separated by commas e.g. 1401:2 means page 1401"
152 " can be read only twice before failing");
153 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
154 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
155 "The size is specified in erase blocks and as the exponent of a power of two"
156 " e.g. 5 means a size of 32 erase blocks");
158 /* The largest possible page size */
159 #define NS_LARGEST_PAGE_SIZE 2048
161 /* The prefix for simulator output */
162 #define NS_OUTPUT_PREFIX "[nandsim]"
164 /* Simulator's output macros (logging, debugging, warning, error) */
165 #define NS_LOG(args...) \
166 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
167 #define NS_DBG(args...) \
168 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
169 #define NS_WARN(args...) \
170 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
171 #define NS_ERR(args...) \
172 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
173 #define NS_INFO(args...) \
174 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
176 /* Busy-wait delay macros (microseconds, milliseconds) */
177 #define NS_UDELAY(us) \
178 do { if (do_delays) udelay(us); } while(0)
179 #define NS_MDELAY(us) \
180 do { if (do_delays) mdelay(us); } while(0)
182 /* Is the nandsim structure initialized ? */
183 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
185 /* Good operation completion status */
186 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
188 /* Operation failed completion status */
189 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
191 /* Calculate the page offset in flash RAM image by (row, column) address */
192 #define NS_RAW_OFFSET(ns) \
193 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
195 /* Calculate the OOB offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
198 /* After a command is input, the simulator goes to one of the following states */
199 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
200 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
201 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
202 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
203 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
204 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
205 #define STATE_CMD_STATUS 0x00000007 /* read status */
206 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
207 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
208 #define STATE_CMD_READID 0x0000000A /* read ID */
209 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
210 #define STATE_CMD_RESET 0x0000000C /* reset */
211 #define STATE_CMD_MASK 0x0000000F /* command states mask */
213 /* After an address is input, the simulator goes to one of these states */
214 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
215 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
216 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
217 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
219 /* Durind data input/output the simulator is in these states */
220 #define STATE_DATAIN 0x00000100 /* waiting for data input */
221 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
223 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
224 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
225 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
226 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
227 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
229 /* Previous operation is done, ready to accept new requests */
230 #define STATE_READY 0x00000000
232 /* This state is used to mark that the next state isn't known yet */
233 #define STATE_UNKNOWN 0x10000000
235 /* Simulator's actions bit masks */
236 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
237 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
238 #define ACTION_SECERASE 0x00300000 /* erase sector */
239 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
240 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
241 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
242 #define ACTION_MASK 0x00700000 /* action mask */
244 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
245 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
247 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
248 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
249 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
250 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
251 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
252 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
253 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
254 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
255 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
257 /* Remove action bits ftom state */
258 #define NS_STATE(x) ((x) & ~ACTION_MASK)
261 * Maximum previous states which need to be saved. Currently saving is
262 * only needed for page programm operation with preceeded read command
263 * (which is only valid for 512-byte pages).
265 #define NS_MAX_PREVSTATES 1
268 * A union to represent flash memory contents and flash buffer.
271 u_char *byte; /* for byte access */
272 uint16_t *word; /* for 16-bit word access */
276 * The structure which describes all the internal simulator data.
279 struct mtd_partition partitions[MAX_MTD_DEVICES];
280 unsigned int nbparts;
282 uint busw; /* flash chip bus width (8 or 16) */
283 u_char ids[4]; /* chip's ID bytes */
284 uint32_t options; /* chip's characteristic bits */
285 uint32_t state; /* current chip state */
286 uint32_t nxstate; /* next expected state */
288 uint32_t *op; /* current operation, NULL operations isn't known yet */
289 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
290 uint16_t npstates; /* number of previous states saved */
291 uint16_t stateidx; /* current state index */
293 /* The simulated NAND flash pages array */
296 /* Internal buffer of page + OOB size bytes */
299 /* NAND flash "geometry" */
300 struct nandsin_geometry {
301 uint64_t totsz; /* total flash size, bytes */
302 uint32_t secsz; /* flash sector (erase block) size, bytes */
303 uint pgsz; /* NAND flash page size, bytes */
304 uint oobsz; /* page OOB area size, bytes */
305 uint64_t totszoob; /* total flash size including OOB, bytes */
306 uint pgszoob; /* page size including OOB , bytes*/
307 uint secszoob; /* sector size including OOB, bytes */
308 uint pgnum; /* total number of pages */
309 uint pgsec; /* number of pages per sector */
310 uint secshift; /* bits number in sector size */
311 uint pgshift; /* bits number in page size */
312 uint oobshift; /* bits number in OOB size */
313 uint pgaddrbytes; /* bytes per page address */
314 uint secaddrbytes; /* bytes per sector address */
315 uint idbytes; /* the number ID bytes that this chip outputs */
318 /* NAND flash internal registers */
319 struct nandsim_regs {
320 unsigned command; /* the command register */
321 u_char status; /* the status register */
322 uint row; /* the page number */
323 uint column; /* the offset within page */
324 uint count; /* internal counter */
325 uint num; /* number of bytes which must be processed */
326 uint off; /* fixed page offset */
329 /* NAND flash lines state */
330 struct ns_lines_status {
331 int ce; /* chip Enable */
332 int cle; /* command Latch Enable */
333 int ale; /* address Latch Enable */
334 int wp; /* write Protect */
339 * Operations array. To perform any operation the simulator must pass
340 * through the correspondent states chain.
342 static struct nandsim_operations {
343 uint32_t reqopts; /* options which are required to perform the operation */
344 uint32_t states[NS_OPER_STATES]; /* operation's states */
345 } ops[NS_OPER_NUM] = {
346 /* Read page + OOB from the beginning */
347 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
348 STATE_DATAOUT, STATE_READY}},
349 /* Read page + OOB from the second half */
350 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
351 STATE_DATAOUT, STATE_READY}},
353 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
354 STATE_DATAOUT, STATE_READY}},
355 /* Programm page starting from the beginning */
356 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
357 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
358 /* Programm page starting from the beginning */
359 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
360 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
361 /* Programm page starting from the second half */
362 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
363 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
365 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
366 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
368 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
370 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
371 /* Read multi-plane status */
372 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
374 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
375 /* Large page devices read page */
376 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
377 STATE_DATAOUT, STATE_READY}}
381 struct list_head list;
382 unsigned int erase_block_no;
383 unsigned int max_erases;
384 unsigned int erases_done;
387 static LIST_HEAD(weak_blocks);
390 struct list_head list;
391 unsigned int page_no;
392 unsigned int max_writes;
393 unsigned int writes_done;
396 static LIST_HEAD(weak_pages);
399 struct list_head list;
400 unsigned int page_no;
401 unsigned int max_reads;
402 unsigned int reads_done;
405 static LIST_HEAD(grave_pages);
407 static unsigned long *erase_block_wear = NULL;
408 static unsigned int wear_eb_count = 0;
409 static unsigned long total_wear = 0;
410 static unsigned int rptwear_cnt = 0;
412 /* MTD structure for NAND controller */
413 static struct mtd_info *nsmtd;
415 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
418 * Allocate array of page pointers and initialize the array to NULL
421 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
423 static int alloc_device(struct nandsim *ns)
427 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
429 NS_ERR("alloc_map: unable to allocate page array\n");
432 for (i = 0; i < ns->geom.pgnum; i++) {
433 ns->pages[i].byte = NULL;
440 * Free any allocated pages, and free the array of page pointers.
442 static void free_device(struct nandsim *ns)
447 for (i = 0; i < ns->geom.pgnum; i++) {
448 if (ns->pages[i].byte)
449 kfree(ns->pages[i].byte);
455 static char *get_partition_name(int i)
458 sprintf(buf, "NAND simulator partition %d", i);
459 return kstrdup(buf, GFP_KERNEL);
462 static u_int64_t divide(u_int64_t n, u_int32_t d)
469 * Initialize the nandsim structure.
471 * RETURNS: 0 if success, -ERRNO if failure.
473 static int init_nandsim(struct mtd_info *mtd)
475 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
476 struct nandsim *ns = (struct nandsim *)(chip->priv);
479 u_int64_t next_offset;
481 if (NS_IS_INITIALIZED(ns)) {
482 NS_ERR("init_nandsim: nandsim is already initialized\n");
486 /* Force mtd to not do delays */
487 chip->chip_delay = 0;
489 /* Initialize the NAND flash parameters */
490 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
491 ns->geom.totsz = mtd->size;
492 ns->geom.pgsz = mtd->writesize;
493 ns->geom.oobsz = mtd->oobsize;
494 ns->geom.secsz = mtd->erasesize;
495 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
496 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
497 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
498 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
499 ns->geom.pgshift = chip->page_shift;
500 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
501 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
502 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
505 if (ns->geom.pgsz == 256) {
506 ns->options |= OPT_PAGE256;
508 else if (ns->geom.pgsz == 512) {
509 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
511 ns->options |= OPT_PAGE512_8BIT;
512 } else if (ns->geom.pgsz == 2048) {
513 ns->options |= OPT_PAGE2048;
515 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
519 if (ns->options & OPT_SMALLPAGE) {
520 if (ns->geom.totsz <= (32 << 20)) {
521 ns->geom.pgaddrbytes = 3;
522 ns->geom.secaddrbytes = 2;
524 ns->geom.pgaddrbytes = 4;
525 ns->geom.secaddrbytes = 3;
528 if (ns->geom.totsz <= (128 << 20)) {
529 ns->geom.pgaddrbytes = 4;
530 ns->geom.secaddrbytes = 2;
532 ns->geom.pgaddrbytes = 5;
533 ns->geom.secaddrbytes = 3;
537 /* Fill the partition_info structure */
538 if (parts_num > ARRAY_SIZE(ns->partitions)) {
539 NS_ERR("too many partitions.\n");
543 remains = ns->geom.totsz;
545 for (i = 0; i < parts_num; ++i) {
546 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
548 if (!part_sz || part_sz > remains) {
549 NS_ERR("bad partition size.\n");
553 ns->partitions[i].name = get_partition_name(i);
554 ns->partitions[i].offset = next_offset;
555 ns->partitions[i].size = part_sz;
556 next_offset += ns->partitions[i].size;
557 remains -= ns->partitions[i].size;
559 ns->nbparts = parts_num;
561 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
562 NS_ERR("too many partitions.\n");
566 ns->partitions[i].name = get_partition_name(i);
567 ns->partitions[i].offset = next_offset;
568 ns->partitions[i].size = remains;
572 /* Detect how many ID bytes the NAND chip outputs */
573 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
574 if (second_id_byte != nand_flash_ids[i].id)
576 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
577 ns->options |= OPT_AUTOINCR;
581 NS_WARN("16-bit flashes support wasn't tested\n");
583 printk("flash size: %llu MiB\n", ns->geom.totsz >> 20);
584 printk("page size: %u bytes\n", ns->geom.pgsz);
585 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
586 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
587 printk("pages number: %u\n", ns->geom.pgnum);
588 printk("pages per sector: %u\n", ns->geom.pgsec);
589 printk("bus width: %u\n", ns->busw);
590 printk("bits in sector size: %u\n", ns->geom.secshift);
591 printk("bits in page size: %u\n", ns->geom.pgshift);
592 printk("bits in OOB size: %u\n", ns->geom.oobshift);
593 printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
594 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
595 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
596 printk("options: %#x\n", ns->options);
598 if ((ret = alloc_device(ns)) != 0)
601 /* Allocate / initialize the internal buffer */
602 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
604 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
609 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
620 * Free the nandsim structure.
622 static void free_nandsim(struct nandsim *ns)
630 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
634 unsigned int erase_block_no;
641 zero_ok = (*w == '0' ? 1 : 0);
642 erase_block_no = simple_strtoul(w, &w, 0);
643 if (!zero_ok && !erase_block_no) {
644 NS_ERR("invalid badblocks.\n");
647 offset = erase_block_no * ns->geom.secsz;
648 if (mtd->block_markbad(mtd, offset)) {
649 NS_ERR("invalid badblocks.\n");
658 static int parse_weakblocks(void)
662 unsigned int erase_block_no;
663 unsigned int max_erases;
664 struct weak_block *wb;
670 zero_ok = (*w == '0' ? 1 : 0);
671 erase_block_no = simple_strtoul(w, &w, 0);
672 if (!zero_ok && !erase_block_no) {
673 NS_ERR("invalid weakblocks.\n");
679 max_erases = simple_strtoul(w, &w, 0);
683 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
685 NS_ERR("unable to allocate memory.\n");
688 wb->erase_block_no = erase_block_no;
689 wb->max_erases = max_erases;
690 list_add(&wb->list, &weak_blocks);
695 static int erase_error(unsigned int erase_block_no)
697 struct weak_block *wb;
699 list_for_each_entry(wb, &weak_blocks, list)
700 if (wb->erase_block_no == erase_block_no) {
701 if (wb->erases_done >= wb->max_erases)
703 wb->erases_done += 1;
709 static int parse_weakpages(void)
713 unsigned int page_no;
714 unsigned int max_writes;
715 struct weak_page *wp;
721 zero_ok = (*w == '0' ? 1 : 0);
722 page_no = simple_strtoul(w, &w, 0);
723 if (!zero_ok && !page_no) {
724 NS_ERR("invalid weakpagess.\n");
730 max_writes = simple_strtoul(w, &w, 0);
734 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
736 NS_ERR("unable to allocate memory.\n");
739 wp->page_no = page_no;
740 wp->max_writes = max_writes;
741 list_add(&wp->list, &weak_pages);
746 static int write_error(unsigned int page_no)
748 struct weak_page *wp;
750 list_for_each_entry(wp, &weak_pages, list)
751 if (wp->page_no == page_no) {
752 if (wp->writes_done >= wp->max_writes)
754 wp->writes_done += 1;
760 static int parse_gravepages(void)
764 unsigned int page_no;
765 unsigned int max_reads;
766 struct grave_page *gp;
772 zero_ok = (*g == '0' ? 1 : 0);
773 page_no = simple_strtoul(g, &g, 0);
774 if (!zero_ok && !page_no) {
775 NS_ERR("invalid gravepagess.\n");
781 max_reads = simple_strtoul(g, &g, 0);
785 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
787 NS_ERR("unable to allocate memory.\n");
790 gp->page_no = page_no;
791 gp->max_reads = max_reads;
792 list_add(&gp->list, &grave_pages);
797 static int read_error(unsigned int page_no)
799 struct grave_page *gp;
801 list_for_each_entry(gp, &grave_pages, list)
802 if (gp->page_no == page_no) {
803 if (gp->reads_done >= gp->max_reads)
811 static void free_lists(void)
813 struct list_head *pos, *n;
814 list_for_each_safe(pos, n, &weak_blocks) {
816 kfree(list_entry(pos, struct weak_block, list));
818 list_for_each_safe(pos, n, &weak_pages) {
820 kfree(list_entry(pos, struct weak_page, list));
822 list_for_each_safe(pos, n, &grave_pages) {
824 kfree(list_entry(pos, struct grave_page, list));
826 kfree(erase_block_wear);
829 static int setup_wear_reporting(struct mtd_info *mtd)
835 wear_eb_count = divide(mtd->size, mtd->erasesize);
836 mem = wear_eb_count * sizeof(unsigned long);
837 if (mem / sizeof(unsigned long) != wear_eb_count) {
838 NS_ERR("Too many erase blocks for wear reporting\n");
841 erase_block_wear = kzalloc(mem, GFP_KERNEL);
842 if (!erase_block_wear) {
843 NS_ERR("Too many erase blocks for wear reporting\n");
849 static void update_wear(unsigned int erase_block_no)
851 unsigned long wmin = -1, wmax = 0, avg;
852 unsigned long deciles[10], decile_max[10], tot = 0;
855 if (!erase_block_wear)
859 NS_ERR("Erase counter total overflow\n");
860 erase_block_wear[erase_block_no] += 1;
861 if (erase_block_wear[erase_block_no] == 0)
862 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
864 if (rptwear_cnt < rptwear)
867 /* Calc wear stats */
868 for (i = 0; i < wear_eb_count; ++i) {
869 unsigned long wear = erase_block_wear[i];
876 for (i = 0; i < 9; ++i) {
878 decile_max[i] = (wmax * (i + 1) + 5) / 10;
881 decile_max[9] = wmax;
882 for (i = 0; i < wear_eb_count; ++i) {
884 unsigned long wear = erase_block_wear[i];
885 for (d = 0; d < 10; ++d)
886 if (wear <= decile_max[d]) {
891 avg = tot / wear_eb_count;
892 /* Output wear report */
893 NS_INFO("*** Wear Report ***\n");
894 NS_INFO("Total numbers of erases: %lu\n", tot);
895 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
896 NS_INFO("Average number of erases: %lu\n", avg);
897 NS_INFO("Maximum number of erases: %lu\n", wmax);
898 NS_INFO("Minimum number of erases: %lu\n", wmin);
899 for (i = 0; i < 10; ++i) {
900 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
901 if (from > decile_max[i])
903 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
908 NS_INFO("*** End of Wear Report ***\n");
912 * Returns the string representation of 'state' state.
914 static char *get_state_name(uint32_t state)
916 switch (NS_STATE(state)) {
917 case STATE_CMD_READ0:
918 return "STATE_CMD_READ0";
919 case STATE_CMD_READ1:
920 return "STATE_CMD_READ1";
921 case STATE_CMD_PAGEPROG:
922 return "STATE_CMD_PAGEPROG";
923 case STATE_CMD_READOOB:
924 return "STATE_CMD_READOOB";
925 case STATE_CMD_READSTART:
926 return "STATE_CMD_READSTART";
927 case STATE_CMD_ERASE1:
928 return "STATE_CMD_ERASE1";
929 case STATE_CMD_STATUS:
930 return "STATE_CMD_STATUS";
931 case STATE_CMD_STATUS_M:
932 return "STATE_CMD_STATUS_M";
933 case STATE_CMD_SEQIN:
934 return "STATE_CMD_SEQIN";
935 case STATE_CMD_READID:
936 return "STATE_CMD_READID";
937 case STATE_CMD_ERASE2:
938 return "STATE_CMD_ERASE2";
939 case STATE_CMD_RESET:
940 return "STATE_CMD_RESET";
941 case STATE_ADDR_PAGE:
942 return "STATE_ADDR_PAGE";
944 return "STATE_ADDR_SEC";
945 case STATE_ADDR_ZERO:
946 return "STATE_ADDR_ZERO";
948 return "STATE_DATAIN";
950 return "STATE_DATAOUT";
951 case STATE_DATAOUT_ID:
952 return "STATE_DATAOUT_ID";
953 case STATE_DATAOUT_STATUS:
954 return "STATE_DATAOUT_STATUS";
955 case STATE_DATAOUT_STATUS_M:
956 return "STATE_DATAOUT_STATUS_M";
958 return "STATE_READY";
960 return "STATE_UNKNOWN";
963 NS_ERR("get_state_name: unknown state, BUG\n");
968 * Check if command is valid.
970 * RETURNS: 1 if wrong command, 0 if right.
972 static int check_command(int cmd)
977 case NAND_CMD_READSTART:
978 case NAND_CMD_PAGEPROG:
979 case NAND_CMD_READOOB:
980 case NAND_CMD_ERASE1:
981 case NAND_CMD_STATUS:
983 case NAND_CMD_READID:
984 case NAND_CMD_ERASE2:
989 case NAND_CMD_STATUS_MULTI:
996 * Returns state after command is accepted by command number.
998 static uint32_t get_state_by_command(unsigned command)
1001 case NAND_CMD_READ0:
1002 return STATE_CMD_READ0;
1003 case NAND_CMD_READ1:
1004 return STATE_CMD_READ1;
1005 case NAND_CMD_PAGEPROG:
1006 return STATE_CMD_PAGEPROG;
1007 case NAND_CMD_READSTART:
1008 return STATE_CMD_READSTART;
1009 case NAND_CMD_READOOB:
1010 return STATE_CMD_READOOB;
1011 case NAND_CMD_ERASE1:
1012 return STATE_CMD_ERASE1;
1013 case NAND_CMD_STATUS:
1014 return STATE_CMD_STATUS;
1015 case NAND_CMD_STATUS_MULTI:
1016 return STATE_CMD_STATUS_M;
1017 case NAND_CMD_SEQIN:
1018 return STATE_CMD_SEQIN;
1019 case NAND_CMD_READID:
1020 return STATE_CMD_READID;
1021 case NAND_CMD_ERASE2:
1022 return STATE_CMD_ERASE2;
1023 case NAND_CMD_RESET:
1024 return STATE_CMD_RESET;
1027 NS_ERR("get_state_by_command: unknown command, BUG\n");
1032 * Move an address byte to the correspondent internal register.
1034 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1036 uint byte = (uint)bt;
1038 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1039 ns->regs.column |= (byte << 8 * ns->regs.count);
1041 ns->regs.row |= (byte << 8 * (ns->regs.count -
1042 ns->geom.pgaddrbytes +
1043 ns->geom.secaddrbytes));
1050 * Switch to STATE_READY state.
1052 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1054 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1056 ns->state = STATE_READY;
1057 ns->nxstate = STATE_UNKNOWN;
1065 ns->regs.column = 0;
1066 ns->regs.status = status;
1070 * If the operation isn't known yet, try to find it in the global array
1071 * of supported operations.
1073 * Operation can be unknown because of the following.
1074 * 1. New command was accepted and this is the firs call to find the
1075 * correspondent states chain. In this case ns->npstates = 0;
1076 * 2. There is several operations which begin with the same command(s)
1077 * (for example program from the second half and read from the
1078 * second half operations both begin with the READ1 command). In this
1079 * case the ns->pstates[] array contains previous states.
1081 * Thus, the function tries to find operation containing the following
1082 * states (if the 'flag' parameter is 0):
1083 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1085 * If (one and only one) matching operation is found, it is accepted (
1086 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1089 * If there are several maches, the current state is pushed to the
1092 * The operation can be unknown only while commands are input to the chip.
1093 * As soon as address command is accepted, the operation must be known.
1094 * In such situation the function is called with 'flag' != 0, and the
1095 * operation is searched using the following pattern:
1096 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1098 * It is supposed that this pattern must either match one operation on
1099 * none. There can't be ambiguity in that case.
1101 * If no matches found, the functions does the following:
1102 * 1. if there are saved states present, try to ignore them and search
1103 * again only using the last command. If nothing was found, switch
1104 * to the STATE_READY state.
1105 * 2. if there are no saved states, switch to the STATE_READY state.
1107 * RETURNS: -2 - no matched operations found.
1108 * -1 - several matches.
1109 * 0 - operation is found.
1111 static int find_operation(struct nandsim *ns, uint32_t flag)
1116 for (i = 0; i < NS_OPER_NUM; i++) {
1120 if (!(ns->options & ops[i].reqopts))
1121 /* Ignore operations we can't perform */
1125 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1128 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1132 for (j = 0; j < ns->npstates; j++)
1133 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1134 && (ns->options & ops[idx].reqopts)) {
1145 if (opsfound == 1) {
1147 ns->op = &ops[idx].states[0];
1150 * In this case the find_operation function was
1151 * called when address has just began input. But it isn't
1152 * yet fully input and the current state must
1153 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1154 * state must be the next state (ns->nxstate).
1156 ns->stateidx = ns->npstates - 1;
1158 ns->stateidx = ns->npstates;
1161 ns->state = ns->op[ns->stateidx];
1162 ns->nxstate = ns->op[ns->stateidx + 1];
1163 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1164 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1168 if (opsfound == 0) {
1169 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1170 if (ns->npstates != 0) {
1171 NS_DBG("find_operation: no operation found, try again with state %s\n",
1172 get_state_name(ns->state));
1174 return find_operation(ns, 0);
1177 NS_DBG("find_operation: no operations found\n");
1178 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1183 /* This shouldn't happen */
1184 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1188 NS_DBG("find_operation: there is still ambiguity\n");
1190 ns->pstates[ns->npstates++] = ns->state;
1196 * Returns a pointer to the current page.
1198 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1200 return &(ns->pages[ns->regs.row]);
1204 * Retuns a pointer to the current byte, within the current page.
1206 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1208 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1212 * Fill the NAND buffer with data read from the specified page.
1214 static void read_page(struct nandsim *ns, int num)
1216 union ns_mem *mypage;
1218 mypage = NS_GET_PAGE(ns);
1219 if (mypage->byte == NULL) {
1220 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1221 memset(ns->buf.byte, 0xFF, num);
1223 unsigned int page_no = ns->regs.row;
1224 NS_DBG("read_page: page %d allocated, reading from %d\n",
1225 ns->regs.row, ns->regs.column + ns->regs.off);
1226 if (read_error(page_no)) {
1228 memset(ns->buf.byte, 0xFF, num);
1229 for (i = 0; i < num; ++i)
1230 ns->buf.byte[i] = random32();
1231 NS_WARN("simulating read error in page %u\n", page_no);
1234 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1235 if (bitflips && random32() < (1 << 22)) {
1238 flips = (random32() % (int) bitflips) + 1;
1240 int pos = random32() % (num * 8);
1241 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1242 NS_WARN("read_page: flipping bit %d in page %d "
1243 "reading from %d ecc: corrected=%u failed=%u\n",
1244 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1245 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1252 * Erase all pages in the specified sector.
1254 static void erase_sector(struct nandsim *ns)
1256 union ns_mem *mypage;
1259 mypage = NS_GET_PAGE(ns);
1260 for (i = 0; i < ns->geom.pgsec; i++) {
1261 if (mypage->byte != NULL) {
1262 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1263 kfree(mypage->byte);
1264 mypage->byte = NULL;
1271 * Program the specified page with the contents from the NAND buffer.
1273 static int prog_page(struct nandsim *ns, int num)
1276 union ns_mem *mypage;
1279 mypage = NS_GET_PAGE(ns);
1280 if (mypage->byte == NULL) {
1281 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1283 * We allocate memory with GFP_NOFS because a flash FS may
1284 * utilize this. If it is holding an FS lock, then gets here,
1285 * then kmalloc runs writeback which goes to the FS again
1286 * and deadlocks. This was seen in practice.
1288 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1289 if (mypage->byte == NULL) {
1290 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1293 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1296 pg_off = NS_PAGE_BYTE_OFF(ns);
1297 for (i = 0; i < num; i++)
1298 pg_off[i] &= ns->buf.byte[i];
1304 * If state has any action bit, perform this action.
1306 * RETURNS: 0 if success, -1 if error.
1308 static int do_state_action(struct nandsim *ns, uint32_t action)
1311 int busdiv = ns->busw == 8 ? 1 : 2;
1312 unsigned int erase_block_no, page_no;
1314 action &= ACTION_MASK;
1316 /* Check that page address input is correct */
1317 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1318 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1326 * Copy page data to the internal buffer.
1329 /* Column shouldn't be very large */
1330 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1331 NS_ERR("do_state_action: column number is too large\n");
1334 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1337 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1338 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1340 if (ns->regs.off == 0)
1341 NS_LOG("read page %d\n", ns->regs.row);
1342 else if (ns->regs.off < ns->geom.pgsz)
1343 NS_LOG("read page %d (second half)\n", ns->regs.row);
1345 NS_LOG("read OOB of page %d\n", ns->regs.row);
1347 NS_UDELAY(access_delay);
1348 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1352 case ACTION_SECERASE:
1358 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1362 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1363 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1364 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1368 ns->regs.row = (ns->regs.row <<
1369 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1370 ns->regs.column = 0;
1372 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1374 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1375 ns->regs.row, NS_RAW_OFFSET(ns));
1376 NS_LOG("erase sector %u\n", erase_block_no);
1380 NS_MDELAY(erase_delay);
1382 if (erase_block_wear)
1383 update_wear(erase_block_no);
1385 if (erase_error(erase_block_no)) {
1386 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1392 case ACTION_PRGPAGE:
1394 * Programm page - move internal buffer data to the page.
1398 NS_WARN("do_state_action: device is write-protected, programm\n");
1402 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1403 if (num != ns->regs.count) {
1404 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1405 ns->regs.count, num);
1409 if (prog_page(ns, num) == -1)
1412 page_no = ns->regs.row;
1414 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1415 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1416 NS_LOG("programm page %d\n", ns->regs.row);
1418 NS_UDELAY(programm_delay);
1419 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1421 if (write_error(page_no)) {
1422 NS_WARN("simulating write failure in page %u\n", page_no);
1428 case ACTION_ZEROOFF:
1429 NS_DBG("do_state_action: set internal offset to 0\n");
1433 case ACTION_HALFOFF:
1434 if (!(ns->options & OPT_PAGE512_8BIT)) {
1435 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1436 "byte page size 8x chips\n");
1439 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1440 ns->regs.off = ns->geom.pgsz/2;
1444 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1445 ns->regs.off = ns->geom.pgsz;
1449 NS_DBG("do_state_action: BUG! unknown action\n");
1456 * Switch simulator's state.
1458 static void switch_state(struct nandsim *ns)
1462 * The current operation have already been identified.
1463 * Just follow the states chain.
1467 ns->state = ns->nxstate;
1468 ns->nxstate = ns->op[ns->stateidx + 1];
1470 NS_DBG("switch_state: operation is known, switch to the next state, "
1471 "state: %s, nxstate: %s\n",
1472 get_state_name(ns->state), get_state_name(ns->nxstate));
1474 /* See, whether we need to do some action */
1475 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1476 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1482 * We don't yet know which operation we perform.
1483 * Try to identify it.
1487 * The only event causing the switch_state function to
1488 * be called with yet unknown operation is new command.
1490 ns->state = get_state_by_command(ns->regs.command);
1492 NS_DBG("switch_state: operation is unknown, try to find it\n");
1494 if (find_operation(ns, 0) != 0)
1497 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1498 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1503 /* For 16x devices column means the page offset in words */
1504 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1505 NS_DBG("switch_state: double the column number for 16x device\n");
1506 ns->regs.column <<= 1;
1509 if (NS_STATE(ns->nxstate) == STATE_READY) {
1511 * The current state is the last. Return to STATE_READY
1514 u_char status = NS_STATUS_OK(ns);
1516 /* In case of data states, see if all bytes were input/output */
1517 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1518 && ns->regs.count != ns->regs.num) {
1519 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1520 ns->regs.num - ns->regs.count);
1521 status = NS_STATUS_FAILED(ns);
1524 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1526 switch_to_ready_state(ns, status);
1529 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1531 * If the next state is data input/output, switch to it now
1534 ns->state = ns->nxstate;
1535 ns->nxstate = ns->op[++ns->stateidx + 1];
1536 ns->regs.num = ns->regs.count = 0;
1538 NS_DBG("switch_state: the next state is data I/O, switch, "
1539 "state: %s, nxstate: %s\n",
1540 get_state_name(ns->state), get_state_name(ns->nxstate));
1543 * Set the internal register to the count of bytes which
1544 * are expected to be input or output
1546 switch (NS_STATE(ns->state)) {
1549 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1552 case STATE_DATAOUT_ID:
1553 ns->regs.num = ns->geom.idbytes;
1556 case STATE_DATAOUT_STATUS:
1557 case STATE_DATAOUT_STATUS_M:
1558 ns->regs.count = ns->regs.num = 0;
1562 NS_ERR("switch_state: BUG! unknown data state\n");
1565 } else if (ns->nxstate & STATE_ADDR_MASK) {
1567 * If the next state is address input, set the internal
1568 * register to the number of expected address bytes
1573 switch (NS_STATE(ns->nxstate)) {
1574 case STATE_ADDR_PAGE:
1575 ns->regs.num = ns->geom.pgaddrbytes;
1578 case STATE_ADDR_SEC:
1579 ns->regs.num = ns->geom.secaddrbytes;
1582 case STATE_ADDR_ZERO:
1587 NS_ERR("switch_state: BUG! unknown address state\n");
1591 * Just reset internal counters.
1599 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1601 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1604 /* Sanity and correctness checks */
1605 if (!ns->lines.ce) {
1606 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1609 if (ns->lines.ale || ns->lines.cle) {
1610 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1613 if (!(ns->state & STATE_DATAOUT_MASK)) {
1614 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1615 "return %#x\n", get_state_name(ns->state), (uint)outb);
1619 /* Status register may be read as many times as it is wanted */
1620 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1621 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1622 return ns->regs.status;
1625 /* Check if there is any data in the internal buffer which may be read */
1626 if (ns->regs.count == ns->regs.num) {
1627 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1631 switch (NS_STATE(ns->state)) {
1633 if (ns->busw == 8) {
1634 outb = ns->buf.byte[ns->regs.count];
1635 ns->regs.count += 1;
1637 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1638 ns->regs.count += 2;
1641 case STATE_DATAOUT_ID:
1642 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1643 outb = ns->ids[ns->regs.count];
1644 ns->regs.count += 1;
1650 if (ns->regs.count == ns->regs.num) {
1651 NS_DBG("read_byte: all bytes were read\n");
1654 * The OPT_AUTOINCR allows to read next conseqitive pages without
1655 * new read operation cycle.
1657 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1659 if (ns->regs.row + 1 < ns->geom.pgnum)
1661 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1662 do_state_action(ns, ACTION_CPY);
1664 else if (NS_STATE(ns->nxstate) == STATE_READY)
1672 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1674 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1676 /* Sanity and correctness checks */
1677 if (!ns->lines.ce) {
1678 NS_ERR("write_byte: chip is disabled, ignore write\n");
1681 if (ns->lines.ale && ns->lines.cle) {
1682 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1686 if (ns->lines.cle == 1) {
1688 * The byte written is a command.
1691 if (byte == NAND_CMD_RESET) {
1692 NS_LOG("reset chip\n");
1693 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1698 * Chip might still be in STATE_DATAOUT
1699 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1700 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1702 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1703 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1704 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1707 /* Check if chip is expecting command */
1708 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1710 * We are in situation when something else (not command)
1711 * was expected but command was input. In this case ignore
1712 * previous command(s)/state(s) and accept the last one.
1714 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1715 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1716 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1719 /* Check that the command byte is correct */
1720 if (check_command(byte)) {
1721 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1725 NS_DBG("command byte corresponding to %s state accepted\n",
1726 get_state_name(get_state_by_command(byte)));
1727 ns->regs.command = byte;
1730 } else if (ns->lines.ale == 1) {
1732 * The byte written is an address.
1735 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1737 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1739 if (find_operation(ns, 1) < 0)
1742 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1743 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748 switch (NS_STATE(ns->nxstate)) {
1749 case STATE_ADDR_PAGE:
1750 ns->regs.num = ns->geom.pgaddrbytes;
1752 case STATE_ADDR_SEC:
1753 ns->regs.num = ns->geom.secaddrbytes;
1755 case STATE_ADDR_ZERO:
1763 /* Check that chip is expecting address */
1764 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1765 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1766 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1767 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1771 /* Check if this is expected byte */
1772 if (ns->regs.count == ns->regs.num) {
1773 NS_ERR("write_byte: no more address bytes expected\n");
1774 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1778 accept_addr_byte(ns, byte);
1780 ns->regs.count += 1;
1782 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1783 (uint)byte, ns->regs.count, ns->regs.num);
1785 if (ns->regs.count == ns->regs.num) {
1786 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1792 * The byte written is an input data.
1795 /* Check that chip is expecting data input */
1796 if (!(ns->state & STATE_DATAIN_MASK)) {
1797 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1798 "switch to %s\n", (uint)byte,
1799 get_state_name(ns->state), get_state_name(STATE_READY));
1800 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1804 /* Check if this is expected byte */
1805 if (ns->regs.count == ns->regs.num) {
1806 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1811 if (ns->busw == 8) {
1812 ns->buf.byte[ns->regs.count] = byte;
1813 ns->regs.count += 1;
1815 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1816 ns->regs.count += 2;
1823 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1825 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1827 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1828 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1829 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1831 if (cmd != NAND_CMD_NONE)
1832 ns_nand_write_byte(mtd, cmd);
1835 static int ns_device_ready(struct mtd_info *mtd)
1837 NS_DBG("device_ready\n");
1841 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1843 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1845 NS_DBG("read_word\n");
1847 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1850 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1852 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1854 /* Check that chip is expecting data input */
1855 if (!(ns->state & STATE_DATAIN_MASK)) {
1856 NS_ERR("write_buf: data input isn't expected, state is %s, "
1857 "switch to STATE_READY\n", get_state_name(ns->state));
1858 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1862 /* Check if these are expected bytes */
1863 if (ns->regs.count + len > ns->regs.num) {
1864 NS_ERR("write_buf: too many input bytes\n");
1865 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1869 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1870 ns->regs.count += len;
1872 if (ns->regs.count == ns->regs.num) {
1873 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1877 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1879 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1881 /* Sanity and correctness checks */
1882 if (!ns->lines.ce) {
1883 NS_ERR("read_buf: chip is disabled\n");
1886 if (ns->lines.ale || ns->lines.cle) {
1887 NS_ERR("read_buf: ALE or CLE pin is high\n");
1890 if (!(ns->state & STATE_DATAOUT_MASK)) {
1891 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1892 get_state_name(ns->state));
1896 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1899 for (i = 0; i < len; i++)
1900 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1905 /* Check if these are expected bytes */
1906 if (ns->regs.count + len > ns->regs.num) {
1907 NS_ERR("read_buf: too many bytes to read\n");
1908 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1912 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1913 ns->regs.count += len;
1915 if (ns->regs.count == ns->regs.num) {
1916 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1918 if (ns->regs.row + 1 < ns->geom.pgnum)
1920 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1921 do_state_action(ns, ACTION_CPY);
1923 else if (NS_STATE(ns->nxstate) == STATE_READY)
1930 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1932 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1934 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1935 NS_DBG("verify_buf: the buffer is OK\n");
1938 NS_DBG("verify_buf: the buffer is wrong\n");
1944 * Module initialization function
1946 static int __init ns_init_module(void)
1948 struct nand_chip *chip;
1949 struct nandsim *nand;
1950 int retval = -ENOMEM, i;
1952 if (bus_width != 8 && bus_width != 16) {
1953 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1957 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1958 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1959 + sizeof(struct nandsim), GFP_KERNEL);
1961 NS_ERR("unable to allocate core structures.\n");
1964 chip = (struct nand_chip *)(nsmtd + 1);
1965 nsmtd->priv = (void *)chip;
1966 nand = (struct nandsim *)(chip + 1);
1967 chip->priv = (void *)nand;
1970 * Register simulator's callbacks.
1972 chip->cmd_ctrl = ns_hwcontrol;
1973 chip->read_byte = ns_nand_read_byte;
1974 chip->dev_ready = ns_device_ready;
1975 chip->write_buf = ns_nand_write_buf;
1976 chip->read_buf = ns_nand_read_buf;
1977 chip->verify_buf = ns_nand_verify_buf;
1978 chip->read_word = ns_nand_read_word;
1979 chip->ecc.mode = NAND_ECC_SOFT;
1980 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
1981 /* and 'badblocks' parameters to work */
1982 chip->options |= NAND_SKIP_BBTSCAN;
1985 * Perform minimum nandsim structure initialization to handle
1986 * the initial ID read command correctly
1988 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1989 nand->geom.idbytes = 4;
1991 nand->geom.idbytes = 2;
1992 nand->regs.status = NS_STATUS_OK(nand);
1993 nand->nxstate = STATE_UNKNOWN;
1994 nand->options |= OPT_PAGE256; /* temporary value */
1995 nand->ids[0] = first_id_byte;
1996 nand->ids[1] = second_id_byte;
1997 nand->ids[2] = third_id_byte;
1998 nand->ids[3] = fourth_id_byte;
1999 if (bus_width == 16) {
2001 chip->options |= NAND_BUSWIDTH_16;
2004 nsmtd->owner = THIS_MODULE;
2006 if ((retval = parse_weakblocks()) != 0)
2009 if ((retval = parse_weakpages()) != 0)
2012 if ((retval = parse_gravepages()) != 0)
2015 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2016 NS_ERR("can't register NAND Simulator\n");
2023 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2024 if (new_size >> overridesize != nsmtd->erasesize) {
2025 NS_ERR("overridesize is too big\n");
2028 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2029 nsmtd->size = new_size;
2030 chip->chipsize = new_size;
2031 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2032 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2035 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2038 if ((retval = init_nandsim(nsmtd)) != 0)
2041 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2044 if ((retval = nand_default_bbt(nsmtd)) != 0)
2047 /* Register NAND partitions */
2048 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2055 nand_release(nsmtd);
2056 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2057 kfree(nand->partitions[i].name);
2065 module_init(ns_init_module);
2068 * Module clean-up function
2070 static void __exit ns_cleanup_module(void)
2072 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2075 free_nandsim(ns); /* Free nandsim private resources */
2076 nand_release(nsmtd); /* Unregister driver */
2077 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2078 kfree(ns->partitions[i].name);
2079 kfree(nsmtd); /* Free other structures */
2083 module_exit(ns_cleanup_module);
2085 MODULE_LICENSE ("GPL");
2086 MODULE_AUTHOR ("Artem B. Bityuckiy");
2087 MODULE_DESCRIPTION ("The NAND flash simulator");