Merge git://git.infradead.org/hdrinstall-2.6
[linux-2.6] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg)
33
34 /**
35  * The "cpufreq driver" - the arch- or hardware-dependend low
36  * level driver of CPUFreq support, and its spinlock. This lock
37  * also protects the cpufreq_cpu_data array.
38  */
39 static struct cpufreq_driver *cpufreq_driver;
40 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
41 static DEFINE_SPINLOCK(cpufreq_driver_lock);
42
43 /* internal prototypes */
44 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
45 static void handle_update(void *data);
46
47 /**
48  * Two notifier lists: the "policy" list is involved in the
49  * validation process for a new CPU frequency policy; the
50  * "transition" list for kernel code that needs to handle
51  * changes to devices when the CPU clock speed changes.
52  * The mutex locks both lists.
53  */
54 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
55 static BLOCKING_NOTIFIER_HEAD(cpufreq_transition_notifier_list);
56
57
58 static LIST_HEAD(cpufreq_governor_list);
59 static DEFINE_MUTEX (cpufreq_governor_mutex);
60
61 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
62 {
63         struct cpufreq_policy *data;
64         unsigned long flags;
65
66         if (cpu >= NR_CPUS)
67                 goto err_out;
68
69         /* get the cpufreq driver */
70         spin_lock_irqsave(&cpufreq_driver_lock, flags);
71
72         if (!cpufreq_driver)
73                 goto err_out_unlock;
74
75         if (!try_module_get(cpufreq_driver->owner))
76                 goto err_out_unlock;
77
78
79         /* get the CPU */
80         data = cpufreq_cpu_data[cpu];
81
82         if (!data)
83                 goto err_out_put_module;
84
85         if (!kobject_get(&data->kobj))
86                 goto err_out_put_module;
87
88         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
89         return data;
90
91 err_out_put_module:
92         module_put(cpufreq_driver->owner);
93 err_out_unlock:
94         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
95 err_out:
96         return NULL;
97 }
98 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
99
100
101 void cpufreq_cpu_put(struct cpufreq_policy *data)
102 {
103         kobject_put(&data->kobj);
104         module_put(cpufreq_driver->owner);
105 }
106 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
107
108
109 /*********************************************************************
110  *                     UNIFIED DEBUG HELPERS                         *
111  *********************************************************************/
112 #ifdef CONFIG_CPU_FREQ_DEBUG
113
114 /* what part(s) of the CPUfreq subsystem are debugged? */
115 static unsigned int debug;
116
117 /* is the debug output ratelimit'ed using printk_ratelimit? User can
118  * set or modify this value.
119  */
120 static unsigned int debug_ratelimit = 1;
121
122 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
123  * loading of a cpufreq driver, temporarily disabled when a new policy
124  * is set, and disabled upon cpufreq driver removal
125  */
126 static unsigned int disable_ratelimit = 1;
127 static DEFINE_SPINLOCK(disable_ratelimit_lock);
128
129 static void cpufreq_debug_enable_ratelimit(void)
130 {
131         unsigned long flags;
132
133         spin_lock_irqsave(&disable_ratelimit_lock, flags);
134         if (disable_ratelimit)
135                 disable_ratelimit--;
136         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
137 }
138
139 static void cpufreq_debug_disable_ratelimit(void)
140 {
141         unsigned long flags;
142
143         spin_lock_irqsave(&disable_ratelimit_lock, flags);
144         disable_ratelimit++;
145         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
146 }
147
148 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...)
149 {
150         char s[256];
151         va_list args;
152         unsigned int len;
153         unsigned long flags;
154
155         WARN_ON(!prefix);
156         if (type & debug) {
157                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
158                 if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) {
159                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
160                         return;
161                 }
162                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
163
164                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
165
166                 va_start(args, fmt);
167                 len += vsnprintf(&s[len], (256 - len), fmt, args);
168                 va_end(args);
169
170                 printk(s);
171
172                 WARN_ON(len < 5);
173         }
174 }
175 EXPORT_SYMBOL(cpufreq_debug_printk);
176
177
178 module_param(debug, uint, 0644);
179 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors.");
180
181 module_param(debug_ratelimit, uint, 0644);
182 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting.");
183
184 #else /* !CONFIG_CPU_FREQ_DEBUG */
185
186 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
187 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
188
189 #endif /* CONFIG_CPU_FREQ_DEBUG */
190
191
192 /*********************************************************************
193  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
194  *********************************************************************/
195
196 /**
197  * adjust_jiffies - adjust the system "loops_per_jiffy"
198  *
199  * This function alters the system "loops_per_jiffy" for the clock
200  * speed change. Note that loops_per_jiffy cannot be updated on SMP
201  * systems as each CPU might be scaled differently. So, use the arch
202  * per-CPU loops_per_jiffy value wherever possible.
203  */
204 #ifndef CONFIG_SMP
205 static unsigned long l_p_j_ref;
206 static unsigned int  l_p_j_ref_freq;
207
208 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
209 {
210         if (ci->flags & CPUFREQ_CONST_LOOPS)
211                 return;
212
213         if (!l_p_j_ref_freq) {
214                 l_p_j_ref = loops_per_jiffy;
215                 l_p_j_ref_freq = ci->old;
216                 dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
217         }
218         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
219             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
220             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
221                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new);
222                 dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new);
223         }
224 }
225 #else
226 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; }
227 #endif
228
229
230 /**
231  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
232  * on frequency transition.
233  *
234  * This function calls the transition notifiers and the "adjust_jiffies"
235  * function. It is called twice on all CPU frequency changes that have
236  * external effects.
237  */
238 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
239 {
240         struct cpufreq_policy *policy;
241
242         BUG_ON(irqs_disabled());
243
244         freqs->flags = cpufreq_driver->flags;
245         dprintk("notification %u of frequency transition to %u kHz\n",
246                 state, freqs->new);
247
248         policy = cpufreq_cpu_data[freqs->cpu];
249         switch (state) {
250
251         case CPUFREQ_PRECHANGE:
252                 /* detect if the driver reported a value as "old frequency"
253                  * which is not equal to what the cpufreq core thinks is
254                  * "old frequency".
255                  */
256                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
257                         if ((policy) && (policy->cpu == freqs->cpu) &&
258                             (policy->cur) && (policy->cur != freqs->old)) {
259                                 dprintk("Warning: CPU frequency is"
260                                         " %u, cpufreq assumed %u kHz.\n",
261                                         freqs->old, policy->cur);
262                                 freqs->old = policy->cur;
263                         }
264                 }
265                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
266                                 CPUFREQ_PRECHANGE, freqs);
267                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
268                 break;
269
270         case CPUFREQ_POSTCHANGE:
271                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
272                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
273                                 CPUFREQ_POSTCHANGE, freqs);
274                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
275                         policy->cur = freqs->new;
276                 break;
277         }
278 }
279 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
280
281
282
283 /*********************************************************************
284  *                          SYSFS INTERFACE                          *
285  *********************************************************************/
286
287 /**
288  * cpufreq_parse_governor - parse a governor string
289  */
290 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
291                                 struct cpufreq_governor **governor)
292 {
293         if (!cpufreq_driver)
294                 return -EINVAL;
295         if (cpufreq_driver->setpolicy) {
296                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
297                         *policy = CPUFREQ_POLICY_PERFORMANCE;
298                         return 0;
299                 } else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
300                         *policy = CPUFREQ_POLICY_POWERSAVE;
301                         return 0;
302                 }
303                 return -EINVAL;
304         } else {
305                 struct cpufreq_governor *t;
306                 mutex_lock(&cpufreq_governor_mutex);
307                 if (!cpufreq_driver || !cpufreq_driver->target)
308                         goto out;
309                 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
310                         if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) {
311                                 *governor = t;
312                                 mutex_unlock(&cpufreq_governor_mutex);
313                                 return 0;
314                         }
315                 }
316 out:
317                 mutex_unlock(&cpufreq_governor_mutex);
318         }
319         return -EINVAL;
320 }
321
322
323 /* drivers/base/cpu.c */
324 extern struct sysdev_class cpu_sysdev_class;
325
326
327 /**
328  * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information
329  *
330  * Write out information from cpufreq_driver->policy[cpu]; object must be
331  * "unsigned int".
332  */
333
334 #define show_one(file_name, object)                     \
335 static ssize_t show_##file_name                         \
336 (struct cpufreq_policy * policy, char *buf)             \
337 {                                                       \
338         return sprintf (buf, "%u\n", policy->object);   \
339 }
340
341 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
342 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
343 show_one(scaling_min_freq, min);
344 show_one(scaling_max_freq, max);
345 show_one(scaling_cur_freq, cur);
346
347 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy);
348
349 /**
350  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
351  */
352 #define store_one(file_name, object)                    \
353 static ssize_t store_##file_name                                        \
354 (struct cpufreq_policy * policy, const char *buf, size_t count)         \
355 {                                                                       \
356         unsigned int ret = -EINVAL;                                     \
357         struct cpufreq_policy new_policy;                               \
358                                                                         \
359         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
360         if (ret)                                                        \
361                 return -EINVAL;                                         \
362                                                                         \
363         ret = sscanf (buf, "%u", &new_policy.object);                   \
364         if (ret != 1)                                                   \
365                 return -EINVAL;                                         \
366                                                                         \
367         mutex_lock(&policy->lock);                                      \
368         ret = __cpufreq_set_policy(policy, &new_policy);                \
369         policy->user_policy.object = policy->object;                    \
370         mutex_unlock(&policy->lock);                                    \
371                                                                         \
372         return ret ? ret : count;                                       \
373 }
374
375 store_one(scaling_min_freq,min);
376 store_one(scaling_max_freq,max);
377
378 /**
379  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
380  */
381 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf)
382 {
383         unsigned int cur_freq = cpufreq_get(policy->cpu);
384         if (!cur_freq)
385                 return sprintf(buf, "<unknown>");
386         return sprintf(buf, "%u\n", cur_freq);
387 }
388
389
390 /**
391  * show_scaling_governor - show the current policy for the specified CPU
392  */
393 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
394 {
395         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
396                 return sprintf(buf, "powersave\n");
397         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
398                 return sprintf(buf, "performance\n");
399         else if (policy->governor)
400                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
401         return -EINVAL;
402 }
403
404
405 /**
406  * store_scaling_governor - store policy for the specified CPU
407  */
408 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
409                                        const char *buf, size_t count)
410 {
411         unsigned int ret = -EINVAL;
412         char    str_governor[16];
413         struct cpufreq_policy new_policy;
414
415         ret = cpufreq_get_policy(&new_policy, policy->cpu);
416         if (ret)
417                 return ret;
418
419         ret = sscanf (buf, "%15s", str_governor);
420         if (ret != 1)
421                 return -EINVAL;
422
423         if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor))
424                 return -EINVAL;
425
426         /* Do not use cpufreq_set_policy here or the user_policy.max
427            will be wrongly overridden */
428         mutex_lock(&policy->lock);
429         ret = __cpufreq_set_policy(policy, &new_policy);
430
431         policy->user_policy.policy = policy->policy;
432         policy->user_policy.governor = policy->governor;
433         mutex_unlock(&policy->lock);
434
435         return ret ? ret : count;
436 }
437
438 /**
439  * show_scaling_driver - show the cpufreq driver currently loaded
440  */
441 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
442 {
443         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
444 }
445
446 /**
447  * show_scaling_available_governors - show the available CPUfreq governors
448  */
449 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy,
450                                 char *buf)
451 {
452         ssize_t i = 0;
453         struct cpufreq_governor *t;
454
455         if (!cpufreq_driver->target) {
456                 i += sprintf(buf, "performance powersave");
457                 goto out;
458         }
459
460         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
461                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
462                         goto out;
463                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
464         }
465 out:
466         i += sprintf(&buf[i], "\n");
467         return i;
468 }
469 /**
470  * show_affected_cpus - show the CPUs affected by each transition
471  */
472 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
473 {
474         ssize_t i = 0;
475         unsigned int cpu;
476
477         for_each_cpu_mask(cpu, policy->cpus) {
478                 if (i)
479                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
480                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
481                 if (i >= (PAGE_SIZE - 5))
482                     break;
483         }
484         i += sprintf(&buf[i], "\n");
485         return i;
486 }
487
488
489 #define define_one_ro(_name) \
490 static struct freq_attr _name = \
491 __ATTR(_name, 0444, show_##_name, NULL)
492
493 #define define_one_ro0400(_name) \
494 static struct freq_attr _name = \
495 __ATTR(_name, 0400, show_##_name, NULL)
496
497 #define define_one_rw(_name) \
498 static struct freq_attr _name = \
499 __ATTR(_name, 0644, show_##_name, store_##_name)
500
501 define_one_ro0400(cpuinfo_cur_freq);
502 define_one_ro(cpuinfo_min_freq);
503 define_one_ro(cpuinfo_max_freq);
504 define_one_ro(scaling_available_governors);
505 define_one_ro(scaling_driver);
506 define_one_ro(scaling_cur_freq);
507 define_one_ro(affected_cpus);
508 define_one_rw(scaling_min_freq);
509 define_one_rw(scaling_max_freq);
510 define_one_rw(scaling_governor);
511
512 static struct attribute * default_attrs[] = {
513         &cpuinfo_min_freq.attr,
514         &cpuinfo_max_freq.attr,
515         &scaling_min_freq.attr,
516         &scaling_max_freq.attr,
517         &affected_cpus.attr,
518         &scaling_governor.attr,
519         &scaling_driver.attr,
520         &scaling_available_governors.attr,
521         NULL
522 };
523
524 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
525 #define to_attr(a) container_of(a,struct freq_attr,attr)
526
527 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
528 {
529         struct cpufreq_policy * policy = to_policy(kobj);
530         struct freq_attr * fattr = to_attr(attr);
531         ssize_t ret;
532         policy = cpufreq_cpu_get(policy->cpu);
533         if (!policy)
534                 return -EINVAL;
535         ret = fattr->show ? fattr->show(policy,buf) : -EIO;
536         cpufreq_cpu_put(policy);
537         return ret;
538 }
539
540 static ssize_t store(struct kobject * kobj, struct attribute * attr,
541                      const char * buf, size_t count)
542 {
543         struct cpufreq_policy * policy = to_policy(kobj);
544         struct freq_attr * fattr = to_attr(attr);
545         ssize_t ret;
546         policy = cpufreq_cpu_get(policy->cpu);
547         if (!policy)
548                 return -EINVAL;
549         ret = fattr->store ? fattr->store(policy,buf,count) : -EIO;
550         cpufreq_cpu_put(policy);
551         return ret;
552 }
553
554 static void cpufreq_sysfs_release(struct kobject * kobj)
555 {
556         struct cpufreq_policy * policy = to_policy(kobj);
557         dprintk("last reference is dropped\n");
558         complete(&policy->kobj_unregister);
559 }
560
561 static struct sysfs_ops sysfs_ops = {
562         .show   = show,
563         .store  = store,
564 };
565
566 static struct kobj_type ktype_cpufreq = {
567         .sysfs_ops      = &sysfs_ops,
568         .default_attrs  = default_attrs,
569         .release        = cpufreq_sysfs_release,
570 };
571
572
573 /**
574  * cpufreq_add_dev - add a CPU device
575  *
576  * Adds the cpufreq interface for a CPU device.
577  */
578 static int cpufreq_add_dev (struct sys_device * sys_dev)
579 {
580         unsigned int cpu = sys_dev->id;
581         int ret = 0;
582         struct cpufreq_policy new_policy;
583         struct cpufreq_policy *policy;
584         struct freq_attr **drv_attr;
585         struct sys_device *cpu_sys_dev;
586         unsigned long flags;
587         unsigned int j;
588 #ifdef CONFIG_SMP
589         struct cpufreq_policy *managed_policy;
590 #endif
591
592         if (cpu_is_offline(cpu))
593                 return 0;
594
595         cpufreq_debug_disable_ratelimit();
596         dprintk("adding CPU %u\n", cpu);
597
598 #ifdef CONFIG_SMP
599         /* check whether a different CPU already registered this
600          * CPU because it is in the same boat. */
601         policy = cpufreq_cpu_get(cpu);
602         if (unlikely(policy)) {
603                 cpufreq_cpu_put(policy);
604                 cpufreq_debug_enable_ratelimit();
605                 return 0;
606         }
607 #endif
608
609         if (!try_module_get(cpufreq_driver->owner)) {
610                 ret = -EINVAL;
611                 goto module_out;
612         }
613
614         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
615         if (!policy) {
616                 ret = -ENOMEM;
617                 goto nomem_out;
618         }
619
620         policy->cpu = cpu;
621         policy->cpus = cpumask_of_cpu(cpu);
622
623         mutex_init(&policy->lock);
624         mutex_lock(&policy->lock);
625         init_completion(&policy->kobj_unregister);
626         INIT_WORK(&policy->update, handle_update, (void *)(long)cpu);
627
628         /* call driver. From then on the cpufreq must be able
629          * to accept all calls to ->verify and ->setpolicy for this CPU
630          */
631         ret = cpufreq_driver->init(policy);
632         if (ret) {
633                 dprintk("initialization failed\n");
634                 mutex_unlock(&policy->lock);
635                 goto err_out;
636         }
637
638 #ifdef CONFIG_SMP
639         for_each_cpu_mask(j, policy->cpus) {
640                 if (cpu == j)
641                         continue;
642
643                 /* check for existing affected CPUs.  They may not be aware
644                  * of it due to CPU Hotplug.
645                  */
646                 managed_policy = cpufreq_cpu_get(j);
647                 if (unlikely(managed_policy)) {
648                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
649                         managed_policy->cpus = policy->cpus;
650                         cpufreq_cpu_data[cpu] = managed_policy;
651                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
652
653                         dprintk("CPU already managed, adding link\n");
654                         sysfs_create_link(&sys_dev->kobj,
655                                           &managed_policy->kobj, "cpufreq");
656
657                         cpufreq_debug_enable_ratelimit();
658                         mutex_unlock(&policy->lock);
659                         ret = 0;
660                         goto err_out_driver_exit; /* call driver->exit() */
661                 }
662         }
663 #endif
664         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
665
666         /* prepare interface data */
667         policy->kobj.parent = &sys_dev->kobj;
668         policy->kobj.ktype = &ktype_cpufreq;
669         strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
670
671         ret = kobject_register(&policy->kobj);
672         if (ret) {
673                 mutex_unlock(&policy->lock);
674                 goto err_out_driver_exit;
675         }
676         /* set up files for this cpu device */
677         drv_attr = cpufreq_driver->attr;
678         while ((drv_attr) && (*drv_attr)) {
679                 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
680                 drv_attr++;
681         }
682         if (cpufreq_driver->get)
683                 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
684         if (cpufreq_driver->target)
685                 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
686
687         spin_lock_irqsave(&cpufreq_driver_lock, flags);
688         for_each_cpu_mask(j, policy->cpus)
689                 cpufreq_cpu_data[j] = policy;
690         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
691
692         /* symlink affected CPUs */
693         for_each_cpu_mask(j, policy->cpus) {
694                 if (j == cpu)
695                         continue;
696                 if (!cpu_online(j))
697                         continue;
698
699                 dprintk("CPU %u already managed, adding link\n", j);
700                 cpufreq_cpu_get(cpu);
701                 cpu_sys_dev = get_cpu_sysdev(j);
702                 sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
703                                   "cpufreq");
704         }
705
706         policy->governor = NULL; /* to assure that the starting sequence is
707                                   * run in cpufreq_set_policy */
708         mutex_unlock(&policy->lock);
709
710         /* set default policy */
711         ret = cpufreq_set_policy(&new_policy);
712         if (ret) {
713                 dprintk("setting policy failed\n");
714                 goto err_out_unregister;
715         }
716
717         module_put(cpufreq_driver->owner);
718         dprintk("initialization complete\n");
719         cpufreq_debug_enable_ratelimit();
720
721         return 0;
722
723
724 err_out_unregister:
725         spin_lock_irqsave(&cpufreq_driver_lock, flags);
726         for_each_cpu_mask(j, policy->cpus)
727                 cpufreq_cpu_data[j] = NULL;
728         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
729
730         kobject_unregister(&policy->kobj);
731         wait_for_completion(&policy->kobj_unregister);
732
733 err_out_driver_exit:
734         if (cpufreq_driver->exit)
735                 cpufreq_driver->exit(policy);
736
737 err_out:
738         kfree(policy);
739
740 nomem_out:
741         module_put(cpufreq_driver->owner);
742 module_out:
743         cpufreq_debug_enable_ratelimit();
744         return ret;
745 }
746
747
748 /**
749  * cpufreq_remove_dev - remove a CPU device
750  *
751  * Removes the cpufreq interface for a CPU device.
752  */
753 static int cpufreq_remove_dev (struct sys_device * sys_dev)
754 {
755         unsigned int cpu = sys_dev->id;
756         unsigned long flags;
757         struct cpufreq_policy *data;
758 #ifdef CONFIG_SMP
759         struct sys_device *cpu_sys_dev;
760         unsigned int j;
761 #endif
762
763         cpufreq_debug_disable_ratelimit();
764         dprintk("unregistering CPU %u\n", cpu);
765
766         spin_lock_irqsave(&cpufreq_driver_lock, flags);
767         data = cpufreq_cpu_data[cpu];
768
769         if (!data) {
770                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
771                 cpufreq_debug_enable_ratelimit();
772                 return -EINVAL;
773         }
774         cpufreq_cpu_data[cpu] = NULL;
775
776
777 #ifdef CONFIG_SMP
778         /* if this isn't the CPU which is the parent of the kobj, we
779          * only need to unlink, put and exit
780          */
781         if (unlikely(cpu != data->cpu)) {
782                 dprintk("removing link\n");
783                 cpu_clear(cpu, data->cpus);
784                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
785                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
786                 cpufreq_cpu_put(data);
787                 cpufreq_debug_enable_ratelimit();
788                 return 0;
789         }
790 #endif
791
792
793         if (!kobject_get(&data->kobj)) {
794                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
795                 cpufreq_debug_enable_ratelimit();
796                 return -EFAULT;
797         }
798
799 #ifdef CONFIG_SMP
800         /* if we have other CPUs still registered, we need to unlink them,
801          * or else wait_for_completion below will lock up. Clean the
802          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
803          * links afterwards.
804          */
805         if (unlikely(cpus_weight(data->cpus) > 1)) {
806                 for_each_cpu_mask(j, data->cpus) {
807                         if (j == cpu)
808                                 continue;
809                         cpufreq_cpu_data[j] = NULL;
810                 }
811         }
812
813         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
814
815         if (unlikely(cpus_weight(data->cpus) > 1)) {
816                 for_each_cpu_mask(j, data->cpus) {
817                         if (j == cpu)
818                                 continue;
819                         dprintk("removing link for cpu %u\n", j);
820                         cpu_sys_dev = get_cpu_sysdev(j);
821                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
822                         cpufreq_cpu_put(data);
823                 }
824         }
825 #else
826         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
827 #endif
828
829         mutex_lock(&data->lock);
830         if (cpufreq_driver->target)
831                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
832         mutex_unlock(&data->lock);
833
834         kobject_unregister(&data->kobj);
835
836         kobject_put(&data->kobj);
837
838         /* we need to make sure that the underlying kobj is actually
839          * not referenced anymore by anybody before we proceed with
840          * unloading.
841          */
842         dprintk("waiting for dropping of refcount\n");
843         wait_for_completion(&data->kobj_unregister);
844         dprintk("wait complete\n");
845
846         if (cpufreq_driver->exit)
847                 cpufreq_driver->exit(data);
848
849         kfree(data);
850
851         cpufreq_debug_enable_ratelimit();
852         return 0;
853 }
854
855
856 static void handle_update(void *data)
857 {
858         unsigned int cpu = (unsigned int)(long)data;
859         dprintk("handle_update for cpu %u called\n", cpu);
860         cpufreq_update_policy(cpu);
861 }
862
863 /**
864  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
865  *      @cpu: cpu number
866  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
867  *      @new_freq: CPU frequency the CPU actually runs at
868  *
869  *      We adjust to current frequency first, and need to clean up later. So either call
870  *      to cpufreq_update_policy() or schedule handle_update()).
871  */
872 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq)
873 {
874         struct cpufreq_freqs freqs;
875
876         dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
877                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
878
879         freqs.cpu = cpu;
880         freqs.old = old_freq;
881         freqs.new = new_freq;
882         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
883         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
884 }
885
886
887 /**
888  * cpufreq_quick_get - get the CPU frequency (in kHz) frpm policy->cur
889  * @cpu: CPU number
890  *
891  * This is the last known freq, without actually getting it from the driver.
892  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
893  */
894 unsigned int cpufreq_quick_get(unsigned int cpu)
895 {
896         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
897         unsigned int ret = 0;
898
899         if (policy) {
900                 mutex_lock(&policy->lock);
901                 ret = policy->cur;
902                 mutex_unlock(&policy->lock);
903                 cpufreq_cpu_put(policy);
904         }
905
906         return (ret);
907 }
908 EXPORT_SYMBOL(cpufreq_quick_get);
909
910
911 /**
912  * cpufreq_get - get the current CPU frequency (in kHz)
913  * @cpu: CPU number
914  *
915  * Get the CPU current (static) CPU frequency
916  */
917 unsigned int cpufreq_get(unsigned int cpu)
918 {
919         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
920         unsigned int ret = 0;
921
922         if (!policy)
923                 return 0;
924
925         if (!cpufreq_driver->get)
926                 goto out;
927
928         mutex_lock(&policy->lock);
929
930         ret = cpufreq_driver->get(cpu);
931
932         if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
933                 /* verify no discrepancy between actual and saved value exists */
934                 if (unlikely(ret != policy->cur)) {
935                         cpufreq_out_of_sync(cpu, policy->cur, ret);
936                         schedule_work(&policy->update);
937                 }
938         }
939
940         mutex_unlock(&policy->lock);
941
942 out:
943         cpufreq_cpu_put(policy);
944
945         return (ret);
946 }
947 EXPORT_SYMBOL(cpufreq_get);
948
949
950 /**
951  *      cpufreq_suspend - let the low level driver prepare for suspend
952  */
953
954 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
955 {
956         int cpu = sysdev->id;
957         unsigned int ret = 0;
958         unsigned int cur_freq = 0;
959         struct cpufreq_policy *cpu_policy;
960
961         dprintk("resuming cpu %u\n", cpu);
962
963         if (!cpu_online(cpu))
964                 return 0;
965
966         /* we may be lax here as interrupts are off. Nonetheless
967          * we need to grab the correct cpu policy, as to check
968          * whether we really run on this CPU.
969          */
970
971         cpu_policy = cpufreq_cpu_get(cpu);
972         if (!cpu_policy)
973                 return -EINVAL;
974
975         /* only handle each CPU group once */
976         if (unlikely(cpu_policy->cpu != cpu)) {
977                 cpufreq_cpu_put(cpu_policy);
978                 return 0;
979         }
980
981         if (cpufreq_driver->suspend) {
982                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
983                 if (ret) {
984                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
985                                         "step on CPU %u\n", cpu_policy->cpu);
986                         cpufreq_cpu_put(cpu_policy);
987                         return ret;
988                 }
989         }
990
991
992         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
993                 goto out;
994
995         if (cpufreq_driver->get)
996                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
997
998         if (!cur_freq || !cpu_policy->cur) {
999                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1000                        "frequency is what timing core thinks it is.\n");
1001                 goto out;
1002         }
1003
1004         if (unlikely(cur_freq != cpu_policy->cur)) {
1005                 struct cpufreq_freqs freqs;
1006
1007                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1008                         dprintk("Warning: CPU frequency is %u, "
1009                                "cpufreq assumed %u kHz.\n",
1010                                cur_freq, cpu_policy->cur);
1011
1012                 freqs.cpu = cpu;
1013                 freqs.old = cpu_policy->cur;
1014                 freqs.new = cur_freq;
1015
1016                 blocking_notifier_call_chain(&cpufreq_transition_notifier_list,
1017                                     CPUFREQ_SUSPENDCHANGE, &freqs);
1018                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1019
1020                 cpu_policy->cur = cur_freq;
1021         }
1022
1023 out:
1024         cpufreq_cpu_put(cpu_policy);
1025         return 0;
1026 }
1027
1028 /**
1029  *      cpufreq_resume -  restore proper CPU frequency handling after resume
1030  *
1031  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1032  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1033  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1034  *          restored.
1035  */
1036 static int cpufreq_resume(struct sys_device * sysdev)
1037 {
1038         int cpu = sysdev->id;
1039         unsigned int ret = 0;
1040         struct cpufreq_policy *cpu_policy;
1041
1042         dprintk("resuming cpu %u\n", cpu);
1043
1044         if (!cpu_online(cpu))
1045                 return 0;
1046
1047         /* we may be lax here as interrupts are off. Nonetheless
1048          * we need to grab the correct cpu policy, as to check
1049          * whether we really run on this CPU.
1050          */
1051
1052         cpu_policy = cpufreq_cpu_get(cpu);
1053         if (!cpu_policy)
1054                 return -EINVAL;
1055
1056         /* only handle each CPU group once */
1057         if (unlikely(cpu_policy->cpu != cpu)) {
1058                 cpufreq_cpu_put(cpu_policy);
1059                 return 0;
1060         }
1061
1062         if (cpufreq_driver->resume) {
1063                 ret = cpufreq_driver->resume(cpu_policy);
1064                 if (ret) {
1065                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1066                                         "step on CPU %u\n", cpu_policy->cpu);
1067                         cpufreq_cpu_put(cpu_policy);
1068                         return ret;
1069                 }
1070         }
1071
1072         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1073                 unsigned int cur_freq = 0;
1074
1075                 if (cpufreq_driver->get)
1076                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1077
1078                 if (!cur_freq || !cpu_policy->cur) {
1079                         printk(KERN_ERR "cpufreq: resume failed to assert "
1080                                         "current frequency is what timing core "
1081                                         "thinks it is.\n");
1082                         goto out;
1083                 }
1084
1085                 if (unlikely(cur_freq != cpu_policy->cur)) {
1086                         struct cpufreq_freqs freqs;
1087
1088                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1089                                 dprintk("Warning: CPU frequency"
1090                                        "is %u, cpufreq assumed %u kHz.\n",
1091                                        cur_freq, cpu_policy->cur);
1092
1093                         freqs.cpu = cpu;
1094                         freqs.old = cpu_policy->cur;
1095                         freqs.new = cur_freq;
1096
1097                         blocking_notifier_call_chain(
1098                                         &cpufreq_transition_notifier_list,
1099                                         CPUFREQ_RESUMECHANGE, &freqs);
1100                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1101
1102                         cpu_policy->cur = cur_freq;
1103                 }
1104         }
1105
1106 out:
1107         schedule_work(&cpu_policy->update);
1108         cpufreq_cpu_put(cpu_policy);
1109         return ret;
1110 }
1111
1112 static struct sysdev_driver cpufreq_sysdev_driver = {
1113         .add            = cpufreq_add_dev,
1114         .remove         = cpufreq_remove_dev,
1115         .suspend        = cpufreq_suspend,
1116         .resume         = cpufreq_resume,
1117 };
1118
1119
1120 /*********************************************************************
1121  *                     NOTIFIER LISTS INTERFACE                      *
1122  *********************************************************************/
1123
1124 /**
1125  *      cpufreq_register_notifier - register a driver with cpufreq
1126  *      @nb: notifier function to register
1127  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1128  *
1129  *      Add a driver to one of two lists: either a list of drivers that
1130  *      are notified about clock rate changes (once before and once after
1131  *      the transition), or a list of drivers that are notified about
1132  *      changes in cpufreq policy.
1133  *
1134  *      This function may sleep, and has the same return conditions as
1135  *      blocking_notifier_chain_register.
1136  */
1137 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1138 {
1139         int ret;
1140
1141         switch (list) {
1142         case CPUFREQ_TRANSITION_NOTIFIER:
1143                 ret = blocking_notifier_chain_register(
1144                                 &cpufreq_transition_notifier_list, nb);
1145                 break;
1146         case CPUFREQ_POLICY_NOTIFIER:
1147                 ret = blocking_notifier_chain_register(
1148                                 &cpufreq_policy_notifier_list, nb);
1149                 break;
1150         default:
1151                 ret = -EINVAL;
1152         }
1153
1154         return ret;
1155 }
1156 EXPORT_SYMBOL(cpufreq_register_notifier);
1157
1158
1159 /**
1160  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1161  *      @nb: notifier block to be unregistered
1162  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1163  *
1164  *      Remove a driver from the CPU frequency notifier list.
1165  *
1166  *      This function may sleep, and has the same return conditions as
1167  *      blocking_notifier_chain_unregister.
1168  */
1169 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1170 {
1171         int ret;
1172
1173         switch (list) {
1174         case CPUFREQ_TRANSITION_NOTIFIER:
1175                 ret = blocking_notifier_chain_unregister(
1176                                 &cpufreq_transition_notifier_list, nb);
1177                 break;
1178         case CPUFREQ_POLICY_NOTIFIER:
1179                 ret = blocking_notifier_chain_unregister(
1180                                 &cpufreq_policy_notifier_list, nb);
1181                 break;
1182         default:
1183                 ret = -EINVAL;
1184         }
1185
1186         return ret;
1187 }
1188 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1189
1190
1191 /*********************************************************************
1192  *                              GOVERNORS                            *
1193  *********************************************************************/
1194
1195
1196 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1197                             unsigned int target_freq,
1198                             unsigned int relation)
1199 {
1200         int retval = -EINVAL;
1201
1202         lock_cpu_hotplug();
1203         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1204                 target_freq, relation);
1205         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1206                 retval = cpufreq_driver->target(policy, target_freq, relation);
1207
1208         unlock_cpu_hotplug();
1209
1210         return retval;
1211 }
1212 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1213
1214 int cpufreq_driver_target(struct cpufreq_policy *policy,
1215                           unsigned int target_freq,
1216                           unsigned int relation)
1217 {
1218         int ret;
1219
1220         policy = cpufreq_cpu_get(policy->cpu);
1221         if (!policy)
1222                 return -EINVAL;
1223
1224         mutex_lock(&policy->lock);
1225
1226         ret = __cpufreq_driver_target(policy, target_freq, relation);
1227
1228         mutex_unlock(&policy->lock);
1229
1230         cpufreq_cpu_put(policy);
1231         return ret;
1232 }
1233 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1234
1235
1236 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1237 {
1238         int ret;
1239
1240         if (!try_module_get(policy->governor->owner))
1241                 return -EINVAL;
1242
1243         dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event);
1244         ret = policy->governor->governor(policy, event);
1245
1246         /* we keep one module reference alive for each CPU governed by this CPU */
1247         if ((event != CPUFREQ_GOV_START) || ret)
1248                 module_put(policy->governor->owner);
1249         if ((event == CPUFREQ_GOV_STOP) && !ret)
1250                 module_put(policy->governor->owner);
1251
1252         return ret;
1253 }
1254
1255
1256 int cpufreq_governor(unsigned int cpu, unsigned int event)
1257 {
1258         int ret = 0;
1259         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1260
1261         if (!policy)
1262                 return -EINVAL;
1263
1264         mutex_lock(&policy->lock);
1265         ret = __cpufreq_governor(policy, event);
1266         mutex_unlock(&policy->lock);
1267
1268         cpufreq_cpu_put(policy);
1269         return ret;
1270 }
1271 EXPORT_SYMBOL_GPL(cpufreq_governor);
1272
1273
1274 int cpufreq_register_governor(struct cpufreq_governor *governor)
1275 {
1276         struct cpufreq_governor *t;
1277
1278         if (!governor)
1279                 return -EINVAL;
1280
1281         mutex_lock(&cpufreq_governor_mutex);
1282
1283         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
1284                 if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
1285                         mutex_unlock(&cpufreq_governor_mutex);
1286                         return -EBUSY;
1287                 }
1288         }
1289         list_add(&governor->governor_list, &cpufreq_governor_list);
1290
1291         mutex_unlock(&cpufreq_governor_mutex);
1292         return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1295
1296
1297 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1298 {
1299         if (!governor)
1300                 return;
1301
1302         mutex_lock(&cpufreq_governor_mutex);
1303         list_del(&governor->governor_list);
1304         mutex_unlock(&cpufreq_governor_mutex);
1305         return;
1306 }
1307 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1308
1309
1310
1311 /*********************************************************************
1312  *                          POLICY INTERFACE                         *
1313  *********************************************************************/
1314
1315 /**
1316  * cpufreq_get_policy - get the current cpufreq_policy
1317  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1318  *
1319  * Reads the current cpufreq policy.
1320  */
1321 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1322 {
1323         struct cpufreq_policy *cpu_policy;
1324         if (!policy)
1325                 return -EINVAL;
1326
1327         cpu_policy = cpufreq_cpu_get(cpu);
1328         if (!cpu_policy)
1329                 return -EINVAL;
1330
1331         mutex_lock(&cpu_policy->lock);
1332         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1333         mutex_unlock(&cpu_policy->lock);
1334
1335         cpufreq_cpu_put(cpu_policy);
1336         return 0;
1337 }
1338 EXPORT_SYMBOL(cpufreq_get_policy);
1339
1340
1341 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy)
1342 {
1343         int ret = 0;
1344
1345         cpufreq_debug_disable_ratelimit();
1346         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1347                 policy->min, policy->max);
1348
1349         memcpy(&policy->cpuinfo, &data->cpuinfo, sizeof(struct cpufreq_cpuinfo));
1350
1351         /* verify the cpu speed can be set within this limit */
1352         ret = cpufreq_driver->verify(policy);
1353         if (ret)
1354                 goto error_out;
1355
1356         /* adjust if necessary - all reasons */
1357         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1358                         CPUFREQ_ADJUST, policy);
1359
1360         /* adjust if necessary - hardware incompatibility*/
1361         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1362                         CPUFREQ_INCOMPATIBLE, policy);
1363
1364         /* verify the cpu speed can be set within this limit,
1365            which might be different to the first one */
1366         ret = cpufreq_driver->verify(policy);
1367         if (ret)
1368                 goto error_out;
1369
1370         /* notification of the new policy */
1371         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1372                         CPUFREQ_NOTIFY, policy);
1373
1374         data->min = policy->min;
1375         data->max = policy->max;
1376
1377         dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max);
1378
1379         if (cpufreq_driver->setpolicy) {
1380                 data->policy = policy->policy;
1381                 dprintk("setting range\n");
1382                 ret = cpufreq_driver->setpolicy(policy);
1383         } else {
1384                 if (policy->governor != data->governor) {
1385                         /* save old, working values */
1386                         struct cpufreq_governor *old_gov = data->governor;
1387
1388                         dprintk("governor switch\n");
1389
1390                         /* end old governor */
1391                         if (data->governor)
1392                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1393
1394                         /* start new governor */
1395                         data->governor = policy->governor;
1396                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1397                                 /* new governor failed, so re-start old one */
1398                                 dprintk("starting governor %s failed\n", data->governor->name);
1399                                 if (old_gov) {
1400                                         data->governor = old_gov;
1401                                         __cpufreq_governor(data, CPUFREQ_GOV_START);
1402                                 }
1403                                 ret = -EINVAL;
1404                                 goto error_out;
1405                         }
1406                         /* might be a policy change, too, so fall through */
1407                 }
1408                 dprintk("governor: change or update limits\n");
1409                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1410         }
1411
1412 error_out:
1413         cpufreq_debug_enable_ratelimit();
1414         return ret;
1415 }
1416
1417 /**
1418  *      cpufreq_set_policy - set a new CPUFreq policy
1419  *      @policy: policy to be set.
1420  *
1421  *      Sets a new CPU frequency and voltage scaling policy.
1422  */
1423 int cpufreq_set_policy(struct cpufreq_policy *policy)
1424 {
1425         int ret = 0;
1426         struct cpufreq_policy *data;
1427
1428         if (!policy)
1429                 return -EINVAL;
1430
1431         data = cpufreq_cpu_get(policy->cpu);
1432         if (!data)
1433                 return -EINVAL;
1434
1435         /* lock this CPU */
1436         mutex_lock(&data->lock);
1437
1438         ret = __cpufreq_set_policy(data, policy);
1439         data->user_policy.min = data->min;
1440         data->user_policy.max = data->max;
1441         data->user_policy.policy = data->policy;
1442         data->user_policy.governor = data->governor;
1443
1444         mutex_unlock(&data->lock);
1445         cpufreq_cpu_put(data);
1446
1447         return ret;
1448 }
1449 EXPORT_SYMBOL(cpufreq_set_policy);
1450
1451
1452 /**
1453  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1454  *      @cpu: CPU which shall be re-evaluated
1455  *
1456  *      Usefull for policy notifiers which have different necessities
1457  *      at different times.
1458  */
1459 int cpufreq_update_policy(unsigned int cpu)
1460 {
1461         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1462         struct cpufreq_policy policy;
1463         int ret = 0;
1464
1465         if (!data)
1466                 return -ENODEV;
1467
1468         mutex_lock(&data->lock);
1469
1470         dprintk("updating policy for CPU %u\n", cpu);
1471         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1472         policy.min = data->user_policy.min;
1473         policy.max = data->user_policy.max;
1474         policy.policy = data->user_policy.policy;
1475         policy.governor = data->user_policy.governor;
1476
1477         /* BIOS might change freq behind our back
1478           -> ask driver for current freq and notify governors about a change */
1479         if (cpufreq_driver->get) {
1480                 policy.cur = cpufreq_driver->get(cpu);
1481                 if (!data->cur) {
1482                         dprintk("Driver did not initialize current freq");
1483                         data->cur = policy.cur;
1484                 } else {
1485                         if (data->cur != policy.cur)
1486                                 cpufreq_out_of_sync(cpu, data->cur, policy.cur);
1487                 }
1488         }
1489
1490         ret = __cpufreq_set_policy(data, &policy);
1491
1492         mutex_unlock(&data->lock);
1493
1494         cpufreq_cpu_put(data);
1495         return ret;
1496 }
1497 EXPORT_SYMBOL(cpufreq_update_policy);
1498
1499 #ifdef CONFIG_HOTPLUG_CPU
1500 static int cpufreq_cpu_callback(struct notifier_block *nfb,
1501                                         unsigned long action, void *hcpu)
1502 {
1503         unsigned int cpu = (unsigned long)hcpu;
1504         struct cpufreq_policy *policy;
1505         struct sys_device *sys_dev;
1506
1507         sys_dev = get_cpu_sysdev(cpu);
1508
1509         if (sys_dev) {
1510                 switch (action) {
1511                 case CPU_ONLINE:
1512                         cpufreq_add_dev(sys_dev);
1513                         break;
1514                 case CPU_DOWN_PREPARE:
1515                         /*
1516                          * We attempt to put this cpu in lowest frequency
1517                          * possible before going down. This will permit
1518                          * hardware-managed P-State to switch other related
1519                          * threads to min or higher speeds if possible.
1520                          */
1521                         policy = cpufreq_cpu_data[cpu];
1522                         if (policy) {
1523                                 cpufreq_driver_target(policy, policy->min,
1524                                                 CPUFREQ_RELATION_H);
1525                         }
1526                         break;
1527                 case CPU_DEAD:
1528                         cpufreq_remove_dev(sys_dev);
1529                         break;
1530                 }
1531         }
1532         return NOTIFY_OK;
1533 }
1534
1535 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1536 {
1537     .notifier_call = cpufreq_cpu_callback,
1538 };
1539 #endif /* CONFIG_HOTPLUG_CPU */
1540
1541 /*********************************************************************
1542  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1543  *********************************************************************/
1544
1545 /**
1546  * cpufreq_register_driver - register a CPU Frequency driver
1547  * @driver_data: A struct cpufreq_driver containing the values#
1548  * submitted by the CPU Frequency driver.
1549  *
1550  *   Registers a CPU Frequency driver to this core code. This code
1551  * returns zero on success, -EBUSY when another driver got here first
1552  * (and isn't unregistered in the meantime).
1553  *
1554  */
1555 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1556 {
1557         unsigned long flags;
1558         int ret;
1559
1560         if (!driver_data || !driver_data->verify || !driver_data->init ||
1561             ((!driver_data->setpolicy) && (!driver_data->target)))
1562                 return -EINVAL;
1563
1564         dprintk("trying to register driver %s\n", driver_data->name);
1565
1566         if (driver_data->setpolicy)
1567                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1568
1569         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1570         if (cpufreq_driver) {
1571                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1572                 return -EBUSY;
1573         }
1574         cpufreq_driver = driver_data;
1575         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1576
1577         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1578
1579         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1580                 int i;
1581                 ret = -ENODEV;
1582
1583                 /* check for at least one working CPU */
1584                 for (i=0; i<NR_CPUS; i++)
1585                         if (cpufreq_cpu_data[i])
1586                                 ret = 0;
1587
1588                 /* if all ->init() calls failed, unregister */
1589                 if (ret) {
1590                         dprintk("no CPU initialized for driver %s\n", driver_data->name);
1591                         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1592
1593                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1594                         cpufreq_driver = NULL;
1595                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1596                 }
1597         }
1598
1599         if (!ret) {
1600                 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1601                 dprintk("driver %s up and running\n", driver_data->name);
1602                 cpufreq_debug_enable_ratelimit();
1603         }
1604
1605         return (ret);
1606 }
1607 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1608
1609
1610 /**
1611  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1612  *
1613  *    Unregister the current CPUFreq driver. Only call this if you have
1614  * the right to do so, i.e. if you have succeeded in initialising before!
1615  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1616  * currently not initialised.
1617  */
1618 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1619 {
1620         unsigned long flags;
1621
1622         cpufreq_debug_disable_ratelimit();
1623
1624         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1625                 cpufreq_debug_enable_ratelimit();
1626                 return -EINVAL;
1627         }
1628
1629         dprintk("unregistering driver %s\n", driver->name);
1630
1631         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1632         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1633
1634         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1635         cpufreq_driver = NULL;
1636         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1637
1638         return 0;
1639 }
1640 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);