2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/preempt.h>
34 #include <asm/cacheflush.h>
35 #include <asm/kdebug.h>
37 #include <asm/uaccess.h>
39 void jprobe_return_end(void);
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 /* insert a jmp code */
45 static __always_inline void set_jmp_op(void *from, void *to)
47 struct __arch_jmp_op {
50 } __attribute__((packed)) *jop;
51 jop = (struct __arch_jmp_op *)from;
52 jop->raddr = (long)(to) - ((long)(from) + 5);
53 jop->op = RELATIVEJUMP_INSTRUCTION;
57 * returns non-zero if opcodes can be boosted.
59 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not be boost.
71 static const unsigned long twobyte_is_boostable[256 / 32] = {
72 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
73 /* ------------------------------- */
74 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
90 /* ------------------------------- */
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
94 kprobe_opcode_t opcode;
95 kprobe_opcode_t *orig_opcodes = opcodes;
97 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
99 opcode = *(opcodes++);
101 /* 2nd-byte opcode */
102 if (opcode == 0x0f) {
103 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
105 return test_bit(*opcodes, twobyte_is_boostable);
108 switch (opcode & 0xf0) {
110 if (0x63 < opcode && opcode < 0x67)
111 goto retry; /* prefixes */
112 /* can't boost Address-size override and bound */
113 return (opcode != 0x62 && opcode != 0x67);
115 return 0; /* can't boost conditional jump */
117 /* can't boost software-interruptions */
118 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
120 /* can boost AA* and XLAT */
121 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
123 /* can boost in/out and absolute jmps */
124 return ((opcode & 0x04) || opcode == 0xea);
126 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
127 goto retry; /* lock/rep(ne) prefix */
128 /* clear and set flags can be boost */
129 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
131 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
132 goto retry; /* prefixes */
133 /* can't boost CS override and call */
134 return (opcode != 0x2e && opcode != 0x9a);
139 * returns non-zero if opcode modifies the interrupt flag.
141 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
146 case 0xcf: /* iret/iretd */
147 case 0x9d: /* popf/popfd */
153 int __kprobes arch_prepare_kprobe(struct kprobe *p)
155 /* insn: must be on special executable page on i386. */
156 p->ainsn.insn = get_insn_slot();
160 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
161 p->opcode = *p->addr;
162 if (can_boost(p->addr)) {
163 p->ainsn.boostable = 0;
165 p->ainsn.boostable = -1;
170 void __kprobes arch_arm_kprobe(struct kprobe *p)
172 *p->addr = BREAKPOINT_INSTRUCTION;
173 flush_icache_range((unsigned long) p->addr,
174 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
177 void __kprobes arch_disarm_kprobe(struct kprobe *p)
179 *p->addr = p->opcode;
180 flush_icache_range((unsigned long) p->addr,
181 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
184 void __kprobes arch_remove_kprobe(struct kprobe *p)
186 mutex_lock(&kprobe_mutex);
187 free_insn_slot(p->ainsn.insn);
188 mutex_unlock(&kprobe_mutex);
191 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
193 kcb->prev_kprobe.kp = kprobe_running();
194 kcb->prev_kprobe.status = kcb->kprobe_status;
195 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
196 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
199 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
201 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
202 kcb->kprobe_status = kcb->prev_kprobe.status;
203 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
204 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
207 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
208 struct kprobe_ctlblk *kcb)
210 __get_cpu_var(current_kprobe) = p;
211 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
212 = (regs->eflags & (TF_MASK | IF_MASK));
213 if (is_IF_modifier(p->opcode))
214 kcb->kprobe_saved_eflags &= ~IF_MASK;
217 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
219 regs->eflags |= TF_MASK;
220 regs->eflags &= ~IF_MASK;
221 /*single step inline if the instruction is an int3*/
222 if (p->opcode == BREAKPOINT_INSTRUCTION)
223 regs->eip = (unsigned long)p->addr;
225 regs->eip = (unsigned long)p->ainsn.insn;
228 /* Called with kretprobe_lock held */
229 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
230 struct pt_regs *regs)
232 unsigned long *sara = (unsigned long *)®s->esp;
234 struct kretprobe_instance *ri;
236 if ((ri = get_free_rp_inst(rp)) != NULL) {
239 ri->ret_addr = (kprobe_opcode_t *) *sara;
241 /* Replace the return addr with trampoline addr */
242 *sara = (unsigned long) &kretprobe_trampoline;
250 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
251 * remain disabled thorough out this function.
253 static int __kprobes kprobe_handler(struct pt_regs *regs)
257 kprobe_opcode_t *addr;
258 struct kprobe_ctlblk *kcb;
260 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
263 * We don't want to be preempted for the entire
264 * duration of kprobe processing
267 kcb = get_kprobe_ctlblk();
269 /* Check we're not actually recursing */
270 if (kprobe_running()) {
271 p = get_kprobe(addr);
273 if (kcb->kprobe_status == KPROBE_HIT_SS &&
274 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
275 regs->eflags &= ~TF_MASK;
276 regs->eflags |= kcb->kprobe_saved_eflags;
279 /* We have reentered the kprobe_handler(), since
280 * another probe was hit while within the handler.
281 * We here save the original kprobes variables and
282 * just single step on the instruction of the new probe
283 * without calling any user handlers.
285 save_previous_kprobe(kcb);
286 set_current_kprobe(p, regs, kcb);
287 kprobes_inc_nmissed_count(p);
288 prepare_singlestep(p, regs);
289 kcb->kprobe_status = KPROBE_REENTER;
292 if (*addr != BREAKPOINT_INSTRUCTION) {
293 /* The breakpoint instruction was removed by
294 * another cpu right after we hit, no further
295 * handling of this interrupt is appropriate
297 regs->eip -= sizeof(kprobe_opcode_t);
301 p = __get_cpu_var(current_kprobe);
302 if (p->break_handler && p->break_handler(p, regs)) {
309 p = get_kprobe(addr);
311 if (*addr != BREAKPOINT_INSTRUCTION) {
313 * The breakpoint instruction was removed right
314 * after we hit it. Another cpu has removed
315 * either a probepoint or a debugger breakpoint
316 * at this address. In either case, no further
317 * handling of this interrupt is appropriate.
318 * Back up over the (now missing) int3 and run
319 * the original instruction.
321 regs->eip -= sizeof(kprobe_opcode_t);
324 /* Not one of ours: let kernel handle it */
328 set_current_kprobe(p, regs, kcb);
329 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
331 if (p->pre_handler && p->pre_handler(p, regs))
332 /* handler has already set things up, so skip ss setup */
336 #ifndef CONFIG_PREEMPT
337 if (p->ainsn.boostable == 1 && !p->post_handler){
338 /* Boost up -- we can execute copied instructions directly */
339 reset_current_kprobe();
340 regs->eip = (unsigned long)p->ainsn.insn;
341 preempt_enable_no_resched();
345 prepare_singlestep(p, regs);
346 kcb->kprobe_status = KPROBE_HIT_SS;
350 preempt_enable_no_resched();
355 * For function-return probes, init_kprobes() establishes a probepoint
356 * here. When a retprobed function returns, this probe is hit and
357 * trampoline_probe_handler() runs, calling the kretprobe's handler.
359 void __kprobes kretprobe_trampoline_holder(void)
361 asm volatile ( ".global kretprobe_trampoline\n"
362 "kretprobe_trampoline: \n"
364 /* skip cs, eip, orig_eax, es, ds */
374 " call trampoline_handler\n"
375 /* move eflags to cs */
376 " movl 48(%esp), %edx\n"
377 " movl %edx, 44(%esp)\n"
378 /* save true return address on eflags */
379 " movl %eax, 48(%esp)\n"
387 /* skip eip, orig_eax, es, ds */
394 * Called from kretprobe_trampoline
396 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
398 struct kretprobe_instance *ri = NULL;
399 struct hlist_head *head, empty_rp;
400 struct hlist_node *node, *tmp;
401 unsigned long flags, orig_ret_address = 0;
402 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
404 INIT_HLIST_HEAD(&empty_rp);
405 spin_lock_irqsave(&kretprobe_lock, flags);
406 head = kretprobe_inst_table_head(current);
409 * It is possible to have multiple instances associated with a given
410 * task either because an multiple functions in the call path
411 * have a return probe installed on them, and/or more then one return
412 * return probe was registered for a target function.
414 * We can handle this because:
415 * - instances are always inserted at the head of the list
416 * - when multiple return probes are registered for the same
417 * function, the first instance's ret_addr will point to the
418 * real return address, and all the rest will point to
419 * kretprobe_trampoline
421 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
422 if (ri->task != current)
423 /* another task is sharing our hash bucket */
426 if (ri->rp && ri->rp->handler){
427 __get_cpu_var(current_kprobe) = &ri->rp->kp;
428 ri->rp->handler(ri, regs);
429 __get_cpu_var(current_kprobe) = NULL;
432 orig_ret_address = (unsigned long)ri->ret_addr;
433 recycle_rp_inst(ri, &empty_rp);
435 if (orig_ret_address != trampoline_address)
437 * This is the real return address. Any other
438 * instances associated with this task are for
439 * other calls deeper on the call stack
444 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
446 spin_unlock_irqrestore(&kretprobe_lock, flags);
448 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
449 hlist_del(&ri->hlist);
452 return (void*)orig_ret_address;
456 * Called after single-stepping. p->addr is the address of the
457 * instruction whose first byte has been replaced by the "int 3"
458 * instruction. To avoid the SMP problems that can occur when we
459 * temporarily put back the original opcode to single-step, we
460 * single-stepped a copy of the instruction. The address of this
461 * copy is p->ainsn.insn.
463 * This function prepares to return from the post-single-step
464 * interrupt. We have to fix up the stack as follows:
466 * 0) Except in the case of absolute or indirect jump or call instructions,
467 * the new eip is relative to the copied instruction. We need to make
468 * it relative to the original instruction.
470 * 1) If the single-stepped instruction was pushfl, then the TF and IF
471 * flags are set in the just-pushed eflags, and may need to be cleared.
473 * 2) If the single-stepped instruction was a call, the return address
474 * that is atop the stack is the address following the copied instruction.
475 * We need to make it the address following the original instruction.
477 * This function also checks instruction size for preparing direct execution.
479 static void __kprobes resume_execution(struct kprobe *p,
480 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
482 unsigned long *tos = (unsigned long *)®s->esp;
483 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
484 unsigned long orig_eip = (unsigned long)p->addr;
486 regs->eflags &= ~TF_MASK;
487 switch (p->ainsn.insn[0]) {
488 case 0x9c: /* pushfl */
489 *tos &= ~(TF_MASK | IF_MASK);
490 *tos |= kcb->kprobe_old_eflags;
492 case 0xc2: /* iret/ret/lret */
497 case 0xea: /* jmp absolute -- eip is correct */
498 /* eip is already adjusted, no more changes required */
499 p->ainsn.boostable = 1;
501 case 0xe8: /* call relative - Fix return addr */
502 *tos = orig_eip + (*tos - copy_eip);
504 case 0x9a: /* call absolute -- same as call absolute, indirect */
505 *tos = orig_eip + (*tos - copy_eip);
508 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
510 * call absolute, indirect
511 * Fix return addr; eip is correct.
512 * But this is not boostable
514 *tos = orig_eip + (*tos - copy_eip);
516 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
517 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
518 /* eip is correct. And this is boostable */
519 p->ainsn.boostable = 1;
526 if (p->ainsn.boostable == 0) {
527 if ((regs->eip > copy_eip) &&
528 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
530 * These instructions can be executed directly if it
531 * jumps back to correct address.
533 set_jmp_op((void *)regs->eip,
534 (void *)orig_eip + (regs->eip - copy_eip));
535 p->ainsn.boostable = 1;
537 p->ainsn.boostable = -1;
541 regs->eip = orig_eip + (regs->eip - copy_eip);
548 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
549 * remain disabled thoroughout this function.
551 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
553 struct kprobe *cur = kprobe_running();
554 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
559 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
560 kcb->kprobe_status = KPROBE_HIT_SSDONE;
561 cur->post_handler(cur, regs, 0);
564 resume_execution(cur, regs, kcb);
565 regs->eflags |= kcb->kprobe_saved_eflags;
567 /*Restore back the original saved kprobes variables and continue. */
568 if (kcb->kprobe_status == KPROBE_REENTER) {
569 restore_previous_kprobe(kcb);
572 reset_current_kprobe();
574 preempt_enable_no_resched();
577 * if somebody else is singlestepping across a probe point, eflags
578 * will have TF set, in which case, continue the remaining processing
579 * of do_debug, as if this is not a probe hit.
581 if (regs->eflags & TF_MASK)
587 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
589 struct kprobe *cur = kprobe_running();
590 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
592 switch(kcb->kprobe_status) {
596 * We are here because the instruction being single
597 * stepped caused a page fault. We reset the current
598 * kprobe and the eip points back to the probe address
599 * and allow the page fault handler to continue as a
602 regs->eip = (unsigned long)cur->addr;
603 regs->eflags |= kcb->kprobe_old_eflags;
604 if (kcb->kprobe_status == KPROBE_REENTER)
605 restore_previous_kprobe(kcb);
607 reset_current_kprobe();
608 preempt_enable_no_resched();
610 case KPROBE_HIT_ACTIVE:
611 case KPROBE_HIT_SSDONE:
613 * We increment the nmissed count for accounting,
614 * we can also use npre/npostfault count for accouting
615 * these specific fault cases.
617 kprobes_inc_nmissed_count(cur);
620 * We come here because instructions in the pre/post
621 * handler caused the page_fault, this could happen
622 * if handler tries to access user space by
623 * copy_from_user(), get_user() etc. Let the
624 * user-specified handler try to fix it first.
626 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
630 * In case the user-specified fault handler returned
631 * zero, try to fix up.
633 if (fixup_exception(regs))
637 * fixup_exception() could not handle it,
638 * Let do_page_fault() fix it.
648 * Wrapper routine to for handling exceptions.
650 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
651 unsigned long val, void *data)
653 struct die_args *args = (struct die_args *)data;
654 int ret = NOTIFY_DONE;
656 if (args->regs && user_mode_vm(args->regs))
661 if (kprobe_handler(args->regs))
665 if (post_kprobe_handler(args->regs))
670 /* kprobe_running() needs smp_processor_id() */
672 if (kprobe_running() &&
673 kprobe_fault_handler(args->regs, args->trapnr))
683 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
685 struct jprobe *jp = container_of(p, struct jprobe, kp);
687 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
689 kcb->jprobe_saved_regs = *regs;
690 kcb->jprobe_saved_esp = ®s->esp;
691 addr = (unsigned long)(kcb->jprobe_saved_esp);
694 * TBD: As Linus pointed out, gcc assumes that the callee
695 * owns the argument space and could overwrite it, e.g.
696 * tailcall optimization. So, to be absolutely safe
697 * we also save and restore enough stack bytes to cover
700 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
701 MIN_STACK_SIZE(addr));
702 regs->eflags &= ~IF_MASK;
703 regs->eip = (unsigned long)(jp->entry);
707 void __kprobes jprobe_return(void)
709 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
711 asm volatile (" xchgl %%ebx,%%esp \n"
713 " .globl jprobe_return_end \n"
714 " jprobe_return_end: \n"
716 (kcb->jprobe_saved_esp):"memory");
719 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
721 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
722 u8 *addr = (u8 *) (regs->eip - 1);
723 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
724 struct jprobe *jp = container_of(p, struct jprobe, kp);
726 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
727 if (®s->esp != kcb->jprobe_saved_esp) {
728 struct pt_regs *saved_regs =
729 container_of(kcb->jprobe_saved_esp,
730 struct pt_regs, esp);
731 printk("current esp %p does not match saved esp %p\n",
732 ®s->esp, kcb->jprobe_saved_esp);
733 printk("Saved registers for jprobe %p\n", jp);
734 show_registers(saved_regs);
735 printk("Current registers\n");
736 show_registers(regs);
739 *regs = kcb->jprobe_saved_regs;
740 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
741 MIN_STACK_SIZE(stack_addr));
742 preempt_enable_no_resched();
748 int __init arch_init_kprobes(void)