2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
13 #include <linux/config.h>
15 #include <linux/acpi.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/spinlock.h>
25 #include <asm/machvec.h>
27 #include <asm/system.h>
32 #include <asm/hw_irq.h>
36 * Low-level SAL-based PCI configuration access functions. Note that SAL
37 * calls are already serialized (via sal_lock), so we don't need another
38 * synchronization mechanism here.
41 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
42 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
44 /* SAL 3.2 adds support for extended config space. */
46 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
47 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
50 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
51 int reg, int len, u32 *value)
56 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
59 if ((seg | reg) <= 255) {
60 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
63 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
75 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
76 int reg, int len, u32 value)
81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
84 if ((seg | reg) <= 255) {
85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
91 result = ia64_sal_pci_config_write(addr, mode, len, value);
97 static struct pci_raw_ops pci_sal_ops = {
99 .write = pci_sal_write
102 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
105 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
107 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
108 devfn, where, size, value);
112 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
114 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
115 devfn, where, size, value);
118 struct pci_ops pci_root_ops = {
123 /* Called by ACPI when it finds a new root bus. */
125 static struct pci_controller * __devinit
126 alloc_pci_controller (int seg)
128 struct pci_controller *controller;
130 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
134 memset(controller, 0, sizeof(*controller));
135 controller->segment = seg;
136 controller->node = -1;
141 add_io_space (struct acpi_resource_address64 *addr)
147 if (addr->address_translation_offset == 0)
148 return IO_SPACE_BASE(0); /* part of legacy IO space */
150 if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
153 offset = (u64) ioremap(addr->address_translation_offset, 0);
154 for (i = 0; i < num_io_spaces; i++)
155 if (io_space[i].mmio_base == offset &&
156 io_space[i].sparse == sparse)
157 return IO_SPACE_BASE(i);
159 if (num_io_spaces == MAX_IO_SPACES) {
160 printk("Too many IO port spaces\n");
165 io_space[i].mmio_base = offset;
166 io_space[i].sparse = sparse;
168 return IO_SPACE_BASE(i);
171 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
172 struct acpi_resource_address64 *addr)
177 * We're only interested in _CRS descriptors that are
178 * - address space descriptors for memory or I/O space
180 * - producers, i.e., the address space is routed downstream,
181 * not consumed by the bridge itself
183 status = acpi_resource_to_address64(resource, addr);
184 if (ACPI_SUCCESS(status) &&
185 (addr->resource_type == ACPI_MEMORY_RANGE ||
186 addr->resource_type == ACPI_IO_RANGE) &&
187 addr->address_length &&
188 addr->producer_consumer == ACPI_PRODUCER)
194 static acpi_status __devinit
195 count_window (struct acpi_resource *resource, void *data)
197 unsigned int *windows = (unsigned int *) data;
198 struct acpi_resource_address64 addr;
201 status = resource_to_window(resource, &addr);
202 if (ACPI_SUCCESS(status))
208 struct pci_root_info {
209 struct pci_controller *controller;
213 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
215 struct pci_root_info *info = data;
216 struct pci_window *window;
217 struct acpi_resource_address64 addr;
219 unsigned long flags, offset = 0;
220 struct resource *root;
222 /* Return AE_OK for non-window resources to keep scanning for more */
223 status = resource_to_window(res, &addr);
224 if (!ACPI_SUCCESS(status))
227 if (addr.resource_type == ACPI_MEMORY_RANGE) {
228 flags = IORESOURCE_MEM;
229 root = &iomem_resource;
230 offset = addr.address_translation_offset;
231 } else if (addr.resource_type == ACPI_IO_RANGE) {
232 flags = IORESOURCE_IO;
233 root = &ioport_resource;
234 offset = add_io_space(&addr);
240 window = &info->controller->window[info->controller->windows++];
241 window->resource.name = info->name;
242 window->resource.flags = flags;
243 window->resource.start = addr.min_address_range + offset;
244 window->resource.end = addr.max_address_range + offset;
245 window->resource.child = NULL;
246 window->offset = offset;
248 if (insert_resource(root, &window->resource)) {
249 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
250 window->resource.start, window->resource.end,
251 root->name, info->name);
257 static void __devinit
258 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
263 for (i = 0; i < ctrl->windows; i++) {
264 struct resource *res = &ctrl->window[i].resource;
265 /* HP's firmware has a hack to work around a Windows bug.
266 * Ignore these tiny memory ranges */
267 if ((res->flags & IORESOURCE_MEM) &&
268 (res->end - res->start < 16))
270 if (j >= PCI_BUS_NUM_RESOURCES) {
271 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
272 res->end, res->flags);
275 bus->resource[j++] = res;
279 struct pci_bus * __devinit
280 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
282 struct pci_root_info info;
283 struct pci_controller *controller;
284 unsigned int windows = 0;
285 struct pci_bus *pbus;
289 controller = alloc_pci_controller(domain);
293 controller->acpi_handle = device->handle;
295 pxm = acpi_get_pxm(controller->acpi_handle);
298 controller->node = pxm_to_nid_map[pxm];
301 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
303 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
304 GFP_KERNEL, controller->node);
305 if (!controller->window)
308 name = kmalloc(16, GFP_KERNEL);
312 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
313 info.controller = controller;
315 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
318 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
320 pcibios_setup_root_windows(pbus, controller);
325 kfree(controller->window);
332 void pcibios_resource_to_bus(struct pci_dev *dev,
333 struct pci_bus_region *region, struct resource *res)
335 struct pci_controller *controller = PCI_CONTROLLER(dev);
336 unsigned long offset = 0;
339 for (i = 0; i < controller->windows; i++) {
340 struct pci_window *window = &controller->window[i];
341 if (!(window->resource.flags & res->flags))
343 if (window->resource.start > res->start)
345 if (window->resource.end < res->end)
347 offset = window->offset;
351 region->start = res->start - offset;
352 region->end = res->end - offset;
354 EXPORT_SYMBOL(pcibios_resource_to_bus);
356 void pcibios_bus_to_resource(struct pci_dev *dev,
357 struct resource *res, struct pci_bus_region *region)
359 struct pci_controller *controller = PCI_CONTROLLER(dev);
360 unsigned long offset = 0;
363 for (i = 0; i < controller->windows; i++) {
364 struct pci_window *window = &controller->window[i];
365 if (!(window->resource.flags & res->flags))
367 if (window->resource.start - window->offset > region->start)
369 if (window->resource.end - window->offset < region->end)
371 offset = window->offset;
375 res->start = region->start + offset;
376 res->end = region->end + offset;
378 EXPORT_SYMBOL(pcibios_bus_to_resource);
380 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
382 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
383 struct resource *devr = &dev->resource[idx];
387 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
388 struct resource *busr = dev->bus->resource[i];
390 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
392 if ((devr->start) && (devr->start >= busr->start) &&
393 (devr->end <= busr->end))
399 static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
401 struct pci_bus_region region;
403 int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
404 PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
406 for (i = 0; i < limit; i++) {
407 if (!dev->resource[i].flags)
409 region.start = dev->resource[i].start;
410 region.end = dev->resource[i].end;
411 pcibios_bus_to_resource(dev, &dev->resource[i], ®ion);
412 if ((is_valid_resource(dev, i)))
413 pci_claim_resource(dev, i);
418 * Called after each bus is probed, but before its children are examined.
421 pcibios_fixup_bus (struct pci_bus *b)
426 pci_read_bridge_bases(b);
427 pcibios_fixup_device_resources(b->self);
429 list_for_each_entry(dev, &b->devices, bus_list)
430 pcibios_fixup_device_resources(dev);
436 pcibios_update_irq (struct pci_dev *dev, int irq)
438 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
440 /* ??? FIXME -- record old value for shutdown. */
444 pcibios_enable_resources (struct pci_dev *dev, int mask)
449 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
454 pci_read_config_word(dev, PCI_COMMAND, &cmd);
456 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
457 /* Only set up the desired resources. */
458 if (!(mask & (1 << idx)))
461 r = &dev->resource[idx];
462 if (!(r->flags & type_mask))
464 if ((idx == PCI_ROM_RESOURCE) &&
465 (!(r->flags & IORESOURCE_ROM_ENABLE)))
467 if (!r->start && r->end) {
469 "PCI: Device %s not available because of resource collisions\n",
473 if (r->flags & IORESOURCE_IO)
474 cmd |= PCI_COMMAND_IO;
475 if (r->flags & IORESOURCE_MEM)
476 cmd |= PCI_COMMAND_MEMORY;
478 if (cmd != old_cmd) {
479 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
480 pci_write_config_word(dev, PCI_COMMAND, cmd);
486 pcibios_enable_device (struct pci_dev *dev, int mask)
490 ret = pcibios_enable_resources(dev, mask);
494 return acpi_pci_irq_enable(dev);
498 pcibios_disable_device (struct pci_dev *dev)
500 acpi_pci_irq_disable(dev);
504 pcibios_align_resource (void *data, struct resource *res,
505 unsigned long size, unsigned long align)
510 * PCI BIOS setup, always defaults to SAL interface
513 pcibios_setup (char *str)
519 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
520 enum pci_mmap_state mmap_state, int write_combine)
523 * I/O space cannot be accessed via normal processor loads and
524 * stores on this platform.
526 if (mmap_state == pci_mmap_io)
528 * XXX we could relax this for I/O spaces for which ACPI
529 * indicates that the space is 1-to-1 mapped. But at the
530 * moment, we don't support multiple PCI address spaces and
531 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
536 * Leave vm_pgoff as-is, the PCI space address is the physical
537 * address on this platform.
539 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
541 if (write_combine && efi_range_is_wc(vma->vm_start,
542 vma->vm_end - vma->vm_start))
543 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
545 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
547 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
548 vma->vm_end - vma->vm_start, vma->vm_page_prot))
555 * ia64_pci_get_legacy_mem - generic legacy mem routine
556 * @bus: bus to get legacy memory base address for
558 * Find the base of legacy memory for @bus. This is typically the first
559 * megabyte of bus address space for @bus or is simply 0 on platforms whose
560 * chipsets support legacy I/O and memory routing. Returns the base address
561 * or an error pointer if an error occurred.
563 * This is the ia64 generic version of this routine. Other platforms
564 * are free to override it with a machine vector.
566 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
568 return (char *)__IA64_UNCACHED_OFFSET;
572 * pci_mmap_legacy_page_range - map legacy memory space to userland
573 * @bus: bus whose legacy space we're mapping
574 * @vma: vma passed in by mmap
576 * Map legacy memory space for this device back to userspace using a machine
577 * vector to get the base address.
580 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
584 addr = pci_get_legacy_mem(bus);
586 return PTR_ERR(addr);
588 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
589 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
590 vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
592 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
593 vma->vm_end - vma->vm_start, vma->vm_page_prot))
600 * ia64_pci_legacy_read - read from legacy I/O space
602 * @port: legacy port value
603 * @val: caller allocated storage for returned value
604 * @size: number of bytes to read
606 * Simply reads @size bytes from @port and puts the result in @val.
608 * Again, this (and the write routine) are generic versions that can be
609 * overridden by the platform. This is necessary on platforms that don't
610 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
612 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
635 * ia64_pci_legacy_write - perform a legacy I/O write
637 * @port: port to write
638 * @val: value to write
639 * @size: number of bytes to write from @val
641 * Simply writes @size bytes of @val to @port.
643 int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
666 * pci_cacheline_size - determine cacheline size for PCI devices
669 * We want to use the line-size of the outer-most cache. We assume
670 * that this line-size is the same for all CPUs.
672 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
674 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
677 pci_cacheline_size (void)
679 u64 levels, unique_caches;
681 pal_cache_config_info_t cci;
682 static u8 cacheline_size;
685 return cacheline_size;
687 status = ia64_pal_cache_summary(&levels, &unique_caches);
689 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
690 __FUNCTION__, status);
691 return SMP_CACHE_BYTES;
694 status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
697 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
698 __FUNCTION__, status);
699 return SMP_CACHE_BYTES;
701 cacheline_size = 1 << cci.pcci_line_size;
702 return cacheline_size;
706 * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
707 * @dev: the PCI device for which MWI is enabled
709 * For ia64, we can get the cacheline sizes from PAL.
711 * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
714 pcibios_prep_mwi (struct pci_dev *dev)
716 unsigned long desired_linesize, current_linesize;
720 desired_linesize = pci_cacheline_size();
722 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
723 current_linesize = 4 * pci_linesize;
724 if (desired_linesize != current_linesize) {
725 printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
726 pci_name(dev), current_linesize);
727 if (current_linesize > desired_linesize) {
728 printk(" expected %lu bytes instead\n", desired_linesize);
731 printk(" correcting to %lu\n", desired_linesize);
732 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
738 int pci_vector_resources(int last, int nr_released)
740 int count = nr_released;
742 count += (IA64_LAST_DEVICE_VECTOR - last);