2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006 Helge Deller (deller@gmx.de)
14 #include <linux/module.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
30 #include <asm/sections.h>
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 extern int data_start;
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
42 static struct resource data_resource = {
43 .name = "Kernel data",
44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
47 static struct resource code_resource = {
48 .name = "Kernel code",
49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
52 static struct resource pdcdata_resource = {
53 .name = "PDC data (Page Zero)",
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61 /* The following array is initialized from the firmware specific
62 * information retrieved in kernel/inventory.c.
65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
66 int npmem_ranges __read_mostly;
69 #define MAX_MEM (~0UL)
71 #define MAX_MEM (3584U*1024U*1024U)
72 #endif /* !__LP64__ */
74 static unsigned long mem_limit __read_mostly = MAX_MEM;
76 static void __init mem_limit_func(void)
80 extern char saved_command_line[];
82 /* We need this before __setup() functions are called */
85 for (cp = saved_command_line; *cp; ) {
86 if (memcmp(cp, "mem=", 4) == 0) {
88 limit = memparse(cp, &end);
93 while (*cp != ' ' && *cp)
100 if (limit < mem_limit)
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
106 static void __init setup_bootmem(void)
108 unsigned long bootmap_size;
109 unsigned long mem_max;
110 unsigned long bootmap_pages;
111 unsigned long bootmap_start_pfn;
112 unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117 int i, sysram_resource_count;
119 disable_sr_hashing(); /* Turn off space register hashing */
122 * Sort the ranges. Since the number of ranges is typically
123 * small, and performance is not an issue here, just do
124 * a simple insertion sort.
127 for (i = 1; i < npmem_ranges; i++) {
130 for (j = i; j > 0; j--) {
133 if (pmem_ranges[j-1].start_pfn <
134 pmem_ranges[j].start_pfn) {
138 tmp = pmem_ranges[j-1].start_pfn;
139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140 pmem_ranges[j].start_pfn = tmp;
141 tmp = pmem_ranges[j-1].pages;
142 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143 pmem_ranges[j].pages = tmp;
147 #ifndef CONFIG_DISCONTIGMEM
149 * Throw out ranges that are too far apart (controlled by
153 for (i = 1; i < npmem_ranges; i++) {
154 if (pmem_ranges[i].start_pfn -
155 (pmem_ranges[i-1].start_pfn +
156 pmem_ranges[i-1].pages) > MAX_GAP) {
158 printk("Large gap in memory detected (%ld pages). "
159 "Consider turning on CONFIG_DISCONTIGMEM\n",
160 pmem_ranges[i].start_pfn -
161 (pmem_ranges[i-1].start_pfn +
162 pmem_ranges[i-1].pages));
168 if (npmem_ranges > 1) {
170 /* Print the memory ranges */
172 printk(KERN_INFO "Memory Ranges:\n");
174 for (i = 0; i < npmem_ranges; i++) {
178 size = (pmem_ranges[i].pages << PAGE_SHIFT);
179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181 i,start, start + (size - 1), size >> 20);
185 sysram_resource_count = npmem_ranges;
186 for (i = 0; i < sysram_resource_count; i++) {
187 struct resource *res = &sysram_resources[i];
188 res->name = "System RAM";
189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 request_resource(&iomem_resource, res);
196 * For 32 bit kernels we limit the amount of memory we can
197 * support, in order to preserve enough kernel address space
198 * for other purposes. For 64 bit kernels we don't normally
199 * limit the memory, but this mechanism can be used to
200 * artificially limit the amount of memory (and it is written
201 * to work with multiple memory ranges).
204 mem_limit_func(); /* check for "mem=" argument */
208 for (i = 0; i < npmem_ranges; i++) {
211 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212 if ((mem_max + rsize) > mem_limit) {
213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214 if (mem_max == mem_limit)
217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
218 - (mem_max >> PAGE_SHIFT);
219 npmem_ranges = i + 1;
222 num_physpages += pmem_ranges[i].pages;
225 num_physpages += pmem_ranges[i].pages;
229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
231 #ifndef CONFIG_DISCONTIGMEM
232 /* Merge the ranges, keeping track of the holes */
235 unsigned long end_pfn;
236 unsigned long hole_pages;
239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240 for (i = 1; i < npmem_ranges; i++) {
242 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
244 pmem_holes[npmem_holes].start_pfn = end_pfn;
245 pmem_holes[npmem_holes++].pages = hole_pages;
246 end_pfn += hole_pages;
248 end_pfn += pmem_ranges[i].pages;
251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
257 for (i = 0; i < npmem_ranges; i++)
258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
262 #ifdef CONFIG_DISCONTIGMEM
263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265 NODE_DATA(i)->bdata = &bmem_data[i];
267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
269 for (i = 0; i < npmem_ranges; i++)
274 * Initialize and free the full range of memory in each range.
275 * Note that the only writing these routines do are to the bootmap,
276 * and we've made sure to locate the bootmap properly so that they
277 * won't be writing over anything important.
280 bootmap_pfn = bootmap_start_pfn;
282 for (i = 0; i < npmem_ranges; i++) {
283 unsigned long start_pfn;
284 unsigned long npages;
286 start_pfn = pmem_ranges[i].start_pfn;
287 npages = pmem_ranges[i].pages;
289 bootmap_size = init_bootmem_node(NODE_DATA(i),
292 (start_pfn + npages) );
293 free_bootmem_node(NODE_DATA(i),
294 (start_pfn << PAGE_SHIFT),
295 (npages << PAGE_SHIFT) );
296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 if ((start_pfn + npages) > max_pfn)
298 max_pfn = start_pfn + npages;
301 /* IOMMU is always used to access "high mem" on those boxes
302 * that can support enough mem that a PCI device couldn't
303 * directly DMA to any physical addresses.
304 * ISA DMA support will need to revisit this.
306 max_low_pfn = max_pfn;
308 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
309 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
313 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
315 #define PDC_CONSOLE_IO_IODC_SIZE 32768
317 reserve_bootmem_node(NODE_DATA(0), 0UL,
318 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
319 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
320 (unsigned long)(_end - _text));
321 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
322 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
324 #ifndef CONFIG_DISCONTIGMEM
326 /* reserve the holes */
328 for (i = 0; i < npmem_holes; i++) {
329 reserve_bootmem_node(NODE_DATA(0),
330 (pmem_holes[i].start_pfn << PAGE_SHIFT),
331 (pmem_holes[i].pages << PAGE_SHIFT));
335 #ifdef CONFIG_BLK_DEV_INITRD
337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
338 if (__pa(initrd_start) < mem_max) {
339 unsigned long initrd_reserve;
341 if (__pa(initrd_end) > mem_max) {
342 initrd_reserve = mem_max - __pa(initrd_start);
344 initrd_reserve = initrd_end - initrd_start;
346 initrd_below_start_ok = 1;
347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
354 data_resource.start = virt_to_phys(&data_start);
355 data_resource.end = virt_to_phys(_end) - 1;
356 code_resource.start = virt_to_phys(_text);
357 code_resource.end = virt_to_phys(&data_start)-1;
359 /* We don't know which region the kernel will be in, so try
362 for (i = 0; i < sysram_resource_count; i++) {
363 struct resource *res = &sysram_resources[i];
364 request_resource(res, &code_resource);
365 request_resource(res, &data_resource);
367 request_resource(&sysram_resources[0], &pdcdata_resource);
370 void free_initmem(void)
372 unsigned long addr, init_begin, init_end;
374 printk(KERN_INFO "Freeing unused kernel memory: ");
376 #ifdef CONFIG_DEBUG_KERNEL
377 /* Attempt to catch anyone trying to execute code here
378 * by filling the page with BRK insns.
380 * If we disable interrupts for all CPUs, then IPI stops working.
381 * Kinda breaks the global cache flushing.
385 memset(__init_begin, 0x00,
386 (unsigned long)__init_end - (unsigned long)__init_begin);
389 asm volatile("sync" : : );
390 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
391 asm volatile("sync" : : );
396 /* align __init_begin and __init_end to page size,
397 ignoring linker script where we might have tried to save RAM */
398 init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
399 init_end = PAGE_ALIGN((unsigned long)(__init_end));
400 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
401 ClearPageReserved(virt_to_page(addr));
402 init_page_count(virt_to_page(addr));
408 /* set up a new led state on systems shipped LED State panel */
409 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
411 printk("%luk freed\n", (init_end - init_begin) >> 10);
415 #ifdef CONFIG_DEBUG_RODATA
416 void mark_rodata_ro(void)
418 /* rodata memory was already mapped with KERNEL_RO access rights by
419 pagetable_init() and map_pages(). No need to do additional stuff here */
420 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
421 (unsigned long)(__end_rodata - __start_rodata) >> 10);
427 * Just an arbitrary offset to serve as a "hole" between mapping areas
428 * (between top of physical memory and a potential pcxl dma mapping
429 * area, and below the vmalloc mapping area).
431 * The current 32K value just means that there will be a 32K "hole"
432 * between mapping areas. That means that any out-of-bounds memory
433 * accesses will hopefully be caught. The vmalloc() routines leaves
434 * a hole of 4kB between each vmalloced area for the same reason.
437 /* Leave room for gateway page expansion */
438 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
439 #error KERNEL_MAP_START is in gateway reserved region
441 #define MAP_START (KERNEL_MAP_START)
443 #define VM_MAP_OFFSET (32*1024)
444 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
445 & ~(VM_MAP_OFFSET-1)))
447 void *vmalloc_start __read_mostly;
448 EXPORT_SYMBOL(vmalloc_start);
451 unsigned long pcxl_dma_start __read_mostly;
454 void __init mem_init(void)
456 high_memory = __va((max_pfn << PAGE_SHIFT));
458 #ifndef CONFIG_DISCONTIGMEM
459 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
460 totalram_pages += free_all_bootmem();
465 for (i = 0; i < npmem_ranges; i++)
466 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
470 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
473 if (hppa_dma_ops == &pcxl_dma_ops) {
474 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
475 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
478 vmalloc_start = SET_MAP_OFFSET(MAP_START);
481 vmalloc_start = SET_MAP_OFFSET(MAP_START);
486 unsigned long *empty_zero_page __read_mostly;
490 int i,free = 0,total = 0,reserved = 0;
491 int shared = 0, cached = 0;
493 printk(KERN_INFO "Mem-info:\n");
495 printk(KERN_INFO "Free swap: %6ldkB\n",
496 nr_swap_pages<<(PAGE_SHIFT-10));
497 #ifndef CONFIG_DISCONTIGMEM
501 if (PageReserved(mem_map+i))
503 else if (PageSwapCache(mem_map+i))
505 else if (!page_count(&mem_map[i]))
508 shared += page_count(&mem_map[i]) - 1;
511 for (i = 0; i < npmem_ranges; i++) {
514 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
518 pgdat_resize_lock(NODE_DATA(i), &flags);
519 p = nid_page_nr(i, j) - node_start_pfn(i);
524 else if (PageSwapCache(p))
526 else if (!page_count(p))
529 shared += page_count(p) - 1;
530 pgdat_resize_unlock(NODE_DATA(i), &flags);
534 printk(KERN_INFO "%d pages of RAM\n", total);
535 printk(KERN_INFO "%d reserved pages\n", reserved);
536 printk(KERN_INFO "%d pages shared\n", shared);
537 printk(KERN_INFO "%d pages swap cached\n", cached);
540 #ifdef CONFIG_DISCONTIGMEM
545 for (i = 0; i < npmem_ranges; i++) {
546 for (j = 0; j < MAX_NR_ZONES; j++) {
547 zl = NODE_DATA(i)->node_zonelists + j;
549 printk("Zone list for zone %d on node %d: ", j, i);
550 for (k = 0; zl->zones[k] != NULL; k++)
551 printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
560 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
565 unsigned long end_paddr;
566 unsigned long start_pmd;
567 unsigned long start_pte;
570 unsigned long address;
571 unsigned long ro_start;
572 unsigned long ro_end;
573 unsigned long fv_addr;
574 unsigned long gw_addr;
575 extern const unsigned long fault_vector_20;
576 extern void * const linux_gateway_page;
578 ro_start = __pa((unsigned long)_text);
579 ro_end = __pa((unsigned long)&data_start);
580 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
581 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
583 end_paddr = start_paddr + size;
585 pg_dir = pgd_offset_k(start_vaddr);
587 #if PTRS_PER_PMD == 1
590 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
592 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
594 address = start_paddr;
595 while (address < end_paddr) {
596 #if PTRS_PER_PMD == 1
597 pmd = (pmd_t *)__pa(pg_dir);
599 pmd = (pmd_t *)pgd_address(*pg_dir);
602 * pmd is physical at this point
606 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
607 pmd = (pmd_t *) __pa(pmd);
610 pgd_populate(NULL, pg_dir, __va(pmd));
614 /* now change pmd to kernel virtual addresses */
616 pmd = (pmd_t *)__va(pmd) + start_pmd;
617 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
620 * pg_table is physical at this point
623 pg_table = (pte_t *)pmd_address(*pmd);
626 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
627 pg_table = (pte_t *) __pa(pg_table);
630 pmd_populate_kernel(NULL, pmd, __va(pg_table));
632 /* now change pg_table to kernel virtual addresses */
634 pg_table = (pte_t *) __va(pg_table) + start_pte;
635 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
639 * Map the fault vector writable so we can
640 * write the HPMC checksum.
642 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
643 if (address >= ro_start && address < ro_end
644 && address != fv_addr
645 && address != gw_addr)
646 pte = __mk_pte(address, PAGE_KERNEL_RO);
649 pte = __mk_pte(address, pgprot);
651 if (address >= end_paddr)
654 set_pte(pg_table, pte);
656 address += PAGE_SIZE;
660 if (address >= end_paddr)
668 * pagetable_init() sets up the page tables
670 * Note that gateway_init() places the Linux gateway page at page 0.
671 * Since gateway pages cannot be dereferenced this has the desirable
672 * side effect of trapping those pesky NULL-reference errors in the
675 static void __init pagetable_init(void)
679 /* Map each physical memory range to its kernel vaddr */
681 for (range = 0; range < npmem_ranges; range++) {
682 unsigned long start_paddr;
683 unsigned long end_paddr;
686 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
687 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
688 size = pmem_ranges[range].pages << PAGE_SHIFT;
690 map_pages((unsigned long)__va(start_paddr), start_paddr,
694 #ifdef CONFIG_BLK_DEV_INITRD
695 if (initrd_end && initrd_end > mem_limit) {
696 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
697 map_pages(initrd_start, __pa(initrd_start),
698 initrd_end - initrd_start, PAGE_KERNEL);
702 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
703 memset(empty_zero_page, 0, PAGE_SIZE);
706 static void __init gateway_init(void)
708 unsigned long linux_gateway_page_addr;
709 /* FIXME: This is 'const' in order to trick the compiler
710 into not treating it as DP-relative data. */
711 extern void * const linux_gateway_page;
713 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
716 * Setup Linux Gateway page.
718 * The Linux gateway page will reside in kernel space (on virtual
719 * page 0), so it doesn't need to be aliased into user space.
722 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
723 PAGE_SIZE, PAGE_GATEWAY);
728 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
733 unsigned long start_pmd;
734 unsigned long start_pte;
735 unsigned long address;
736 unsigned long hpux_gw_page_addr;
737 /* FIXME: This is 'const' in order to trick the compiler
738 into not treating it as DP-relative data. */
739 extern void * const hpux_gateway_page;
741 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
744 * Setup HP-UX Gateway page.
746 * The HP-UX gateway page resides in the user address space,
747 * so it needs to be aliased into each process.
750 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
752 #if PTRS_PER_PMD == 1
755 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
757 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
759 address = __pa(&hpux_gateway_page);
760 #if PTRS_PER_PMD == 1
761 pmd = (pmd_t *)__pa(pg_dir);
763 pmd = (pmd_t *) pgd_address(*pg_dir);
766 * pmd is physical at this point
770 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
771 pmd = (pmd_t *) __pa(pmd);
774 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
776 /* now change pmd to kernel virtual addresses */
778 pmd = (pmd_t *)__va(pmd) + start_pmd;
781 * pg_table is physical at this point
784 pg_table = (pte_t *) pmd_address(*pmd);
786 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
788 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
790 /* now change pg_table to kernel virtual addresses */
792 pg_table = (pte_t *) __va(pg_table) + start_pte;
793 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
795 EXPORT_SYMBOL(map_hpux_gateway_page);
798 void __init paging_init(void)
805 flush_cache_all_local(); /* start with known state */
806 flush_tlb_all_local(NULL);
808 for (i = 0; i < npmem_ranges; i++) {
809 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
811 /* We have an IOMMU, so all memory can go into a single
813 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
815 #ifdef CONFIG_DISCONTIGMEM
816 /* Need to initialize the pfnnid_map before we can initialize
820 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
821 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
828 free_area_init_node(i, NODE_DATA(i), zones_size,
829 pmem_ranges[i].start_pfn, NULL);
836 * Currently, all PA20 chips have 18 bit protection id's, which is the
837 * limiting factor (space ids are 32 bits).
840 #define NR_SPACE_IDS 262144
845 * Currently we have a one-to-one relationship between space id's and
846 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
847 * support 15 bit protection id's, so that is the limiting factor.
848 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
849 * probably not worth the effort for a special case here.
852 #define NR_SPACE_IDS 32768
854 #endif /* !CONFIG_PA20 */
856 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
857 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
859 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
860 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
861 static unsigned long space_id_index;
862 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
863 static unsigned long dirty_space_ids = 0;
865 static DEFINE_SPINLOCK(sid_lock);
867 unsigned long alloc_sid(void)
871 spin_lock(&sid_lock);
873 if (free_space_ids == 0) {
874 if (dirty_space_ids != 0) {
875 spin_unlock(&sid_lock);
876 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
877 spin_lock(&sid_lock);
879 BUG_ON(free_space_ids == 0);
884 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
885 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
886 space_id_index = index;
888 spin_unlock(&sid_lock);
890 return index << SPACEID_SHIFT;
893 void free_sid(unsigned long spaceid)
895 unsigned long index = spaceid >> SPACEID_SHIFT;
896 unsigned long *dirty_space_offset;
898 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
899 index &= (BITS_PER_LONG - 1);
901 spin_lock(&sid_lock);
903 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
905 *dirty_space_offset |= (1L << index);
908 spin_unlock(&sid_lock);
913 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
917 /* NOTE: sid_lock must be held upon entry */
919 *ndirtyptr = dirty_space_ids;
920 if (dirty_space_ids != 0) {
921 for (i = 0; i < SID_ARRAY_SIZE; i++) {
922 dirty_array[i] = dirty_space_id[i];
923 dirty_space_id[i] = 0;
931 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
935 /* NOTE: sid_lock must be held upon entry */
938 for (i = 0; i < SID_ARRAY_SIZE; i++) {
939 space_id[i] ^= dirty_array[i];
942 free_space_ids += ndirty;
947 #else /* CONFIG_SMP */
949 static void recycle_sids(void)
953 /* NOTE: sid_lock must be held upon entry */
955 if (dirty_space_ids != 0) {
956 for (i = 0; i < SID_ARRAY_SIZE; i++) {
957 space_id[i] ^= dirty_space_id[i];
958 dirty_space_id[i] = 0;
961 free_space_ids += dirty_space_ids;
969 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
970 * purged, we can safely reuse the space ids that were released but
971 * not flushed from the tlb.
976 static unsigned long recycle_ndirty;
977 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
978 static unsigned int recycle_inuse;
980 void flush_tlb_all(void)
985 spin_lock(&sid_lock);
986 if (dirty_space_ids > RECYCLE_THRESHOLD) {
987 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
988 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
992 spin_unlock(&sid_lock);
993 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
995 spin_lock(&sid_lock);
996 recycle_sids(recycle_ndirty,recycle_dirty_array);
998 spin_unlock(&sid_lock);
1002 void flush_tlb_all(void)
1004 spin_lock(&sid_lock);
1005 flush_tlb_all_local(NULL);
1007 spin_unlock(&sid_lock);
1011 #ifdef CONFIG_BLK_DEV_INITRD
1012 void free_initrd_mem(unsigned long start, unsigned long end)
1016 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1017 for (; start < end; start += PAGE_SIZE) {
1018 ClearPageReserved(virt_to_page(start));
1019 init_page_count(virt_to_page(start));