2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/uaccess.h>
21 #include <asm/pgalloc.h>
22 #include <asm/proto.h>
26 * The current flushing context - we pass it instead of 5 arguments:
35 unsigned force_split : 1;
40 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
41 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
42 * entries change the page attribute in parallel to some other cpu
43 * splitting a large page entry along with changing the attribute.
45 static DEFINE_SPINLOCK(cpa_lock);
47 #define CPA_FLUSHTLB 1
51 static unsigned long direct_pages_count[PG_LEVEL_NUM];
53 void update_page_count(int level, unsigned long pages)
57 /* Protect against CPA */
58 spin_lock_irqsave(&pgd_lock, flags);
59 direct_pages_count[level] += pages;
60 spin_unlock_irqrestore(&pgd_lock, flags);
63 static void split_page_count(int level)
65 direct_pages_count[level]--;
66 direct_pages_count[level - 1] += PTRS_PER_PTE;
69 void arch_report_meminfo(struct seq_file *m)
71 seq_printf(m, "DirectMap4k: %8lu kB\n",
72 direct_pages_count[PG_LEVEL_4K] << 2);
73 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
74 seq_printf(m, "DirectMap2M: %8lu kB\n",
75 direct_pages_count[PG_LEVEL_2M] << 11);
77 seq_printf(m, "DirectMap4M: %8lu kB\n",
78 direct_pages_count[PG_LEVEL_2M] << 12);
82 seq_printf(m, "DirectMap1G: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_1G] << 20);
87 static inline void split_page_count(int level) { }
92 static inline unsigned long highmap_start_pfn(void)
94 return __pa(_text) >> PAGE_SHIFT;
97 static inline unsigned long highmap_end_pfn(void)
99 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 #ifdef CONFIG_DEBUG_PAGEALLOC
105 # define debug_pagealloc 1
107 # define debug_pagealloc 0
111 within(unsigned long addr, unsigned long start, unsigned long end)
113 return addr >= start && addr < end;
121 * clflush_cache_range - flush a cache range with clflush
122 * @addr: virtual start address
123 * @size: number of bytes to flush
125 * clflush is an unordered instruction which needs fencing with mfence
126 * to avoid ordering issues.
128 void clflush_cache_range(void *vaddr, unsigned int size)
130 void *vend = vaddr + size - 1;
134 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 * Flush any possible final partial cacheline:
144 static void __cpa_flush_all(void *arg)
146 unsigned long cache = (unsigned long)arg;
149 * Flush all to work around Errata in early athlons regarding
150 * large page flushing.
154 if (cache && boot_cpu_data.x86_model >= 4)
158 static void cpa_flush_all(unsigned long cache)
160 BUG_ON(irqs_disabled());
162 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165 static void __cpa_flush_range(void *arg)
168 * We could optimize that further and do individual per page
169 * tlb invalidates for a low number of pages. Caveat: we must
170 * flush the high aliases on 64bit as well.
175 static void cpa_flush_range(unsigned long start, int numpages, int cache)
177 unsigned int i, level;
180 BUG_ON(irqs_disabled());
181 WARN_ON(PAGE_ALIGN(start) != start);
183 on_each_cpu(__cpa_flush_range, NULL, 1);
189 * We only need to flush on one CPU,
190 * clflush is a MESI-coherent instruction that
191 * will cause all other CPUs to flush the same
194 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
195 pte_t *pte = lookup_address(addr, &level);
198 * Only flush present addresses:
200 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
201 clflush_cache_range((void *) addr, PAGE_SIZE);
205 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
207 unsigned int i, level;
210 BUG_ON(irqs_disabled());
212 on_each_cpu(__cpa_flush_range, NULL, 1);
218 if (numpages >= 1024) {
219 if (boot_cpu_data.x86_model >= 4)
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
229 for (i = 0, addr = start; i < numpages; i++, addr++) {
230 pte_t *pte = lookup_address(*addr, &level);
233 * Only flush present addresses:
235 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
236 clflush_cache_range((void *) *addr, PAGE_SIZE);
241 * Certain areas of memory on x86 require very specific protection flags,
242 * for example the BIOS area or kernel text. Callers don't always get this
243 * right (again, ioremap() on BIOS memory is not uncommon) so this function
244 * checks and fixes these known static required protection bits.
246 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
249 pgprot_t forbidden = __pgprot(0);
252 * The BIOS area between 640k and 1Mb needs to be executable for
253 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
255 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
256 pgprot_val(forbidden) |= _PAGE_NX;
259 * The kernel text needs to be executable for obvious reasons
260 * Does not cover __inittext since that is gone later on. On
261 * 64bit we do not enforce !NX on the low mapping
263 if (within(address, (unsigned long)_text, (unsigned long)_etext))
264 pgprot_val(forbidden) |= _PAGE_NX;
267 * The .rodata section needs to be read-only. Using the pfn
268 * catches all aliases.
270 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
271 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
272 pgprot_val(forbidden) |= _PAGE_RW;
274 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
280 * Lookup the page table entry for a virtual address. Return a pointer
281 * to the entry and the level of the mapping.
283 * Note: We return pud and pmd either when the entry is marked large
284 * or when the present bit is not set. Otherwise we would return a
285 * pointer to a nonexisting mapping.
287 pte_t *lookup_address(unsigned long address, unsigned int *level)
289 pgd_t *pgd = pgd_offset_k(address);
293 *level = PG_LEVEL_NONE;
298 pud = pud_offset(pgd, address);
302 *level = PG_LEVEL_1G;
303 if (pud_large(*pud) || !pud_present(*pud))
306 pmd = pmd_offset(pud, address);
310 *level = PG_LEVEL_2M;
311 if (pmd_large(*pmd) || !pmd_present(*pmd))
314 *level = PG_LEVEL_4K;
316 return pte_offset_kernel(pmd, address);
318 EXPORT_SYMBOL_GPL(lookup_address);
321 * Set the new pmd in all the pgds we know about:
323 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
326 set_pte_atomic(kpte, pte);
328 if (!SHARED_KERNEL_PMD) {
331 list_for_each_entry(page, &pgd_list, lru) {
336 pgd = (pgd_t *)page_address(page) + pgd_index(address);
337 pud = pud_offset(pgd, address);
338 pmd = pmd_offset(pud, address);
339 set_pte_atomic((pte_t *)pmd, pte);
346 try_preserve_large_page(pte_t *kpte, unsigned long address,
347 struct cpa_data *cpa)
349 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
350 pte_t new_pte, old_pte, *tmp;
351 pgprot_t old_prot, new_prot;
355 if (cpa->force_split)
358 spin_lock_irqsave(&pgd_lock, flags);
360 * Check for races, another CPU might have split this page
363 tmp = lookup_address(address, &level);
369 psize = PMD_PAGE_SIZE;
370 pmask = PMD_PAGE_MASK;
374 psize = PUD_PAGE_SIZE;
375 pmask = PUD_PAGE_MASK;
384 * Calculate the number of pages, which fit into this large
385 * page starting at address:
387 nextpage_addr = (address + psize) & pmask;
388 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
389 if (numpages < cpa->numpages)
390 cpa->numpages = numpages;
393 * We are safe now. Check whether the new pgprot is the same:
396 old_prot = new_prot = pte_pgprot(old_pte);
398 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
399 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
402 * old_pte points to the large page base address. So we need
403 * to add the offset of the virtual address:
405 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
408 new_prot = static_protections(new_prot, address, pfn);
411 * We need to check the full range, whether
412 * static_protection() requires a different pgprot for one of
413 * the pages in the range we try to preserve:
415 addr = address + PAGE_SIZE;
417 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
418 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
420 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
425 * If there are no changes, return. maxpages has been updated
428 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
434 * We need to change the attributes. Check, whether we can
435 * change the large page in one go. We request a split, when
436 * the address is not aligned and the number of pages is
437 * smaller than the number of pages in the large page. Note
438 * that we limited the number of possible pages already to
439 * the number of pages in the large page.
441 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
443 * The address is aligned and the number of pages
444 * covers the full page.
446 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
447 __set_pmd_pte(kpte, address, new_pte);
448 cpa->flags |= CPA_FLUSHTLB;
453 spin_unlock_irqrestore(&pgd_lock, flags);
458 static int split_large_page(pte_t *kpte, unsigned long address)
460 unsigned long flags, pfn, pfninc = 1;
461 unsigned int i, level;
466 if (!debug_pagealloc)
467 spin_unlock(&cpa_lock);
468 base = alloc_pages(GFP_KERNEL, 0);
469 if (!debug_pagealloc)
470 spin_lock(&cpa_lock);
474 spin_lock_irqsave(&pgd_lock, flags);
476 * Check for races, another CPU might have split this page
479 tmp = lookup_address(address, &level);
483 pbase = (pte_t *)page_address(base);
484 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
485 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
487 * If we ever want to utilize the PAT bit, we need to
488 * update this function to make sure it's converted from
489 * bit 12 to bit 7 when we cross from the 2MB level to
492 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
495 if (level == PG_LEVEL_1G) {
496 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
497 pgprot_val(ref_prot) |= _PAGE_PSE;
502 * Get the target pfn from the original entry:
504 pfn = pte_pfn(*kpte);
505 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
506 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
508 if (address >= (unsigned long)__va(0) &&
509 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
510 split_page_count(level);
513 if (address >= (unsigned long)__va(1UL<<32) &&
514 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
515 split_page_count(level);
519 * Install the new, split up pagetable.
521 * We use the standard kernel pagetable protections for the new
522 * pagetable protections, the actual ptes set above control the
523 * primary protection behavior:
525 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
528 * Intel Atom errata AAH41 workaround.
530 * The real fix should be in hw or in a microcode update, but
531 * we also probabilistically try to reduce the window of having
532 * a large TLB mixed with 4K TLBs while instruction fetches are
541 * If we dropped out via the lookup_address check under
542 * pgd_lock then stick the page back into the pool:
546 spin_unlock_irqrestore(&pgd_lock, flags);
551 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
555 * Ignore all non primary paths.
561 * Ignore the NULL PTE for kernel identity mapping, as it is expected
563 * Also set numpages to '1' indicating that we processed cpa req for
564 * one virtual address page and its pfn. TBD: numpages can be set based
565 * on the initial value and the level returned by lookup_address().
567 if (within(vaddr, PAGE_OFFSET,
568 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
570 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
573 WARN(1, KERN_WARNING "CPA: called for zero pte. "
574 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
581 static int __change_page_attr(struct cpa_data *cpa, int primary)
583 unsigned long address;
586 pte_t *kpte, old_pte;
588 if (cpa->flags & CPA_ARRAY)
589 address = cpa->vaddr[cpa->curpage];
591 address = *cpa->vaddr;
593 kpte = lookup_address(address, &level);
595 return __cpa_process_fault(cpa, address, primary);
598 if (!pte_val(old_pte))
599 return __cpa_process_fault(cpa, address, primary);
601 if (level == PG_LEVEL_4K) {
603 pgprot_t new_prot = pte_pgprot(old_pte);
604 unsigned long pfn = pte_pfn(old_pte);
606 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
607 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
609 new_prot = static_protections(new_prot, address, pfn);
612 * We need to keep the pfn from the existing PTE,
613 * after all we're only going to change it's attributes
614 * not the memory it points to
616 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
619 * Do we really change anything ?
621 if (pte_val(old_pte) != pte_val(new_pte)) {
622 set_pte_atomic(kpte, new_pte);
623 cpa->flags |= CPA_FLUSHTLB;
630 * Check, whether we can keep the large page intact
631 * and just change the pte:
633 do_split = try_preserve_large_page(kpte, address, cpa);
635 * When the range fits into the existing large page,
636 * return. cp->numpages and cpa->tlbflush have been updated in
643 * We have to split the large page:
645 err = split_large_page(kpte, address);
648 * Do a global flush tlb after splitting the large page
649 * and before we do the actual change page attribute in the PTE.
651 * With out this, we violate the TLB application note, that says
652 * "The TLBs may contain both ordinary and large-page
653 * translations for a 4-KByte range of linear addresses. This
654 * may occur if software modifies the paging structures so that
655 * the page size used for the address range changes. If the two
656 * translations differ with respect to page frame or attributes
657 * (e.g., permissions), processor behavior is undefined and may
658 * be implementation-specific."
660 * We do this global tlb flush inside the cpa_lock, so that we
661 * don't allow any other cpu, with stale tlb entries change the
662 * page attribute in parallel, that also falls into the
663 * just split large page entry.
672 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
674 static int cpa_process_alias(struct cpa_data *cpa)
676 struct cpa_data alias_cpa;
678 unsigned long temp_cpa_vaddr, vaddr;
680 if (cpa->pfn >= max_pfn_mapped)
684 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
688 * No need to redo, when the primary call touched the direct
691 if (cpa->flags & CPA_ARRAY)
692 vaddr = cpa->vaddr[cpa->curpage];
696 if (!(within(vaddr, PAGE_OFFSET,
697 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
700 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
701 alias_cpa.vaddr = &temp_cpa_vaddr;
702 alias_cpa.flags &= ~CPA_ARRAY;
705 ret = __change_page_attr_set_clr(&alias_cpa, 0);
712 * No need to redo, when the primary call touched the high
715 if (within(vaddr, (unsigned long) _text, _brk_end))
719 * If the physical address is inside the kernel map, we need
720 * to touch the high mapped kernel as well:
722 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
726 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
727 alias_cpa.vaddr = &temp_cpa_vaddr;
728 alias_cpa.flags &= ~CPA_ARRAY;
731 * The high mapping range is imprecise, so ignore the return value.
733 __change_page_attr_set_clr(&alias_cpa, 0);
738 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
740 int ret, numpages = cpa->numpages;
744 * Store the remaining nr of pages for the large page
745 * preservation check.
747 cpa->numpages = numpages;
748 /* for array changes, we can't use large page */
749 if (cpa->flags & CPA_ARRAY)
752 if (!debug_pagealloc)
753 spin_lock(&cpa_lock);
754 ret = __change_page_attr(cpa, checkalias);
755 if (!debug_pagealloc)
756 spin_unlock(&cpa_lock);
761 ret = cpa_process_alias(cpa);
767 * Adjust the number of pages with the result of the
768 * CPA operation. Either a large page has been
769 * preserved or a single page update happened.
771 BUG_ON(cpa->numpages > numpages);
772 numpages -= cpa->numpages;
773 if (cpa->flags & CPA_ARRAY)
776 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
782 static inline int cache_attr(pgprot_t attr)
784 return pgprot_val(attr) &
785 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
788 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
789 pgprot_t mask_set, pgprot_t mask_clr,
790 int force_split, int array)
793 int ret, cache, checkalias;
796 * Check, if we are requested to change a not supported
799 mask_set = canon_pgprot(mask_set);
800 mask_clr = canon_pgprot(mask_clr);
801 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
804 /* Ensure we are PAGE_SIZE aligned */
806 if (*addr & ~PAGE_MASK) {
809 * People should not be passing in unaligned addresses:
815 for (i = 0; i < numpages; i++) {
816 if (addr[i] & ~PAGE_MASK) {
817 addr[i] &= PAGE_MASK;
823 /* Must avoid aliasing mappings in the highmem code */
829 * If we're called with lazy mmu updates enabled, the
830 * in-memory pte state may be stale. Flush pending updates to
831 * bring them up to date.
833 arch_flush_lazy_mmu_mode();
836 cpa.numpages = numpages;
837 cpa.mask_set = mask_set;
838 cpa.mask_clr = mask_clr;
841 cpa.force_split = force_split;
844 cpa.flags |= CPA_ARRAY;
846 /* No alias checking for _NX bit modifications */
847 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
849 ret = __change_page_attr_set_clr(&cpa, checkalias);
852 * Check whether we really changed something:
854 if (!(cpa.flags & CPA_FLUSHTLB))
858 * No need to flush, when we did not set any of the caching
861 cache = cache_attr(mask_set);
864 * On success we use clflush, when the CPU supports it to
865 * avoid the wbindv. If the CPU does not support it and in the
866 * error case we fall back to cpa_flush_all (which uses
869 if (!ret && cpu_has_clflush) {
870 if (cpa.flags & CPA_ARRAY)
871 cpa_flush_array(addr, numpages, cache);
873 cpa_flush_range(*addr, numpages, cache);
875 cpa_flush_all(cache);
878 * If we've been called with lazy mmu updates enabled, then
879 * make sure that everything gets flushed out before we
882 arch_flush_lazy_mmu_mode();
888 static inline int change_page_attr_set(unsigned long *addr, int numpages,
889 pgprot_t mask, int array)
891 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
895 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
896 pgprot_t mask, int array)
898 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
902 int _set_memory_uc(unsigned long addr, int numpages)
905 * for now UC MINUS. see comments in ioremap_nocache()
907 return change_page_attr_set(&addr, numpages,
908 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
911 int set_memory_uc(unsigned long addr, int numpages)
914 * for now UC MINUS. see comments in ioremap_nocache()
916 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
917 _PAGE_CACHE_UC_MINUS, NULL))
920 return _set_memory_uc(addr, numpages);
922 EXPORT_SYMBOL(set_memory_uc);
924 int set_memory_array_uc(unsigned long *addr, int addrinarray)
930 * for now UC MINUS. see comments in ioremap_nocache()
932 for (i = 0; i < addrinarray; i++) {
933 start = __pa(addr[i]);
934 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
935 if (end != __pa(addr[i + 1]))
939 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
943 return change_page_attr_set(addr, addrinarray,
944 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
946 for (i = 0; i < addrinarray; i++) {
947 unsigned long tmp = __pa(addr[i]);
951 for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
952 if (end != __pa(addr[i + 1]))
956 free_memtype(tmp, end);
960 EXPORT_SYMBOL(set_memory_array_uc);
962 int _set_memory_wc(unsigned long addr, int numpages)
964 return change_page_attr_set(&addr, numpages,
965 __pgprot(_PAGE_CACHE_WC), 0);
968 int set_memory_wc(unsigned long addr, int numpages)
971 return set_memory_uc(addr, numpages);
973 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
974 _PAGE_CACHE_WC, NULL))
977 return _set_memory_wc(addr, numpages);
979 EXPORT_SYMBOL(set_memory_wc);
981 int _set_memory_wb(unsigned long addr, int numpages)
983 return change_page_attr_clear(&addr, numpages,
984 __pgprot(_PAGE_CACHE_MASK), 0);
987 int set_memory_wb(unsigned long addr, int numpages)
989 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
991 return _set_memory_wb(addr, numpages);
993 EXPORT_SYMBOL(set_memory_wb);
995 int set_memory_array_wb(unsigned long *addr, int addrinarray)
999 for (i = 0; i < addrinarray; i++) {
1000 unsigned long start = __pa(addr[i]);
1003 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
1004 if (end != __pa(addr[i + 1]))
1008 free_memtype(start, end);
1010 return change_page_attr_clear(addr, addrinarray,
1011 __pgprot(_PAGE_CACHE_MASK), 1);
1013 EXPORT_SYMBOL(set_memory_array_wb);
1015 int set_memory_x(unsigned long addr, int numpages)
1017 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1019 EXPORT_SYMBOL(set_memory_x);
1021 int set_memory_nx(unsigned long addr, int numpages)
1023 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1025 EXPORT_SYMBOL(set_memory_nx);
1027 int set_memory_ro(unsigned long addr, int numpages)
1029 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1031 EXPORT_SYMBOL_GPL(set_memory_ro);
1033 int set_memory_rw(unsigned long addr, int numpages)
1035 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1037 EXPORT_SYMBOL_GPL(set_memory_rw);
1039 int set_memory_np(unsigned long addr, int numpages)
1041 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1044 int set_memory_4k(unsigned long addr, int numpages)
1046 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1050 int set_pages_uc(struct page *page, int numpages)
1052 unsigned long addr = (unsigned long)page_address(page);
1054 return set_memory_uc(addr, numpages);
1056 EXPORT_SYMBOL(set_pages_uc);
1058 int set_pages_wb(struct page *page, int numpages)
1060 unsigned long addr = (unsigned long)page_address(page);
1062 return set_memory_wb(addr, numpages);
1064 EXPORT_SYMBOL(set_pages_wb);
1066 int set_pages_x(struct page *page, int numpages)
1068 unsigned long addr = (unsigned long)page_address(page);
1070 return set_memory_x(addr, numpages);
1072 EXPORT_SYMBOL(set_pages_x);
1074 int set_pages_nx(struct page *page, int numpages)
1076 unsigned long addr = (unsigned long)page_address(page);
1078 return set_memory_nx(addr, numpages);
1080 EXPORT_SYMBOL(set_pages_nx);
1082 int set_pages_ro(struct page *page, int numpages)
1084 unsigned long addr = (unsigned long)page_address(page);
1086 return set_memory_ro(addr, numpages);
1089 int set_pages_rw(struct page *page, int numpages)
1091 unsigned long addr = (unsigned long)page_address(page);
1093 return set_memory_rw(addr, numpages);
1096 #ifdef CONFIG_DEBUG_PAGEALLOC
1098 static int __set_pages_p(struct page *page, int numpages)
1100 unsigned long tempaddr = (unsigned long) page_address(page);
1101 struct cpa_data cpa = { .vaddr = &tempaddr,
1102 .numpages = numpages,
1103 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1104 .mask_clr = __pgprot(0),
1108 * No alias checking needed for setting present flag. otherwise,
1109 * we may need to break large pages for 64-bit kernel text
1110 * mappings (this adds to complexity if we want to do this from
1111 * atomic context especially). Let's keep it simple!
1113 return __change_page_attr_set_clr(&cpa, 0);
1116 static int __set_pages_np(struct page *page, int numpages)
1118 unsigned long tempaddr = (unsigned long) page_address(page);
1119 struct cpa_data cpa = { .vaddr = &tempaddr,
1120 .numpages = numpages,
1121 .mask_set = __pgprot(0),
1122 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1126 * No alias checking needed for setting not present flag. otherwise,
1127 * we may need to break large pages for 64-bit kernel text
1128 * mappings (this adds to complexity if we want to do this from
1129 * atomic context especially). Let's keep it simple!
1131 return __change_page_attr_set_clr(&cpa, 0);
1134 void kernel_map_pages(struct page *page, int numpages, int enable)
1136 if (PageHighMem(page))
1139 debug_check_no_locks_freed(page_address(page),
1140 numpages * PAGE_SIZE);
1144 * If page allocator is not up yet then do not call c_p_a():
1146 if (!debug_pagealloc_enabled)
1150 * The return value is ignored as the calls cannot fail.
1151 * Large pages for identity mappings are not used at boot time
1152 * and hence no memory allocations during large page split.
1155 __set_pages_p(page, numpages);
1157 __set_pages_np(page, numpages);
1160 * We should perform an IPI and flush all tlbs,
1161 * but that can deadlock->flush only current cpu:
1166 #ifdef CONFIG_HIBERNATION
1168 bool kernel_page_present(struct page *page)
1173 if (PageHighMem(page))
1176 pte = lookup_address((unsigned long)page_address(page), &level);
1177 return (pte_val(*pte) & _PAGE_PRESENT);
1180 #endif /* CONFIG_HIBERNATION */
1182 #endif /* CONFIG_DEBUG_PAGEALLOC */
1185 * The testcases use internal knowledge of the implementation that shouldn't
1186 * be exposed to the rest of the kernel. Include these directly here.
1188 #ifdef CONFIG_CPA_DEBUG
1189 #include "pageattr-test.c"