2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
82 SGP_READ, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
89 static unsigned long shmem_default_max_blocks(void)
91 return totalram_pages / 2;
94 static unsigned long shmem_default_max_inodes(void)
96 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
100 static int shmem_getpage(struct inode *inode, unsigned long idx,
101 struct page **pagep, enum sgp_type sgp, int *type);
103 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
110 * Mobility flags are masked out as swap vectors cannot move
112 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113 PAGE_CACHE_SHIFT-PAGE_SHIFT);
116 static inline void shmem_dir_free(struct page *page)
118 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
121 static struct page **shmem_dir_map(struct page *page)
123 return (struct page **)kmap_atomic(page, KM_USER0);
126 static inline void shmem_dir_unmap(struct page **dir)
128 kunmap_atomic(dir, KM_USER0);
131 static swp_entry_t *shmem_swp_map(struct page *page)
133 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
136 static inline void shmem_swp_balance_unmap(void)
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
148 static inline void shmem_swp_unmap(swp_entry_t *entry)
150 kunmap_atomic(entry, KM_USER1);
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 return sb->s_fs_info;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 return (flags & VM_ACCOUNT)?
167 security_vm_enough_memory(VM_ACCT(size)): 0;
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 if (flags & VM_ACCOUNT)
173 vm_unacct_memory(VM_ACCT(size));
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
182 static inline int shmem_acct_block(unsigned long flags)
184 return (flags & VM_ACCOUNT)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
188 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
190 if (!(flags & VM_ACCOUNT))
191 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
194 static const struct super_operations shmem_ops;
195 static const struct address_space_operations shmem_aops;
196 static const struct file_operations shmem_file_operations;
197 static const struct inode_operations shmem_inode_operations;
198 static const struct inode_operations shmem_dir_inode_operations;
199 static const struct inode_operations shmem_special_inode_operations;
200 static struct vm_operations_struct shmem_vm_ops;
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
203 .ra_pages = 0, /* No readahead */
204 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
205 .unplug_io_fn = default_unplug_io_fn,
208 static LIST_HEAD(shmem_swaplist);
209 static DEFINE_MUTEX(shmem_swaplist_mutex);
211 static void shmem_free_blocks(struct inode *inode, long pages)
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 if (sbinfo->max_blocks) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_blocks += pages;
217 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218 spin_unlock(&sbinfo->stat_lock);
222 static int shmem_reserve_inode(struct super_block *sb)
224 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225 if (sbinfo->max_inodes) {
226 spin_lock(&sbinfo->stat_lock);
227 if (!sbinfo->free_inodes) {
228 spin_unlock(&sbinfo->stat_lock);
231 sbinfo->free_inodes--;
232 spin_unlock(&sbinfo->stat_lock);
237 static void shmem_free_inode(struct super_block *sb)
239 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240 if (sbinfo->max_inodes) {
241 spin_lock(&sbinfo->stat_lock);
242 sbinfo->free_inodes++;
243 spin_unlock(&sbinfo->stat_lock);
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
257 * It has to be called with the spinlock held.
259 static void shmem_recalc_inode(struct inode *inode)
261 struct shmem_inode_info *info = SHMEM_I(inode);
264 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
266 info->alloced -= freed;
267 shmem_unacct_blocks(info->flags, freed);
268 shmem_free_blocks(inode, freed);
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info: info structure for the inode
275 * @index: index of the page to find
276 * @page: optional page to add to the structure. Has to be preset to
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
283 * The swap vector is organized the following way:
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
296 * i_indirect -> dir --> 16-19
309 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
311 unsigned long offset;
315 if (index < SHMEM_NR_DIRECT) {
316 shmem_swp_balance_unmap();
317 return info->i_direct+index;
319 if (!info->i_indirect) {
321 info->i_indirect = *page;
324 return NULL; /* need another page */
327 index -= SHMEM_NR_DIRECT;
328 offset = index % ENTRIES_PER_PAGE;
329 index /= ENTRIES_PER_PAGE;
330 dir = shmem_dir_map(info->i_indirect);
332 if (index >= ENTRIES_PER_PAGE/2) {
333 index -= ENTRIES_PER_PAGE/2;
334 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
335 index %= ENTRIES_PER_PAGE;
342 shmem_dir_unmap(dir);
343 return NULL; /* need another page */
345 shmem_dir_unmap(dir);
346 dir = shmem_dir_map(subdir);
352 if (!page || !(subdir = *page)) {
353 shmem_dir_unmap(dir);
354 return NULL; /* need a page */
359 shmem_dir_unmap(dir);
360 return shmem_swp_map(subdir) + offset;
363 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
365 long incdec = value? 1: -1;
368 info->swapped += incdec;
369 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
370 struct page *page = kmap_atomic_to_page(entry);
371 set_page_private(page, page_private(page) + incdec);
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info: info structure for the inode
378 * @index: index of the page to find
379 * @sgp: check and recheck i_size? skip allocation?
381 * If the entry does not exist, allocate it.
383 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
385 struct inode *inode = &info->vfs_inode;
386 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
387 struct page *page = NULL;
390 if (sgp != SGP_WRITE &&
391 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
392 return ERR_PTR(-EINVAL);
394 while (!(entry = shmem_swp_entry(info, index, &page))) {
396 return shmem_swp_map(ZERO_PAGE(0));
398 * Test free_blocks against 1 not 0, since we have 1 data
399 * page (and perhaps indirect index pages) yet to allocate:
400 * a waste to allocate index if we cannot allocate data.
402 if (sbinfo->max_blocks) {
403 spin_lock(&sbinfo->stat_lock);
404 if (sbinfo->free_blocks <= 1) {
405 spin_unlock(&sbinfo->stat_lock);
406 return ERR_PTR(-ENOSPC);
408 sbinfo->free_blocks--;
409 inode->i_blocks += BLOCKS_PER_PAGE;
410 spin_unlock(&sbinfo->stat_lock);
413 spin_unlock(&info->lock);
414 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
416 set_page_private(page, 0);
417 spin_lock(&info->lock);
420 shmem_free_blocks(inode, 1);
421 return ERR_PTR(-ENOMEM);
423 if (sgp != SGP_WRITE &&
424 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
425 entry = ERR_PTR(-EINVAL);
428 if (info->next_index <= index)
429 info->next_index = index + 1;
432 /* another task gave its page, or truncated the file */
433 shmem_free_blocks(inode, 1);
434 shmem_dir_free(page);
436 if (info->next_index <= index && !IS_ERR(entry))
437 info->next_index = index + 1;
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir: pointer to the directory
444 * @edir: pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
447 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
448 spinlock_t *punch_lock)
450 spinlock_t *punch_unlock = NULL;
454 for (ptr = dir; ptr < edir; ptr++) {
456 if (unlikely(punch_lock)) {
457 punch_unlock = punch_lock;
459 spin_lock(punch_unlock);
463 free_swap_and_cache(*ptr);
464 *ptr = (swp_entry_t){0};
469 spin_unlock(punch_unlock);
473 static int shmem_map_and_free_swp(struct page *subdir, int offset,
474 int limit, struct page ***dir, spinlock_t *punch_lock)
479 ptr = shmem_swp_map(subdir);
480 for (; offset < limit; offset += LATENCY_LIMIT) {
481 int size = limit - offset;
482 if (size > LATENCY_LIMIT)
483 size = LATENCY_LIMIT;
484 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
486 if (need_resched()) {
487 shmem_swp_unmap(ptr);
489 shmem_dir_unmap(*dir);
493 ptr = shmem_swp_map(subdir);
496 shmem_swp_unmap(ptr);
500 static void shmem_free_pages(struct list_head *next)
506 page = container_of(next, struct page, lru);
508 shmem_dir_free(page);
510 if (freed >= LATENCY_LIMIT) {
517 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
519 struct shmem_inode_info *info = SHMEM_I(inode);
524 unsigned long diroff;
530 LIST_HEAD(pages_to_free);
531 long nr_pages_to_free = 0;
532 long nr_swaps_freed = 0;
536 spinlock_t *needs_lock;
537 spinlock_t *punch_lock;
538 unsigned long upper_limit;
540 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542 if (idx >= info->next_index)
545 spin_lock(&info->lock);
546 info->flags |= SHMEM_TRUNCATE;
547 if (likely(end == (loff_t) -1)) {
548 limit = info->next_index;
549 upper_limit = SHMEM_MAX_INDEX;
550 info->next_index = idx;
554 if (end + 1 >= inode->i_size) { /* we may free a little more */
555 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
557 upper_limit = SHMEM_MAX_INDEX;
559 limit = (end + 1) >> PAGE_CACHE_SHIFT;
562 needs_lock = &info->lock;
566 topdir = info->i_indirect;
567 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
568 info->i_indirect = NULL;
570 list_add(&topdir->lru, &pages_to_free);
572 spin_unlock(&info->lock);
574 if (info->swapped && idx < SHMEM_NR_DIRECT) {
575 ptr = info->i_direct;
577 if (size > SHMEM_NR_DIRECT)
578 size = SHMEM_NR_DIRECT;
579 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
583 * If there are no indirect blocks or we are punching a hole
584 * below indirect blocks, nothing to be done.
586 if (!topdir || limit <= SHMEM_NR_DIRECT)
590 * The truncation case has already dropped info->lock, and we're safe
591 * because i_size and next_index have already been lowered, preventing
592 * access beyond. But in the punch_hole case, we still need to take
593 * the lock when updating the swap directory, because there might be
594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 * shmem_writepage. However, whenever we find we can remove a whole
596 * directory page (not at the misaligned start or end of the range),
597 * we first NULLify its pointer in the level above, and then have no
598 * need to take the lock when updating its contents: needs_lock and
599 * punch_lock (either pointing to info->lock or NULL) manage this.
602 upper_limit -= SHMEM_NR_DIRECT;
603 limit -= SHMEM_NR_DIRECT;
604 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
605 offset = idx % ENTRIES_PER_PAGE;
608 dir = shmem_dir_map(topdir);
609 stage = ENTRIES_PER_PAGEPAGE/2;
610 if (idx < ENTRIES_PER_PAGEPAGE/2) {
612 diroff = idx/ENTRIES_PER_PAGE;
614 dir += ENTRIES_PER_PAGE/2;
615 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
617 stage += ENTRIES_PER_PAGEPAGE;
620 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
621 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
622 if (!diroff && !offset && upper_limit >= stage) {
624 spin_lock(needs_lock);
626 spin_unlock(needs_lock);
631 list_add(&middir->lru, &pages_to_free);
633 shmem_dir_unmap(dir);
634 dir = shmem_dir_map(middir);
642 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
643 if (unlikely(idx == stage)) {
644 shmem_dir_unmap(dir);
645 dir = shmem_dir_map(topdir) +
646 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
649 idx += ENTRIES_PER_PAGEPAGE;
653 stage = idx + ENTRIES_PER_PAGEPAGE;
656 needs_lock = &info->lock;
657 if (upper_limit >= stage) {
659 spin_lock(needs_lock);
661 spin_unlock(needs_lock);
666 list_add(&middir->lru, &pages_to_free);
668 shmem_dir_unmap(dir);
670 dir = shmem_dir_map(middir);
673 punch_lock = needs_lock;
674 subdir = dir[diroff];
675 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
677 spin_lock(needs_lock);
679 spin_unlock(needs_lock);
684 list_add(&subdir->lru, &pages_to_free);
686 if (subdir && page_private(subdir) /* has swap entries */) {
688 if (size > ENTRIES_PER_PAGE)
689 size = ENTRIES_PER_PAGE;
690 freed = shmem_map_and_free_swp(subdir,
691 offset, size, &dir, punch_lock);
693 dir = shmem_dir_map(middir);
694 nr_swaps_freed += freed;
695 if (offset || punch_lock) {
696 spin_lock(&info->lock);
697 set_page_private(subdir,
698 page_private(subdir) - freed);
699 spin_unlock(&info->lock);
701 BUG_ON(page_private(subdir) != freed);
706 shmem_dir_unmap(dir);
708 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
710 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 * may have swizzled a page in from swap since vmtruncate or
712 * generic_delete_inode did it, before we lowered next_index.
713 * Also, though shmem_getpage checks i_size before adding to
714 * cache, no recheck after: so fix the narrow window there too.
716 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 * every time for punch_hole (which never got a chance to clear
718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 * yet hardly ever necessary: try to optimize them out later.
721 truncate_inode_pages_range(inode->i_mapping, start, end);
723 unmap_mapping_range(inode->i_mapping, start,
727 spin_lock(&info->lock);
728 info->flags &= ~SHMEM_TRUNCATE;
729 info->swapped -= nr_swaps_freed;
730 if (nr_pages_to_free)
731 shmem_free_blocks(inode, nr_pages_to_free);
732 shmem_recalc_inode(inode);
733 spin_unlock(&info->lock);
736 * Empty swap vector directory pages to be freed?
738 if (!list_empty(&pages_to_free)) {
739 pages_to_free.prev->next = NULL;
740 shmem_free_pages(pages_to_free.next);
744 static void shmem_truncate(struct inode *inode)
746 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
749 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
751 struct inode *inode = dentry->d_inode;
752 struct page *page = NULL;
755 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
756 if (attr->ia_size < inode->i_size) {
758 * If truncating down to a partial page, then
759 * if that page is already allocated, hold it
760 * in memory until the truncation is over, so
761 * truncate_partial_page cannnot miss it were
762 * it assigned to swap.
764 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
765 (void) shmem_getpage(inode,
766 attr->ia_size>>PAGE_CACHE_SHIFT,
767 &page, SGP_READ, NULL);
772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 * detect if any pages might have been added to cache
774 * after truncate_inode_pages. But we needn't bother
775 * if it's being fully truncated to zero-length: the
776 * nrpages check is efficient enough in that case.
779 struct shmem_inode_info *info = SHMEM_I(inode);
780 spin_lock(&info->lock);
781 info->flags &= ~SHMEM_PAGEIN;
782 spin_unlock(&info->lock);
787 error = inode_change_ok(inode, attr);
789 error = inode_setattr(inode, attr);
790 #ifdef CONFIG_TMPFS_POSIX_ACL
791 if (!error && (attr->ia_valid & ATTR_MODE))
792 error = generic_acl_chmod(inode, &shmem_acl_ops);
795 page_cache_release(page);
799 static void shmem_delete_inode(struct inode *inode)
801 struct shmem_inode_info *info = SHMEM_I(inode);
803 if (inode->i_op->truncate == shmem_truncate) {
804 truncate_inode_pages(inode->i_mapping, 0);
805 shmem_unacct_size(info->flags, inode->i_size);
807 shmem_truncate(inode);
808 if (!list_empty(&info->swaplist)) {
809 mutex_lock(&shmem_swaplist_mutex);
810 list_del_init(&info->swaplist);
811 mutex_unlock(&shmem_swaplist_mutex);
814 BUG_ON(inode->i_blocks);
815 shmem_free_inode(inode->i_sb);
819 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
823 for (ptr = dir; ptr < edir; ptr++) {
824 if (ptr->val == entry.val)
830 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
844 ptr = info->i_direct;
845 spin_lock(&info->lock);
846 if (!info->swapped) {
847 list_del_init(&info->swaplist);
850 limit = info->next_index;
852 if (size > SHMEM_NR_DIRECT)
853 size = SHMEM_NR_DIRECT;
854 offset = shmem_find_swp(entry, ptr, ptr+size);
857 if (!info->i_indirect)
860 dir = shmem_dir_map(info->i_indirect);
861 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
863 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
864 if (unlikely(idx == stage)) {
865 shmem_dir_unmap(dir-1);
866 if (cond_resched_lock(&info->lock)) {
867 /* check it has not been truncated */
868 if (limit > info->next_index) {
869 limit = info->next_index;
874 dir = shmem_dir_map(info->i_indirect) +
875 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
878 idx += ENTRIES_PER_PAGEPAGE;
882 stage = idx + ENTRIES_PER_PAGEPAGE;
884 shmem_dir_unmap(dir);
885 dir = shmem_dir_map(subdir);
888 if (subdir && page_private(subdir)) {
889 ptr = shmem_swp_map(subdir);
891 if (size > ENTRIES_PER_PAGE)
892 size = ENTRIES_PER_PAGE;
893 offset = shmem_find_swp(entry, ptr, ptr+size);
894 shmem_swp_unmap(ptr);
896 shmem_dir_unmap(dir);
902 shmem_dir_unmap(dir-1);
904 spin_unlock(&info->lock);
908 inode = igrab(&info->vfs_inode);
909 spin_unlock(&info->lock);
912 * Move _head_ to start search for next from here.
913 * But be careful: shmem_delete_inode checks list_empty without taking
914 * mutex, and there's an instant in list_move_tail when info->swaplist
915 * would appear empty, if it were the only one on shmem_swaplist. We
916 * could avoid doing it if inode NULL; or use this minor optimization.
918 if (shmem_swaplist.next != &info->swaplist)
919 list_move_tail(&shmem_swaplist, &info->swaplist);
920 mutex_unlock(&shmem_swaplist_mutex);
925 /* Precharge page using GFP_KERNEL while we can wait */
926 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
929 error = radix_tree_preload(GFP_KERNEL);
931 mem_cgroup_uncharge_cache_page(page);
936 spin_lock(&info->lock);
937 ptr = shmem_swp_entry(info, idx, NULL);
938 if (ptr && ptr->val == entry.val) {
939 error = add_to_page_cache(page, inode->i_mapping,
941 /* does mem_cgroup_uncharge_cache_page on error */
942 } else /* we must compensate for our precharge above */
943 mem_cgroup_uncharge_cache_page(page);
945 if (error == -EEXIST) {
946 struct page *filepage = find_get_page(inode->i_mapping, idx);
950 * There might be a more uptodate page coming down
951 * from a stacked writepage: forget our swappage if so.
953 if (PageUptodate(filepage))
955 page_cache_release(filepage);
959 delete_from_swap_cache(page);
960 set_page_dirty(page);
961 info->flags |= SHMEM_PAGEIN;
962 shmem_swp_set(info, ptr, 0);
964 error = 1; /* not an error, but entry was found */
967 shmem_swp_unmap(ptr);
968 spin_unlock(&info->lock);
969 radix_tree_preload_end();
972 page_cache_release(page);
973 iput(inode); /* allows for NULL */
978 * shmem_unuse() search for an eventually swapped out shmem page.
980 int shmem_unuse(swp_entry_t entry, struct page *page)
982 struct list_head *p, *next;
983 struct shmem_inode_info *info;
986 mutex_lock(&shmem_swaplist_mutex);
987 list_for_each_safe(p, next, &shmem_swaplist) {
988 info = list_entry(p, struct shmem_inode_info, swaplist);
989 found = shmem_unuse_inode(info, entry, page);
994 mutex_unlock(&shmem_swaplist_mutex);
995 out: return found; /* 0 or 1 or -ENOMEM */
999 * Move the page from the page cache to the swap cache.
1001 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1003 struct shmem_inode_info *info;
1004 swp_entry_t *entry, swap;
1005 struct address_space *mapping;
1006 unsigned long index;
1007 struct inode *inode;
1009 BUG_ON(!PageLocked(page));
1010 mapping = page->mapping;
1011 index = page->index;
1012 inode = mapping->host;
1013 info = SHMEM_I(inode);
1014 if (info->flags & VM_LOCKED)
1016 if (!total_swap_pages)
1020 * shmem_backing_dev_info's capabilities prevent regular writeback or
1021 * sync from ever calling shmem_writepage; but a stacking filesystem
1022 * may use the ->writepage of its underlying filesystem, in which case
1023 * tmpfs should write out to swap only in response to memory pressure,
1024 * and not for pdflush or sync. However, in those cases, we do still
1025 * want to check if there's a redundant swappage to be discarded.
1027 if (wbc->for_reclaim)
1028 swap = get_swap_page();
1032 spin_lock(&info->lock);
1033 if (index >= info->next_index) {
1034 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1037 entry = shmem_swp_entry(info, index, NULL);
1040 * The more uptodate page coming down from a stacked
1041 * writepage should replace our old swappage.
1043 free_swap_and_cache(*entry);
1044 shmem_swp_set(info, entry, 0);
1046 shmem_recalc_inode(inode);
1048 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1049 remove_from_page_cache(page);
1050 shmem_swp_set(info, entry, swap.val);
1051 shmem_swp_unmap(entry);
1052 if (list_empty(&info->swaplist))
1053 inode = igrab(inode);
1056 spin_unlock(&info->lock);
1057 swap_duplicate(swap);
1058 BUG_ON(page_mapped(page));
1059 page_cache_release(page); /* pagecache ref */
1060 set_page_dirty(page);
1063 mutex_lock(&shmem_swaplist_mutex);
1064 /* move instead of add in case we're racing */
1065 list_move_tail(&info->swaplist, &shmem_swaplist);
1066 mutex_unlock(&shmem_swaplist_mutex);
1072 shmem_swp_unmap(entry);
1074 spin_unlock(&info->lock);
1077 set_page_dirty(page);
1078 if (wbc->for_reclaim)
1079 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1086 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1090 if (!mpol || mpol->mode == MPOL_DEFAULT)
1091 return; /* show nothing */
1093 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1095 seq_printf(seq, ",mpol=%s", buffer);
1098 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1100 struct mempolicy *mpol = NULL;
1102 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1103 mpol = sbinfo->mpol;
1105 spin_unlock(&sbinfo->stat_lock);
1109 #endif /* CONFIG_TMPFS */
1111 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1112 struct shmem_inode_info *info, unsigned long idx)
1114 struct mempolicy mpol, *spol;
1115 struct vm_area_struct pvma;
1118 spol = mpol_cond_copy(&mpol,
1119 mpol_shared_policy_lookup(&info->policy, idx));
1121 /* Create a pseudo vma that just contains the policy */
1123 pvma.vm_pgoff = idx;
1125 pvma.vm_policy = spol;
1126 page = swapin_readahead(entry, gfp, &pvma, 0);
1130 static struct page *shmem_alloc_page(gfp_t gfp,
1131 struct shmem_inode_info *info, unsigned long idx)
1133 struct vm_area_struct pvma;
1135 /* Create a pseudo vma that just contains the policy */
1137 pvma.vm_pgoff = idx;
1139 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1142 * alloc_page_vma() will drop the shared policy reference
1144 return alloc_page_vma(gfp, &pvma, 0);
1146 #else /* !CONFIG_NUMA */
1148 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1151 #endif /* CONFIG_TMPFS */
1153 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1154 struct shmem_inode_info *info, unsigned long idx)
1156 return swapin_readahead(entry, gfp, NULL, 0);
1159 static inline struct page *shmem_alloc_page(gfp_t gfp,
1160 struct shmem_inode_info *info, unsigned long idx)
1162 return alloc_page(gfp);
1164 #endif /* CONFIG_NUMA */
1166 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1167 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1174 * shmem_getpage - either get the page from swap or allocate a new one
1176 * If we allocate a new one we do not mark it dirty. That's up to the
1177 * vm. If we swap it in we mark it dirty since we also free the swap
1178 * entry since a page cannot live in both the swap and page cache
1180 static int shmem_getpage(struct inode *inode, unsigned long idx,
1181 struct page **pagep, enum sgp_type sgp, int *type)
1183 struct address_space *mapping = inode->i_mapping;
1184 struct shmem_inode_info *info = SHMEM_I(inode);
1185 struct shmem_sb_info *sbinfo;
1186 struct page *filepage = *pagep;
1187 struct page *swappage;
1193 if (idx >= SHMEM_MAX_INDEX)
1200 * Normally, filepage is NULL on entry, and either found
1201 * uptodate immediately, or allocated and zeroed, or read
1202 * in under swappage, which is then assigned to filepage.
1203 * But shmem_readpage (required for splice) passes in a locked
1204 * filepage, which may be found not uptodate by other callers
1205 * too, and may need to be copied from the swappage read in.
1209 filepage = find_lock_page(mapping, idx);
1210 if (filepage && PageUptodate(filepage))
1213 gfp = mapping_gfp_mask(mapping);
1216 * Try to preload while we can wait, to not make a habit of
1217 * draining atomic reserves; but don't latch on to this cpu.
1219 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1222 radix_tree_preload_end();
1225 spin_lock(&info->lock);
1226 shmem_recalc_inode(inode);
1227 entry = shmem_swp_alloc(info, idx, sgp);
1228 if (IS_ERR(entry)) {
1229 spin_unlock(&info->lock);
1230 error = PTR_ERR(entry);
1236 /* Look it up and read it in.. */
1237 swappage = lookup_swap_cache(swap);
1239 shmem_swp_unmap(entry);
1240 /* here we actually do the io */
1241 if (type && !(*type & VM_FAULT_MAJOR)) {
1242 __count_vm_event(PGMAJFAULT);
1243 *type |= VM_FAULT_MAJOR;
1245 spin_unlock(&info->lock);
1246 swappage = shmem_swapin(swap, gfp, info, idx);
1248 spin_lock(&info->lock);
1249 entry = shmem_swp_alloc(info, idx, sgp);
1251 error = PTR_ERR(entry);
1253 if (entry->val == swap.val)
1255 shmem_swp_unmap(entry);
1257 spin_unlock(&info->lock);
1262 wait_on_page_locked(swappage);
1263 page_cache_release(swappage);
1267 /* We have to do this with page locked to prevent races */
1268 if (TestSetPageLocked(swappage)) {
1269 shmem_swp_unmap(entry);
1270 spin_unlock(&info->lock);
1271 wait_on_page_locked(swappage);
1272 page_cache_release(swappage);
1275 if (PageWriteback(swappage)) {
1276 shmem_swp_unmap(entry);
1277 spin_unlock(&info->lock);
1278 wait_on_page_writeback(swappage);
1279 unlock_page(swappage);
1280 page_cache_release(swappage);
1283 if (!PageUptodate(swappage)) {
1284 shmem_swp_unmap(entry);
1285 spin_unlock(&info->lock);
1286 unlock_page(swappage);
1287 page_cache_release(swappage);
1293 shmem_swp_set(info, entry, 0);
1294 shmem_swp_unmap(entry);
1295 delete_from_swap_cache(swappage);
1296 spin_unlock(&info->lock);
1297 copy_highpage(filepage, swappage);
1298 unlock_page(swappage);
1299 page_cache_release(swappage);
1300 flush_dcache_page(filepage);
1301 SetPageUptodate(filepage);
1302 set_page_dirty(filepage);
1304 } else if (!(error = add_to_page_cache(
1305 swappage, mapping, idx, GFP_NOWAIT))) {
1306 info->flags |= SHMEM_PAGEIN;
1307 shmem_swp_set(info, entry, 0);
1308 shmem_swp_unmap(entry);
1309 delete_from_swap_cache(swappage);
1310 spin_unlock(&info->lock);
1311 filepage = swappage;
1312 set_page_dirty(filepage);
1315 shmem_swp_unmap(entry);
1316 spin_unlock(&info->lock);
1317 unlock_page(swappage);
1318 page_cache_release(swappage);
1319 if (error == -ENOMEM) {
1320 /* allow reclaim from this memory cgroup */
1321 error = mem_cgroup_shrink_usage(current->mm,
1328 } else if (sgp == SGP_READ && !filepage) {
1329 shmem_swp_unmap(entry);
1330 filepage = find_get_page(mapping, idx);
1332 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1333 spin_unlock(&info->lock);
1334 wait_on_page_locked(filepage);
1335 page_cache_release(filepage);
1339 spin_unlock(&info->lock);
1341 shmem_swp_unmap(entry);
1342 sbinfo = SHMEM_SB(inode->i_sb);
1343 if (sbinfo->max_blocks) {
1344 spin_lock(&sbinfo->stat_lock);
1345 if (sbinfo->free_blocks == 0 ||
1346 shmem_acct_block(info->flags)) {
1347 spin_unlock(&sbinfo->stat_lock);
1348 spin_unlock(&info->lock);
1352 sbinfo->free_blocks--;
1353 inode->i_blocks += BLOCKS_PER_PAGE;
1354 spin_unlock(&sbinfo->stat_lock);
1355 } else if (shmem_acct_block(info->flags)) {
1356 spin_unlock(&info->lock);
1364 spin_unlock(&info->lock);
1365 filepage = shmem_alloc_page(gfp, info, idx);
1367 shmem_unacct_blocks(info->flags, 1);
1368 shmem_free_blocks(inode, 1);
1373 /* Precharge page while we can wait, compensate after */
1374 error = mem_cgroup_cache_charge(filepage, current->mm,
1375 gfp & ~__GFP_HIGHMEM);
1377 page_cache_release(filepage);
1378 shmem_unacct_blocks(info->flags, 1);
1379 shmem_free_blocks(inode, 1);
1384 spin_lock(&info->lock);
1385 entry = shmem_swp_alloc(info, idx, sgp);
1387 error = PTR_ERR(entry);
1390 shmem_swp_unmap(entry);
1392 ret = error || swap.val;
1394 mem_cgroup_uncharge_cache_page(filepage);
1396 ret = add_to_page_cache_lru(filepage, mapping,
1399 * At add_to_page_cache_lru() failure, uncharge will
1400 * be done automatically.
1403 spin_unlock(&info->lock);
1404 page_cache_release(filepage);
1405 shmem_unacct_blocks(info->flags, 1);
1406 shmem_free_blocks(inode, 1);
1412 info->flags |= SHMEM_PAGEIN;
1416 spin_unlock(&info->lock);
1417 clear_highpage(filepage);
1418 flush_dcache_page(filepage);
1419 SetPageUptodate(filepage);
1420 if (sgp == SGP_DIRTY)
1421 set_page_dirty(filepage);
1428 if (*pagep != filepage) {
1429 unlock_page(filepage);
1430 page_cache_release(filepage);
1435 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1437 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1441 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1442 return VM_FAULT_SIGBUS;
1444 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1446 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1448 mark_page_accessed(vmf->page);
1449 return ret | VM_FAULT_LOCKED;
1453 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1455 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1456 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1459 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1462 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1465 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1466 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1470 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1472 struct inode *inode = file->f_path.dentry->d_inode;
1473 struct shmem_inode_info *info = SHMEM_I(inode);
1474 int retval = -ENOMEM;
1476 spin_lock(&info->lock);
1477 if (lock && !(info->flags & VM_LOCKED)) {
1478 if (!user_shm_lock(inode->i_size, user))
1480 info->flags |= VM_LOCKED;
1482 if (!lock && (info->flags & VM_LOCKED) && user) {
1483 user_shm_unlock(inode->i_size, user);
1484 info->flags &= ~VM_LOCKED;
1488 spin_unlock(&info->lock);
1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1494 file_accessed(file);
1495 vma->vm_ops = &shmem_vm_ops;
1496 vma->vm_flags |= VM_CAN_NONLINEAR;
1500 static struct inode *
1501 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1503 struct inode *inode;
1504 struct shmem_inode_info *info;
1505 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1507 if (shmem_reserve_inode(sb))
1510 inode = new_inode(sb);
1512 inode->i_mode = mode;
1513 inode->i_uid = current->fsuid;
1514 inode->i_gid = current->fsgid;
1515 inode->i_blocks = 0;
1516 inode->i_mapping->a_ops = &shmem_aops;
1517 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1519 inode->i_generation = get_seconds();
1520 info = SHMEM_I(inode);
1521 memset(info, 0, (char *)inode - (char *)info);
1522 spin_lock_init(&info->lock);
1523 INIT_LIST_HEAD(&info->swaplist);
1525 switch (mode & S_IFMT) {
1527 inode->i_op = &shmem_special_inode_operations;
1528 init_special_inode(inode, mode, dev);
1531 inode->i_op = &shmem_inode_operations;
1532 inode->i_fop = &shmem_file_operations;
1533 mpol_shared_policy_init(&info->policy,
1534 shmem_get_sbmpol(sbinfo));
1538 /* Some things misbehave if size == 0 on a directory */
1539 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1540 inode->i_op = &shmem_dir_inode_operations;
1541 inode->i_fop = &simple_dir_operations;
1545 * Must not load anything in the rbtree,
1546 * mpol_free_shared_policy will not be called.
1548 mpol_shared_policy_init(&info->policy, NULL);
1552 shmem_free_inode(sb);
1557 static const struct inode_operations shmem_symlink_inode_operations;
1558 static const struct inode_operations shmem_symlink_inline_operations;
1561 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1562 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1563 * below the loop driver, in the generic fashion that many filesystems support.
1565 static int shmem_readpage(struct file *file, struct page *page)
1567 struct inode *inode = page->mapping->host;
1568 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1574 shmem_write_begin(struct file *file, struct address_space *mapping,
1575 loff_t pos, unsigned len, unsigned flags,
1576 struct page **pagep, void **fsdata)
1578 struct inode *inode = mapping->host;
1579 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1581 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1585 shmem_write_end(struct file *file, struct address_space *mapping,
1586 loff_t pos, unsigned len, unsigned copied,
1587 struct page *page, void *fsdata)
1589 struct inode *inode = mapping->host;
1591 if (pos + copied > inode->i_size)
1592 i_size_write(inode, pos + copied);
1595 set_page_dirty(page);
1596 page_cache_release(page);
1601 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1603 struct inode *inode = filp->f_path.dentry->d_inode;
1604 struct address_space *mapping = inode->i_mapping;
1605 unsigned long index, offset;
1606 enum sgp_type sgp = SGP_READ;
1609 * Might this read be for a stacking filesystem? Then when reading
1610 * holes of a sparse file, we actually need to allocate those pages,
1611 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1613 if (segment_eq(get_fs(), KERNEL_DS))
1616 index = *ppos >> PAGE_CACHE_SHIFT;
1617 offset = *ppos & ~PAGE_CACHE_MASK;
1620 struct page *page = NULL;
1621 unsigned long end_index, nr, ret;
1622 loff_t i_size = i_size_read(inode);
1624 end_index = i_size >> PAGE_CACHE_SHIFT;
1625 if (index > end_index)
1627 if (index == end_index) {
1628 nr = i_size & ~PAGE_CACHE_MASK;
1633 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1635 if (desc->error == -EINVAL)
1643 * We must evaluate after, since reads (unlike writes)
1644 * are called without i_mutex protection against truncate
1646 nr = PAGE_CACHE_SIZE;
1647 i_size = i_size_read(inode);
1648 end_index = i_size >> PAGE_CACHE_SHIFT;
1649 if (index == end_index) {
1650 nr = i_size & ~PAGE_CACHE_MASK;
1653 page_cache_release(page);
1661 * If users can be writing to this page using arbitrary
1662 * virtual addresses, take care about potential aliasing
1663 * before reading the page on the kernel side.
1665 if (mapping_writably_mapped(mapping))
1666 flush_dcache_page(page);
1668 * Mark the page accessed if we read the beginning.
1671 mark_page_accessed(page);
1673 page = ZERO_PAGE(0);
1674 page_cache_get(page);
1678 * Ok, we have the page, and it's up-to-date, so
1679 * now we can copy it to user space...
1681 * The actor routine returns how many bytes were actually used..
1682 * NOTE! This may not be the same as how much of a user buffer
1683 * we filled up (we may be padding etc), so we can only update
1684 * "pos" here (the actor routine has to update the user buffer
1685 * pointers and the remaining count).
1687 ret = actor(desc, page, offset, nr);
1689 index += offset >> PAGE_CACHE_SHIFT;
1690 offset &= ~PAGE_CACHE_MASK;
1692 page_cache_release(page);
1693 if (ret != nr || !desc->count)
1699 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1700 file_accessed(filp);
1703 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1704 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1706 struct file *filp = iocb->ki_filp;
1710 loff_t *ppos = &iocb->ki_pos;
1712 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1716 for (seg = 0; seg < nr_segs; seg++) {
1717 read_descriptor_t desc;
1720 desc.arg.buf = iov[seg].iov_base;
1721 desc.count = iov[seg].iov_len;
1722 if (desc.count == 0)
1725 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1726 retval += desc.written;
1728 retval = retval ?: desc.error;
1737 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1739 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1741 buf->f_type = TMPFS_MAGIC;
1742 buf->f_bsize = PAGE_CACHE_SIZE;
1743 buf->f_namelen = NAME_MAX;
1744 spin_lock(&sbinfo->stat_lock);
1745 if (sbinfo->max_blocks) {
1746 buf->f_blocks = sbinfo->max_blocks;
1747 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1749 if (sbinfo->max_inodes) {
1750 buf->f_files = sbinfo->max_inodes;
1751 buf->f_ffree = sbinfo->free_inodes;
1753 /* else leave those fields 0 like simple_statfs */
1754 spin_unlock(&sbinfo->stat_lock);
1759 * File creation. Allocate an inode, and we're done..
1762 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1764 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1765 int error = -ENOSPC;
1768 error = security_inode_init_security(inode, dir, NULL, NULL,
1771 if (error != -EOPNOTSUPP) {
1776 error = shmem_acl_init(inode, dir);
1781 if (dir->i_mode & S_ISGID) {
1782 inode->i_gid = dir->i_gid;
1784 inode->i_mode |= S_ISGID;
1786 dir->i_size += BOGO_DIRENT_SIZE;
1787 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1788 d_instantiate(dentry, inode);
1789 dget(dentry); /* Extra count - pin the dentry in core */
1794 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1798 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1804 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1805 struct nameidata *nd)
1807 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1813 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1815 struct inode *inode = old_dentry->d_inode;
1819 * No ordinary (disk based) filesystem counts links as inodes;
1820 * but each new link needs a new dentry, pinning lowmem, and
1821 * tmpfs dentries cannot be pruned until they are unlinked.
1823 ret = shmem_reserve_inode(inode->i_sb);
1827 dir->i_size += BOGO_DIRENT_SIZE;
1828 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1830 atomic_inc(&inode->i_count); /* New dentry reference */
1831 dget(dentry); /* Extra pinning count for the created dentry */
1832 d_instantiate(dentry, inode);
1837 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1839 struct inode *inode = dentry->d_inode;
1841 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1842 shmem_free_inode(inode->i_sb);
1844 dir->i_size -= BOGO_DIRENT_SIZE;
1845 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1847 dput(dentry); /* Undo the count from "create" - this does all the work */
1851 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1853 if (!simple_empty(dentry))
1856 drop_nlink(dentry->d_inode);
1858 return shmem_unlink(dir, dentry);
1862 * The VFS layer already does all the dentry stuff for rename,
1863 * we just have to decrement the usage count for the target if
1864 * it exists so that the VFS layer correctly free's it when it
1867 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1869 struct inode *inode = old_dentry->d_inode;
1870 int they_are_dirs = S_ISDIR(inode->i_mode);
1872 if (!simple_empty(new_dentry))
1875 if (new_dentry->d_inode) {
1876 (void) shmem_unlink(new_dir, new_dentry);
1878 drop_nlink(old_dir);
1879 } else if (they_are_dirs) {
1880 drop_nlink(old_dir);
1884 old_dir->i_size -= BOGO_DIRENT_SIZE;
1885 new_dir->i_size += BOGO_DIRENT_SIZE;
1886 old_dir->i_ctime = old_dir->i_mtime =
1887 new_dir->i_ctime = new_dir->i_mtime =
1888 inode->i_ctime = CURRENT_TIME;
1892 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1896 struct inode *inode;
1897 struct page *page = NULL;
1899 struct shmem_inode_info *info;
1901 len = strlen(symname) + 1;
1902 if (len > PAGE_CACHE_SIZE)
1903 return -ENAMETOOLONG;
1905 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1909 error = security_inode_init_security(inode, dir, NULL, NULL,
1912 if (error != -EOPNOTSUPP) {
1919 info = SHMEM_I(inode);
1920 inode->i_size = len-1;
1921 if (len <= (char *)inode - (char *)info) {
1923 memcpy(info, symname, len);
1924 inode->i_op = &shmem_symlink_inline_operations;
1926 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1932 inode->i_op = &shmem_symlink_inode_operations;
1933 kaddr = kmap_atomic(page, KM_USER0);
1934 memcpy(kaddr, symname, len);
1935 kunmap_atomic(kaddr, KM_USER0);
1936 set_page_dirty(page);
1937 page_cache_release(page);
1939 if (dir->i_mode & S_ISGID)
1940 inode->i_gid = dir->i_gid;
1941 dir->i_size += BOGO_DIRENT_SIZE;
1942 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943 d_instantiate(dentry, inode);
1948 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1950 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1954 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1956 struct page *page = NULL;
1957 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1958 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1964 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1966 if (!IS_ERR(nd_get_link(nd))) {
1967 struct page *page = cookie;
1969 mark_page_accessed(page);
1970 page_cache_release(page);
1974 static const struct inode_operations shmem_symlink_inline_operations = {
1975 .readlink = generic_readlink,
1976 .follow_link = shmem_follow_link_inline,
1979 static const struct inode_operations shmem_symlink_inode_operations = {
1980 .truncate = shmem_truncate,
1981 .readlink = generic_readlink,
1982 .follow_link = shmem_follow_link,
1983 .put_link = shmem_put_link,
1986 #ifdef CONFIG_TMPFS_POSIX_ACL
1988 * Superblocks without xattr inode operations will get security.* xattr
1989 * support from the VFS "for free". As soon as we have any other xattrs
1990 * like ACLs, we also need to implement the security.* handlers at
1991 * filesystem level, though.
1994 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1995 size_t list_len, const char *name,
1998 return security_inode_listsecurity(inode, list, list_len);
2001 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2002 void *buffer, size_t size)
2004 if (strcmp(name, "") == 0)
2006 return xattr_getsecurity(inode, name, buffer, size);
2009 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2010 const void *value, size_t size, int flags)
2012 if (strcmp(name, "") == 0)
2014 return security_inode_setsecurity(inode, name, value, size, flags);
2017 static struct xattr_handler shmem_xattr_security_handler = {
2018 .prefix = XATTR_SECURITY_PREFIX,
2019 .list = shmem_xattr_security_list,
2020 .get = shmem_xattr_security_get,
2021 .set = shmem_xattr_security_set,
2024 static struct xattr_handler *shmem_xattr_handlers[] = {
2025 &shmem_xattr_acl_access_handler,
2026 &shmem_xattr_acl_default_handler,
2027 &shmem_xattr_security_handler,
2032 static struct dentry *shmem_get_parent(struct dentry *child)
2034 return ERR_PTR(-ESTALE);
2037 static int shmem_match(struct inode *ino, void *vfh)
2041 inum = (inum << 32) | fh[1];
2042 return ino->i_ino == inum && fh[0] == ino->i_generation;
2045 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2046 struct fid *fid, int fh_len, int fh_type)
2048 struct inode *inode;
2049 struct dentry *dentry = NULL;
2050 u64 inum = fid->raw[2];
2051 inum = (inum << 32) | fid->raw[1];
2056 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2057 shmem_match, fid->raw);
2059 dentry = d_find_alias(inode);
2066 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2069 struct inode *inode = dentry->d_inode;
2074 if (hlist_unhashed(&inode->i_hash)) {
2075 /* Unfortunately insert_inode_hash is not idempotent,
2076 * so as we hash inodes here rather than at creation
2077 * time, we need a lock to ensure we only try
2080 static DEFINE_SPINLOCK(lock);
2082 if (hlist_unhashed(&inode->i_hash))
2083 __insert_inode_hash(inode,
2084 inode->i_ino + inode->i_generation);
2088 fh[0] = inode->i_generation;
2089 fh[1] = inode->i_ino;
2090 fh[2] = ((__u64)inode->i_ino) >> 32;
2096 static const struct export_operations shmem_export_ops = {
2097 .get_parent = shmem_get_parent,
2098 .encode_fh = shmem_encode_fh,
2099 .fh_to_dentry = shmem_fh_to_dentry,
2102 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2105 char *this_char, *value, *rest;
2107 while (options != NULL) {
2108 this_char = options;
2111 * NUL-terminate this option: unfortunately,
2112 * mount options form a comma-separated list,
2113 * but mpol's nodelist may also contain commas.
2115 options = strchr(options, ',');
2116 if (options == NULL)
2119 if (!isdigit(*options)) {
2126 if ((value = strchr(this_char,'=')) != NULL) {
2130 "tmpfs: No value for mount option '%s'\n",
2135 if (!strcmp(this_char,"size")) {
2136 unsigned long long size;
2137 size = memparse(value,&rest);
2139 size <<= PAGE_SHIFT;
2140 size *= totalram_pages;
2146 sbinfo->max_blocks =
2147 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2148 } else if (!strcmp(this_char,"nr_blocks")) {
2149 sbinfo->max_blocks = memparse(value, &rest);
2152 } else if (!strcmp(this_char,"nr_inodes")) {
2153 sbinfo->max_inodes = memparse(value, &rest);
2156 } else if (!strcmp(this_char,"mode")) {
2159 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2162 } else if (!strcmp(this_char,"uid")) {
2165 sbinfo->uid = simple_strtoul(value, &rest, 0);
2168 } else if (!strcmp(this_char,"gid")) {
2171 sbinfo->gid = simple_strtoul(value, &rest, 0);
2174 } else if (!strcmp(this_char,"mpol")) {
2175 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2178 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2186 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2192 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2194 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2195 struct shmem_sb_info config = *sbinfo;
2196 unsigned long blocks;
2197 unsigned long inodes;
2198 int error = -EINVAL;
2200 if (shmem_parse_options(data, &config, true))
2203 spin_lock(&sbinfo->stat_lock);
2204 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2205 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2206 if (config.max_blocks < blocks)
2208 if (config.max_inodes < inodes)
2211 * Those tests also disallow limited->unlimited while any are in
2212 * use, so i_blocks will always be zero when max_blocks is zero;
2213 * but we must separately disallow unlimited->limited, because
2214 * in that case we have no record of how much is already in use.
2216 if (config.max_blocks && !sbinfo->max_blocks)
2218 if (config.max_inodes && !sbinfo->max_inodes)
2222 sbinfo->max_blocks = config.max_blocks;
2223 sbinfo->free_blocks = config.max_blocks - blocks;
2224 sbinfo->max_inodes = config.max_inodes;
2225 sbinfo->free_inodes = config.max_inodes - inodes;
2227 mpol_put(sbinfo->mpol);
2228 sbinfo->mpol = config.mpol; /* transfers initial ref */
2230 spin_unlock(&sbinfo->stat_lock);
2234 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2236 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2238 if (sbinfo->max_blocks != shmem_default_max_blocks())
2239 seq_printf(seq, ",size=%luk",
2240 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2241 if (sbinfo->max_inodes != shmem_default_max_inodes())
2242 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2243 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2244 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2245 if (sbinfo->uid != 0)
2246 seq_printf(seq, ",uid=%u", sbinfo->uid);
2247 if (sbinfo->gid != 0)
2248 seq_printf(seq, ",gid=%u", sbinfo->gid);
2249 shmem_show_mpol(seq, sbinfo->mpol);
2252 #endif /* CONFIG_TMPFS */
2254 static void shmem_put_super(struct super_block *sb)
2256 kfree(sb->s_fs_info);
2257 sb->s_fs_info = NULL;
2260 static int shmem_fill_super(struct super_block *sb,
2261 void *data, int silent)
2263 struct inode *inode;
2264 struct dentry *root;
2265 struct shmem_sb_info *sbinfo;
2268 /* Round up to L1_CACHE_BYTES to resist false sharing */
2269 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2270 L1_CACHE_BYTES), GFP_KERNEL);
2274 sbinfo->max_blocks = 0;
2275 sbinfo->max_inodes = 0;
2276 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2277 sbinfo->uid = current->fsuid;
2278 sbinfo->gid = current->fsgid;
2279 sbinfo->mpol = NULL;
2280 sb->s_fs_info = sbinfo;
2284 * Per default we only allow half of the physical ram per
2285 * tmpfs instance, limiting inodes to one per page of lowmem;
2286 * but the internal instance is left unlimited.
2288 if (!(sb->s_flags & MS_NOUSER)) {
2289 sbinfo->max_blocks = shmem_default_max_blocks();
2290 sbinfo->max_inodes = shmem_default_max_inodes();
2291 if (shmem_parse_options(data, sbinfo, false)) {
2296 sb->s_export_op = &shmem_export_ops;
2298 sb->s_flags |= MS_NOUSER;
2301 spin_lock_init(&sbinfo->stat_lock);
2302 sbinfo->free_blocks = sbinfo->max_blocks;
2303 sbinfo->free_inodes = sbinfo->max_inodes;
2305 sb->s_maxbytes = SHMEM_MAX_BYTES;
2306 sb->s_blocksize = PAGE_CACHE_SIZE;
2307 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2308 sb->s_magic = TMPFS_MAGIC;
2309 sb->s_op = &shmem_ops;
2310 sb->s_time_gran = 1;
2311 #ifdef CONFIG_TMPFS_POSIX_ACL
2312 sb->s_xattr = shmem_xattr_handlers;
2313 sb->s_flags |= MS_POSIXACL;
2316 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2319 inode->i_uid = sbinfo->uid;
2320 inode->i_gid = sbinfo->gid;
2321 root = d_alloc_root(inode);
2330 shmem_put_super(sb);
2334 static struct kmem_cache *shmem_inode_cachep;
2336 static struct inode *shmem_alloc_inode(struct super_block *sb)
2338 struct shmem_inode_info *p;
2339 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2342 return &p->vfs_inode;
2345 static void shmem_destroy_inode(struct inode *inode)
2347 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2348 /* only struct inode is valid if it's an inline symlink */
2349 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2351 shmem_acl_destroy_inode(inode);
2352 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2355 static void init_once(struct kmem_cache *cachep, void *foo)
2357 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2359 inode_init_once(&p->vfs_inode);
2360 #ifdef CONFIG_TMPFS_POSIX_ACL
2362 p->i_default_acl = NULL;
2366 static int init_inodecache(void)
2368 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2369 sizeof(struct shmem_inode_info),
2370 0, SLAB_PANIC, init_once);
2374 static void destroy_inodecache(void)
2376 kmem_cache_destroy(shmem_inode_cachep);
2379 static const struct address_space_operations shmem_aops = {
2380 .writepage = shmem_writepage,
2381 .set_page_dirty = __set_page_dirty_no_writeback,
2383 .readpage = shmem_readpage,
2384 .write_begin = shmem_write_begin,
2385 .write_end = shmem_write_end,
2387 .migratepage = migrate_page,
2390 static const struct file_operations shmem_file_operations = {
2393 .llseek = generic_file_llseek,
2394 .read = do_sync_read,
2395 .write = do_sync_write,
2396 .aio_read = shmem_file_aio_read,
2397 .aio_write = generic_file_aio_write,
2398 .fsync = simple_sync_file,
2399 .splice_read = generic_file_splice_read,
2400 .splice_write = generic_file_splice_write,
2404 static const struct inode_operations shmem_inode_operations = {
2405 .truncate = shmem_truncate,
2406 .setattr = shmem_notify_change,
2407 .truncate_range = shmem_truncate_range,
2408 #ifdef CONFIG_TMPFS_POSIX_ACL
2409 .setxattr = generic_setxattr,
2410 .getxattr = generic_getxattr,
2411 .listxattr = generic_listxattr,
2412 .removexattr = generic_removexattr,
2413 .permission = shmem_permission,
2418 static const struct inode_operations shmem_dir_inode_operations = {
2420 .create = shmem_create,
2421 .lookup = simple_lookup,
2423 .unlink = shmem_unlink,
2424 .symlink = shmem_symlink,
2425 .mkdir = shmem_mkdir,
2426 .rmdir = shmem_rmdir,
2427 .mknod = shmem_mknod,
2428 .rename = shmem_rename,
2430 #ifdef CONFIG_TMPFS_POSIX_ACL
2431 .setattr = shmem_notify_change,
2432 .setxattr = generic_setxattr,
2433 .getxattr = generic_getxattr,
2434 .listxattr = generic_listxattr,
2435 .removexattr = generic_removexattr,
2436 .permission = shmem_permission,
2440 static const struct inode_operations shmem_special_inode_operations = {
2441 #ifdef CONFIG_TMPFS_POSIX_ACL
2442 .setattr = shmem_notify_change,
2443 .setxattr = generic_setxattr,
2444 .getxattr = generic_getxattr,
2445 .listxattr = generic_listxattr,
2446 .removexattr = generic_removexattr,
2447 .permission = shmem_permission,
2451 static const struct super_operations shmem_ops = {
2452 .alloc_inode = shmem_alloc_inode,
2453 .destroy_inode = shmem_destroy_inode,
2455 .statfs = shmem_statfs,
2456 .remount_fs = shmem_remount_fs,
2457 .show_options = shmem_show_options,
2459 .delete_inode = shmem_delete_inode,
2460 .drop_inode = generic_delete_inode,
2461 .put_super = shmem_put_super,
2464 static struct vm_operations_struct shmem_vm_ops = {
2465 .fault = shmem_fault,
2467 .set_policy = shmem_set_policy,
2468 .get_policy = shmem_get_policy,
2473 static int shmem_get_sb(struct file_system_type *fs_type,
2474 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2476 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2479 static struct file_system_type tmpfs_fs_type = {
2480 .owner = THIS_MODULE,
2482 .get_sb = shmem_get_sb,
2483 .kill_sb = kill_litter_super,
2485 static struct vfsmount *shm_mnt;
2487 static int __init init_tmpfs(void)
2491 error = bdi_init(&shmem_backing_dev_info);
2495 error = init_inodecache();
2499 error = register_filesystem(&tmpfs_fs_type);
2501 printk(KERN_ERR "Could not register tmpfs\n");
2505 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2506 tmpfs_fs_type.name, NULL);
2507 if (IS_ERR(shm_mnt)) {
2508 error = PTR_ERR(shm_mnt);
2509 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2515 unregister_filesystem(&tmpfs_fs_type);
2517 destroy_inodecache();
2519 bdi_destroy(&shmem_backing_dev_info);
2521 shm_mnt = ERR_PTR(error);
2524 module_init(init_tmpfs)
2527 * shmem_file_setup - get an unlinked file living in tmpfs
2528 * @name: name for dentry (to be seen in /proc/<pid>/maps
2529 * @size: size to be set for the file
2532 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2536 struct inode *inode;
2537 struct dentry *dentry, *root;
2540 if (IS_ERR(shm_mnt))
2541 return (void *)shm_mnt;
2543 if (size < 0 || size > SHMEM_MAX_BYTES)
2544 return ERR_PTR(-EINVAL);
2546 if (shmem_acct_size(flags, size))
2547 return ERR_PTR(-ENOMEM);
2551 this.len = strlen(name);
2552 this.hash = 0; /* will go */
2553 root = shm_mnt->mnt_root;
2554 dentry = d_alloc(root, &this);
2559 file = get_empty_filp();
2564 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2568 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2569 d_instantiate(dentry, inode);
2570 inode->i_size = size;
2571 inode->i_nlink = 0; /* It is unlinked */
2572 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2573 &shmem_file_operations);
2581 shmem_unacct_size(flags, size);
2582 return ERR_PTR(error);
2586 * shmem_zero_setup - setup a shared anonymous mapping
2587 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2589 int shmem_zero_setup(struct vm_area_struct *vma)
2592 loff_t size = vma->vm_end - vma->vm_start;
2594 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2596 return PTR_ERR(file);
2600 vma->vm_file = file;
2601 vma->vm_ops = &shmem_vm_ops;