1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 2006 David S. Miller (davem@davemloft.net)
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitops.h>
37 #include <asm/system.h>
40 #include <asm/byteorder.h>
43 #include <asm/idprom.h>
45 #include <asm/openprom.h>
46 #include <asm/oplib.h>
48 #include <asm/auxio.h>
50 #include <asm/uaccess.h>
52 #include <asm/pgtable.h>
56 #include <linux/pci.h>
64 #define DRV_NAME "sunhme"
65 #define DRV_VERSION "3.00"
66 #define DRV_RELDATE "June 23, 2006"
67 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
69 static char version[] =
70 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
72 MODULE_VERSION(DRV_VERSION);
73 MODULE_AUTHOR(DRV_AUTHOR);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
77 static int macaddr[6];
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr, int, NULL, 0);
81 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
84 static struct quattro *qfe_sbus_list;
88 static struct quattro *qfe_pci_list;
98 struct hme_tx_logent {
102 #define TXLOG_ACTION_IRQ 0x01
103 #define TXLOG_ACTION_TXMIT 0x02
104 #define TXLOG_ACTION_TBUSY 0x04
105 #define TXLOG_ACTION_NBUFS 0x08
108 #define TX_LOG_LEN 128
109 static struct hme_tx_logent tx_log[TX_LOG_LEN];
110 static int txlog_cur_entry;
111 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
113 struct hme_tx_logent *tlp;
117 tlp = &tx_log[txlog_cur_entry];
118 tlp->tstamp = (unsigned int)jiffies;
119 tlp->tx_new = hp->tx_new;
120 tlp->tx_old = hp->tx_old;
123 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124 restore_flags(flags);
126 static __inline__ void tx_dump_log(void)
130 this = txlog_cur_entry;
131 for (i = 0; i < TX_LOG_LEN; i++) {
132 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
134 tx_log[this].tx_new, tx_log[this].tx_old,
135 tx_log[this].action, tx_log[this].status);
136 this = (this + 1) & (TX_LOG_LEN - 1);
139 static __inline__ void tx_dump_ring(struct happy_meal *hp)
141 struct hmeal_init_block *hb = hp->happy_block;
142 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
145 for (i = 0; i < TX_RING_SIZE; i+=4) {
146 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
148 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
155 #define tx_add_log(hp, a, s) do { } while(0)
156 #define tx_dump_log() do { } while(0)
157 #define tx_dump_ring(hp) do { } while(0)
161 #define HMD(x) printk x
166 /* #define AUTO_SWITCH_DEBUG */
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x) printk x
174 #define DEFAULT_IPG0 16 /* For lance-mode only */
175 #define DEFAULT_IPG1 8 /* For all modes */
176 #define DEFAULT_IPG2 4 /* For all modes */
177 #define DEFAULT_JAMSIZE 4 /* Toe jam */
179 /* NOTE: In the descriptor writes one _must_ write the address
180 * member _first_. The card must not be allowed to see
181 * the updated descriptor flags until the address is
182 * correct. I've added a write memory barrier between
183 * the two stores so that I can sleep well at night... -DaveM
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem *reg, u32 val)
189 sbus_writel(val, reg);
192 static u32 sbus_hme_read32(void __iomem *reg)
194 return sbus_readl(reg);
197 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
201 rxd->rx_flags = flags;
204 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
208 txd->tx_flags = flags;
211 static u32 sbus_hme_read_desc32(u32 *p)
216 static void pci_hme_write32(void __iomem *reg, u32 val)
221 static u32 pci_hme_read32(void __iomem *reg)
226 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
228 rxd->rx_addr = cpu_to_le32(addr);
230 rxd->rx_flags = cpu_to_le32(flags);
233 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
235 txd->tx_addr = cpu_to_le32(addr);
237 txd->tx_flags = cpu_to_le32(flags);
240 static u32 pci_hme_read_desc32(u32 *p)
242 return cpu_to_le32p(p);
245 #define hme_write32(__hp, __reg, __val) \
246 ((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 ((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 ((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 ((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do { (__rxd)->rx_addr = (__addr); \
273 (__rxd)->rx_flags = (__flags); \
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do { (__txd)->tx_addr = (__addr); \
278 (__txd)->tx_flags = (__flags); \
280 #define hme_read_desc32(__hp, __p) (*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do { (__rxd)->rx_addr = cpu_to_le32(__addr); \
298 (__rxd)->rx_flags = cpu_to_le32(__flags); \
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do { (__txd)->tx_addr = cpu_to_le32(__addr); \
303 (__txd)->tx_flags = cpu_to_le32(__flags); \
305 #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p)
306 #define hme_dma_map(__hp, __ptr, __size, __dir) \
307 pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
308 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
309 pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
311 pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
313 pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
318 #ifdef SBUS_DMA_BIDIRECTIONAL
319 # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL
321 # define DMA_BIDIRECTIONAL 0
324 #ifdef SBUS_DMA_FROMDEVICE
325 # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE
327 # define DMA_TODEVICE 1
330 #ifdef SBUS_DMA_TODEVICE
331 # define DMA_TODEVICE SBUS_DMA_TODEVICE
333 # define DMA_FROMDEVICE 2
337 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
338 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
340 hme_write32(hp, tregs + TCVR_BBDATA, bit);
341 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
342 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
346 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
350 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
352 ret = hme_read32(hp, tregs + TCVR_CFG);
354 ret &= TCV_CFG_MDIO0;
356 ret &= TCV_CFG_MDIO1;
362 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
366 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
368 retval = hme_read32(hp, tregs + TCVR_CFG);
370 retval &= TCV_CFG_MDIO0;
372 retval &= TCV_CFG_MDIO1;
373 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
378 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
380 static int happy_meal_bb_read(struct happy_meal *hp,
381 void __iomem *tregs, int reg)
387 ASD(("happy_meal_bb_read: reg=%d ", reg));
389 /* Enable the MIF BitBang outputs. */
390 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
392 /* Force BitBang into the idle state. */
393 for (i = 0; i < 32; i++)
394 BB_PUT_BIT(hp, tregs, 1);
396 /* Give it the read sequence. */
397 BB_PUT_BIT(hp, tregs, 0);
398 BB_PUT_BIT(hp, tregs, 1);
399 BB_PUT_BIT(hp, tregs, 1);
400 BB_PUT_BIT(hp, tregs, 0);
402 /* Give it the PHY address. */
403 tmp = hp->paddr & 0xff;
404 for (i = 4; i >= 0; i--)
405 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
407 /* Tell it what register we want to read. */
409 for (i = 4; i >= 0; i--)
410 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
412 /* Close down the MIF BitBang outputs. */
413 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
415 /* Now read in the value. */
416 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
417 for (i = 15; i >= 0; i--)
418 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
419 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
421 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
422 ASD(("value=%x\n", retval));
426 static void happy_meal_bb_write(struct happy_meal *hp,
427 void __iomem *tregs, int reg,
428 unsigned short value)
433 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
435 /* Enable the MIF BitBang outputs. */
436 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
438 /* Force BitBang into the idle state. */
439 for (i = 0; i < 32; i++)
440 BB_PUT_BIT(hp, tregs, 1);
442 /* Give it write sequence. */
443 BB_PUT_BIT(hp, tregs, 0);
444 BB_PUT_BIT(hp, tregs, 1);
445 BB_PUT_BIT(hp, tregs, 0);
446 BB_PUT_BIT(hp, tregs, 1);
448 /* Give it the PHY address. */
449 tmp = (hp->paddr & 0xff);
450 for (i = 4; i >= 0; i--)
451 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
453 /* Tell it what register we will be writing. */
455 for (i = 4; i >= 0; i--)
456 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
458 /* Tell it to become ready for the bits. */
459 BB_PUT_BIT(hp, tregs, 1);
460 BB_PUT_BIT(hp, tregs, 0);
462 for (i = 15; i >= 0; i--)
463 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
465 /* Close down the MIF BitBang outputs. */
466 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
469 #define TCVR_READ_TRIES 16
471 static int happy_meal_tcvr_read(struct happy_meal *hp,
472 void __iomem *tregs, int reg)
474 int tries = TCVR_READ_TRIES;
477 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
478 if (hp->tcvr_type == none) {
479 ASD(("no transceiver, value=TCVR_FAILURE\n"));
483 if (!(hp->happy_flags & HFLAG_FENABLE)) {
484 ASD(("doing bit bang\n"));
485 return happy_meal_bb_read(hp, tregs, reg);
488 hme_write32(hp, tregs + TCVR_FRAME,
489 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
490 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
493 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
496 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
497 ASD(("value=%04x\n", retval));
501 #define TCVR_WRITE_TRIES 16
503 static void happy_meal_tcvr_write(struct happy_meal *hp,
504 void __iomem *tregs, int reg,
505 unsigned short value)
507 int tries = TCVR_WRITE_TRIES;
509 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
511 /* Welcome to Sun Microsystems, can I take your order please? */
512 if (!(hp->happy_flags & HFLAG_FENABLE)) {
513 happy_meal_bb_write(hp, tregs, reg, value);
517 /* Would you like fries with that? */
518 hme_write32(hp, tregs + TCVR_FRAME,
519 (FRAME_WRITE | (hp->paddr << 23) |
520 ((reg & 0xff) << 18) | (value & 0xffff)));
521 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
526 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
528 /* Fifty-two cents is your change, have a nice day. */
531 /* Auto negotiation. The scheme is very simple. We have a timer routine
532 * that keeps watching the auto negotiation process as it progresses.
533 * The DP83840 is first told to start doing it's thing, we set up the time
534 * and place the timer state machine in it's initial state.
536 * Here the timer peeks at the DP83840 status registers at each click to see
537 * if the auto negotiation has completed, we assume here that the DP83840 PHY
538 * will time out at some point and just tell us what (didn't) happen. For
539 * complete coverage we only allow so many of the ticks at this level to run,
540 * when this has expired we print a warning message and try another strategy.
541 * This "other" strategy is to force the interface into various speed/duplex
542 * configurations and we stop when we see a link-up condition before the
543 * maximum number of "peek" ticks have occurred.
545 * Once a valid link status has been detected we configure the BigMAC and
546 * the rest of the Happy Meal to speak the most efficient protocol we could
547 * get a clean link for. The priority for link configurations, highest first
549 * 100 Base-T Full Duplex
550 * 100 Base-T Half Duplex
551 * 10 Base-T Full Duplex
552 * 10 Base-T Half Duplex
554 * We start a new timer now, after a successful auto negotiation status has
555 * been detected. This timer just waits for the link-up bit to get set in
556 * the BMCR of the DP83840. When this occurs we print a kernel log message
557 * describing the link type in use and the fact that it is up.
559 * If a fatal error of some sort is signalled and detected in the interrupt
560 * service routine, and the chip is reset, or the link is ifconfig'd down
561 * and then back up, this entire process repeats itself all over again.
563 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
565 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
567 /* Downgrade from full to half duplex. Only possible
570 if (hp->sw_bmcr & BMCR_FULLDPLX) {
571 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
572 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
576 /* Downgrade from 100 to 10. */
577 if (hp->sw_bmcr & BMCR_SPEED100) {
578 hp->sw_bmcr &= ~(BMCR_SPEED100);
579 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
583 /* We've tried everything. */
587 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
589 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
590 if (hp->tcvr_type == external)
594 printk("transceiver at ");
595 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
596 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
597 if (hp->sw_lpa & LPA_100FULL)
598 printk("100Mb/s, Full Duplex.\n");
600 printk("100Mb/s, Half Duplex.\n");
602 if (hp->sw_lpa & LPA_10FULL)
603 printk("10Mb/s, Full Duplex.\n");
605 printk("10Mb/s, Half Duplex.\n");
609 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
611 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
612 if (hp->tcvr_type == external)
616 printk("transceiver at ");
617 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
618 if (hp->sw_bmcr & BMCR_SPEED100)
622 if (hp->sw_bmcr & BMCR_FULLDPLX)
623 printk("Full Duplex.\n");
625 printk("Half Duplex.\n");
628 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
632 /* All we care about is making sure the bigmac tx_cfg has a
633 * proper duplex setting.
635 if (hp->timer_state == arbwait) {
636 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
637 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
639 if (hp->sw_lpa & LPA_100FULL)
641 else if (hp->sw_lpa & LPA_100HALF)
643 else if (hp->sw_lpa & LPA_10FULL)
648 /* Forcing a link mode. */
649 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
650 if (hp->sw_bmcr & BMCR_FULLDPLX)
656 /* Before changing other bits in the tx_cfg register, and in
657 * general any of other the TX config registers too, you
660 * 2) Poll with reads until that bit reads back as zero
661 * 3) Make TX configuration changes
662 * 4) Set Enable once more
664 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
666 ~(BIGMAC_TXCFG_ENABLE));
667 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
670 hp->happy_flags |= HFLAG_FULL;
671 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
672 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
673 BIGMAC_TXCFG_FULLDPLX);
675 hp->happy_flags &= ~(HFLAG_FULL);
676 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
677 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
678 ~(BIGMAC_TXCFG_FULLDPLX));
680 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
681 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
682 BIGMAC_TXCFG_ENABLE);
688 static int happy_meal_init(struct happy_meal *hp);
690 static int is_lucent_phy(struct happy_meal *hp)
692 void __iomem *tregs = hp->tcvregs;
693 unsigned short mr2, mr3;
696 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
697 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
698 if ((mr2 & 0xffff) == 0x0180 &&
699 ((mr3 & 0xffff) >> 10) == 0x1d)
705 static void happy_meal_timer(unsigned long data)
707 struct happy_meal *hp = (struct happy_meal *) data;
708 void __iomem *tregs = hp->tcvregs;
709 int restart_timer = 0;
711 spin_lock_irq(&hp->happy_lock);
714 switch(hp->timer_state) {
716 /* Only allow for 5 ticks, thats 10 seconds and much too
717 * long to wait for arbitration to complete.
719 if (hp->timer_ticks >= 10) {
720 /* Enter force mode. */
722 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
723 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
725 hp->sw_bmcr = BMCR_SPEED100;
726 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
728 if (!is_lucent_phy(hp)) {
729 /* OK, seems we need do disable the transceiver for the first
730 * tick to make sure we get an accurate link state at the
733 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
734 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
735 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
737 hp->timer_state = ltrywait;
741 /* Anything interesting happen? */
742 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
743 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
746 /* Just what we've been waiting for... */
747 ret = set_happy_link_modes(hp, tregs);
749 /* Ooops, something bad happened, go to force
752 * XXX Broken hubs which don't support 802.3u
753 * XXX auto-negotiation make this happen as well.
758 /* Success, at least so far, advance our state engine. */
759 hp->timer_state = lupwait;
768 /* Auto negotiation was successful and we are awaiting a
769 * link up status. I have decided to let this timer run
770 * forever until some sort of error is signalled, reporting
771 * a message to the user at 10 second intervals.
773 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
774 if (hp->sw_bmsr & BMSR_LSTATUS) {
775 /* Wheee, it's up, display the link mode in use and put
776 * the timer to sleep.
778 display_link_mode(hp, tregs);
779 hp->timer_state = asleep;
782 if (hp->timer_ticks >= 10) {
783 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
784 "not completely up.\n", hp->dev->name);
794 /* Making the timeout here too long can make it take
795 * annoyingly long to attempt all of the link mode
796 * permutations, but then again this is essentially
797 * error recovery code for the most part.
799 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
800 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
801 if (hp->timer_ticks == 1) {
802 if (!is_lucent_phy(hp)) {
803 /* Re-enable transceiver, we'll re-enable the transceiver next
804 * tick, then check link state on the following tick.
806 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
807 happy_meal_tcvr_write(hp, tregs,
808 DP83840_CSCONFIG, hp->sw_csconfig);
813 if (hp->timer_ticks == 2) {
814 if (!is_lucent_phy(hp)) {
815 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
816 happy_meal_tcvr_write(hp, tregs,
817 DP83840_CSCONFIG, hp->sw_csconfig);
822 if (hp->sw_bmsr & BMSR_LSTATUS) {
823 /* Force mode selection success. */
824 display_forced_link_mode(hp, tregs);
825 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
826 hp->timer_state = asleep;
829 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
832 ret = try_next_permutation(hp, tregs);
834 /* Aieee, tried them all, reset the
835 * chip and try all over again.
838 /* Let the user know... */
839 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
842 ret = happy_meal_init(hp);
845 printk(KERN_ERR "%s: Error, cannot re-init the "
846 "Happy Meal.\n", hp->dev->name);
850 if (!is_lucent_phy(hp)) {
851 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
853 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
854 happy_meal_tcvr_write(hp, tregs,
855 DP83840_CSCONFIG, hp->sw_csconfig);
867 /* Can't happens.... */
868 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
872 hp->timer_state = asleep; /* foo on you */
877 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
878 add_timer(&hp->happy_timer);
882 spin_unlock_irq(&hp->happy_lock);
885 #define TX_RESET_TRIES 32
886 #define RX_RESET_TRIES 32
888 /* hp->happy_lock must be held */
889 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
891 int tries = TX_RESET_TRIES;
893 HMD(("happy_meal_tx_reset: reset, "));
895 /* Would you like to try our SMCC Delux? */
896 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
897 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
900 /* Lettuce, tomato, buggy hardware (no extra charge)? */
902 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
908 /* hp->happy_lock must be held */
909 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
911 int tries = RX_RESET_TRIES;
913 HMD(("happy_meal_rx_reset: reset, "));
915 /* We have a special on GNU/Viking hardware bugs today. */
916 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
917 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
920 /* Will that be all? */
922 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
924 /* Don't forget your vik_1137125_wa. Have a nice day. */
928 #define STOP_TRIES 16
930 /* hp->happy_lock must be held */
931 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
933 int tries = STOP_TRIES;
935 HMD(("happy_meal_stop: reset, "));
937 /* We're consolidating our STB products, it's your lucky day. */
938 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
939 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
942 /* Come back next week when we are "Sun Microelectronics". */
944 printk(KERN_ERR "happy meal: Fry guys.");
946 /* Remember: "Different name, same old buggy as shit hardware." */
950 /* hp->happy_lock must be held */
951 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
953 struct net_device_stats *stats = &hp->net_stats;
955 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
956 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
958 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
959 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
961 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
962 hme_write32(hp, bregs + BMAC_GLECTR, 0);
964 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
967 (hme_read32(hp, bregs + BMAC_EXCTR) +
968 hme_read32(hp, bregs + BMAC_LTCTR));
969 hme_write32(hp, bregs + BMAC_EXCTR, 0);
970 hme_write32(hp, bregs + BMAC_LTCTR, 0);
973 /* hp->happy_lock must be held */
974 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
976 ASD(("happy_meal_poll_stop: "));
978 /* If polling disabled or not polling already, nothing to do. */
979 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
980 (HFLAG_POLLENABLE | HFLAG_POLL)) {
981 HMD(("not polling, return\n"));
985 /* Shut up the MIF. */
986 ASD(("were polling, mif ints off, "));
987 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
989 /* Turn off polling. */
990 ASD(("polling off, "));
991 hme_write32(hp, tregs + TCVR_CFG,
992 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
994 /* We are no longer polling. */
995 hp->happy_flags &= ~(HFLAG_POLL);
997 /* Let the bits set. */
1002 /* Only Sun can take such nice parts and fuck up the programming interface
1003 * like this. Good job guys...
1005 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
1006 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
1008 /* hp->happy_lock must be held */
1009 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1012 int result, tries = TCVR_RESET_TRIES;
1014 tconfig = hme_read32(hp, tregs + TCVR_CFG);
1015 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1016 if (hp->tcvr_type == external) {
1018 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1019 hp->tcvr_type = internal;
1020 hp->paddr = TCV_PADDR_ITX;
1022 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025 if (result == TCVR_FAILURE) {
1026 ASD(("phyread_fail>\n"));
1029 ASD(("phyread_ok,PSELECT>"));
1030 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1031 hp->tcvr_type = external;
1032 hp->paddr = TCV_PADDR_ETX;
1034 if (tconfig & TCV_CFG_MDIO1) {
1035 ASD(("internal<PSELECT,"));
1036 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1038 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1039 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1040 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041 if (result == TCVR_FAILURE) {
1042 ASD(("phyread_fail>\n"));
1045 ASD(("phyread_ok,~PSELECT>"));
1046 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1047 hp->tcvr_type = internal;
1048 hp->paddr = TCV_PADDR_ITX;
1052 ASD(("BMCR_RESET "));
1053 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1056 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1057 if (result == TCVR_FAILURE)
1059 hp->sw_bmcr = result;
1060 if (!(result & BMCR_RESET))
1065 ASD(("BMCR RESET FAILED!\n"));
1068 ASD(("RESET_OK\n"));
1070 /* Get fresh copies of the PHY registers. */
1071 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1072 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1073 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1074 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1077 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1078 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1080 tries = TCVR_UNISOLATE_TRIES;
1082 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1083 if (result == TCVR_FAILURE)
1085 if (!(result & BMCR_ISOLATE))
1090 ASD((" FAILED!\n"));
1093 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1094 if (!is_lucent_phy(hp)) {
1095 result = happy_meal_tcvr_read(hp, tregs,
1097 happy_meal_tcvr_write(hp, tregs,
1098 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1103 /* Figure out whether we have an internal or external transceiver.
1105 * hp->happy_lock must be held
1107 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1109 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1111 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1112 if (hp->happy_flags & HFLAG_POLL) {
1113 /* If we are polling, we must stop to get the transceiver type. */
1114 ASD(("<polling> "));
1115 if (hp->tcvr_type == internal) {
1116 if (tconfig & TCV_CFG_MDIO1) {
1117 ASD(("<internal> <poll stop> "));
1118 happy_meal_poll_stop(hp, tregs);
1119 hp->paddr = TCV_PADDR_ETX;
1120 hp->tcvr_type = external;
1121 ASD(("<external>\n"));
1122 tconfig &= ~(TCV_CFG_PENABLE);
1123 tconfig |= TCV_CFG_PSELECT;
1124 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1127 if (hp->tcvr_type == external) {
1128 ASD(("<external> "));
1129 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1130 ASD(("<poll stop> "));
1131 happy_meal_poll_stop(hp, tregs);
1132 hp->paddr = TCV_PADDR_ITX;
1133 hp->tcvr_type = internal;
1134 ASD(("<internal>\n"));
1135 hme_write32(hp, tregs + TCVR_CFG,
1136 hme_read32(hp, tregs + TCVR_CFG) &
1137 ~(TCV_CFG_PSELECT));
1145 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1147 /* Else we can just work off of the MDIO bits. */
1148 ASD(("<not polling> "));
1149 if (reread & TCV_CFG_MDIO1) {
1150 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1151 hp->paddr = TCV_PADDR_ETX;
1152 hp->tcvr_type = external;
1153 ASD(("<external>\n"));
1155 if (reread & TCV_CFG_MDIO0) {
1156 hme_write32(hp, tregs + TCVR_CFG,
1157 tconfig & ~(TCV_CFG_PSELECT));
1158 hp->paddr = TCV_PADDR_ITX;
1159 hp->tcvr_type = internal;
1160 ASD(("<internal>\n"));
1162 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1163 hp->tcvr_type = none; /* Grrr... */
1170 /* The receive ring buffers are a bit tricky to get right. Here goes...
1172 * The buffers we dma into must be 64 byte aligned. So we use a special
1173 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1176 * We use skb_reserve() to align the data block we get in the skb. We
1177 * also program the etxregs->cfg register to use an offset of 2. This
1178 * imperical constant plus the ethernet header size will always leave
1179 * us with a nicely aligned ip header once we pass things up to the
1182 * The numbers work out to:
1184 * Max ethernet frame size 1518
1185 * Ethernet header size 14
1186 * Happy Meal base offset 2
1188 * Say a skb data area is at 0xf001b010, and its size alloced is
1189 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1191 * First our alloc_skb() routine aligns the data base to a 64 byte
1192 * boundary. We now have 0xf001b040 as our skb data address. We
1193 * plug this into the receive descriptor address.
1195 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1196 * So now the data we will end up looking at starts at 0xf001b042. When
1197 * the packet arrives, we will check out the size received and subtract
1198 * this from the skb->length. Then we just pass the packet up to the
1199 * protocols as is, and allocate a new skb to replace this slot we have
1200 * just received from.
1202 * The ethernet layer will strip the ether header from the front of the
1203 * skb we just sent to it, this leaves us with the ip header sitting
1204 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1205 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1206 * bit checksum is obtained from the low bits of the receive descriptor
1209 * skb->csum = rxd->rx_flags & 0xffff;
1210 * skb->ip_summed = CHECKSUM_HW;
1212 * before sending off the skb to the protocols, and we are good as gold.
1214 static void happy_meal_clean_rings(struct happy_meal *hp)
1218 for (i = 0; i < RX_RING_SIZE; i++) {
1219 if (hp->rx_skbs[i] != NULL) {
1220 struct sk_buff *skb = hp->rx_skbs[i];
1221 struct happy_meal_rxd *rxd;
1224 rxd = &hp->happy_block->happy_meal_rxd[i];
1225 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1226 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1227 dev_kfree_skb_any(skb);
1228 hp->rx_skbs[i] = NULL;
1232 for (i = 0; i < TX_RING_SIZE; i++) {
1233 if (hp->tx_skbs[i] != NULL) {
1234 struct sk_buff *skb = hp->tx_skbs[i];
1235 struct happy_meal_txd *txd;
1239 hp->tx_skbs[i] = NULL;
1241 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1242 txd = &hp->happy_block->happy_meal_txd[i];
1243 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1244 hme_dma_unmap(hp, dma_addr,
1245 (hme_read_desc32(hp, &txd->tx_flags)
1249 if (frag != skb_shinfo(skb)->nr_frags)
1253 dev_kfree_skb_any(skb);
1258 /* hp->happy_lock must be held */
1259 static void happy_meal_init_rings(struct happy_meal *hp)
1261 struct hmeal_init_block *hb = hp->happy_block;
1262 struct net_device *dev = hp->dev;
1265 HMD(("happy_meal_init_rings: counters to zero, "));
1266 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1268 /* Free any skippy bufs left around in the rings. */
1270 happy_meal_clean_rings(hp);
1272 /* Now get new skippy bufs for the receive ring. */
1273 HMD(("init rxring, "));
1274 for (i = 0; i < RX_RING_SIZE; i++) {
1275 struct sk_buff *skb;
1277 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1279 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1282 hp->rx_skbs[i] = skb;
1285 /* Because we reserve afterwards. */
1286 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
1287 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1288 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1289 hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1290 skb_reserve(skb, RX_OFFSET);
1293 HMD(("init txring, "));
1294 for (i = 0; i < TX_RING_SIZE; i++)
1295 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1300 /* hp->happy_lock must be held */
1301 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1302 void __iomem *tregs,
1303 struct ethtool_cmd *ep)
1307 /* Read all of the registers we are interested in now. */
1308 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1309 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1310 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1311 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1313 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1315 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1316 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1317 /* Advertise everything we can support. */
1318 if (hp->sw_bmsr & BMSR_10HALF)
1319 hp->sw_advertise |= (ADVERTISE_10HALF);
1321 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1323 if (hp->sw_bmsr & BMSR_10FULL)
1324 hp->sw_advertise |= (ADVERTISE_10FULL);
1326 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1327 if (hp->sw_bmsr & BMSR_100HALF)
1328 hp->sw_advertise |= (ADVERTISE_100HALF);
1330 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1331 if (hp->sw_bmsr & BMSR_100FULL)
1332 hp->sw_advertise |= (ADVERTISE_100FULL);
1334 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1335 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1337 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1338 * XXX and this is because the DP83840 does not support it, changes
1339 * XXX would need to be made to the tx/rx logic in the driver as well
1340 * XXX so I completely skip checking for it in the BMSR for now.
1343 #ifdef AUTO_SWITCH_DEBUG
1344 ASD(("%s: Advertising [ ", hp->dev->name));
1345 if (hp->sw_advertise & ADVERTISE_10HALF)
1347 if (hp->sw_advertise & ADVERTISE_10FULL)
1349 if (hp->sw_advertise & ADVERTISE_100HALF)
1351 if (hp->sw_advertise & ADVERTISE_100FULL)
1355 /* Enable Auto-Negotiation, this is usually on already... */
1356 hp->sw_bmcr |= BMCR_ANENABLE;
1357 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1359 /* Restart it to make sure it is going. */
1360 hp->sw_bmcr |= BMCR_ANRESTART;
1361 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1363 /* BMCR_ANRESTART self clears when the process has begun. */
1365 timeout = 64; /* More than enough. */
1367 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1368 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1369 break; /* got it. */
1373 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1374 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1375 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1379 hp->timer_state = arbwait;
1383 /* Force the link up, trying first a particular mode.
1384 * Either we are here at the request of ethtool or
1385 * because the Happy Meal would not start to autoneg.
1388 /* Disable auto-negotiation in BMCR, enable the duplex and
1389 * speed setting, init the timer state machine, and fire it off.
1391 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1392 hp->sw_bmcr = BMCR_SPEED100;
1394 if (ep->speed == SPEED_100)
1395 hp->sw_bmcr = BMCR_SPEED100;
1398 if (ep->duplex == DUPLEX_FULL)
1399 hp->sw_bmcr |= BMCR_FULLDPLX;
1401 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1403 if (!is_lucent_phy(hp)) {
1404 /* OK, seems we need do disable the transceiver for the first
1405 * tick to make sure we get an accurate link state at the
1408 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1410 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1411 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1414 hp->timer_state = ltrywait;
1417 hp->timer_ticks = 0;
1418 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1419 hp->happy_timer.data = (unsigned long) hp;
1420 hp->happy_timer.function = &happy_meal_timer;
1421 add_timer(&hp->happy_timer);
1424 /* hp->happy_lock must be held */
1425 static int happy_meal_init(struct happy_meal *hp)
1427 void __iomem *gregs = hp->gregs;
1428 void __iomem *etxregs = hp->etxregs;
1429 void __iomem *erxregs = hp->erxregs;
1430 void __iomem *bregs = hp->bigmacregs;
1431 void __iomem *tregs = hp->tcvregs;
1433 unsigned char *e = &hp->dev->dev_addr[0];
1435 /* If auto-negotiation timer is running, kill it. */
1436 del_timer(&hp->happy_timer);
1438 HMD(("happy_meal_init: happy_flags[%08x] ",
1440 if (!(hp->happy_flags & HFLAG_INIT)) {
1441 HMD(("set HFLAG_INIT, "));
1442 hp->happy_flags |= HFLAG_INIT;
1443 happy_meal_get_counters(hp, bregs);
1447 HMD(("to happy_meal_poll_stop\n"));
1448 happy_meal_poll_stop(hp, tregs);
1450 /* Stop transmitter and receiver. */
1451 HMD(("happy_meal_init: to happy_meal_stop\n"));
1452 happy_meal_stop(hp, gregs);
1454 /* Alloc and reset the tx/rx descriptor chains. */
1455 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1456 happy_meal_init_rings(hp);
1458 /* Shut up the MIF. */
1459 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1460 hme_read32(hp, tregs + TCVR_IMASK)));
1461 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1463 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1464 if (hp->happy_flags & HFLAG_FENABLE) {
1465 HMD(("use frame old[%08x], ",
1466 hme_read32(hp, tregs + TCVR_CFG)));
1467 hme_write32(hp, tregs + TCVR_CFG,
1468 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1470 HMD(("use bitbang old[%08x], ",
1471 hme_read32(hp, tregs + TCVR_CFG)));
1472 hme_write32(hp, tregs + TCVR_CFG,
1473 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1476 /* Check the state of the transceiver. */
1477 HMD(("to happy_meal_transceiver_check\n"));
1478 happy_meal_transceiver_check(hp, tregs);
1480 /* Put the Big Mac into a sane state. */
1481 HMD(("happy_meal_init: "));
1482 switch(hp->tcvr_type) {
1484 /* Cannot operate if we don't know the transceiver type! */
1485 HMD(("AAIEEE no transceiver type, EAGAIN"));
1489 /* Using the MII buffers. */
1490 HMD(("internal, using MII, "));
1491 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1495 /* Not using the MII, disable it. */
1496 HMD(("external, disable MII, "));
1497 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1501 if (happy_meal_tcvr_reset(hp, tregs))
1504 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1505 HMD(("tx/rx reset, "));
1506 happy_meal_tx_reset(hp, bregs);
1507 happy_meal_rx_reset(hp, bregs);
1509 /* Set jam size and inter-packet gaps to reasonable defaults. */
1510 HMD(("jsize/ipg1/ipg2, "));
1511 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1512 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1513 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1515 /* Load up the MAC address and random seed. */
1516 HMD(("rseed/macaddr, "));
1518 /* The docs recommend to use the 10LSB of our MAC here. */
1519 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1521 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1522 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1523 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1526 if ((hp->dev->flags & IFF_ALLMULTI) ||
1527 (hp->dev->mc_count > 64)) {
1528 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1529 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1530 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1531 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1532 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1534 struct dev_mc_list *dmi = hp->dev->mc_list;
1539 for (i = 0; i < 4; i++)
1542 for (i = 0; i < hp->dev->mc_count; i++) {
1543 addrs = dmi->dmi_addr;
1549 crc = ether_crc_le(6, addrs);
1551 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1553 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1554 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1555 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1556 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1558 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1559 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1560 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1561 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1564 /* Set the RX and TX ring ptrs. */
1565 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1566 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1567 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1568 hme_write32(hp, erxregs + ERX_RING,
1569 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1570 hme_write32(hp, etxregs + ETX_RING,
1571 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1573 /* Parity issues in the ERX unit of some HME revisions can cause some
1574 * registers to not be written unless their parity is even. Detect such
1575 * lost writes and simply rewrite with a low bit set (which will be ignored
1576 * since the rxring needs to be 2K aligned).
1578 if (hme_read32(hp, erxregs + ERX_RING) !=
1579 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1580 hme_write32(hp, erxregs + ERX_RING,
1581 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1584 /* Set the supported burst sizes. */
1585 HMD(("happy_meal_init: old[%08x] bursts<",
1586 hme_read32(hp, gregs + GREG_CFG)));
1588 #ifndef CONFIG_SPARC
1589 /* It is always PCI and can handle 64byte bursts. */
1590 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1592 if ((hp->happy_bursts & DMA_BURST64) &&
1593 ((hp->happy_flags & HFLAG_PCI) != 0
1595 || sbus_can_burst64(hp->happy_dev)
1598 u32 gcfg = GREG_CFG_BURST64;
1600 /* I have no idea if I should set the extended
1601 * transfer mode bit for Cheerio, so for now I
1605 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1606 sbus_can_dma_64bit(hp->happy_dev)) {
1607 sbus_set_sbus64(hp->happy_dev,
1609 gcfg |= GREG_CFG_64BIT;
1614 hme_write32(hp, gregs + GREG_CFG, gcfg);
1615 } else if (hp->happy_bursts & DMA_BURST32) {
1617 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1618 } else if (hp->happy_bursts & DMA_BURST16) {
1620 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1623 hme_write32(hp, gregs + GREG_CFG, 0);
1625 #endif /* CONFIG_SPARC */
1627 /* Turn off interrupts we do not want to hear. */
1628 HMD((", enable global interrupts, "));
1629 hme_write32(hp, gregs + GREG_IMASK,
1630 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1631 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1633 /* Set the transmit ring buffer size. */
1634 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1635 hme_read32(hp, etxregs + ETX_RSIZE)));
1636 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1638 /* Enable transmitter DVMA. */
1639 HMD(("tx dma enable old[%08x], ",
1640 hme_read32(hp, etxregs + ETX_CFG)));
1641 hme_write32(hp, etxregs + ETX_CFG,
1642 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1644 /* This chip really rots, for the receiver sometimes when you
1645 * write to its control registers not all the bits get there
1646 * properly. I cannot think of a sane way to provide complete
1647 * coverage for this hardware bug yet.
1649 HMD(("erx regs bug old[%08x]\n",
1650 hme_read32(hp, erxregs + ERX_CFG)));
1651 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1652 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1653 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1654 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1655 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1656 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1657 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1658 /* XXX Should return failure here... */
1661 /* Enable Big Mac hash table filter. */
1662 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1663 hme_read32(hp, bregs + BMAC_RXCFG)));
1664 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1665 if (hp->dev->flags & IFF_PROMISC)
1666 rxcfg |= BIGMAC_RXCFG_PMISC;
1667 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1669 /* Let the bits settle in the chip. */
1672 /* Ok, configure the Big Mac transmitter. */
1673 HMD(("BIGMAC init, "));
1675 if (hp->happy_flags & HFLAG_FULL)
1676 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1678 /* Don't turn on the "don't give up" bit for now. It could cause hme
1679 * to deadlock with the PHY if a Jabber occurs.
1681 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1683 /* Give up after 16 TX attempts. */
1684 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1686 /* Enable the output drivers no matter what. */
1687 regtmp = BIGMAC_XCFG_ODENABLE;
1689 /* If card can do lance mode, enable it. */
1690 if (hp->happy_flags & HFLAG_LANCE)
1691 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1693 /* Disable the MII buffers if using external transceiver. */
1694 if (hp->tcvr_type == external)
1695 regtmp |= BIGMAC_XCFG_MIIDISAB;
1697 HMD(("XIF config old[%08x], ",
1698 hme_read32(hp, bregs + BMAC_XIFCFG)));
1699 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1701 /* Start things up. */
1702 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1703 hme_read32(hp, bregs + BMAC_TXCFG),
1704 hme_read32(hp, bregs + BMAC_RXCFG)));
1705 hme_write32(hp, bregs + BMAC_TXCFG,
1706 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1707 hme_write32(hp, bregs + BMAC_RXCFG,
1708 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1710 /* Get the autonegotiation started, and the watch timer ticking. */
1711 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1717 /* hp->happy_lock must be held */
1718 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1720 void __iomem *tregs = hp->tcvregs;
1721 void __iomem *bregs = hp->bigmacregs;
1722 void __iomem *gregs = hp->gregs;
1724 happy_meal_stop(hp, gregs);
1725 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1726 if (hp->happy_flags & HFLAG_FENABLE)
1727 hme_write32(hp, tregs + TCVR_CFG,
1728 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1730 hme_write32(hp, tregs + TCVR_CFG,
1731 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1732 happy_meal_transceiver_check(hp, tregs);
1733 switch(hp->tcvr_type) {
1737 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1740 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1743 if (happy_meal_tcvr_reset(hp, tregs))
1746 /* Latch PHY registers as of now. */
1747 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1748 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1750 /* Advertise everything we can support. */
1751 if (hp->sw_bmsr & BMSR_10HALF)
1752 hp->sw_advertise |= (ADVERTISE_10HALF);
1754 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1756 if (hp->sw_bmsr & BMSR_10FULL)
1757 hp->sw_advertise |= (ADVERTISE_10FULL);
1759 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1760 if (hp->sw_bmsr & BMSR_100HALF)
1761 hp->sw_advertise |= (ADVERTISE_100HALF);
1763 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1764 if (hp->sw_bmsr & BMSR_100FULL)
1765 hp->sw_advertise |= (ADVERTISE_100FULL);
1767 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1769 /* Update the PHY advertisement register. */
1770 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1773 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1774 * the hardware, so we cannot re-read it and get a correct value.
1776 * hp->happy_lock must be held
1778 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1782 /* Only print messages for non-counter related interrupts. */
1783 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1784 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1785 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1786 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1787 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1789 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1790 hp->dev->name, status);
1792 if (status & GREG_STAT_RFIFOVF) {
1793 /* Receive FIFO overflow is harmless and the hardware will take
1794 care of it, just some packets are lost. Who cares. */
1795 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1798 if (status & GREG_STAT_STSTERR) {
1799 /* BigMAC SQE link test failed. */
1800 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1804 if (status & GREG_STAT_TFIFO_UND) {
1805 /* Transmit FIFO underrun, again DMA error likely. */
1806 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1811 if (status & GREG_STAT_MAXPKTERR) {
1812 /* Driver error, tried to transmit something larger
1813 * than ethernet max mtu.
1815 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1819 if (status & GREG_STAT_NORXD) {
1820 /* This is harmless, it just means the system is
1821 * quite loaded and the incoming packet rate was
1822 * faster than the interrupt handler could keep up
1825 printk(KERN_INFO "%s: Happy Meal out of receive "
1826 "descriptors, packet dropped.\n",
1830 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1831 /* All sorts of DMA receive errors. */
1832 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1833 if (status & GREG_STAT_RXERR)
1834 printk("GenericError ");
1835 if (status & GREG_STAT_RXPERR)
1836 printk("ParityError ");
1837 if (status & GREG_STAT_RXTERR)
1838 printk("RxTagBotch ");
1843 if (status & GREG_STAT_EOPERR) {
1844 /* Driver bug, didn't set EOP bit in tx descriptor given
1845 * to the happy meal.
1847 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1852 if (status & GREG_STAT_MIFIRQ) {
1853 /* MIF signalled an interrupt, were we polling it? */
1854 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1858 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1859 /* All sorts of transmit DMA errors. */
1860 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1861 if (status & GREG_STAT_TXEACK)
1862 printk("GenericError ");
1863 if (status & GREG_STAT_TXLERR)
1864 printk("LateError ");
1865 if (status & GREG_STAT_TXPERR)
1866 printk("ParityErro ");
1867 if (status & GREG_STAT_TXTERR)
1868 printk("TagBotch ");
1873 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1874 /* Bus or parity error when cpu accessed happy meal registers
1875 * or it's internal FIFO's. Should never see this.
1877 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1879 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1884 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1885 happy_meal_init(hp);
1891 /* hp->happy_lock must be held */
1892 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1894 void __iomem *tregs = hp->tcvregs;
1896 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1897 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1898 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1900 /* Use the fastest transmission protocol possible. */
1901 if (hp->sw_lpa & LPA_100FULL) {
1902 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1903 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1904 } else if (hp->sw_lpa & LPA_100HALF) {
1905 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1906 hp->sw_bmcr |= BMCR_SPEED100;
1907 } else if (hp->sw_lpa & LPA_10FULL) {
1908 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1909 hp->sw_bmcr |= BMCR_FULLDPLX;
1911 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1913 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1915 /* Finally stop polling and shut up the MIF. */
1916 happy_meal_poll_stop(hp, tregs);
1920 #define TXD(x) printk x
1925 /* hp->happy_lock must be held */
1926 static void happy_meal_tx(struct happy_meal *hp)
1928 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1929 struct happy_meal_txd *this;
1930 struct net_device *dev = hp->dev;
1935 while (elem != hp->tx_new) {
1936 struct sk_buff *skb;
1937 u32 flags, dma_addr, dma_len;
1940 TXD(("[%d]", elem));
1941 this = &txbase[elem];
1942 flags = hme_read_desc32(hp, &this->tx_flags);
1943 if (flags & TXFLAG_OWN)
1945 skb = hp->tx_skbs[elem];
1946 if (skb_shinfo(skb)->nr_frags) {
1949 last = elem + skb_shinfo(skb)->nr_frags;
1950 last &= (TX_RING_SIZE - 1);
1951 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1952 if (flags & TXFLAG_OWN)
1955 hp->tx_skbs[elem] = NULL;
1956 hp->net_stats.tx_bytes += skb->len;
1958 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1959 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1960 dma_len = hme_read_desc32(hp, &this->tx_flags);
1962 dma_len &= TXFLAG_SIZE;
1963 hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1965 elem = NEXT_TX(elem);
1966 this = &txbase[elem];
1969 dev_kfree_skb_irq(skb);
1970 hp->net_stats.tx_packets++;
1975 if (netif_queue_stopped(dev) &&
1976 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1977 netif_wake_queue(dev);
1981 #define RXD(x) printk x
1986 /* Originally I used to handle the allocation failure by just giving back just
1987 * that one ring buffer to the happy meal. Problem is that usually when that
1988 * condition is triggered, the happy meal expects you to do something reasonable
1989 * with all of the packets it has DMA'd in. So now I just drop the entire
1990 * ring when we cannot get a new skb and give them all back to the happy meal,
1991 * maybe things will be "happier" now.
1993 * hp->happy_lock must be held
1995 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1997 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1998 struct happy_meal_rxd *this;
1999 int elem = hp->rx_new, drops = 0;
2003 this = &rxbase[elem];
2004 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2005 struct sk_buff *skb;
2006 int len = flags >> 16;
2007 u16 csum = flags & RXFLAG_CSUM;
2008 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2010 RXD(("[%d ", elem));
2012 /* Check for errors. */
2013 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2014 RXD(("ERR(%08x)]", flags));
2015 hp->net_stats.rx_errors++;
2017 hp->net_stats.rx_length_errors++;
2018 if (len & (RXFLAG_OVERFLOW >> 16)) {
2019 hp->net_stats.rx_over_errors++;
2020 hp->net_stats.rx_fifo_errors++;
2023 /* Return it to the Happy meal. */
2025 hp->net_stats.rx_dropped++;
2026 hme_write_rxd(hp, this,
2027 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2031 skb = hp->rx_skbs[elem];
2032 if (len > RX_COPY_THRESHOLD) {
2033 struct sk_buff *new_skb;
2035 /* Now refill the entry, if we can. */
2036 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2037 if (new_skb == NULL) {
2041 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2042 hp->rx_skbs[elem] = new_skb;
2044 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
2045 hme_write_rxd(hp, this,
2046 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2047 hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2048 skb_reserve(new_skb, RX_OFFSET);
2050 /* Trim the original skb for the netif. */
2053 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2055 if (copy_skb == NULL) {
2060 copy_skb->dev = dev;
2061 skb_reserve(copy_skb, 2);
2062 skb_put(copy_skb, len);
2063 hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2064 memcpy(copy_skb->data, skb->data, len);
2065 hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2067 /* Reuse original ring buffer. */
2068 hme_write_rxd(hp, this,
2069 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2075 /* This card is _fucking_ hot... */
2076 skb->csum = ntohs(csum ^ 0xffff);
2077 skb->ip_summed = CHECKSUM_HW;
2079 RXD(("len=%d csum=%4x]", len, csum));
2080 skb->protocol = eth_type_trans(skb, dev);
2083 dev->last_rx = jiffies;
2084 hp->net_stats.rx_packets++;
2085 hp->net_stats.rx_bytes += len;
2087 elem = NEXT_RX(elem);
2088 this = &rxbase[elem];
2092 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2096 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2098 struct net_device *dev = (struct net_device *) dev_id;
2099 struct happy_meal *hp = dev->priv;
2100 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2102 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2104 spin_lock(&hp->happy_lock);
2106 if (happy_status & GREG_STAT_ERRORS) {
2108 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2112 if (happy_status & GREG_STAT_MIFIRQ) {
2114 happy_meal_mif_interrupt(hp);
2117 if (happy_status & GREG_STAT_TXALL) {
2122 if (happy_status & GREG_STAT_RXTOHOST) {
2124 happy_meal_rx(hp, dev);
2129 spin_unlock(&hp->happy_lock);
2135 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs)
2137 struct quattro *qp = (struct quattro *) cookie;
2140 for (i = 0; i < 4; i++) {
2141 struct net_device *dev = qp->happy_meals[i];
2142 struct happy_meal *hp = dev->priv;
2143 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2145 HMD(("quattro_interrupt: status=%08x ", happy_status));
2147 if (!(happy_status & (GREG_STAT_ERRORS |
2150 GREG_STAT_RXTOHOST)))
2153 spin_lock(&hp->happy_lock);
2155 if (happy_status & GREG_STAT_ERRORS) {
2157 if (happy_meal_is_not_so_happy(hp, happy_status))
2161 if (happy_status & GREG_STAT_MIFIRQ) {
2163 happy_meal_mif_interrupt(hp);
2166 if (happy_status & GREG_STAT_TXALL) {
2171 if (happy_status & GREG_STAT_RXTOHOST) {
2173 happy_meal_rx(hp, dev);
2177 spin_unlock(&hp->happy_lock);
2185 static int happy_meal_open(struct net_device *dev)
2187 struct happy_meal *hp = dev->priv;
2190 HMD(("happy_meal_open: "));
2192 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2193 * into a single source which we register handling at probe time.
2195 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2196 if (request_irq(dev->irq, &happy_meal_interrupt,
2197 IRQF_SHARED, dev->name, (void *)dev)) {
2199 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2206 HMD(("to happy_meal_init\n"));
2208 spin_lock_irq(&hp->happy_lock);
2209 res = happy_meal_init(hp);
2210 spin_unlock_irq(&hp->happy_lock);
2212 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2213 free_irq(dev->irq, dev);
2217 static int happy_meal_close(struct net_device *dev)
2219 struct happy_meal *hp = dev->priv;
2221 spin_lock_irq(&hp->happy_lock);
2222 happy_meal_stop(hp, hp->gregs);
2223 happy_meal_clean_rings(hp);
2225 /* If auto-negotiation timer is running, kill it. */
2226 del_timer(&hp->happy_timer);
2228 spin_unlock_irq(&hp->happy_lock);
2230 /* On Quattro QFE cards, all hme interrupts are concentrated
2231 * into a single source which we register handling at probe
2232 * time and never unregister.
2234 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2235 free_irq(dev->irq, dev);
2241 #define SXD(x) printk x
2246 static void happy_meal_tx_timeout(struct net_device *dev)
2248 struct happy_meal *hp = dev->priv;
2250 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2252 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2253 hme_read32(hp, hp->gregs + GREG_STAT),
2254 hme_read32(hp, hp->etxregs + ETX_CFG),
2255 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2257 spin_lock_irq(&hp->happy_lock);
2258 happy_meal_init(hp);
2259 spin_unlock_irq(&hp->happy_lock);
2261 netif_wake_queue(dev);
2264 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2266 struct happy_meal *hp = dev->priv;
2270 tx_flags = TXFLAG_OWN;
2271 if (skb->ip_summed == CHECKSUM_HW) {
2272 u32 csum_start_off, csum_stuff_off;
2274 csum_start_off = (u32) (skb->h.raw - skb->data);
2275 csum_stuff_off = (u32) ((skb->h.raw + skb->csum) - skb->data);
2277 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2278 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2279 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2282 spin_lock_irq(&hp->happy_lock);
2284 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2285 netif_stop_queue(dev);
2286 spin_unlock_irq(&hp->happy_lock);
2287 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2293 SXD(("SX<l[%d]e[%d]>", len, entry));
2294 hp->tx_skbs[entry] = skb;
2296 if (skb_shinfo(skb)->nr_frags == 0) {
2300 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2301 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2302 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2303 (tx_flags | (len & TXFLAG_SIZE)),
2305 entry = NEXT_TX(entry);
2307 u32 first_len, first_mapping;
2308 int frag, first_entry = entry;
2310 /* We must give this initial chunk to the device last.
2311 * Otherwise we could race with the device.
2313 first_len = skb_headlen(skb);
2314 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2315 entry = NEXT_TX(entry);
2317 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2318 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2319 u32 len, mapping, this_txflags;
2321 len = this_frag->size;
2322 mapping = hme_dma_map(hp,
2323 ((void *) page_address(this_frag->page) +
2324 this_frag->page_offset),
2326 this_txflags = tx_flags;
2327 if (frag == skb_shinfo(skb)->nr_frags - 1)
2328 this_txflags |= TXFLAG_EOP;
2329 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2330 (this_txflags | (len & TXFLAG_SIZE)),
2332 entry = NEXT_TX(entry);
2334 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2335 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2341 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2342 netif_stop_queue(dev);
2345 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2347 spin_unlock_irq(&hp->happy_lock);
2349 dev->trans_start = jiffies;
2351 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2355 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2357 struct happy_meal *hp = dev->priv;
2359 spin_lock_irq(&hp->happy_lock);
2360 happy_meal_get_counters(hp, hp->bigmacregs);
2361 spin_unlock_irq(&hp->happy_lock);
2363 return &hp->net_stats;
2366 static void happy_meal_set_multicast(struct net_device *dev)
2368 struct happy_meal *hp = dev->priv;
2369 void __iomem *bregs = hp->bigmacregs;
2370 struct dev_mc_list *dmi = dev->mc_list;
2375 spin_lock_irq(&hp->happy_lock);
2377 netif_stop_queue(dev);
2379 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2380 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2381 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2382 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2383 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2384 } else if (dev->flags & IFF_PROMISC) {
2385 hme_write32(hp, bregs + BMAC_RXCFG,
2386 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2390 for (i = 0; i < 4; i++)
2393 for (i = 0; i < dev->mc_count; i++) {
2394 addrs = dmi->dmi_addr;
2400 crc = ether_crc_le(6, addrs);
2402 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2404 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2405 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2406 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2407 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2410 netif_wake_queue(dev);
2412 spin_unlock_irq(&hp->happy_lock);
2415 /* Ethtool support... */
2416 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2418 struct happy_meal *hp = dev->priv;
2421 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2422 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2423 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2425 /* XXX hardcoded stuff for now */
2426 cmd->port = PORT_TP; /* XXX no MII support */
2427 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2428 cmd->phy_address = 0; /* XXX fixed PHYAD */
2430 /* Record PHY settings. */
2431 spin_lock_irq(&hp->happy_lock);
2432 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2433 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2434 spin_unlock_irq(&hp->happy_lock);
2436 if (hp->sw_bmcr & BMCR_ANENABLE) {
2437 cmd->autoneg = AUTONEG_ENABLE;
2439 (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2440 SPEED_100 : SPEED_10;
2441 if (cmd->speed == SPEED_100)
2443 (hp->sw_lpa & (LPA_100FULL)) ?
2444 DUPLEX_FULL : DUPLEX_HALF;
2447 (hp->sw_lpa & (LPA_10FULL)) ?
2448 DUPLEX_FULL : DUPLEX_HALF;
2450 cmd->autoneg = AUTONEG_DISABLE;
2452 (hp->sw_bmcr & BMCR_SPEED100) ?
2453 SPEED_100 : SPEED_10;
2455 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2456 DUPLEX_FULL : DUPLEX_HALF;
2461 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2463 struct happy_meal *hp = dev->priv;
2465 /* Verify the settings we care about. */
2466 if (cmd->autoneg != AUTONEG_ENABLE &&
2467 cmd->autoneg != AUTONEG_DISABLE)
2469 if (cmd->autoneg == AUTONEG_DISABLE &&
2470 ((cmd->speed != SPEED_100 &&
2471 cmd->speed != SPEED_10) ||
2472 (cmd->duplex != DUPLEX_HALF &&
2473 cmd->duplex != DUPLEX_FULL)))
2476 /* Ok, do it to it. */
2477 spin_lock_irq(&hp->happy_lock);
2478 del_timer(&hp->happy_timer);
2479 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480 spin_unlock_irq(&hp->happy_lock);
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2487 struct happy_meal *hp = dev->priv;
2489 strcpy(info->driver, "sunhme");
2490 strcpy(info->version, "2.02");
2491 if (hp->happy_flags & HFLAG_PCI) {
2492 struct pci_dev *pdev = hp->happy_dev;
2493 strcpy(info->bus_info, pci_name(pdev));
2497 struct sbus_dev *sdev = hp->happy_dev;
2498 sprintf(info->bus_info, "SBUS:%d",
2504 static u32 hme_get_link(struct net_device *dev)
2506 struct happy_meal *hp = dev->priv;
2508 spin_lock_irq(&hp->happy_lock);
2509 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2510 spin_unlock_irq(&hp->happy_lock);
2512 return (hp->sw_bmsr & BMSR_LSTATUS);
2515 static struct ethtool_ops hme_ethtool_ops = {
2516 .get_settings = hme_get_settings,
2517 .set_settings = hme_set_settings,
2518 .get_drvinfo = hme_get_drvinfo,
2519 .get_link = hme_get_link,
2522 static int hme_version_printed;
2525 void __devinit quattro_get_ranges(struct quattro *qp)
2527 struct sbus_dev *sdev = qp->quattro_dev;
2530 err = prom_getproperty(sdev->prom_node,
2532 (char *)&qp->ranges[0],
2533 sizeof(qp->ranges));
2534 if (err == 0 || err == -1) {
2538 qp->nranges = (err / sizeof(struct linux_prom_ranges));
2541 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2543 struct sbus_dev *sdev = hp->happy_dev;
2546 for (rng = 0; rng < qp->nranges; rng++) {
2547 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2550 for (reg = 0; reg < 5; reg++) {
2551 if (sdev->reg_addrs[reg].which_io ==
2552 rngp->ot_child_space)
2558 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2559 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2563 /* Given a happy meal sbus device, find it's quattro parent.
2564 * If none exist, allocate and return a new one.
2566 * Return NULL on failure.
2568 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2570 struct sbus_dev *sdev;
2574 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2575 for (i = 0, sdev = qp->quattro_dev;
2576 (sdev != NULL) && (i < 4);
2577 sdev = sdev->next, i++) {
2578 if (sdev == goal_sdev)
2583 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2587 for (i = 0; i < 4; i++)
2588 qp->happy_meals[i] = NULL;
2590 qp->quattro_dev = goal_sdev;
2591 qp->next = qfe_sbus_list;
2593 quattro_get_ranges(qp);
2598 /* After all quattro cards have been probed, we call these functions
2599 * to register the IRQ handlers.
2601 static void __init quattro_sbus_register_irqs(void)
2605 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2606 struct sbus_dev *sdev = qp->quattro_dev;
2609 err = request_irq(sdev->irqs[0],
2610 quattro_sbus_interrupt,
2611 IRQF_SHARED, "Quattro",
2614 printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2615 panic("QFE request irq");
2620 static void quattro_sbus_free_irqs(void)
2624 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2625 struct sbus_dev *sdev = qp->quattro_dev;
2627 free_irq(sdev->irqs[0], qp);
2630 #endif /* CONFIG_SBUS */
2633 static struct quattro * __init quattro_pci_find(struct pci_dev *pdev)
2635 struct pci_dev *bdev = pdev->bus->self;
2638 if (!bdev) return NULL;
2639 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2640 struct pci_dev *qpdev = qp->quattro_dev;
2645 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2649 for (i = 0; i < 4; i++)
2650 qp->happy_meals[i] = NULL;
2652 qp->quattro_dev = bdev;
2653 qp->next = qfe_pci_list;
2656 /* No range tricks necessary on PCI. */
2661 #endif /* CONFIG_PCI */
2664 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2666 struct device_node *dp = sdev->ofdev.node;
2667 struct quattro *qp = NULL;
2668 struct happy_meal *hp;
2669 struct net_device *dev;
2670 int i, qfe_slot = -1;
2674 qp = quattro_sbus_find(sdev);
2677 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2678 if (qp->happy_meals[qfe_slot] == NULL)
2685 dev = alloc_etherdev(sizeof(struct happy_meal));
2688 SET_MODULE_OWNER(dev);
2689 SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2691 if (hme_version_printed++ == 0)
2692 printk(KERN_INFO "%s", version);
2694 /* If user did not specify a MAC address specifically, use
2695 * the Quattro local-mac-address property...
2697 for (i = 0; i < 6; i++) {
2698 if (macaddr[i] != 0)
2701 if (i < 6) { /* a mac address was given */
2702 for (i = 0; i < 6; i++)
2703 dev->dev_addr[i] = macaddr[i];
2706 unsigned char *addr;
2709 addr = of_get_property(dp, "local-mac-address", &len);
2711 if (qfe_slot != -1 && addr && len == 6)
2712 memcpy(dev->dev_addr, addr, 6);
2714 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2719 hp->happy_dev = sdev;
2721 spin_lock_init(&hp->happy_lock);
2724 if (sdev->num_registers != 5) {
2725 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2726 sdev->num_registers);
2727 goto err_out_free_netdev;
2731 hp->qfe_parent = qp;
2732 hp->qfe_ent = qfe_slot;
2733 qp->happy_meals[qfe_slot] = dev;
2734 quattro_apply_ranges(qp, hp);
2737 hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2738 GREG_REG_SIZE, "HME Global Regs");
2740 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2741 goto err_out_free_netdev;
2744 hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2745 ETX_REG_SIZE, "HME TX Regs");
2747 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2748 goto err_out_iounmap;
2751 hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2752 ERX_REG_SIZE, "HME RX Regs");
2754 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2755 goto err_out_iounmap;
2758 hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2759 BMAC_REG_SIZE, "HME BIGMAC Regs");
2760 if (!hp->bigmacregs) {
2761 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2762 goto err_out_iounmap;
2765 hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2766 TCVR_REG_SIZE, "HME Tranceiver Regs");
2768 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2769 goto err_out_iounmap;
2772 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2773 if (hp->hm_revision == 0xff)
2774 hp->hm_revision = 0xa0;
2776 /* Now enable the feature flags we can. */
2777 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2778 hp->happy_flags = HFLAG_20_21;
2779 else if (hp->hm_revision != 0xa0)
2780 hp->happy_flags = HFLAG_NOT_A0;
2783 hp->happy_flags |= HFLAG_QUATTRO;
2785 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2786 hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2787 "burst-sizes", 0x00);
2789 hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2793 if (!hp->happy_block) {
2794 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2795 goto err_out_iounmap;
2798 /* Force check of the link first time we are brought up. */
2801 /* Force timer state to 'asleep' with count of zero. */
2802 hp->timer_state = asleep;
2803 hp->timer_ticks = 0;
2805 init_timer(&hp->happy_timer);
2808 dev->open = &happy_meal_open;
2809 dev->stop = &happy_meal_close;
2810 dev->hard_start_xmit = &happy_meal_start_xmit;
2811 dev->get_stats = &happy_meal_get_stats;
2812 dev->set_multicast_list = &happy_meal_set_multicast;
2813 dev->tx_timeout = &happy_meal_tx_timeout;
2814 dev->watchdog_timeo = 5*HZ;
2815 dev->ethtool_ops = &hme_ethtool_ops;
2817 /* Happy Meal can do it all... except VLAN. */
2818 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
2820 dev->irq = sdev->irqs[0];
2822 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2823 /* Hook up PCI register/dma accessors. */
2824 hp->read_desc32 = sbus_hme_read_desc32;
2825 hp->write_txd = sbus_hme_write_txd;
2826 hp->write_rxd = sbus_hme_write_rxd;
2827 hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2828 hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2829 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2830 sbus_dma_sync_single_for_cpu;
2831 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2832 sbus_dma_sync_single_for_device;
2833 hp->read32 = sbus_hme_read32;
2834 hp->write32 = sbus_hme_write32;
2837 /* Grrr, Happy Meal comes up by default not advertising
2838 * full duplex 100baseT capabilities, fix this.
2840 spin_lock_irq(&hp->happy_lock);
2841 happy_meal_set_initial_advertisement(hp);
2842 spin_unlock_irq(&hp->happy_lock);
2844 if (register_netdev(hp->dev)) {
2845 printk(KERN_ERR "happymeal: Cannot register net device, "
2847 goto err_out_free_consistent;
2850 dev_set_drvdata(&sdev->ofdev.dev, hp);
2853 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2854 dev->name, qfe_slot);
2856 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2859 for (i = 0; i < 6; i++)
2861 dev->dev_addr[i], i == 5 ? ' ' : ':');
2866 err_out_free_consistent:
2867 sbus_free_consistent(hp->happy_dev,
2874 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2876 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2878 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2880 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2882 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2884 err_out_free_netdev:
2893 #ifndef CONFIG_SPARC
2894 static int is_quattro_p(struct pci_dev *pdev)
2896 struct pci_dev *busdev = pdev->bus->self;
2897 struct list_head *tmp;
2900 if (busdev == NULL ||
2901 busdev->vendor != PCI_VENDOR_ID_DEC ||
2902 busdev->device != PCI_DEVICE_ID_DEC_21153)
2906 tmp = pdev->bus->devices.next;
2907 while (tmp != &pdev->bus->devices) {
2908 struct pci_dev *this_pdev = pci_dev_b(tmp);
2910 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2911 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2923 /* Fetch MAC address from vital product data of PCI ROM. */
2924 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2928 for (this_offset = 0x20; this_offset < len; this_offset++) {
2929 void __iomem *p = rom_base + this_offset;
2931 if (readb(p + 0) != 0x90 ||
2932 readb(p + 1) != 0x00 ||
2933 readb(p + 2) != 0x09 ||
2934 readb(p + 3) != 0x4e ||
2935 readb(p + 4) != 0x41 ||
2936 readb(p + 5) != 0x06)
2945 for (i = 0; i < 6; i++)
2946 dev_addr[i] = readb(p + i);
2954 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2957 void __iomem *p = pci_map_rom(pdev, &size);
2963 if (is_quattro_p(pdev))
2964 index = PCI_SLOT(pdev->devfn);
2966 found = readb(p) == 0x55 &&
2967 readb(p + 1) == 0xaa &&
2968 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2969 pci_unmap_rom(pdev, p);
2974 /* Sun MAC prefix then 3 random bytes. */
2978 get_random_bytes(&dev_addr[3], 3);
2981 #endif /* !(CONFIG_SPARC) */
2983 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2984 const struct pci_device_id *ent)
2986 struct quattro *qp = NULL;
2988 struct pcidev_cookie *pcp;
2990 struct happy_meal *hp;
2991 struct net_device *dev;
2992 void __iomem *hpreg_base;
2993 unsigned long hpreg_res;
2994 int i, qfe_slot = -1;
2998 /* Now make sure pci_dev cookie is there. */
3000 pcp = pdev->sysdata;
3002 printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n");
3006 strcpy(prom_name, pcp->prom_node->name);
3008 if (is_quattro_p(pdev))
3009 strcpy(prom_name, "SUNW,qfe");
3011 strcpy(prom_name, "SUNW,hme");
3015 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3016 qp = quattro_pci_find(pdev);
3019 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3020 if (qp->happy_meals[qfe_slot] == NULL)
3026 dev = alloc_etherdev(sizeof(struct happy_meal));
3030 SET_MODULE_OWNER(dev);
3031 SET_NETDEV_DEV(dev, &pdev->dev);
3033 if (hme_version_printed++ == 0)
3034 printk(KERN_INFO "%s", version);
3036 dev->base_addr = (long) pdev;
3038 hp = (struct happy_meal *)dev->priv;
3039 memset(hp, 0, sizeof(*hp));
3041 hp->happy_dev = pdev;
3043 spin_lock_init(&hp->happy_lock);
3046 hp->qfe_parent = qp;
3047 hp->qfe_ent = qfe_slot;
3048 qp->happy_meals[qfe_slot] = dev;
3051 hpreg_res = pci_resource_start(pdev, 0);
3053 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3054 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3055 goto err_out_clear_quattro;
3057 if (pci_request_regions(pdev, DRV_NAME)) {
3058 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3060 goto err_out_clear_quattro;
3063 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3064 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3065 goto err_out_free_res;
3068 for (i = 0; i < 6; i++) {
3069 if (macaddr[i] != 0)
3072 if (i < 6) { /* a mac address was given */
3073 for (i = 0; i < 6; i++)
3074 dev->dev_addr[i] = macaddr[i];
3078 unsigned char *addr;
3081 if (qfe_slot != -1 &&
3082 (addr = of_get_property(pcp->prom_node,
3083 "local-mac-address", &len)) != NULL
3085 memcpy(dev->dev_addr, addr, 6);
3087 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3090 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3094 /* Layout registers. */
3095 hp->gregs = (hpreg_base + 0x0000UL);
3096 hp->etxregs = (hpreg_base + 0x2000UL);
3097 hp->erxregs = (hpreg_base + 0x4000UL);
3098 hp->bigmacregs = (hpreg_base + 0x6000UL);
3099 hp->tcvregs = (hpreg_base + 0x7000UL);
3102 hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff);
3103 if (hp->hm_revision == 0xff) {
3106 pci_read_config_byte(pdev, PCI_REVISION_ID, &prev);
3107 hp->hm_revision = 0xc0 | (prev & 0x0f);
3110 /* works with this on non-sparc hosts */
3111 hp->hm_revision = 0x20;
3114 /* Now enable the feature flags we can. */
3115 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3116 hp->happy_flags = HFLAG_20_21;
3117 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3118 hp->happy_flags = HFLAG_NOT_A0;
3121 hp->happy_flags |= HFLAG_QUATTRO;
3123 /* And of course, indicate this is PCI. */
3124 hp->happy_flags |= HFLAG_PCI;
3127 /* Assume PCI happy meals can handle all burst sizes. */
3128 hp->happy_bursts = DMA_BURSTBITS;
3131 hp->happy_block = (struct hmeal_init_block *)
3132 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3135 if (!hp->happy_block) {
3136 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3137 goto err_out_iounmap;
3141 hp->timer_state = asleep;
3142 hp->timer_ticks = 0;
3144 init_timer(&hp->happy_timer);
3147 dev->open = &happy_meal_open;
3148 dev->stop = &happy_meal_close;
3149 dev->hard_start_xmit = &happy_meal_start_xmit;
3150 dev->get_stats = &happy_meal_get_stats;
3151 dev->set_multicast_list = &happy_meal_set_multicast;
3152 dev->tx_timeout = &happy_meal_tx_timeout;
3153 dev->watchdog_timeo = 5*HZ;
3154 dev->ethtool_ops = &hme_ethtool_ops;
3155 dev->irq = pdev->irq;
3158 /* Happy Meal can do it all... */
3159 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3161 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3162 /* Hook up PCI register/dma accessors. */
3163 hp->read_desc32 = pci_hme_read_desc32;
3164 hp->write_txd = pci_hme_write_txd;
3165 hp->write_rxd = pci_hme_write_rxd;
3166 hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3167 hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3168 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3169 pci_dma_sync_single_for_cpu;
3170 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3171 pci_dma_sync_single_for_device;
3172 hp->read32 = pci_hme_read32;
3173 hp->write32 = pci_hme_write32;
3176 /* Grrr, Happy Meal comes up by default not advertising
3177 * full duplex 100baseT capabilities, fix this.
3179 spin_lock_irq(&hp->happy_lock);
3180 happy_meal_set_initial_advertisement(hp);
3181 spin_unlock_irq(&hp->happy_lock);
3183 if (register_netdev(hp->dev)) {
3184 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3186 goto err_out_iounmap;
3189 dev_set_drvdata(&pdev->dev, hp);
3192 struct pci_dev *qpdev = qp->quattro_dev;
3195 if (!strncmp(dev->name, "eth", 3)) {
3196 int i = simple_strtoul(dev->name + 3, NULL, 10);
3197 sprintf(prom_name, "-%d", i + 3);
3199 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3200 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3201 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3202 printk("DEC 21153 PCI Bridge\n");
3204 printk("unknown bridge %04x.%04x\n",
3205 qpdev->vendor, qpdev->device);
3209 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3210 dev->name, qfe_slot);
3212 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3215 for (i = 0; i < 6; i++)
3216 printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':');
3226 pci_release_regions(pdev);
3228 err_out_clear_quattro:
3230 qp->happy_meals[qfe_slot] = NULL;
3238 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3240 struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3241 struct net_device *net_dev = hp->dev;
3243 unregister_netdev(net_dev);
3245 pci_free_consistent(hp->happy_dev,
3250 pci_release_regions(hp->happy_dev);
3252 free_netdev(net_dev);
3254 dev_set_drvdata(&pdev->dev, NULL);
3257 static struct pci_device_id happymeal_pci_ids[] = {
3259 .vendor = PCI_VENDOR_ID_SUN,
3260 .device = PCI_DEVICE_ID_SUN_HAPPYMEAL,
3261 .subvendor = PCI_ANY_ID,
3262 .subdevice = PCI_ANY_ID,
3264 { } /* Terminating entry */
3267 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3269 static struct pci_driver hme_pci_driver = {
3271 .id_table = happymeal_pci_ids,
3272 .probe = happy_meal_pci_probe,
3273 .remove = __devexit_p(happy_meal_pci_remove),
3276 static int __init happy_meal_pci_init(void)
3278 return pci_module_init(&hme_pci_driver);
3281 static void happy_meal_pci_exit(void)
3283 pci_unregister_driver(&hme_pci_driver);
3285 while (qfe_pci_list) {
3286 struct quattro *qfe = qfe_pci_list;
3287 struct quattro *next = qfe->next;
3291 qfe_pci_list = next;
3298 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3300 struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3301 struct device_node *dp = dev->node;
3302 char *model = of_get_property(dp, "model", NULL);
3303 int is_qfe = (match->data != NULL);
3305 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3308 return happy_meal_sbus_probe_one(sdev, is_qfe);
3311 static int __devexit hme_sbus_remove(struct of_device *dev)
3313 struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3314 struct net_device *net_dev = hp->dev;
3316 unregister_netdevice(net_dev);
3318 /* XXX qfe parent interrupt... */
3320 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3321 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3322 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3323 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3324 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3325 sbus_free_consistent(hp->happy_dev,
3330 free_netdev(net_dev);
3332 dev_set_drvdata(&dev->dev, NULL);
3337 static struct of_device_id hme_sbus_match[] = {
3352 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3354 static struct of_platform_driver hme_sbus_driver = {
3356 .match_table = hme_sbus_match,
3357 .probe = hme_sbus_probe,
3358 .remove = __devexit_p(hme_sbus_remove),
3361 static int __init happy_meal_sbus_init(void)
3365 err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3367 quattro_sbus_register_irqs();
3372 static void happy_meal_sbus_exit(void)
3374 of_unregister_driver(&hme_sbus_driver);
3375 quattro_sbus_free_irqs();
3377 while (qfe_sbus_list) {
3378 struct quattro *qfe = qfe_sbus_list;
3379 struct quattro *next = qfe->next;
3383 qfe_sbus_list = next;
3388 static int __init happy_meal_probe(void)
3393 err = happy_meal_sbus_init();
3397 err = happy_meal_pci_init();
3400 happy_meal_sbus_exit();
3409 static void __exit happy_meal_exit(void)
3412 happy_meal_sbus_exit();
3415 happy_meal_pci_exit();
3419 module_init(happy_meal_probe);
3420 module_exit(happy_meal_exit);