2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
18 cpu_set(rq->cpu, rq->rd->rto_mask);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
27 atomic_inc(&rq->rd->rto_count);
30 static inline void rt_clear_overload(struct rq *rq)
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
40 static void update_rt_migration(struct rq *rq)
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
45 rq->rt.overloaded = 1;
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
56 return container_of(rt_se, struct task_struct, rt);
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
61 return !list_empty(&rt_se->run_list);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
71 return rt_rq->rt_runtime;
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
135 return !!rt_rq->rt_nr_boosted;
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
142 static inline cpumask_t sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd->span;
147 static inline cpumask_t sched_rt_period_mask(void)
149 return cpu_online_map;
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
161 return &rt_rq->tg->rt_bandwidth;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
168 return rt_rq->rt_runtime;
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
181 return container_of(rt_rq, struct rq, rt);
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
212 return rt_rq->rt_throttled;
215 static inline cpumask_t sched_rt_period_mask(void)
217 return cpu_online_map;
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
223 return &cpu_rq(cpu)->rt;
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
228 return &def_rt_bandwidth;
231 #endif /* CONFIG_RT_GROUP_SCHED */
235 * We ran out of runtime, see if we can borrow some from our neighbours.
237 static int do_balance_runtime(struct rt_rq *rt_rq)
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
244 weight = cpus_weight(rd->span);
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
248 for_each_cpu_mask_nr(i, rd->span) {
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
255 spin_lock(&iter->rt_runtime_lock);
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
261 if (iter->rt_runtime == RUNTIME_INF)
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
268 diff = iter->rt_runtime - iter->rt_time;
270 diff = div_u64((u64)diff, weight);
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
282 spin_unlock(&iter->rt_runtime_lock);
284 spin_unlock(&rt_b->rt_runtime_lock);
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
292 static void __disable_runtime(struct rq *rq)
294 struct root_domain *rd = rq->rd;
297 if (unlikely(!scheduler_running))
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
315 spin_unlock(&rt_rq->rt_runtime_lock);
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
325 * Greedy reclaim, take back as much as we can.
327 for_each_cpu_mask(i, rd->span) {
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
332 * Can't reclaim from ourselves or disabled runqueues.
334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
337 spin_lock(&iter->rt_runtime_lock);
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
343 iter->rt_runtime -= want;
346 spin_unlock(&iter->rt_runtime_lock);
352 spin_lock(&rt_rq->rt_runtime_lock);
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
369 static void disable_runtime(struct rq *rq)
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
378 static void __enable_runtime(struct rq *rq)
382 if (unlikely(!scheduler_running))
386 * Reset each runqueue's bandwidth settings
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
395 rt_rq->rt_throttled = 0;
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
401 static void enable_runtime(struct rq *rq)
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
410 static int balance_runtime(struct rt_rq *rt_rq)
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
422 #else /* !CONFIG_SMP */
423 static inline int balance_runtime(struct rt_rq *rt_rq)
427 #endif /* CONFIG_SMP */
429 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
437 span = sched_rt_period_mask();
438 for_each_cpu_mask(i, span) {
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
458 spin_unlock(&rt_rq->rt_runtime_lock);
459 } else if (rt_rq->rt_nr_running)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
470 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
472 #ifdef CONFIG_RT_GROUP_SCHED
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
476 return rt_rq->highest_prio;
479 return rt_task_of(rt_se)->prio;
482 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
484 u64 runtime = sched_rt_runtime(rt_rq);
486 if (rt_rq->rt_throttled)
487 return rt_rq_throttled(rt_rq);
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
497 if (rt_rq->rt_time > runtime) {
498 rt_rq->rt_throttled = 1;
499 if (rt_rq_throttled(rt_rq)) {
500 sched_rt_rq_dequeue(rt_rq);
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
512 static void update_curr_rt(struct rq *rq)
514 struct task_struct *curr = rq->curr;
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
519 if (!task_has_rt_policy(curr))
522 delta_exec = rq->clock - curr->se.exec_start;
523 if (unlikely((s64)delta_exec < 0))
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
528 curr->se.sum_exec_runtime += delta_exec;
529 account_group_exec_runtime(curr, delta_exec);
531 curr->se.exec_start = rq->clock;
532 cpuacct_charge(curr, delta_exec);
534 if (!rt_bandwidth_enabled())
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
540 spin_lock(&rt_rq->rt_runtime_lock);
541 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
546 spin_unlock(&rt_rq->rt_runtime_lock);
551 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
553 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 rt_rq->rt_nr_running++;
555 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
558 struct rq *rq = rq_of_rt_rq(rt_rq);
561 rt_rq->highest_prio = rt_se_prio(rt_se);
564 cpupri_set(&rq->rd->cpupri, rq->cpu,
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
573 rq->rt.rt_nr_migratory++;
576 update_rt_migration(rq_of_rt_rq(rt_rq));
578 #ifdef CONFIG_RT_GROUP_SCHED
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted++;
583 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
585 start_rt_bandwidth(&def_rt_bandwidth);
590 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
593 int highest_prio = rt_rq->highest_prio;
596 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 WARN_ON(!rt_rq->rt_nr_running);
598 rt_rq->rt_nr_running--;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 if (rt_rq->rt_nr_running) {
601 struct rt_prio_array *array;
603 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
606 array = &rt_rq->active;
607 rt_rq->highest_prio =
608 sched_find_first_bit(array->bitmap);
609 } /* otherwise leave rq->highest prio alone */
611 rt_rq->highest_prio = MAX_RT_PRIO;
614 if (rt_se->nr_cpus_allowed > 1) {
615 struct rq *rq = rq_of_rt_rq(rt_rq);
616 rq->rt.rt_nr_migratory--;
619 if (rt_rq->highest_prio != highest_prio) {
620 struct rq *rq = rq_of_rt_rq(rt_rq);
623 cpupri_set(&rq->rd->cpupri, rq->cpu,
624 rt_rq->highest_prio);
627 update_rt_migration(rq_of_rt_rq(rt_rq));
628 #endif /* CONFIG_SMP */
629 #ifdef CONFIG_RT_GROUP_SCHED
630 if (rt_se_boosted(rt_se))
631 rt_rq->rt_nr_boosted--;
633 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
637 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
639 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 struct rt_prio_array *array = &rt_rq->active;
641 struct rt_rq *group_rq = group_rt_rq(rt_se);
642 struct list_head *queue = array->queue + rt_se_prio(rt_se);
645 * Don't enqueue the group if its throttled, or when empty.
646 * The latter is a consequence of the former when a child group
647 * get throttled and the current group doesn't have any other
650 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
653 list_add_tail(&rt_se->run_list, queue);
654 __set_bit(rt_se_prio(rt_se), array->bitmap);
656 inc_rt_tasks(rt_se, rt_rq);
659 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
661 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 struct rt_prio_array *array = &rt_rq->active;
664 list_del_init(&rt_se->run_list);
665 if (list_empty(array->queue + rt_se_prio(rt_se)))
666 __clear_bit(rt_se_prio(rt_se), array->bitmap);
668 dec_rt_tasks(rt_se, rt_rq);
672 * Because the prio of an upper entry depends on the lower
673 * entries, we must remove entries top - down.
675 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
677 struct sched_rt_entity *back = NULL;
679 for_each_sched_rt_entity(rt_se) {
684 for (rt_se = back; rt_se; rt_se = rt_se->back) {
686 __dequeue_rt_entity(rt_se);
690 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
692 dequeue_rt_stack(rt_se);
693 for_each_sched_rt_entity(rt_se)
694 __enqueue_rt_entity(rt_se);
697 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
699 dequeue_rt_stack(rt_se);
701 for_each_sched_rt_entity(rt_se) {
702 struct rt_rq *rt_rq = group_rt_rq(rt_se);
704 if (rt_rq && rt_rq->rt_nr_running)
705 __enqueue_rt_entity(rt_se);
710 * Adding/removing a task to/from a priority array:
712 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
714 struct sched_rt_entity *rt_se = &p->rt;
719 enqueue_rt_entity(rt_se);
721 inc_cpu_load(rq, p->se.load.weight);
724 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
726 struct sched_rt_entity *rt_se = &p->rt;
729 dequeue_rt_entity(rt_se);
731 dec_cpu_load(rq, p->se.load.weight);
735 * Put task to the end of the run list without the overhead of dequeue
736 * followed by enqueue.
739 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
741 if (on_rt_rq(rt_se)) {
742 struct rt_prio_array *array = &rt_rq->active;
743 struct list_head *queue = array->queue + rt_se_prio(rt_se);
746 list_move(&rt_se->run_list, queue);
748 list_move_tail(&rt_se->run_list, queue);
752 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
754 struct sched_rt_entity *rt_se = &p->rt;
757 for_each_sched_rt_entity(rt_se) {
758 rt_rq = rt_rq_of_se(rt_se);
759 requeue_rt_entity(rt_rq, rt_se, head);
763 static void yield_task_rt(struct rq *rq)
765 requeue_task_rt(rq, rq->curr, 0);
769 static int find_lowest_rq(struct task_struct *task);
771 static int select_task_rq_rt(struct task_struct *p, int sync)
773 struct rq *rq = task_rq(p);
776 * If the current task is an RT task, then
777 * try to see if we can wake this RT task up on another
778 * runqueue. Otherwise simply start this RT task
779 * on its current runqueue.
781 * We want to avoid overloading runqueues. Even if
782 * the RT task is of higher priority than the current RT task.
783 * RT tasks behave differently than other tasks. If
784 * one gets preempted, we try to push it off to another queue.
785 * So trying to keep a preempting RT task on the same
786 * cache hot CPU will force the running RT task to
787 * a cold CPU. So we waste all the cache for the lower
788 * RT task in hopes of saving some of a RT task
789 * that is just being woken and probably will have
792 if (unlikely(rt_task(rq->curr)) &&
793 (p->rt.nr_cpus_allowed > 1)) {
794 int cpu = find_lowest_rq(p);
796 return (cpu == -1) ? task_cpu(p) : cpu;
800 * Otherwise, just let it ride on the affined RQ and the
801 * post-schedule router will push the preempted task away
806 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
810 if (rq->curr->rt.nr_cpus_allowed == 1)
813 if (p->rt.nr_cpus_allowed != 1
814 && cpupri_find(&rq->rd->cpupri, p, &mask))
817 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
821 * There appears to be other cpus that can accept
822 * current and none to run 'p', so lets reschedule
823 * to try and push current away:
825 requeue_task_rt(rq, p, 1);
826 resched_task(rq->curr);
829 #endif /* CONFIG_SMP */
832 * Preempt the current task with a newly woken task if needed:
834 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
836 if (p->prio < rq->curr->prio) {
837 resched_task(rq->curr);
845 * - the newly woken task is of equal priority to the current task
846 * - the newly woken task is non-migratable while current is migratable
847 * - current will be preempted on the next reschedule
849 * we should check to see if current can readily move to a different
850 * cpu. If so, we will reschedule to allow the push logic to try
851 * to move current somewhere else, making room for our non-migratable
854 if (p->prio == rq->curr->prio && !need_resched())
855 check_preempt_equal_prio(rq, p);
859 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
862 struct rt_prio_array *array = &rt_rq->active;
863 struct sched_rt_entity *next = NULL;
864 struct list_head *queue;
867 idx = sched_find_first_bit(array->bitmap);
868 BUG_ON(idx >= MAX_RT_PRIO);
870 queue = array->queue + idx;
871 next = list_entry(queue->next, struct sched_rt_entity, run_list);
876 static struct task_struct *pick_next_task_rt(struct rq *rq)
878 struct sched_rt_entity *rt_se;
879 struct task_struct *p;
884 if (unlikely(!rt_rq->rt_nr_running))
887 if (rt_rq_throttled(rt_rq))
891 rt_se = pick_next_rt_entity(rq, rt_rq);
893 rt_rq = group_rt_rq(rt_se);
896 p = rt_task_of(rt_se);
897 p->se.exec_start = rq->clock;
901 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
904 p->se.exec_start = 0;
909 /* Only try algorithms three times */
910 #define RT_MAX_TRIES 3
912 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
913 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
915 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
917 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
919 if (!task_running(rq, p) &&
920 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
921 (p->rt.nr_cpus_allowed > 1))
926 /* Return the second highest RT task, NULL otherwise */
927 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
929 struct task_struct *next = NULL;
930 struct sched_rt_entity *rt_se;
931 struct rt_prio_array *array;
935 for_each_leaf_rt_rq(rt_rq, rq) {
936 array = &rt_rq->active;
937 idx = sched_find_first_bit(array->bitmap);
939 if (idx >= MAX_RT_PRIO)
941 if (next && next->prio < idx)
943 list_for_each_entry(rt_se, array->queue + idx, run_list) {
944 struct task_struct *p = rt_task_of(rt_se);
945 if (pick_rt_task(rq, p, cpu)) {
951 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
959 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
961 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
965 /* "this_cpu" is cheaper to preempt than a remote processor */
966 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
969 first = first_cpu(*mask);
970 if (first != NR_CPUS)
976 static int find_lowest_rq(struct task_struct *task)
978 struct sched_domain *sd;
979 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
980 int this_cpu = smp_processor_id();
981 int cpu = task_cpu(task);
983 if (task->rt.nr_cpus_allowed == 1)
984 return -1; /* No other targets possible */
986 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
987 return -1; /* No targets found */
990 * Only consider CPUs that are usable for migration.
991 * I guess we might want to change cpupri_find() to ignore those
992 * in the first place.
994 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
997 * At this point we have built a mask of cpus representing the
998 * lowest priority tasks in the system. Now we want to elect
999 * the best one based on our affinity and topology.
1001 * We prioritize the last cpu that the task executed on since
1002 * it is most likely cache-hot in that location.
1004 if (cpu_isset(cpu, *lowest_mask))
1008 * Otherwise, we consult the sched_domains span maps to figure
1009 * out which cpu is logically closest to our hot cache data.
1011 if (this_cpu == cpu)
1012 this_cpu = -1; /* Skip this_cpu opt if the same */
1014 for_each_domain(cpu, sd) {
1015 if (sd->flags & SD_WAKE_AFFINE) {
1016 cpumask_t domain_mask;
1019 cpus_and(domain_mask, sd->span, *lowest_mask);
1021 best_cpu = pick_optimal_cpu(this_cpu,
1029 * And finally, if there were no matches within the domains
1030 * just give the caller *something* to work with from the compatible
1033 return pick_optimal_cpu(this_cpu, lowest_mask);
1036 /* Will lock the rq it finds */
1037 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1039 struct rq *lowest_rq = NULL;
1043 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1044 cpu = find_lowest_rq(task);
1046 if ((cpu == -1) || (cpu == rq->cpu))
1049 lowest_rq = cpu_rq(cpu);
1051 /* if the prio of this runqueue changed, try again */
1052 if (double_lock_balance(rq, lowest_rq)) {
1054 * We had to unlock the run queue. In
1055 * the mean time, task could have
1056 * migrated already or had its affinity changed.
1057 * Also make sure that it wasn't scheduled on its rq.
1059 if (unlikely(task_rq(task) != rq ||
1060 !cpu_isset(lowest_rq->cpu,
1061 task->cpus_allowed) ||
1062 task_running(rq, task) ||
1065 spin_unlock(&lowest_rq->lock);
1071 /* If this rq is still suitable use it. */
1072 if (lowest_rq->rt.highest_prio > task->prio)
1076 double_unlock_balance(rq, lowest_rq);
1084 * If the current CPU has more than one RT task, see if the non
1085 * running task can migrate over to a CPU that is running a task
1086 * of lesser priority.
1088 static int push_rt_task(struct rq *rq)
1090 struct task_struct *next_task;
1091 struct rq *lowest_rq;
1093 int paranoid = RT_MAX_TRIES;
1095 if (!rq->rt.overloaded)
1098 next_task = pick_next_highest_task_rt(rq, -1);
1103 if (unlikely(next_task == rq->curr)) {
1109 * It's possible that the next_task slipped in of
1110 * higher priority than current. If that's the case
1111 * just reschedule current.
1113 if (unlikely(next_task->prio < rq->curr->prio)) {
1114 resched_task(rq->curr);
1118 /* We might release rq lock */
1119 get_task_struct(next_task);
1121 /* find_lock_lowest_rq locks the rq if found */
1122 lowest_rq = find_lock_lowest_rq(next_task, rq);
1124 struct task_struct *task;
1126 * find lock_lowest_rq releases rq->lock
1127 * so it is possible that next_task has changed.
1128 * If it has, then try again.
1130 task = pick_next_highest_task_rt(rq, -1);
1131 if (unlikely(task != next_task) && task && paranoid--) {
1132 put_task_struct(next_task);
1139 deactivate_task(rq, next_task, 0);
1140 set_task_cpu(next_task, lowest_rq->cpu);
1141 activate_task(lowest_rq, next_task, 0);
1143 resched_task(lowest_rq->curr);
1145 double_unlock_balance(rq, lowest_rq);
1149 put_task_struct(next_task);
1155 * TODO: Currently we just use the second highest prio task on
1156 * the queue, and stop when it can't migrate (or there's
1157 * no more RT tasks). There may be a case where a lower
1158 * priority RT task has a different affinity than the
1159 * higher RT task. In this case the lower RT task could
1160 * possibly be able to migrate where as the higher priority
1161 * RT task could not. We currently ignore this issue.
1162 * Enhancements are welcome!
1164 static void push_rt_tasks(struct rq *rq)
1166 /* push_rt_task will return true if it moved an RT */
1167 while (push_rt_task(rq))
1171 static int pull_rt_task(struct rq *this_rq)
1173 int this_cpu = this_rq->cpu, ret = 0, cpu;
1174 struct task_struct *p, *next;
1177 if (likely(!rt_overloaded(this_rq)))
1180 next = pick_next_task_rt(this_rq);
1182 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1183 if (this_cpu == cpu)
1186 src_rq = cpu_rq(cpu);
1188 * We can potentially drop this_rq's lock in
1189 * double_lock_balance, and another CPU could
1190 * steal our next task - hence we must cause
1191 * the caller to recalculate the next task
1194 if (double_lock_balance(this_rq, src_rq)) {
1195 struct task_struct *old_next = next;
1197 next = pick_next_task_rt(this_rq);
1198 if (next != old_next)
1203 * Are there still pullable RT tasks?
1205 if (src_rq->rt.rt_nr_running <= 1)
1208 p = pick_next_highest_task_rt(src_rq, this_cpu);
1211 * Do we have an RT task that preempts
1212 * the to-be-scheduled task?
1214 if (p && (!next || (p->prio < next->prio))) {
1215 WARN_ON(p == src_rq->curr);
1216 WARN_ON(!p->se.on_rq);
1219 * There's a chance that p is higher in priority
1220 * than what's currently running on its cpu.
1221 * This is just that p is wakeing up and hasn't
1222 * had a chance to schedule. We only pull
1223 * p if it is lower in priority than the
1224 * current task on the run queue or
1225 * this_rq next task is lower in prio than
1226 * the current task on that rq.
1228 if (p->prio < src_rq->curr->prio ||
1229 (next && next->prio < src_rq->curr->prio))
1234 deactivate_task(src_rq, p, 0);
1235 set_task_cpu(p, this_cpu);
1236 activate_task(this_rq, p, 0);
1238 * We continue with the search, just in
1239 * case there's an even higher prio task
1240 * in another runqueue. (low likelyhood
1243 * Update next so that we won't pick a task
1244 * on another cpu with a priority lower (or equal)
1245 * than the one we just picked.
1251 double_unlock_balance(this_rq, src_rq);
1257 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1259 /* Try to pull RT tasks here if we lower this rq's prio */
1260 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1264 static void post_schedule_rt(struct rq *rq)
1267 * If we have more than one rt_task queued, then
1268 * see if we can push the other rt_tasks off to other CPUS.
1269 * Note we may release the rq lock, and since
1270 * the lock was owned by prev, we need to release it
1271 * first via finish_lock_switch and then reaquire it here.
1273 if (unlikely(rq->rt.overloaded)) {
1274 spin_lock_irq(&rq->lock);
1276 spin_unlock_irq(&rq->lock);
1281 * If we are not running and we are not going to reschedule soon, we should
1282 * try to push tasks away now
1284 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1286 if (!task_running(rq, p) &&
1287 !test_tsk_need_resched(rq->curr) &&
1292 static unsigned long
1293 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1294 unsigned long max_load_move,
1295 struct sched_domain *sd, enum cpu_idle_type idle,
1296 int *all_pinned, int *this_best_prio)
1298 /* don't touch RT tasks */
1303 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1304 struct sched_domain *sd, enum cpu_idle_type idle)
1306 /* don't touch RT tasks */
1310 static void set_cpus_allowed_rt(struct task_struct *p,
1311 const cpumask_t *new_mask)
1313 int weight = cpus_weight(*new_mask);
1315 BUG_ON(!rt_task(p));
1318 * Update the migration status of the RQ if we have an RT task
1319 * which is running AND changing its weight value.
1321 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1322 struct rq *rq = task_rq(p);
1324 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1325 rq->rt.rt_nr_migratory++;
1326 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1327 BUG_ON(!rq->rt.rt_nr_migratory);
1328 rq->rt.rt_nr_migratory--;
1331 update_rt_migration(rq);
1334 p->cpus_allowed = *new_mask;
1335 p->rt.nr_cpus_allowed = weight;
1338 /* Assumes rq->lock is held */
1339 static void rq_online_rt(struct rq *rq)
1341 if (rq->rt.overloaded)
1342 rt_set_overload(rq);
1344 __enable_runtime(rq);
1346 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1349 /* Assumes rq->lock is held */
1350 static void rq_offline_rt(struct rq *rq)
1352 if (rq->rt.overloaded)
1353 rt_clear_overload(rq);
1355 __disable_runtime(rq);
1357 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1361 * When switch from the rt queue, we bring ourselves to a position
1362 * that we might want to pull RT tasks from other runqueues.
1364 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1368 * If there are other RT tasks then we will reschedule
1369 * and the scheduling of the other RT tasks will handle
1370 * the balancing. But if we are the last RT task
1371 * we may need to handle the pulling of RT tasks
1374 if (!rq->rt.rt_nr_running)
1377 #endif /* CONFIG_SMP */
1380 * When switching a task to RT, we may overload the runqueue
1381 * with RT tasks. In this case we try to push them off to
1384 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1387 int check_resched = 1;
1390 * If we are already running, then there's nothing
1391 * that needs to be done. But if we are not running
1392 * we may need to preempt the current running task.
1393 * If that current running task is also an RT task
1394 * then see if we can move to another run queue.
1398 if (rq->rt.overloaded && push_rt_task(rq) &&
1399 /* Don't resched if we changed runqueues */
1402 #endif /* CONFIG_SMP */
1403 if (check_resched && p->prio < rq->curr->prio)
1404 resched_task(rq->curr);
1409 * Priority of the task has changed. This may cause
1410 * us to initiate a push or pull.
1412 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1413 int oldprio, int running)
1418 * If our priority decreases while running, we
1419 * may need to pull tasks to this runqueue.
1421 if (oldprio < p->prio)
1424 * If there's a higher priority task waiting to run
1425 * then reschedule. Note, the above pull_rt_task
1426 * can release the rq lock and p could migrate.
1427 * Only reschedule if p is still on the same runqueue.
1429 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1432 /* For UP simply resched on drop of prio */
1433 if (oldprio < p->prio)
1435 #endif /* CONFIG_SMP */
1438 * This task is not running, but if it is
1439 * greater than the current running task
1442 if (p->prio < rq->curr->prio)
1443 resched_task(rq->curr);
1447 static void watchdog(struct rq *rq, struct task_struct *p)
1449 unsigned long soft, hard;
1454 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1455 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1457 if (soft != RLIM_INFINITY) {
1461 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1462 if (p->rt.timeout > next)
1463 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1467 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1474 * RR tasks need a special form of timeslice management.
1475 * FIFO tasks have no timeslices.
1477 if (p->policy != SCHED_RR)
1480 if (--p->rt.time_slice)
1483 p->rt.time_slice = DEF_TIMESLICE;
1486 * Requeue to the end of queue if we are not the only element
1489 if (p->rt.run_list.prev != p->rt.run_list.next) {
1490 requeue_task_rt(rq, p, 0);
1491 set_tsk_need_resched(p);
1495 static void set_curr_task_rt(struct rq *rq)
1497 struct task_struct *p = rq->curr;
1499 p->se.exec_start = rq->clock;
1502 static const struct sched_class rt_sched_class = {
1503 .next = &fair_sched_class,
1504 .enqueue_task = enqueue_task_rt,
1505 .dequeue_task = dequeue_task_rt,
1506 .yield_task = yield_task_rt,
1508 .select_task_rq = select_task_rq_rt,
1509 #endif /* CONFIG_SMP */
1511 .check_preempt_curr = check_preempt_curr_rt,
1513 .pick_next_task = pick_next_task_rt,
1514 .put_prev_task = put_prev_task_rt,
1517 .load_balance = load_balance_rt,
1518 .move_one_task = move_one_task_rt,
1519 .set_cpus_allowed = set_cpus_allowed_rt,
1520 .rq_online = rq_online_rt,
1521 .rq_offline = rq_offline_rt,
1522 .pre_schedule = pre_schedule_rt,
1523 .post_schedule = post_schedule_rt,
1524 .task_wake_up = task_wake_up_rt,
1525 .switched_from = switched_from_rt,
1528 .set_curr_task = set_curr_task_rt,
1529 .task_tick = task_tick_rt,
1531 .prio_changed = prio_changed_rt,
1532 .switched_to = switched_to_rt,
1535 #ifdef CONFIG_SCHED_DEBUG
1536 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1538 static void print_rt_stats(struct seq_file *m, int cpu)
1540 struct rt_rq *rt_rq;
1543 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1544 print_rt_rq(m, cpu, rt_rq);
1547 #endif /* CONFIG_SCHED_DEBUG */