2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
36 struct scsi_host_sg_pool {
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the the scsi_cmnd result
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
209 blk_put_request(req);
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static kmem_cache_t *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
267 blk_rq_bio_prep(q, rq, bio);
268 else if (!q->back_merge_fn(q, rq, bio))
271 rq->biotail->bi_next = bio;
273 rq->hard_nr_sectors += bio_sectors(bio);
274 rq->nr_sectors = rq->hard_nr_sectors;
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
290 * scsi_req_map_sg - map a scatterlist into a request
291 * @rq: request to fill
293 * @nsegs: number of elements
294 * @bufflen: len of buffer
295 * @gfp: memory allocation flags
297 * scsi_req_map_sg maps a scatterlist into a request so that the
298 * request can be sent to the block layer. We do not trust the scatterlist
299 * sent to use, as some ULDs use that struct to only organize the pages.
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302 int nsegs, unsigned bufflen, gfp_t gfp)
304 struct request_queue *q = rq->q;
305 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 unsigned int data_len = 0, len, bytes, off;
308 struct bio *bio = NULL;
309 int i, err, nr_vecs = 0;
311 for (i = 0; i < nsegs; i++) {
318 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
324 bio = bio_alloc(gfp, nr_vecs);
329 bio->bi_end_io = scsi_bi_endio;
332 if (bio_add_pc_page(q, bio, page, bytes, off) !=
339 if (bio->bi_vcnt >= nr_vecs) {
340 err = scsi_merge_bio(rq, bio);
342 bio_endio(bio, bio->bi_size, 0);
354 rq->buffer = rq->data = NULL;
355 rq->data_len = data_len;
359 while ((bio = rq->bio) != NULL) {
360 rq->bio = bio->bi_next;
362 * call endio instead of bio_put incase it was bounced
364 bio_endio(bio, bio->bi_size, 0);
371 * scsi_execute_async - insert request
374 * @cmd_len: length of scsi cdb
375 * @data_direction: data direction
376 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
377 * @bufflen: len of buffer
378 * @use_sg: if buffer is a scatterlist this is the number of elements
379 * @timeout: request timeout in seconds
380 * @retries: number of times to retry request
381 * @flags: or into request flags
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385 int use_sg, int timeout, int retries, void *privdata,
386 void (*done)(void *, char *, int, int), gfp_t gfp)
389 struct scsi_io_context *sioc;
391 int write = (data_direction == DMA_TO_DEVICE);
393 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
395 return DRIVER_ERROR << 24;
396 memset(sioc, 0, sizeof(*sioc));
398 req = blk_get_request(sdev->request_queue, write, gfp);
401 req->cmd_type = REQ_TYPE_BLOCK_PC;
402 req->cmd_flags |= REQ_QUIET;
405 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
407 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
412 req->cmd_len = cmd_len;
413 memcpy(req->cmd, cmd, req->cmd_len);
414 req->sense = sioc->sense;
416 req->timeout = timeout;
417 req->retries = retries;
418 req->end_io_data = sioc;
420 sioc->data = privdata;
423 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
427 blk_put_request(req);
429 kmem_cache_free(scsi_io_context_cache, sioc);
430 return DRIVER_ERROR << 24;
432 EXPORT_SYMBOL_GPL(scsi_execute_async);
435 * Function: scsi_init_cmd_errh()
437 * Purpose: Initialize cmd fields related to error handling.
439 * Arguments: cmd - command that is ready to be queued.
441 * Notes: This function has the job of initializing a number of
442 * fields related to error handling. Typically this will
443 * be called once for each command, as required.
445 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447 cmd->serial_number = 0;
448 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
449 if (cmd->cmd_len == 0)
450 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
453 void scsi_device_unbusy(struct scsi_device *sdev)
455 struct Scsi_Host *shost = sdev->host;
458 spin_lock_irqsave(shost->host_lock, flags);
460 if (unlikely(scsi_host_in_recovery(shost) &&
461 (shost->host_failed || shost->host_eh_scheduled)))
462 scsi_eh_wakeup(shost);
463 spin_unlock(shost->host_lock);
464 spin_lock(sdev->request_queue->queue_lock);
466 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
470 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
471 * and call blk_run_queue for all the scsi_devices on the target -
472 * including current_sdev first.
474 * Called with *no* scsi locks held.
476 static void scsi_single_lun_run(struct scsi_device *current_sdev)
478 struct Scsi_Host *shost = current_sdev->host;
479 struct scsi_device *sdev, *tmp;
480 struct scsi_target *starget = scsi_target(current_sdev);
483 spin_lock_irqsave(shost->host_lock, flags);
484 starget->starget_sdev_user = NULL;
485 spin_unlock_irqrestore(shost->host_lock, flags);
488 * Call blk_run_queue for all LUNs on the target, starting with
489 * current_sdev. We race with others (to set starget_sdev_user),
490 * but in most cases, we will be first. Ideally, each LU on the
491 * target would get some limited time or requests on the target.
493 blk_run_queue(current_sdev->request_queue);
495 spin_lock_irqsave(shost->host_lock, flags);
496 if (starget->starget_sdev_user)
498 list_for_each_entry_safe(sdev, tmp, &starget->devices,
499 same_target_siblings) {
500 if (sdev == current_sdev)
502 if (scsi_device_get(sdev))
505 spin_unlock_irqrestore(shost->host_lock, flags);
506 blk_run_queue(sdev->request_queue);
507 spin_lock_irqsave(shost->host_lock, flags);
509 scsi_device_put(sdev);
512 spin_unlock_irqrestore(shost->host_lock, flags);
516 * Function: scsi_run_queue()
518 * Purpose: Select a proper request queue to serve next
520 * Arguments: q - last request's queue
524 * Notes: The previous command was completely finished, start
525 * a new one if possible.
527 static void scsi_run_queue(struct request_queue *q)
529 struct scsi_device *sdev = q->queuedata;
530 struct Scsi_Host *shost = sdev->host;
533 if (sdev->single_lun)
534 scsi_single_lun_run(sdev);
536 spin_lock_irqsave(shost->host_lock, flags);
537 while (!list_empty(&shost->starved_list) &&
538 !shost->host_blocked && !shost->host_self_blocked &&
539 !((shost->can_queue > 0) &&
540 (shost->host_busy >= shost->can_queue))) {
542 * As long as shost is accepting commands and we have
543 * starved queues, call blk_run_queue. scsi_request_fn
544 * drops the queue_lock and can add us back to the
547 * host_lock protects the starved_list and starved_entry.
548 * scsi_request_fn must get the host_lock before checking
549 * or modifying starved_list or starved_entry.
551 sdev = list_entry(shost->starved_list.next,
552 struct scsi_device, starved_entry);
553 list_del_init(&sdev->starved_entry);
554 spin_unlock_irqrestore(shost->host_lock, flags);
557 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
558 !test_and_set_bit(QUEUE_FLAG_REENTER,
559 &sdev->request_queue->queue_flags)) {
560 blk_run_queue(sdev->request_queue);
561 clear_bit(QUEUE_FLAG_REENTER,
562 &sdev->request_queue->queue_flags);
564 blk_run_queue(sdev->request_queue);
566 spin_lock_irqsave(shost->host_lock, flags);
567 if (unlikely(!list_empty(&sdev->starved_entry)))
569 * sdev lost a race, and was put back on the
570 * starved list. This is unlikely but without this
571 * in theory we could loop forever.
575 spin_unlock_irqrestore(shost->host_lock, flags);
581 * Function: scsi_requeue_command()
583 * Purpose: Handle post-processing of completed commands.
585 * Arguments: q - queue to operate on
586 * cmd - command that may need to be requeued.
590 * Notes: After command completion, there may be blocks left
591 * over which weren't finished by the previous command
592 * this can be for a number of reasons - the main one is
593 * I/O errors in the middle of the request, in which case
594 * we need to request the blocks that come after the bad
596 * Notes: Upon return, cmd is a stale pointer.
598 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
600 struct request *req = cmd->request;
603 scsi_unprep_request(req);
604 spin_lock_irqsave(q->queue_lock, flags);
605 blk_requeue_request(q, req);
606 spin_unlock_irqrestore(q->queue_lock, flags);
611 void scsi_next_command(struct scsi_cmnd *cmd)
613 struct scsi_device *sdev = cmd->device;
614 struct request_queue *q = sdev->request_queue;
616 /* need to hold a reference on the device before we let go of the cmd */
617 get_device(&sdev->sdev_gendev);
619 scsi_put_command(cmd);
622 /* ok to remove device now */
623 put_device(&sdev->sdev_gendev);
626 void scsi_run_host_queues(struct Scsi_Host *shost)
628 struct scsi_device *sdev;
630 shost_for_each_device(sdev, shost)
631 scsi_run_queue(sdev->request_queue);
635 * Function: scsi_end_request()
637 * Purpose: Post-processing of completed commands (usually invoked at end
638 * of upper level post-processing and scsi_io_completion).
640 * Arguments: cmd - command that is complete.
641 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
642 * bytes - number of bytes of completed I/O
643 * requeue - indicates whether we should requeue leftovers.
645 * Lock status: Assumed that lock is not held upon entry.
647 * Returns: cmd if requeue required, NULL otherwise.
649 * Notes: This is called for block device requests in order to
650 * mark some number of sectors as complete.
652 * We are guaranteeing that the request queue will be goosed
653 * at some point during this call.
654 * Notes: If cmd was requeued, upon return it will be a stale pointer.
656 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
657 int bytes, int requeue)
659 request_queue_t *q = cmd->device->request_queue;
660 struct request *req = cmd->request;
664 * If there are blocks left over at the end, set up the command
665 * to queue the remainder of them.
667 if (end_that_request_chunk(req, uptodate, bytes)) {
668 int leftover = (req->hard_nr_sectors << 9);
670 if (blk_pc_request(req))
671 leftover = req->data_len;
673 /* kill remainder if no retrys */
674 if (!uptodate && blk_noretry_request(req))
675 end_that_request_chunk(req, 0, leftover);
679 * Bleah. Leftovers again. Stick the
680 * leftovers in the front of the
681 * queue, and goose the queue again.
683 scsi_requeue_command(q, cmd);
690 add_disk_randomness(req->rq_disk);
692 spin_lock_irqsave(q->queue_lock, flags);
693 if (blk_rq_tagged(req))
694 blk_queue_end_tag(q, req);
695 end_that_request_last(req, uptodate);
696 spin_unlock_irqrestore(q->queue_lock, flags);
699 * This will goose the queue request function at the end, so we don't
700 * need to worry about launching another command.
702 scsi_next_command(cmd);
706 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
708 struct scsi_host_sg_pool *sgp;
709 struct scatterlist *sgl;
711 BUG_ON(!cmd->use_sg);
713 switch (cmd->use_sg) {
723 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
727 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
731 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
742 sgp = scsi_sg_pools + cmd->sglist_len;
743 sgl = mempool_alloc(sgp->pool, gfp_mask);
747 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
749 struct scsi_host_sg_pool *sgp;
751 BUG_ON(index >= SG_MEMPOOL_NR);
753 sgp = scsi_sg_pools + index;
754 mempool_free(sgl, sgp->pool);
758 * Function: scsi_release_buffers()
760 * Purpose: Completion processing for block device I/O requests.
762 * Arguments: cmd - command that we are bailing.
764 * Lock status: Assumed that no lock is held upon entry.
768 * Notes: In the event that an upper level driver rejects a
769 * command, we must release resources allocated during
770 * the __init_io() function. Primarily this would involve
771 * the scatter-gather table, and potentially any bounce
774 static void scsi_release_buffers(struct scsi_cmnd *cmd)
777 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
780 * Zero these out. They now point to freed memory, and it is
781 * dangerous to hang onto the pointers.
783 cmd->request_buffer = NULL;
784 cmd->request_bufflen = 0;
788 * Function: scsi_io_completion()
790 * Purpose: Completion processing for block device I/O requests.
792 * Arguments: cmd - command that is finished.
794 * Lock status: Assumed that no lock is held upon entry.
798 * Notes: This function is matched in terms of capabilities to
799 * the function that created the scatter-gather list.
800 * In other words, if there are no bounce buffers
801 * (the normal case for most drivers), we don't need
802 * the logic to deal with cleaning up afterwards.
804 * We must do one of several things here:
806 * a) Call scsi_end_request. This will finish off the
807 * specified number of sectors. If we are done, the
808 * command block will be released, and the queue
809 * function will be goosed. If we are not done, then
810 * scsi_end_request will directly goose the queue.
812 * b) We can just use scsi_requeue_command() here. This would
813 * be used if we just wanted to retry, for example.
815 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
817 int result = cmd->result;
818 int this_count = cmd->request_bufflen;
819 request_queue_t *q = cmd->device->request_queue;
820 struct request *req = cmd->request;
821 int clear_errors = 1;
822 struct scsi_sense_hdr sshdr;
824 int sense_deferred = 0;
826 scsi_release_buffers(cmd);
829 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
831 sense_deferred = scsi_sense_is_deferred(&sshdr);
834 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
835 req->errors = result;
838 if (sense_valid && req->sense) {
840 * SG_IO wants current and deferred errors
842 int len = 8 + cmd->sense_buffer[7];
844 if (len > SCSI_SENSE_BUFFERSIZE)
845 len = SCSI_SENSE_BUFFERSIZE;
846 memcpy(req->sense, cmd->sense_buffer, len);
847 req->sense_len = len;
850 req->data_len = cmd->resid;
854 * Next deal with any sectors which we were able to correctly
857 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
859 req->nr_sectors, good_bytes));
860 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
865 /* A number of bytes were successfully read. If there
866 * are leftovers and there is some kind of error
867 * (result != 0), retry the rest.
869 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
872 /* good_bytes = 0, or (inclusive) there were leftovers and
873 * result = 0, so scsi_end_request couldn't retry.
875 if (sense_valid && !sense_deferred) {
876 switch (sshdr.sense_key) {
878 if (cmd->device->removable) {
879 /* Detected disc change. Set a bit
880 * and quietly refuse further access.
882 cmd->device->changed = 1;
883 scsi_end_request(cmd, 0, this_count, 1);
886 /* Must have been a power glitch, or a
887 * bus reset. Could not have been a
888 * media change, so we just retry the
889 * request and see what happens.
891 scsi_requeue_command(q, cmd);
895 case ILLEGAL_REQUEST:
896 /* If we had an ILLEGAL REQUEST returned, then
897 * we may have performed an unsupported
898 * command. The only thing this should be
899 * would be a ten byte read where only a six
900 * byte read was supported. Also, on a system
901 * where READ CAPACITY failed, we may have
902 * read past the end of the disk.
904 if ((cmd->device->use_10_for_rw &&
905 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
906 (cmd->cmnd[0] == READ_10 ||
907 cmd->cmnd[0] == WRITE_10)) {
908 cmd->device->use_10_for_rw = 0;
909 /* This will cause a retry with a
912 scsi_requeue_command(q, cmd);
915 scsi_end_request(cmd, 0, this_count, 1);
920 /* If the device is in the process of becoming
921 * ready, or has a temporary blockage, retry.
923 if (sshdr.asc == 0x04) {
924 switch (sshdr.ascq) {
925 case 0x01: /* becoming ready */
926 case 0x04: /* format in progress */
927 case 0x05: /* rebuild in progress */
928 case 0x06: /* recalculation in progress */
929 case 0x07: /* operation in progress */
930 case 0x08: /* Long write in progress */
931 case 0x09: /* self test in progress */
932 scsi_requeue_command(q, cmd);
938 if (!(req->cmd_flags & REQ_QUIET)) {
939 scmd_printk(KERN_INFO, cmd,
940 "Device not ready: ");
941 scsi_print_sense_hdr("", &sshdr);
943 scsi_end_request(cmd, 0, this_count, 1);
945 case VOLUME_OVERFLOW:
946 if (!(req->cmd_flags & REQ_QUIET)) {
947 scmd_printk(KERN_INFO, cmd,
948 "Volume overflow, CDB: ");
949 __scsi_print_command(cmd->cmnd);
950 scsi_print_sense("", cmd);
952 /* See SSC3rXX or current. */
953 scsi_end_request(cmd, 0, this_count, 1);
959 if (host_byte(result) == DID_RESET) {
960 /* Third party bus reset or reset for error recovery
961 * reasons. Just retry the request and see what
964 scsi_requeue_command(q, cmd);
968 if (!(req->cmd_flags & REQ_QUIET)) {
969 scmd_printk(KERN_INFO, cmd,
970 "SCSI error: return code = 0x%08x\n",
972 if (driver_byte(result) & DRIVER_SENSE)
973 scsi_print_sense("", cmd);
976 scsi_end_request(cmd, 0, this_count, !result);
978 EXPORT_SYMBOL(scsi_io_completion);
981 * Function: scsi_init_io()
983 * Purpose: SCSI I/O initialize function.
985 * Arguments: cmd - Command descriptor we wish to initialize
987 * Returns: 0 on success
988 * BLKPREP_DEFER if the failure is retryable
989 * BLKPREP_KILL if the failure is fatal
991 static int scsi_init_io(struct scsi_cmnd *cmd)
993 struct request *req = cmd->request;
994 struct scatterlist *sgpnt;
998 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1000 if (blk_pc_request(req) && !req->bio) {
1001 cmd->request_bufflen = req->data_len;
1002 cmd->request_buffer = req->data;
1003 req->buffer = req->data;
1009 * we used to not use scatter-gather for single segment request,
1010 * but now we do (it makes highmem I/O easier to support without
1013 cmd->use_sg = req->nr_phys_segments;
1016 * if sg table allocation fails, requeue request later.
1018 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1019 if (unlikely(!sgpnt)) {
1020 scsi_unprep_request(req);
1021 return BLKPREP_DEFER;
1024 cmd->request_buffer = (char *) sgpnt;
1025 cmd->request_bufflen = req->nr_sectors << 9;
1026 if (blk_pc_request(req))
1027 cmd->request_bufflen = req->data_len;
1031 * Next, walk the list, and fill in the addresses and sizes of
1034 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1037 * mapped well, send it off
1039 if (likely(count <= cmd->use_sg)) {
1040 cmd->use_sg = count;
1044 printk(KERN_ERR "Incorrect number of segments after building list\n");
1045 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1046 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1047 req->current_nr_sectors);
1049 /* release the command and kill it */
1050 scsi_release_buffers(cmd);
1051 scsi_put_command(cmd);
1052 return BLKPREP_KILL;
1055 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1056 sector_t *error_sector)
1058 struct scsi_device *sdev = q->queuedata;
1059 struct scsi_driver *drv;
1061 if (sdev->sdev_state != SDEV_RUNNING)
1064 drv = *(struct scsi_driver **) disk->private_data;
1065 if (drv->issue_flush)
1066 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1071 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1073 BUG_ON(!blk_pc_request(cmd->request));
1075 * This will complete the whole command with uptodate=1 so
1076 * as far as the block layer is concerned the command completed
1077 * successfully. Since this is a REQ_BLOCK_PC command the
1078 * caller should check the request's errors value
1080 scsi_io_completion(cmd, cmd->request_bufflen);
1083 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1085 struct request *req = cmd->request;
1087 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1088 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1089 cmd->cmd_len = req->cmd_len;
1091 cmd->sc_data_direction = DMA_NONE;
1092 else if (rq_data_dir(req) == WRITE)
1093 cmd->sc_data_direction = DMA_TO_DEVICE;
1095 cmd->sc_data_direction = DMA_FROM_DEVICE;
1097 cmd->transfersize = req->data_len;
1098 cmd->allowed = req->retries;
1099 cmd->timeout_per_command = req->timeout;
1100 cmd->done = scsi_blk_pc_done;
1103 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1105 struct scsi_device *sdev = q->queuedata;
1106 struct scsi_cmnd *cmd;
1107 int specials_only = 0;
1110 * Just check to see if the device is online. If it isn't, we
1111 * refuse to process any commands. The device must be brought
1112 * online before trying any recovery commands
1114 if (unlikely(!scsi_device_online(sdev))) {
1115 sdev_printk(KERN_ERR, sdev,
1116 "rejecting I/O to offline device\n");
1119 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1120 /* OK, we're not in a running state don't prep
1122 if (sdev->sdev_state == SDEV_DEL) {
1123 /* Device is fully deleted, no commands
1124 * at all allowed down */
1125 sdev_printk(KERN_ERR, sdev,
1126 "rejecting I/O to dead device\n");
1129 /* OK, we only allow special commands (i.e. not
1130 * user initiated ones */
1131 specials_only = sdev->sdev_state;
1135 * Find the actual device driver associated with this command.
1136 * The SPECIAL requests are things like character device or
1137 * ioctls, which did not originate from ll_rw_blk. Note that
1138 * the special field is also used to indicate the cmd for
1139 * the remainder of a partially fulfilled request that can
1140 * come up when there is a medium error. We have to treat
1141 * these two cases differently. We differentiate by looking
1142 * at request->cmd, as this tells us the real story.
1144 if (blk_special_request(req) && req->special)
1146 else if (blk_pc_request(req) || blk_fs_request(req)) {
1147 if (unlikely(specials_only) && !(req->cmd_flags & REQ_PREEMPT)){
1148 if (specials_only == SDEV_QUIESCE ||
1149 specials_only == SDEV_BLOCK)
1152 sdev_printk(KERN_ERR, sdev,
1153 "rejecting I/O to device being removed\n");
1158 * Now try and find a command block that we can use.
1160 if (!req->special) {
1161 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1167 /* pull a tag out of the request if we have one */
1168 cmd->tag = req->tag;
1170 blk_dump_rq_flags(req, "SCSI bad req");
1174 /* note the overloading of req->special. When the tag
1175 * is active it always means cmd. If the tag goes
1176 * back for re-queueing, it may be reset */
1181 * FIXME: drop the lock here because the functions below
1182 * expect to be called without the queue lock held. Also,
1183 * previously, we dequeued the request before dropping the
1184 * lock. We hope REQ_STARTED prevents anything untoward from
1187 if (blk_fs_request(req) || blk_pc_request(req)) {
1191 * This will do a couple of things:
1192 * 1) Fill in the actual SCSI command.
1193 * 2) Fill in any other upper-level specific fields
1196 * If this returns 0, it means that the request failed
1197 * (reading past end of disk, reading offline device,
1198 * etc). This won't actually talk to the device, but
1199 * some kinds of consistency checking may cause the
1200 * request to be rejected immediately.
1204 * This sets up the scatter-gather table (allocating if
1207 ret = scsi_init_io(cmd);
1209 /* For BLKPREP_KILL/DEFER the cmd was released */
1217 * Initialize the actual SCSI command for this request.
1219 if (blk_pc_request(req)) {
1220 scsi_setup_blk_pc_cmnd(cmd);
1221 } else if (req->rq_disk) {
1222 struct scsi_driver *drv;
1224 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1225 if (unlikely(!drv->init_command(cmd))) {
1226 scsi_release_buffers(cmd);
1227 scsi_put_command(cmd);
1234 * The request is now prepped, no need to come back here
1236 req->cmd_flags |= REQ_DONTPREP;
1240 /* If we defer, the elv_next_request() returns NULL, but the
1241 * queue must be restarted, so we plug here if no returning
1242 * command will automatically do that. */
1243 if (sdev->device_busy == 0)
1245 return BLKPREP_DEFER;
1247 req->errors = DID_NO_CONNECT << 16;
1248 return BLKPREP_KILL;
1252 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1255 * Called with the queue_lock held.
1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 struct scsi_device *sdev)
1260 if (sdev->device_busy >= sdev->queue_depth)
1262 if (sdev->device_busy == 0 && sdev->device_blocked) {
1264 * unblock after device_blocked iterates to zero
1266 if (--sdev->device_blocked == 0) {
1268 sdev_printk(KERN_INFO, sdev,
1269 "unblocking device at zero depth\n"));
1275 if (sdev->device_blocked)
1282 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1283 * return 0. We must end up running the queue again whenever 0 is
1284 * returned, else IO can hang.
1286 * Called with host_lock held.
1288 static inline int scsi_host_queue_ready(struct request_queue *q,
1289 struct Scsi_Host *shost,
1290 struct scsi_device *sdev)
1292 if (scsi_host_in_recovery(shost))
1294 if (shost->host_busy == 0 && shost->host_blocked) {
1296 * unblock after host_blocked iterates to zero
1298 if (--shost->host_blocked == 0) {
1300 printk("scsi%d unblocking host at zero depth\n",
1307 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1308 shost->host_blocked || shost->host_self_blocked) {
1309 if (list_empty(&sdev->starved_entry))
1310 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1314 /* We're OK to process the command, so we can't be starved */
1315 if (!list_empty(&sdev->starved_entry))
1316 list_del_init(&sdev->starved_entry);
1322 * Kill a request for a dead device
1324 static void scsi_kill_request(struct request *req, request_queue_t *q)
1326 struct scsi_cmnd *cmd = req->special;
1327 struct scsi_device *sdev = cmd->device;
1328 struct Scsi_Host *shost = sdev->host;
1330 blkdev_dequeue_request(req);
1332 if (unlikely(cmd == NULL)) {
1333 printk(KERN_CRIT "impossible request in %s.\n",
1338 scsi_init_cmd_errh(cmd);
1339 cmd->result = DID_NO_CONNECT << 16;
1340 atomic_inc(&cmd->device->iorequest_cnt);
1343 * SCSI request completion path will do scsi_device_unbusy(),
1344 * bump busy counts. To bump the counters, we need to dance
1345 * with the locks as normal issue path does.
1347 sdev->device_busy++;
1348 spin_unlock(sdev->request_queue->queue_lock);
1349 spin_lock(shost->host_lock);
1351 spin_unlock(shost->host_lock);
1352 spin_lock(sdev->request_queue->queue_lock);
1357 static void scsi_softirq_done(struct request *rq)
1359 struct scsi_cmnd *cmd = rq->completion_data;
1360 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1363 INIT_LIST_HEAD(&cmd->eh_entry);
1365 disposition = scsi_decide_disposition(cmd);
1366 if (disposition != SUCCESS &&
1367 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1368 sdev_printk(KERN_ERR, cmd->device,
1369 "timing out command, waited %lus\n",
1371 disposition = SUCCESS;
1374 scsi_log_completion(cmd, disposition);
1376 switch (disposition) {
1378 scsi_finish_command(cmd);
1381 scsi_retry_command(cmd);
1383 case ADD_TO_MLQUEUE:
1384 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1387 if (!scsi_eh_scmd_add(cmd, 0))
1388 scsi_finish_command(cmd);
1393 * Function: scsi_request_fn()
1395 * Purpose: Main strategy routine for SCSI.
1397 * Arguments: q - Pointer to actual queue.
1401 * Lock status: IO request lock assumed to be held when called.
1403 static void scsi_request_fn(struct request_queue *q)
1405 struct scsi_device *sdev = q->queuedata;
1406 struct Scsi_Host *shost;
1407 struct scsi_cmnd *cmd;
1408 struct request *req;
1411 printk("scsi: killing requests for dead queue\n");
1412 while ((req = elv_next_request(q)) != NULL)
1413 scsi_kill_request(req, q);
1417 if(!get_device(&sdev->sdev_gendev))
1418 /* We must be tearing the block queue down already */
1422 * To start with, we keep looping until the queue is empty, or until
1423 * the host is no longer able to accept any more requests.
1426 while (!blk_queue_plugged(q)) {
1429 * get next queueable request. We do this early to make sure
1430 * that the request is fully prepared even if we cannot
1433 req = elv_next_request(q);
1434 if (!req || !scsi_dev_queue_ready(q, sdev))
1437 if (unlikely(!scsi_device_online(sdev))) {
1438 sdev_printk(KERN_ERR, sdev,
1439 "rejecting I/O to offline device\n");
1440 scsi_kill_request(req, q);
1446 * Remove the request from the request list.
1448 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1449 blkdev_dequeue_request(req);
1450 sdev->device_busy++;
1452 spin_unlock(q->queue_lock);
1454 if (unlikely(cmd == NULL)) {
1455 printk(KERN_CRIT "impossible request in %s.\n"
1456 "please mail a stack trace to "
1457 "linux-scsi@vger.kernel.org\n",
1459 blk_dump_rq_flags(req, "foo");
1462 spin_lock(shost->host_lock);
1464 if (!scsi_host_queue_ready(q, shost, sdev))
1466 if (sdev->single_lun) {
1467 if (scsi_target(sdev)->starget_sdev_user &&
1468 scsi_target(sdev)->starget_sdev_user != sdev)
1470 scsi_target(sdev)->starget_sdev_user = sdev;
1475 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1476 * take the lock again.
1478 spin_unlock_irq(shost->host_lock);
1481 * Finally, initialize any error handling parameters, and set up
1482 * the timers for timeouts.
1484 scsi_init_cmd_errh(cmd);
1487 * Dispatch the command to the low-level driver.
1489 rtn = scsi_dispatch_cmd(cmd);
1490 spin_lock_irq(q->queue_lock);
1492 /* we're refusing the command; because of
1493 * the way locks get dropped, we need to
1494 * check here if plugging is required */
1495 if(sdev->device_busy == 0)
1505 spin_unlock_irq(shost->host_lock);
1508 * lock q, handle tag, requeue req, and decrement device_busy. We
1509 * must return with queue_lock held.
1511 * Decrementing device_busy without checking it is OK, as all such
1512 * cases (host limits or settings) should run the queue at some
1515 spin_lock_irq(q->queue_lock);
1516 blk_requeue_request(q, req);
1517 sdev->device_busy--;
1518 if(sdev->device_busy == 0)
1521 /* must be careful here...if we trigger the ->remove() function
1522 * we cannot be holding the q lock */
1523 spin_unlock_irq(q->queue_lock);
1524 put_device(&sdev->sdev_gendev);
1525 spin_lock_irq(q->queue_lock);
1528 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1530 struct device *host_dev;
1531 u64 bounce_limit = 0xffffffff;
1533 if (shost->unchecked_isa_dma)
1534 return BLK_BOUNCE_ISA;
1536 * Platforms with virtual-DMA translation
1537 * hardware have no practical limit.
1539 if (!PCI_DMA_BUS_IS_PHYS)
1540 return BLK_BOUNCE_ANY;
1542 host_dev = scsi_get_device(shost);
1543 if (host_dev && host_dev->dma_mask)
1544 bounce_limit = *host_dev->dma_mask;
1546 return bounce_limit;
1548 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1550 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1552 struct Scsi_Host *shost = sdev->host;
1553 struct request_queue *q;
1555 q = blk_init_queue(scsi_request_fn, NULL);
1559 blk_queue_prep_rq(q, scsi_prep_fn);
1561 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1562 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1563 blk_queue_max_sectors(q, shost->max_sectors);
1564 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1565 blk_queue_segment_boundary(q, shost->dma_boundary);
1566 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1567 blk_queue_softirq_done(q, scsi_softirq_done);
1569 if (!shost->use_clustering)
1570 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1574 void scsi_free_queue(struct request_queue *q)
1576 blk_cleanup_queue(q);
1580 * Function: scsi_block_requests()
1582 * Purpose: Utility function used by low-level drivers to prevent further
1583 * commands from being queued to the device.
1585 * Arguments: shost - Host in question
1589 * Lock status: No locks are assumed held.
1591 * Notes: There is no timer nor any other means by which the requests
1592 * get unblocked other than the low-level driver calling
1593 * scsi_unblock_requests().
1595 void scsi_block_requests(struct Scsi_Host *shost)
1597 shost->host_self_blocked = 1;
1599 EXPORT_SYMBOL(scsi_block_requests);
1602 * Function: scsi_unblock_requests()
1604 * Purpose: Utility function used by low-level drivers to allow further
1605 * commands from being queued to the device.
1607 * Arguments: shost - Host in question
1611 * Lock status: No locks are assumed held.
1613 * Notes: There is no timer nor any other means by which the requests
1614 * get unblocked other than the low-level driver calling
1615 * scsi_unblock_requests().
1617 * This is done as an API function so that changes to the
1618 * internals of the scsi mid-layer won't require wholesale
1619 * changes to drivers that use this feature.
1621 void scsi_unblock_requests(struct Scsi_Host *shost)
1623 shost->host_self_blocked = 0;
1624 scsi_run_host_queues(shost);
1626 EXPORT_SYMBOL(scsi_unblock_requests);
1628 int __init scsi_init_queue(void)
1632 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1633 sizeof(struct scsi_io_context),
1635 if (!scsi_io_context_cache) {
1636 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1640 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1641 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1642 int size = sgp->size * sizeof(struct scatterlist);
1644 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1645 SLAB_HWCACHE_ALIGN, NULL, NULL);
1647 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1651 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1654 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1662 void scsi_exit_queue(void)
1666 kmem_cache_destroy(scsi_io_context_cache);
1668 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1669 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1670 mempool_destroy(sgp->pool);
1671 kmem_cache_destroy(sgp->slab);
1676 * scsi_mode_select - issue a mode select
1677 * @sdev: SCSI device to be queried
1678 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1679 * @sp: Save page bit (0 == don't save, 1 == save)
1680 * @modepage: mode page being requested
1681 * @buffer: request buffer (may not be smaller than eight bytes)
1682 * @len: length of request buffer.
1683 * @timeout: command timeout
1684 * @retries: number of retries before failing
1685 * @data: returns a structure abstracting the mode header data
1686 * @sense: place to put sense data (or NULL if no sense to be collected).
1687 * must be SCSI_SENSE_BUFFERSIZE big.
1689 * Returns zero if successful; negative error number or scsi
1694 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1695 unsigned char *buffer, int len, int timeout, int retries,
1696 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1698 unsigned char cmd[10];
1699 unsigned char *real_buffer;
1702 memset(cmd, 0, sizeof(cmd));
1703 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1705 if (sdev->use_10_for_ms) {
1708 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1711 memcpy(real_buffer + 8, buffer, len);
1715 real_buffer[2] = data->medium_type;
1716 real_buffer[3] = data->device_specific;
1717 real_buffer[4] = data->longlba ? 0x01 : 0;
1719 real_buffer[6] = data->block_descriptor_length >> 8;
1720 real_buffer[7] = data->block_descriptor_length;
1722 cmd[0] = MODE_SELECT_10;
1726 if (len > 255 || data->block_descriptor_length > 255 ||
1730 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1733 memcpy(real_buffer + 4, buffer, len);
1736 real_buffer[1] = data->medium_type;
1737 real_buffer[2] = data->device_specific;
1738 real_buffer[3] = data->block_descriptor_length;
1741 cmd[0] = MODE_SELECT;
1745 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1746 sshdr, timeout, retries);
1750 EXPORT_SYMBOL_GPL(scsi_mode_select);
1753 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1754 * six bytes if necessary.
1755 * @sdev: SCSI device to be queried
1756 * @dbd: set if mode sense will allow block descriptors to be returned
1757 * @modepage: mode page being requested
1758 * @buffer: request buffer (may not be smaller than eight bytes)
1759 * @len: length of request buffer.
1760 * @timeout: command timeout
1761 * @retries: number of retries before failing
1762 * @data: returns a structure abstracting the mode header data
1763 * @sense: place to put sense data (or NULL if no sense to be collected).
1764 * must be SCSI_SENSE_BUFFERSIZE big.
1766 * Returns zero if unsuccessful, or the header offset (either 4
1767 * or 8 depending on whether a six or ten byte command was
1768 * issued) if successful.
1771 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1772 unsigned char *buffer, int len, int timeout, int retries,
1773 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1775 unsigned char cmd[12];
1779 struct scsi_sense_hdr my_sshdr;
1781 memset(data, 0, sizeof(*data));
1782 memset(&cmd[0], 0, 12);
1783 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1786 /* caller might not be interested in sense, but we need it */
1791 use_10_for_ms = sdev->use_10_for_ms;
1793 if (use_10_for_ms) {
1797 cmd[0] = MODE_SENSE_10;
1804 cmd[0] = MODE_SENSE;
1809 memset(buffer, 0, len);
1811 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1812 sshdr, timeout, retries);
1814 /* This code looks awful: what it's doing is making sure an
1815 * ILLEGAL REQUEST sense return identifies the actual command
1816 * byte as the problem. MODE_SENSE commands can return
1817 * ILLEGAL REQUEST if the code page isn't supported */
1819 if (use_10_for_ms && !scsi_status_is_good(result) &&
1820 (driver_byte(result) & DRIVER_SENSE)) {
1821 if (scsi_sense_valid(sshdr)) {
1822 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1823 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1825 * Invalid command operation code
1827 sdev->use_10_for_ms = 0;
1833 if(scsi_status_is_good(result)) {
1834 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1835 (modepage == 6 || modepage == 8))) {
1836 /* Initio breakage? */
1839 data->medium_type = 0;
1840 data->device_specific = 0;
1842 data->block_descriptor_length = 0;
1843 } else if(use_10_for_ms) {
1844 data->length = buffer[0]*256 + buffer[1] + 2;
1845 data->medium_type = buffer[2];
1846 data->device_specific = buffer[3];
1847 data->longlba = buffer[4] & 0x01;
1848 data->block_descriptor_length = buffer[6]*256
1851 data->length = buffer[0] + 1;
1852 data->medium_type = buffer[1];
1853 data->device_specific = buffer[2];
1854 data->block_descriptor_length = buffer[3];
1856 data->header_length = header_length;
1861 EXPORT_SYMBOL(scsi_mode_sense);
1864 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1867 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1869 struct scsi_sense_hdr sshdr;
1872 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1875 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1877 if ((scsi_sense_valid(&sshdr)) &&
1878 ((sshdr.sense_key == UNIT_ATTENTION) ||
1879 (sshdr.sense_key == NOT_READY))) {
1886 EXPORT_SYMBOL(scsi_test_unit_ready);
1889 * scsi_device_set_state - Take the given device through the device
1891 * @sdev: scsi device to change the state of.
1892 * @state: state to change to.
1894 * Returns zero if unsuccessful or an error if the requested
1895 * transition is illegal.
1898 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1900 enum scsi_device_state oldstate = sdev->sdev_state;
1902 if (state == oldstate)
1907 /* There are no legal states that come back to
1908 * created. This is the manually initialised start
1982 sdev->sdev_state = state;
1986 SCSI_LOG_ERROR_RECOVERY(1,
1987 sdev_printk(KERN_ERR, sdev,
1988 "Illegal state transition %s->%s\n",
1989 scsi_device_state_name(oldstate),
1990 scsi_device_state_name(state))
1994 EXPORT_SYMBOL(scsi_device_set_state);
1997 * scsi_device_quiesce - Block user issued commands.
1998 * @sdev: scsi device to quiesce.
2000 * This works by trying to transition to the SDEV_QUIESCE state
2001 * (which must be a legal transition). When the device is in this
2002 * state, only special requests will be accepted, all others will
2003 * be deferred. Since special requests may also be requeued requests,
2004 * a successful return doesn't guarantee the device will be
2005 * totally quiescent.
2007 * Must be called with user context, may sleep.
2009 * Returns zero if unsuccessful or an error if not.
2012 scsi_device_quiesce(struct scsi_device *sdev)
2014 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2018 scsi_run_queue(sdev->request_queue);
2019 while (sdev->device_busy) {
2020 msleep_interruptible(200);
2021 scsi_run_queue(sdev->request_queue);
2025 EXPORT_SYMBOL(scsi_device_quiesce);
2028 * scsi_device_resume - Restart user issued commands to a quiesced device.
2029 * @sdev: scsi device to resume.
2031 * Moves the device from quiesced back to running and restarts the
2034 * Must be called with user context, may sleep.
2037 scsi_device_resume(struct scsi_device *sdev)
2039 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2041 scsi_run_queue(sdev->request_queue);
2043 EXPORT_SYMBOL(scsi_device_resume);
2046 device_quiesce_fn(struct scsi_device *sdev, void *data)
2048 scsi_device_quiesce(sdev);
2052 scsi_target_quiesce(struct scsi_target *starget)
2054 starget_for_each_device(starget, NULL, device_quiesce_fn);
2056 EXPORT_SYMBOL(scsi_target_quiesce);
2059 device_resume_fn(struct scsi_device *sdev, void *data)
2061 scsi_device_resume(sdev);
2065 scsi_target_resume(struct scsi_target *starget)
2067 starget_for_each_device(starget, NULL, device_resume_fn);
2069 EXPORT_SYMBOL(scsi_target_resume);
2072 * scsi_internal_device_block - internal function to put a device
2073 * temporarily into the SDEV_BLOCK state
2074 * @sdev: device to block
2076 * Block request made by scsi lld's to temporarily stop all
2077 * scsi commands on the specified device. Called from interrupt
2078 * or normal process context.
2080 * Returns zero if successful or error if not
2083 * This routine transitions the device to the SDEV_BLOCK state
2084 * (which must be a legal transition). When the device is in this
2085 * state, all commands are deferred until the scsi lld reenables
2086 * the device with scsi_device_unblock or device_block_tmo fires.
2087 * This routine assumes the host_lock is held on entry.
2090 scsi_internal_device_block(struct scsi_device *sdev)
2092 request_queue_t *q = sdev->request_queue;
2093 unsigned long flags;
2096 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2101 * The device has transitioned to SDEV_BLOCK. Stop the
2102 * block layer from calling the midlayer with this device's
2105 spin_lock_irqsave(q->queue_lock, flags);
2107 spin_unlock_irqrestore(q->queue_lock, flags);
2111 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2114 * scsi_internal_device_unblock - resume a device after a block request
2115 * @sdev: device to resume
2117 * Called by scsi lld's or the midlayer to restart the device queue
2118 * for the previously suspended scsi device. Called from interrupt or
2119 * normal process context.
2121 * Returns zero if successful or error if not.
2124 * This routine transitions the device to the SDEV_RUNNING state
2125 * (which must be a legal transition) allowing the midlayer to
2126 * goose the queue for this device. This routine assumes the
2127 * host_lock is held upon entry.
2130 scsi_internal_device_unblock(struct scsi_device *sdev)
2132 request_queue_t *q = sdev->request_queue;
2134 unsigned long flags;
2137 * Try to transition the scsi device to SDEV_RUNNING
2138 * and goose the device queue if successful.
2140 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2144 spin_lock_irqsave(q->queue_lock, flags);
2146 spin_unlock_irqrestore(q->queue_lock, flags);
2150 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2153 device_block(struct scsi_device *sdev, void *data)
2155 scsi_internal_device_block(sdev);
2159 target_block(struct device *dev, void *data)
2161 if (scsi_is_target_device(dev))
2162 starget_for_each_device(to_scsi_target(dev), NULL,
2168 scsi_target_block(struct device *dev)
2170 if (scsi_is_target_device(dev))
2171 starget_for_each_device(to_scsi_target(dev), NULL,
2174 device_for_each_child(dev, NULL, target_block);
2176 EXPORT_SYMBOL_GPL(scsi_target_block);
2179 device_unblock(struct scsi_device *sdev, void *data)
2181 scsi_internal_device_unblock(sdev);
2185 target_unblock(struct device *dev, void *data)
2187 if (scsi_is_target_device(dev))
2188 starget_for_each_device(to_scsi_target(dev), NULL,
2194 scsi_target_unblock(struct device *dev)
2196 if (scsi_is_target_device(dev))
2197 starget_for_each_device(to_scsi_target(dev), NULL,
2200 device_for_each_child(dev, NULL, target_unblock);
2202 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2205 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2206 * @sg: scatter-gather list
2207 * @sg_count: number of segments in sg
2208 * @offset: offset in bytes into sg, on return offset into the mapped area
2209 * @len: bytes to map, on return number of bytes mapped
2211 * Returns virtual address of the start of the mapped page
2213 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2214 size_t *offset, size_t *len)
2217 size_t sg_len = 0, len_complete = 0;
2220 for (i = 0; i < sg_count; i++) {
2221 len_complete = sg_len; /* Complete sg-entries */
2222 sg_len += sg[i].length;
2223 if (sg_len > *offset)
2227 if (unlikely(i == sg_count)) {
2228 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2230 __FUNCTION__, sg_len, *offset, sg_count);
2235 /* Offset starting from the beginning of first page in this sg-entry */
2236 *offset = *offset - len_complete + sg[i].offset;
2238 /* Assumption: contiguous pages can be accessed as "page + i" */
2239 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2240 *offset &= ~PAGE_MASK;
2242 /* Bytes in this sg-entry from *offset to the end of the page */
2243 sg_len = PAGE_SIZE - *offset;
2247 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2249 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2252 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2253 * mapped with scsi_kmap_atomic_sg
2254 * @virt: virtual address to be unmapped
2256 void scsi_kunmap_atomic_sg(void *virt)
2258 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2260 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);