2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
36 #include <net/checksum.h>
38 #include <net/tcp_states.h>
39 #include <asm/uaccess.h>
40 #include <asm/ioctls.h>
42 #include <linux/sunrpc/types.h>
43 #include <linux/sunrpc/xdr.h>
44 #include <linux/sunrpc/svcsock.h>
45 #include <linux/sunrpc/stats.h>
47 /* SMP locking strategy:
49 * svc_serv->sv_lock protects most stuff for that service.
51 * Some flags can be set to certain values at any time
52 * providing that certain rules are followed:
54 * SK_BUSY can be set to 0 at any time.
55 * svc_sock_enqueue must be called afterwards
56 * SK_CONN, SK_DATA, can be set or cleared at any time.
57 * after a set, svc_sock_enqueue must be called.
58 * after a clear, the socket must be read/accepted
59 * if this succeeds, it must be set again.
60 * SK_CLOSE can set at any time. It is never cleared.
64 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
67 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
68 int *errp, int pmap_reg);
69 static void svc_udp_data_ready(struct sock *, int);
70 static int svc_udp_recvfrom(struct svc_rqst *);
71 static int svc_udp_sendto(struct svc_rqst *);
73 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
74 static int svc_deferred_recv(struct svc_rqst *rqstp);
75 static struct cache_deferred_req *svc_defer(struct cache_req *req);
78 * Queue up an idle server thread. Must have serv->sv_lock held.
79 * Note: this is really a stack rather than a queue, so that we only
80 * use as many different threads as we need, and the rest don't polute
84 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
86 list_add(&rqstp->rq_list, &serv->sv_threads);
90 * Dequeue an nfsd thread. Must have serv->sv_lock held.
93 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
95 list_del(&rqstp->rq_list);
99 * Release an skbuff after use
102 svc_release_skb(struct svc_rqst *rqstp)
104 struct sk_buff *skb = rqstp->rq_skbuff;
105 struct svc_deferred_req *dr = rqstp->rq_deferred;
108 rqstp->rq_skbuff = NULL;
110 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
111 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
114 rqstp->rq_deferred = NULL;
120 * Any space to write?
122 static inline unsigned long
123 svc_sock_wspace(struct svc_sock *svsk)
127 if (svsk->sk_sock->type == SOCK_STREAM)
128 wspace = sk_stream_wspace(svsk->sk_sk);
130 wspace = sock_wspace(svsk->sk_sk);
136 * Queue up a socket with data pending. If there are idle nfsd
137 * processes, wake 'em up.
141 svc_sock_enqueue(struct svc_sock *svsk)
143 struct svc_serv *serv = svsk->sk_server;
144 struct svc_rqst *rqstp;
146 if (!(svsk->sk_flags &
147 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
149 if (test_bit(SK_DEAD, &svsk->sk_flags))
152 spin_lock_bh(&serv->sv_lock);
154 if (!list_empty(&serv->sv_threads) &&
155 !list_empty(&serv->sv_sockets))
157 "svc_sock_enqueue: threads and sockets both waiting??\n");
159 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
160 /* Don't enqueue dead sockets */
161 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
165 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
166 /* Don't enqueue socket while daemon is receiving */
167 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
171 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
172 if (((svsk->sk_reserved + serv->sv_bufsz)*2
173 > svc_sock_wspace(svsk))
174 && !test_bit(SK_CLOSE, &svsk->sk_flags)
175 && !test_bit(SK_CONN, &svsk->sk_flags)) {
176 /* Don't enqueue while not enough space for reply */
177 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
178 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
179 svc_sock_wspace(svsk));
182 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
184 /* Mark socket as busy. It will remain in this state until the
185 * server has processed all pending data and put the socket back
188 set_bit(SK_BUSY, &svsk->sk_flags);
190 if (!list_empty(&serv->sv_threads)) {
191 rqstp = list_entry(serv->sv_threads.next,
194 dprintk("svc: socket %p served by daemon %p\n",
196 svc_serv_dequeue(serv, rqstp);
199 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
200 rqstp, rqstp->rq_sock);
201 rqstp->rq_sock = svsk;
203 rqstp->rq_reserved = serv->sv_bufsz;
204 svsk->sk_reserved += rqstp->rq_reserved;
205 wake_up(&rqstp->rq_wait);
207 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
208 list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
212 spin_unlock_bh(&serv->sv_lock);
216 * Dequeue the first socket. Must be called with the serv->sv_lock held.
218 static inline struct svc_sock *
219 svc_sock_dequeue(struct svc_serv *serv)
221 struct svc_sock *svsk;
223 if (list_empty(&serv->sv_sockets))
226 svsk = list_entry(serv->sv_sockets.next,
227 struct svc_sock, sk_ready);
228 list_del_init(&svsk->sk_ready);
230 dprintk("svc: socket %p dequeued, inuse=%d\n",
231 svsk->sk_sk, svsk->sk_inuse);
237 * Having read something from a socket, check whether it
238 * needs to be re-enqueued.
239 * Note: SK_DATA only gets cleared when a read-attempt finds
240 * no (or insufficient) data.
243 svc_sock_received(struct svc_sock *svsk)
245 clear_bit(SK_BUSY, &svsk->sk_flags);
246 svc_sock_enqueue(svsk);
251 * svc_reserve - change the space reserved for the reply to a request.
252 * @rqstp: The request in question
253 * @space: new max space to reserve
255 * Each request reserves some space on the output queue of the socket
256 * to make sure the reply fits. This function reduces that reserved
257 * space to be the amount of space used already, plus @space.
260 void svc_reserve(struct svc_rqst *rqstp, int space)
262 space += rqstp->rq_res.head[0].iov_len;
264 if (space < rqstp->rq_reserved) {
265 struct svc_sock *svsk = rqstp->rq_sock;
266 spin_lock_bh(&svsk->sk_server->sv_lock);
267 svsk->sk_reserved -= (rqstp->rq_reserved - space);
268 rqstp->rq_reserved = space;
269 spin_unlock_bh(&svsk->sk_server->sv_lock);
271 svc_sock_enqueue(svsk);
276 * Release a socket after use.
279 svc_sock_put(struct svc_sock *svsk)
281 struct svc_serv *serv = svsk->sk_server;
283 spin_lock_bh(&serv->sv_lock);
284 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
285 spin_unlock_bh(&serv->sv_lock);
286 dprintk("svc: releasing dead socket\n");
287 sock_release(svsk->sk_sock);
291 spin_unlock_bh(&serv->sv_lock);
295 svc_sock_release(struct svc_rqst *rqstp)
297 struct svc_sock *svsk = rqstp->rq_sock;
299 svc_release_skb(rqstp);
301 svc_free_allpages(rqstp);
302 rqstp->rq_res.page_len = 0;
303 rqstp->rq_res.page_base = 0;
306 /* Reset response buffer and release
308 * But first, check that enough space was reserved
309 * for the reply, otherwise we have a bug!
311 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
312 printk(KERN_ERR "RPC request reserved %d but used %d\n",
316 rqstp->rq_res.head[0].iov_len = 0;
317 svc_reserve(rqstp, 0);
318 rqstp->rq_sock = NULL;
324 * External function to wake up a server waiting for data
327 svc_wake_up(struct svc_serv *serv)
329 struct svc_rqst *rqstp;
331 spin_lock_bh(&serv->sv_lock);
332 if (!list_empty(&serv->sv_threads)) {
333 rqstp = list_entry(serv->sv_threads.next,
336 dprintk("svc: daemon %p woken up.\n", rqstp);
338 svc_serv_dequeue(serv, rqstp);
339 rqstp->rq_sock = NULL;
341 wake_up(&rqstp->rq_wait);
343 spin_unlock_bh(&serv->sv_lock);
347 * Generic sendto routine
350 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
352 struct svc_sock *svsk = rqstp->rq_sock;
353 struct socket *sock = svsk->sk_sock;
355 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
356 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
357 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
361 struct page **ppage = xdr->pages;
362 size_t base = xdr->page_base;
363 unsigned int pglen = xdr->page_len;
364 unsigned int flags = MSG_MORE;
368 if (rqstp->rq_prot == IPPROTO_UDP) {
369 /* set the source and destination */
371 msg.msg_name = &rqstp->rq_addr;
372 msg.msg_namelen = sizeof(rqstp->rq_addr);
375 msg.msg_flags = MSG_MORE;
377 msg.msg_control = cmh;
378 msg.msg_controllen = sizeof(buffer);
379 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
380 cmh->cmsg_level = SOL_IP;
381 cmh->cmsg_type = IP_PKTINFO;
382 pki->ipi_ifindex = 0;
383 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
385 if (sock_sendmsg(sock, &msg, 0) < 0)
390 if (slen == xdr->head[0].iov_len)
392 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
393 if (len != xdr->head[0].iov_len)
395 slen -= xdr->head[0].iov_len;
400 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
404 result = kernel_sendpage(sock, *ppage, base, size, flags);
411 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
416 if (xdr->tail[0].iov_len) {
417 result = kernel_sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
418 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
419 xdr->tail[0].iov_len, 0);
425 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
426 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
427 rqstp->rq_addr.sin_addr.s_addr);
433 * Report socket names for nfsdfs
435 static int one_sock_name(char *buf, struct svc_sock *svsk)
439 switch(svsk->sk_sk->sk_family) {
441 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
442 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
444 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
445 inet_sk(svsk->sk_sk)->num);
448 len = sprintf(buf, "*unknown-%d*\n",
449 svsk->sk_sk->sk_family);
455 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
457 struct svc_sock *svsk, *closesk = NULL;
462 spin_lock(&serv->sv_lock);
463 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
464 int onelen = one_sock_name(buf+len, svsk);
465 if (toclose && strcmp(toclose, buf+len) == 0)
470 spin_unlock(&serv->sv_lock);
472 svc_delete_socket(closesk);
475 EXPORT_SYMBOL(svc_sock_names);
478 * Check input queue length
481 svc_recv_available(struct svc_sock *svsk)
483 struct socket *sock = svsk->sk_sock;
486 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
488 return (err >= 0)? avail : err;
492 * Generic recvfrom routine.
495 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
501 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
502 sock = rqstp->rq_sock->sk_sock;
504 msg.msg_name = &rqstp->rq_addr;
505 msg.msg_namelen = sizeof(rqstp->rq_addr);
506 msg.msg_control = NULL;
507 msg.msg_controllen = 0;
509 msg.msg_flags = MSG_DONTWAIT;
511 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
513 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
514 * possibly we should cache this in the svc_sock structure
515 * at accept time. FIXME
517 alen = sizeof(rqstp->rq_addr);
518 kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
520 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
521 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
527 * Set socket snd and rcv buffer lengths
530 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
534 oldfs = get_fs(); set_fs(KERNEL_DS);
535 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
536 (char*)&snd, sizeof(snd));
537 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
538 (char*)&rcv, sizeof(rcv));
540 /* sock_setsockopt limits use to sysctl_?mem_max,
541 * which isn't acceptable. Until that is made conditional
542 * on not having CAP_SYS_RESOURCE or similar, we go direct...
543 * DaveM said I could!
546 sock->sk->sk_sndbuf = snd * 2;
547 sock->sk->sk_rcvbuf = rcv * 2;
548 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
549 release_sock(sock->sk);
553 * INET callback when data has been received on the socket.
556 svc_udp_data_ready(struct sock *sk, int count)
558 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
561 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
562 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
563 set_bit(SK_DATA, &svsk->sk_flags);
564 svc_sock_enqueue(svsk);
566 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
567 wake_up_interruptible(sk->sk_sleep);
571 * INET callback when space is newly available on the socket.
574 svc_write_space(struct sock *sk)
576 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
579 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
580 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
581 svc_sock_enqueue(svsk);
584 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
585 dprintk("RPC svc_write_space: someone sleeping on %p\n",
587 wake_up_interruptible(sk->sk_sleep);
592 * Receive a datagram from a UDP socket.
595 svc_udp_recvfrom(struct svc_rqst *rqstp)
597 struct svc_sock *svsk = rqstp->rq_sock;
598 struct svc_serv *serv = svsk->sk_server;
602 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
603 /* udp sockets need large rcvbuf as all pending
604 * requests are still in that buffer. sndbuf must
605 * also be large enough that there is enough space
606 * for one reply per thread.
608 svc_sock_setbufsize(svsk->sk_sock,
609 (serv->sv_nrthreads+3) * serv->sv_bufsz,
610 (serv->sv_nrthreads+3) * serv->sv_bufsz);
612 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
613 svc_sock_received(svsk);
614 return svc_deferred_recv(rqstp);
617 clear_bit(SK_DATA, &svsk->sk_flags);
618 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
619 if (err == -EAGAIN) {
620 svc_sock_received(svsk);
623 /* possibly an icmp error */
624 dprintk("svc: recvfrom returned error %d\n", -err);
626 if (skb->tstamp.off_sec == 0) {
629 tv.tv_sec = xtime.tv_sec;
630 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
631 skb_set_timestamp(skb, &tv);
632 /* Don't enable netstamp, sunrpc doesn't
633 need that much accuracy */
635 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
636 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
639 * Maybe more packets - kick another thread ASAP.
641 svc_sock_received(svsk);
643 len = skb->len - sizeof(struct udphdr);
644 rqstp->rq_arg.len = len;
646 rqstp->rq_prot = IPPROTO_UDP;
648 /* Get sender address */
649 rqstp->rq_addr.sin_family = AF_INET;
650 rqstp->rq_addr.sin_port = skb->h.uh->source;
651 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
652 rqstp->rq_daddr = skb->nh.iph->daddr;
654 if (skb_is_nonlinear(skb)) {
655 /* we have to copy */
657 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
660 skb_free_datagram(svsk->sk_sk, skb);
664 skb_free_datagram(svsk->sk_sk, skb);
666 /* we can use it in-place */
667 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
668 rqstp->rq_arg.head[0].iov_len = len;
669 if (skb_checksum_complete(skb)) {
670 skb_free_datagram(svsk->sk_sk, skb);
673 rqstp->rq_skbuff = skb;
676 rqstp->rq_arg.page_base = 0;
677 if (len <= rqstp->rq_arg.head[0].iov_len) {
678 rqstp->rq_arg.head[0].iov_len = len;
679 rqstp->rq_arg.page_len = 0;
681 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
682 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
686 serv->sv_stats->netudpcnt++;
692 svc_udp_sendto(struct svc_rqst *rqstp)
696 error = svc_sendto(rqstp, &rqstp->rq_res);
697 if (error == -ECONNREFUSED)
698 /* ICMP error on earlier request. */
699 error = svc_sendto(rqstp, &rqstp->rq_res);
705 svc_udp_init(struct svc_sock *svsk)
707 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
708 svsk->sk_sk->sk_write_space = svc_write_space;
709 svsk->sk_recvfrom = svc_udp_recvfrom;
710 svsk->sk_sendto = svc_udp_sendto;
712 /* initialise setting must have enough space to
713 * receive and respond to one request.
714 * svc_udp_recvfrom will re-adjust if necessary
716 svc_sock_setbufsize(svsk->sk_sock,
717 3 * svsk->sk_server->sv_bufsz,
718 3 * svsk->sk_server->sv_bufsz);
720 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
721 set_bit(SK_CHNGBUF, &svsk->sk_flags);
725 * A data_ready event on a listening socket means there's a connection
726 * pending. Do not use state_change as a substitute for it.
729 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
731 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
733 dprintk("svc: socket %p TCP (listen) state change %d\n",
737 * This callback may called twice when a new connection
738 * is established as a child socket inherits everything
739 * from a parent LISTEN socket.
740 * 1) data_ready method of the parent socket will be called
741 * when one of child sockets become ESTABLISHED.
742 * 2) data_ready method of the child socket may be called
743 * when it receives data before the socket is accepted.
744 * In case of 2, we should ignore it silently.
746 if (sk->sk_state == TCP_LISTEN) {
748 set_bit(SK_CONN, &svsk->sk_flags);
749 svc_sock_enqueue(svsk);
751 printk("svc: socket %p: no user data\n", sk);
754 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
755 wake_up_interruptible_all(sk->sk_sleep);
759 * A state change on a connected socket means it's dying or dead.
762 svc_tcp_state_change(struct sock *sk)
764 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
766 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
767 sk, sk->sk_state, sk->sk_user_data);
770 printk("svc: socket %p: no user data\n", sk);
772 set_bit(SK_CLOSE, &svsk->sk_flags);
773 svc_sock_enqueue(svsk);
775 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
776 wake_up_interruptible_all(sk->sk_sleep);
780 svc_tcp_data_ready(struct sock *sk, int count)
782 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
784 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
785 sk, sk->sk_user_data);
787 set_bit(SK_DATA, &svsk->sk_flags);
788 svc_sock_enqueue(svsk);
790 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
791 wake_up_interruptible(sk->sk_sleep);
795 * Accept a TCP connection
798 svc_tcp_accept(struct svc_sock *svsk)
800 struct sockaddr_in sin;
801 struct svc_serv *serv = svsk->sk_server;
802 struct socket *sock = svsk->sk_sock;
803 struct socket *newsock;
804 struct svc_sock *newsvsk;
807 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
811 clear_bit(SK_CONN, &svsk->sk_flags);
812 err = kernel_accept(sock, &newsock, O_NONBLOCK);
815 printk(KERN_WARNING "%s: no more sockets!\n",
817 else if (err != -EAGAIN && net_ratelimit())
818 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
819 serv->sv_name, -err);
823 set_bit(SK_CONN, &svsk->sk_flags);
824 svc_sock_enqueue(svsk);
827 err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
830 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
831 serv->sv_name, -err);
832 goto failed; /* aborted connection or whatever */
835 /* Ideally, we would want to reject connections from unauthorized
836 * hosts here, but when we get encription, the IP of the host won't
837 * tell us anything. For now just warn about unpriv connections.
839 if (ntohs(sin.sin_port) >= 1024) {
841 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
843 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
846 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
847 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
849 /* make sure that a write doesn't block forever when
852 newsock->sk->sk_sndtimeo = HZ*30;
854 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
858 /* make sure that we don't have too many active connections.
859 * If we have, something must be dropped.
861 * There's no point in trying to do random drop here for
862 * DoS prevention. The NFS clients does 1 reconnect in 15
863 * seconds. An attacker can easily beat that.
865 * The only somewhat efficient mechanism would be if drop
866 * old connections from the same IP first. But right now
867 * we don't even record the client IP in svc_sock.
869 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
870 struct svc_sock *svsk = NULL;
871 spin_lock_bh(&serv->sv_lock);
872 if (!list_empty(&serv->sv_tempsocks)) {
873 if (net_ratelimit()) {
874 /* Try to help the admin */
875 printk(KERN_NOTICE "%s: too many open TCP "
876 "sockets, consider increasing the "
877 "number of nfsd threads\n",
879 printk(KERN_NOTICE "%s: last TCP connect from "
882 NIPQUAD(sin.sin_addr.s_addr),
883 ntohs(sin.sin_port));
886 * Always select the oldest socket. It's not fair,
889 svsk = list_entry(serv->sv_tempsocks.prev,
892 set_bit(SK_CLOSE, &svsk->sk_flags);
895 spin_unlock_bh(&serv->sv_lock);
898 svc_sock_enqueue(svsk);
905 serv->sv_stats->nettcpconn++;
910 sock_release(newsock);
915 * Receive data from a TCP socket.
918 svc_tcp_recvfrom(struct svc_rqst *rqstp)
920 struct svc_sock *svsk = rqstp->rq_sock;
921 struct svc_serv *serv = svsk->sk_server;
923 struct kvec vec[RPCSVC_MAXPAGES];
926 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
927 svsk, test_bit(SK_DATA, &svsk->sk_flags),
928 test_bit(SK_CONN, &svsk->sk_flags),
929 test_bit(SK_CLOSE, &svsk->sk_flags));
931 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
932 svc_sock_received(svsk);
933 return svc_deferred_recv(rqstp);
936 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
937 svc_delete_socket(svsk);
941 if (test_bit(SK_CONN, &svsk->sk_flags)) {
942 svc_tcp_accept(svsk);
943 svc_sock_received(svsk);
947 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
948 /* sndbuf needs to have room for one request
949 * per thread, otherwise we can stall even when the
950 * network isn't a bottleneck.
951 * rcvbuf just needs to be able to hold a few requests.
952 * Normally they will be removed from the queue
953 * as soon a a complete request arrives.
955 svc_sock_setbufsize(svsk->sk_sock,
956 (serv->sv_nrthreads+3) * serv->sv_bufsz,
959 clear_bit(SK_DATA, &svsk->sk_flags);
961 /* Receive data. If we haven't got the record length yet, get
962 * the next four bytes. Otherwise try to gobble up as much as
963 * possible up to the complete record length.
965 if (svsk->sk_tcplen < 4) {
966 unsigned long want = 4 - svsk->sk_tcplen;
969 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
971 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
973 svsk->sk_tcplen += len;
976 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
978 svc_sock_received(svsk);
979 return -EAGAIN; /* record header not complete */
982 svsk->sk_reclen = ntohl(svsk->sk_reclen);
983 if (!(svsk->sk_reclen & 0x80000000)) {
984 /* FIXME: technically, a record can be fragmented,
985 * and non-terminal fragments will not have the top
986 * bit set in the fragment length header.
987 * But apparently no known nfs clients send fragmented
989 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
990 (unsigned long) svsk->sk_reclen);
993 svsk->sk_reclen &= 0x7fffffff;
994 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
995 if (svsk->sk_reclen > serv->sv_bufsz) {
996 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
997 (unsigned long) svsk->sk_reclen);
1002 /* Check whether enough data is available */
1003 len = svc_recv_available(svsk);
1007 if (len < svsk->sk_reclen) {
1008 dprintk("svc: incomplete TCP record (%d of %d)\n",
1009 len, svsk->sk_reclen);
1010 svc_sock_received(svsk);
1011 return -EAGAIN; /* record not complete */
1013 len = svsk->sk_reclen;
1014 set_bit(SK_DATA, &svsk->sk_flags);
1016 vec[0] = rqstp->rq_arg.head[0];
1019 while (vlen < len) {
1020 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
1021 vec[pnum].iov_len = PAGE_SIZE;
1026 /* Now receive data */
1027 len = svc_recvfrom(rqstp, vec, pnum, len);
1031 dprintk("svc: TCP complete record (%d bytes)\n", len);
1032 rqstp->rq_arg.len = len;
1033 rqstp->rq_arg.page_base = 0;
1034 if (len <= rqstp->rq_arg.head[0].iov_len) {
1035 rqstp->rq_arg.head[0].iov_len = len;
1036 rqstp->rq_arg.page_len = 0;
1038 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1041 rqstp->rq_skbuff = NULL;
1042 rqstp->rq_prot = IPPROTO_TCP;
1044 /* Reset TCP read info */
1045 svsk->sk_reclen = 0;
1046 svsk->sk_tcplen = 0;
1048 svc_sock_received(svsk);
1050 serv->sv_stats->nettcpcnt++;
1055 svc_delete_socket(svsk);
1059 if (len == -EAGAIN) {
1060 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1061 svc_sock_received(svsk);
1063 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1064 svsk->sk_server->sv_name, -len);
1072 * Send out data on TCP socket.
1075 svc_tcp_sendto(struct svc_rqst *rqstp)
1077 struct xdr_buf *xbufp = &rqstp->rq_res;
1081 /* Set up the first element of the reply kvec.
1082 * Any other kvecs that may be in use have been taken
1083 * care of by the server implementation itself.
1085 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1086 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1088 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1091 sent = svc_sendto(rqstp, &rqstp->rq_res);
1092 if (sent != xbufp->len) {
1093 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1094 rqstp->rq_sock->sk_server->sv_name,
1095 (sent<0)?"got error":"sent only",
1097 svc_delete_socket(rqstp->rq_sock);
1104 svc_tcp_init(struct svc_sock *svsk)
1106 struct sock *sk = svsk->sk_sk;
1107 struct tcp_sock *tp = tcp_sk(sk);
1109 svsk->sk_recvfrom = svc_tcp_recvfrom;
1110 svsk->sk_sendto = svc_tcp_sendto;
1112 if (sk->sk_state == TCP_LISTEN) {
1113 dprintk("setting up TCP socket for listening\n");
1114 sk->sk_data_ready = svc_tcp_listen_data_ready;
1115 set_bit(SK_CONN, &svsk->sk_flags);
1117 dprintk("setting up TCP socket for reading\n");
1118 sk->sk_state_change = svc_tcp_state_change;
1119 sk->sk_data_ready = svc_tcp_data_ready;
1120 sk->sk_write_space = svc_write_space;
1122 svsk->sk_reclen = 0;
1123 svsk->sk_tcplen = 0;
1125 tp->nonagle = 1; /* disable Nagle's algorithm */
1127 /* initialise setting must have enough space to
1128 * receive and respond to one request.
1129 * svc_tcp_recvfrom will re-adjust if necessary
1131 svc_sock_setbufsize(svsk->sk_sock,
1132 3 * svsk->sk_server->sv_bufsz,
1133 3 * svsk->sk_server->sv_bufsz);
1135 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1136 set_bit(SK_DATA, &svsk->sk_flags);
1137 if (sk->sk_state != TCP_ESTABLISHED)
1138 set_bit(SK_CLOSE, &svsk->sk_flags);
1143 svc_sock_update_bufs(struct svc_serv *serv)
1146 * The number of server threads has changed. Update
1147 * rcvbuf and sndbuf accordingly on all sockets
1149 struct list_head *le;
1151 spin_lock_bh(&serv->sv_lock);
1152 list_for_each(le, &serv->sv_permsocks) {
1153 struct svc_sock *svsk =
1154 list_entry(le, struct svc_sock, sk_list);
1155 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1157 list_for_each(le, &serv->sv_tempsocks) {
1158 struct svc_sock *svsk =
1159 list_entry(le, struct svc_sock, sk_list);
1160 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1162 spin_unlock_bh(&serv->sv_lock);
1166 * Receive the next request on any socket.
1169 svc_recv(struct svc_rqst *rqstp, long timeout)
1171 struct svc_sock *svsk =NULL;
1172 struct svc_serv *serv = rqstp->rq_server;
1175 struct xdr_buf *arg;
1176 DECLARE_WAITQUEUE(wait, current);
1178 dprintk("svc: server %p waiting for data (to = %ld)\n",
1183 "svc_recv: service %p, socket not NULL!\n",
1185 if (waitqueue_active(&rqstp->rq_wait))
1187 "svc_recv: service %p, wait queue active!\n",
1190 /* Initialize the buffers */
1191 /* first reclaim pages that were moved to response list */
1192 svc_pushback_allpages(rqstp);
1194 /* now allocate needed pages. If we get a failure, sleep briefly */
1195 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
1196 while (rqstp->rq_arghi < pages) {
1197 struct page *p = alloc_page(GFP_KERNEL);
1199 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1202 rqstp->rq_argpages[rqstp->rq_arghi++] = p;
1205 /* Make arg->head point to first page and arg->pages point to rest */
1206 arg = &rqstp->rq_arg;
1207 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
1208 arg->head[0].iov_len = PAGE_SIZE;
1209 rqstp->rq_argused = 1;
1210 arg->pages = rqstp->rq_argpages + 1;
1212 /* save at least one page for response */
1213 arg->page_len = (pages-2)*PAGE_SIZE;
1214 arg->len = (pages-1)*PAGE_SIZE;
1215 arg->tail[0].iov_len = 0;
1222 spin_lock_bh(&serv->sv_lock);
1223 if (!list_empty(&serv->sv_tempsocks)) {
1224 svsk = list_entry(serv->sv_tempsocks.next,
1225 struct svc_sock, sk_list);
1226 /* apparently the "standard" is that clients close
1227 * idle connections after 5 minutes, servers after
1229 * http://www.connectathon.org/talks96/nfstcp.pdf
1231 if (get_seconds() - svsk->sk_lastrecv < 6*60
1232 || test_bit(SK_BUSY, &svsk->sk_flags))
1236 set_bit(SK_BUSY, &svsk->sk_flags);
1237 set_bit(SK_CLOSE, &svsk->sk_flags);
1238 rqstp->rq_sock = svsk;
1240 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
1241 rqstp->rq_sock = svsk;
1243 rqstp->rq_reserved = serv->sv_bufsz;
1244 svsk->sk_reserved += rqstp->rq_reserved;
1246 /* No data pending. Go to sleep */
1247 svc_serv_enqueue(serv, rqstp);
1250 * We have to be able to interrupt this wait
1251 * to bring down the daemons ...
1253 set_current_state(TASK_INTERRUPTIBLE);
1254 add_wait_queue(&rqstp->rq_wait, &wait);
1255 spin_unlock_bh(&serv->sv_lock);
1257 schedule_timeout(timeout);
1261 spin_lock_bh(&serv->sv_lock);
1262 remove_wait_queue(&rqstp->rq_wait, &wait);
1264 if (!(svsk = rqstp->rq_sock)) {
1265 svc_serv_dequeue(serv, rqstp);
1266 spin_unlock_bh(&serv->sv_lock);
1267 dprintk("svc: server %p, no data yet\n", rqstp);
1268 return signalled()? -EINTR : -EAGAIN;
1271 spin_unlock_bh(&serv->sv_lock);
1273 dprintk("svc: server %p, socket %p, inuse=%d\n",
1274 rqstp, svsk, svsk->sk_inuse);
1275 len = svsk->sk_recvfrom(rqstp);
1276 dprintk("svc: got len=%d\n", len);
1278 /* No data, incomplete (TCP) read, or accept() */
1279 if (len == 0 || len == -EAGAIN) {
1280 rqstp->rq_res.len = 0;
1281 svc_sock_release(rqstp);
1284 svsk->sk_lastrecv = get_seconds();
1285 if (test_bit(SK_TEMP, &svsk->sk_flags)) {
1286 /* push active sockets to end of list */
1287 spin_lock_bh(&serv->sv_lock);
1288 if (!list_empty(&svsk->sk_list))
1289 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
1290 spin_unlock_bh(&serv->sv_lock);
1293 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1294 rqstp->rq_chandle.defer = svc_defer;
1297 serv->sv_stats->netcnt++;
1305 svc_drop(struct svc_rqst *rqstp)
1307 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1308 svc_sock_release(rqstp);
1312 * Return reply to client.
1315 svc_send(struct svc_rqst *rqstp)
1317 struct svc_sock *svsk;
1321 if ((svsk = rqstp->rq_sock) == NULL) {
1322 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1323 __FILE__, __LINE__);
1327 /* release the receive skb before sending the reply */
1328 svc_release_skb(rqstp);
1330 /* calculate over-all length */
1331 xb = & rqstp->rq_res;
1332 xb->len = xb->head[0].iov_len +
1334 xb->tail[0].iov_len;
1336 /* Grab svsk->sk_mutex to serialize outgoing data. */
1337 mutex_lock(&svsk->sk_mutex);
1338 if (test_bit(SK_DEAD, &svsk->sk_flags))
1341 len = svsk->sk_sendto(rqstp);
1342 mutex_unlock(&svsk->sk_mutex);
1343 svc_sock_release(rqstp);
1345 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1351 * Initialize socket for RPC use and create svc_sock struct
1352 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1354 static struct svc_sock *
1355 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1356 int *errp, int pmap_register)
1358 struct svc_sock *svsk;
1361 dprintk("svc: svc_setup_socket %p\n", sock);
1362 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1369 /* Register socket with portmapper */
1370 if (*errp >= 0 && pmap_register)
1371 *errp = svc_register(serv, inet->sk_protocol,
1372 ntohs(inet_sk(inet)->sport));
1379 set_bit(SK_BUSY, &svsk->sk_flags);
1380 inet->sk_user_data = svsk;
1381 svsk->sk_sock = sock;
1383 svsk->sk_ostate = inet->sk_state_change;
1384 svsk->sk_odata = inet->sk_data_ready;
1385 svsk->sk_owspace = inet->sk_write_space;
1386 svsk->sk_server = serv;
1387 svsk->sk_lastrecv = get_seconds();
1388 INIT_LIST_HEAD(&svsk->sk_deferred);
1389 INIT_LIST_HEAD(&svsk->sk_ready);
1390 mutex_init(&svsk->sk_mutex);
1392 /* Initialize the socket */
1393 if (sock->type == SOCK_DGRAM)
1398 spin_lock_bh(&serv->sv_lock);
1399 if (!pmap_register) {
1400 set_bit(SK_TEMP, &svsk->sk_flags);
1401 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1404 clear_bit(SK_TEMP, &svsk->sk_flags);
1405 list_add(&svsk->sk_list, &serv->sv_permsocks);
1407 spin_unlock_bh(&serv->sv_lock);
1409 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1412 clear_bit(SK_BUSY, &svsk->sk_flags);
1413 svc_sock_enqueue(svsk);
1417 int svc_addsock(struct svc_serv *serv,
1423 struct socket *so = sockfd_lookup(fd, &err);
1424 struct svc_sock *svsk = NULL;
1428 if (so->sk->sk_family != AF_INET)
1429 err = -EAFNOSUPPORT;
1430 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1431 so->sk->sk_protocol != IPPROTO_UDP)
1432 err = -EPROTONOSUPPORT;
1433 else if (so->state > SS_UNCONNECTED)
1436 svsk = svc_setup_socket(serv, so, &err, 1);
1444 if (proto) *proto = so->sk->sk_protocol;
1445 return one_sock_name(name_return, svsk);
1447 EXPORT_SYMBOL_GPL(svc_addsock);
1450 * Create socket for RPC service.
1453 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1455 struct svc_sock *svsk;
1456 struct socket *sock;
1460 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1461 serv->sv_program->pg_name, protocol,
1462 NIPQUAD(sin->sin_addr.s_addr),
1463 ntohs(sin->sin_port));
1465 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1466 printk(KERN_WARNING "svc: only UDP and TCP "
1467 "sockets supported\n");
1470 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1472 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1475 if (type == SOCK_STREAM)
1476 sock->sk->sk_reuse = 1; /* allow address reuse */
1477 error = kernel_bind(sock, (struct sockaddr *) sin,
1482 if (protocol == IPPROTO_TCP) {
1483 if ((error = kernel_listen(sock, 64)) < 0)
1487 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1491 dprintk("svc: svc_create_socket error = %d\n", -error);
1497 * Remove a dead socket
1500 svc_delete_socket(struct svc_sock *svsk)
1502 struct svc_serv *serv;
1505 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1507 serv = svsk->sk_server;
1510 sk->sk_state_change = svsk->sk_ostate;
1511 sk->sk_data_ready = svsk->sk_odata;
1512 sk->sk_write_space = svsk->sk_owspace;
1514 spin_lock_bh(&serv->sv_lock);
1516 list_del_init(&svsk->sk_list);
1517 list_del_init(&svsk->sk_ready);
1518 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1519 if (test_bit(SK_TEMP, &svsk->sk_flags))
1522 if (!svsk->sk_inuse) {
1523 spin_unlock_bh(&serv->sv_lock);
1524 if (svsk->sk_sock->file)
1525 sockfd_put(svsk->sk_sock);
1527 sock_release(svsk->sk_sock);
1530 spin_unlock_bh(&serv->sv_lock);
1531 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
1532 /* svsk->sk_server = NULL; */
1537 * Make a socket for nfsd and lockd
1540 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1542 struct sockaddr_in sin;
1544 dprintk("svc: creating socket proto = %d\n", protocol);
1545 sin.sin_family = AF_INET;
1546 sin.sin_addr.s_addr = INADDR_ANY;
1547 sin.sin_port = htons(port);
1548 return svc_create_socket(serv, protocol, &sin);
1552 * Handle defer and revisit of requests
1555 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1557 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1558 struct svc_serv *serv = dreq->owner;
1559 struct svc_sock *svsk;
1562 svc_sock_put(dr->svsk);
1566 dprintk("revisit queued\n");
1569 spin_lock_bh(&serv->sv_lock);
1570 list_add(&dr->handle.recent, &svsk->sk_deferred);
1571 spin_unlock_bh(&serv->sv_lock);
1572 set_bit(SK_DEFERRED, &svsk->sk_flags);
1573 svc_sock_enqueue(svsk);
1577 static struct cache_deferred_req *
1578 svc_defer(struct cache_req *req)
1580 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1581 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1582 struct svc_deferred_req *dr;
1584 if (rqstp->rq_arg.page_len)
1585 return NULL; /* if more than a page, give up FIXME */
1586 if (rqstp->rq_deferred) {
1587 dr = rqstp->rq_deferred;
1588 rqstp->rq_deferred = NULL;
1590 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1591 /* FIXME maybe discard if size too large */
1592 dr = kmalloc(size, GFP_KERNEL);
1596 dr->handle.owner = rqstp->rq_server;
1597 dr->prot = rqstp->rq_prot;
1598 dr->addr = rqstp->rq_addr;
1599 dr->daddr = rqstp->rq_daddr;
1600 dr->argslen = rqstp->rq_arg.len >> 2;
1601 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1603 spin_lock_bh(&rqstp->rq_server->sv_lock);
1604 rqstp->rq_sock->sk_inuse++;
1605 dr->svsk = rqstp->rq_sock;
1606 spin_unlock_bh(&rqstp->rq_server->sv_lock);
1608 dr->handle.revisit = svc_revisit;
1613 * recv data from a deferred request into an active one
1615 static int svc_deferred_recv(struct svc_rqst *rqstp)
1617 struct svc_deferred_req *dr = rqstp->rq_deferred;
1619 rqstp->rq_arg.head[0].iov_base = dr->args;
1620 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1621 rqstp->rq_arg.page_len = 0;
1622 rqstp->rq_arg.len = dr->argslen<<2;
1623 rqstp->rq_prot = dr->prot;
1624 rqstp->rq_addr = dr->addr;
1625 rqstp->rq_daddr = dr->daddr;
1626 return dr->argslen<<2;
1630 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1632 struct svc_deferred_req *dr = NULL;
1633 struct svc_serv *serv = svsk->sk_server;
1635 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1637 spin_lock_bh(&serv->sv_lock);
1638 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1639 if (!list_empty(&svsk->sk_deferred)) {
1640 dr = list_entry(svsk->sk_deferred.next,
1641 struct svc_deferred_req,
1643 list_del_init(&dr->handle.recent);
1644 set_bit(SK_DEFERRED, &svsk->sk_flags);
1646 spin_unlock_bh(&serv->sv_lock);