Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[linux-2.6] / arch / ppc / platforms / pmac_smp.c
1 /*
2  * SMP support for power macintosh.
3  *
4  * We support both the old "powersurge" SMP architecture
5  * and the current Core99 (G4 PowerMac) machines.
6  *
7  * Note that we don't support the very first rev. of
8  * Apple/DayStar 2 CPUs board, the one with the funky
9  * watchdog. Hopefully, none of these should be there except
10  * maybe internally to Apple. I should probably still add some
11  * code to detect this card though and disable SMP. --BenH.
12  *
13  * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14  * and Ben Herrenschmidt <benh@kernel.crashing.org>.
15  *
16  * Support for DayStar quad CPU cards
17  * Copyright (C) XLR8, Inc. 1994-2000
18  *
19  *  This program is free software; you can redistribute it and/or
20  *  modify it under the terms of the GNU General Public License
21  *  as published by the Free Software Foundation; either version
22  *  2 of the License, or (at your option) any later version.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/hardirq.h>
36 #include <linux/cpu.h>
37
38 #include <asm/ptrace.h>
39 #include <asm/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/sections.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/residual.h>
48 #include <asm/machdep.h>
49 #include <asm/pmac_feature.h>
50 #include <asm/time.h>
51 #include <asm/open_pic.h>
52 #include <asm/cacheflush.h>
53 #include <asm/keylargo.h>
54
55 /*
56  * Powersurge (old powermac SMP) support.
57  */
58
59 extern void __secondary_start_pmac_0(void);
60
61 /* Addresses for powersurge registers */
62 #define HAMMERHEAD_BASE         0xf8000000
63 #define HHEAD_CONFIG            0x90
64 #define HHEAD_SEC_INTR          0xc0
65
66 /* register for interrupting the primary processor on the powersurge */
67 /* N.B. this is actually the ethernet ROM! */
68 #define PSURGE_PRI_INTR         0xf3019000
69
70 /* register for storing the start address for the secondary processor */
71 /* N.B. this is the PCI config space address register for the 1st bridge */
72 #define PSURGE_START            0xf2800000
73
74 /* Daystar/XLR8 4-CPU card */
75 #define PSURGE_QUAD_REG_ADDR    0xf8800000
76
77 #define PSURGE_QUAD_IRQ_SET     0
78 #define PSURGE_QUAD_IRQ_CLR     1
79 #define PSURGE_QUAD_IRQ_PRIMARY 2
80 #define PSURGE_QUAD_CKSTOP_CTL  3
81 #define PSURGE_QUAD_PRIMARY_ARB 4
82 #define PSURGE_QUAD_BOARD_ID    6
83 #define PSURGE_QUAD_WHICH_CPU   7
84 #define PSURGE_QUAD_CKSTOP_RDBK 8
85 #define PSURGE_QUAD_RESET_CTL   11
86
87 #define PSURGE_QUAD_OUT(r, v)   (out_8(quad_base + ((r) << 4) + 4, (v)))
88 #define PSURGE_QUAD_IN(r)       (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
89 #define PSURGE_QUAD_BIS(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
90 #define PSURGE_QUAD_BIC(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
91
92 /* virtual addresses for the above */
93 static volatile u8 __iomem *hhead_base;
94 static volatile u8 __iomem *quad_base;
95 static volatile u32 __iomem *psurge_pri_intr;
96 static volatile u8 __iomem *psurge_sec_intr;
97 static volatile u32 __iomem *psurge_start;
98
99 /* values for psurge_type */
100 #define PSURGE_NONE             -1
101 #define PSURGE_DUAL             0
102 #define PSURGE_QUAD_OKEE        1
103 #define PSURGE_QUAD_COTTON      2
104 #define PSURGE_QUAD_ICEGRASS    3
105
106 /* what sort of powersurge board we have */
107 static int psurge_type = PSURGE_NONE;
108
109 /* L2 and L3 cache settings to pass from CPU0 to CPU1 */
110 volatile static long int core99_l2_cache;
111 volatile static long int core99_l3_cache;
112
113 /* Timebase freeze GPIO */
114 static unsigned int core99_tb_gpio;
115
116 /* Sync flag for HW tb sync */
117 static volatile int sec_tb_reset = 0;
118 static unsigned int pri_tb_hi, pri_tb_lo;
119 static unsigned int pri_tb_stamp;
120
121 static void __devinit core99_init_caches(int cpu)
122 {
123         if (!cpu_has_feature(CPU_FTR_L2CR))
124                 return;
125
126         if (cpu == 0) {
127                 core99_l2_cache = _get_L2CR();
128                 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
129         } else {
130                 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
131                 _set_L2CR(0);
132                 _set_L2CR(core99_l2_cache);
133                 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
134         }
135
136         if (!cpu_has_feature(CPU_FTR_L3CR))
137                 return;
138
139         if (cpu == 0){
140                 core99_l3_cache = _get_L3CR();
141                 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
142         } else {
143                 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
144                 _set_L3CR(0);
145                 _set_L3CR(core99_l3_cache);
146                 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
147         }
148 }
149
150 /*
151  * Set and clear IPIs for powersurge.
152  */
153 static inline void psurge_set_ipi(int cpu)
154 {
155         if (psurge_type == PSURGE_NONE)
156                 return;
157         if (cpu == 0)
158                 in_be32(psurge_pri_intr);
159         else if (psurge_type == PSURGE_DUAL)
160                 out_8(psurge_sec_intr, 0);
161         else
162                 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
163 }
164
165 static inline void psurge_clr_ipi(int cpu)
166 {
167         if (cpu > 0) {
168                 switch(psurge_type) {
169                 case PSURGE_DUAL:
170                         out_8(psurge_sec_intr, ~0);
171                 case PSURGE_NONE:
172                         break;
173                 default:
174                         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
175                 }
176         }
177 }
178
179 /*
180  * On powersurge (old SMP powermac architecture) we don't have
181  * separate IPIs for separate messages like openpic does.  Instead
182  * we have a bitmap for each processor, where a 1 bit means that
183  * the corresponding message is pending for that processor.
184  * Ideally each cpu's entry would be in a different cache line.
185  *  -- paulus.
186  */
187 static unsigned long psurge_smp_message[NR_CPUS];
188
189 void psurge_smp_message_recv(struct pt_regs *regs)
190 {
191         int cpu = smp_processor_id();
192         int msg;
193
194         /* clear interrupt */
195         psurge_clr_ipi(cpu);
196
197         if (num_online_cpus() < 2)
198                 return;
199
200         /* make sure there is a message there */
201         for (msg = 0; msg < 4; msg++)
202                 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
203                         smp_message_recv(msg, regs);
204 }
205
206 irqreturn_t psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
207 {
208         psurge_smp_message_recv(regs);
209         return IRQ_HANDLED;
210 }
211
212 static void smp_psurge_message_pass(int target, int msg)
213 {
214         int i;
215
216         if (num_online_cpus() < 2)
217                 return;
218
219         for (i = 0; i < NR_CPUS; i++) {
220                 if (!cpu_online(i))
221                         continue;
222                 if (target == MSG_ALL
223                     || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
224                     || target == i) {
225                         set_bit(msg, &psurge_smp_message[i]);
226                         psurge_set_ipi(i);
227                 }
228         }
229 }
230
231 /*
232  * Determine a quad card presence. We read the board ID register, we
233  * force the data bus to change to something else, and we read it again.
234  * It it's stable, then the register probably exist (ugh !)
235  */
236 static int __init psurge_quad_probe(void)
237 {
238         int type;
239         unsigned int i;
240
241         type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
242         if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
243             || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
244                 return PSURGE_DUAL;
245
246         /* looks OK, try a slightly more rigorous test */
247         /* bogus is not necessarily cacheline-aligned,
248            though I don't suppose that really matters.  -- paulus */
249         for (i = 0; i < 100; i++) {
250                 volatile u32 bogus[8];
251                 bogus[(0+i)%8] = 0x00000000;
252                 bogus[(1+i)%8] = 0x55555555;
253                 bogus[(2+i)%8] = 0xFFFFFFFF;
254                 bogus[(3+i)%8] = 0xAAAAAAAA;
255                 bogus[(4+i)%8] = 0x33333333;
256                 bogus[(5+i)%8] = 0xCCCCCCCC;
257                 bogus[(6+i)%8] = 0xCCCCCCCC;
258                 bogus[(7+i)%8] = 0x33333333;
259                 wmb();
260                 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
261                 mb();
262                 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
263                         return PSURGE_DUAL;
264         }
265         return type;
266 }
267
268 static void __init psurge_quad_init(void)
269 {
270         int procbits;
271
272         if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
273         procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
274         if (psurge_type == PSURGE_QUAD_ICEGRASS)
275                 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
276         else
277                 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
278         mdelay(33);
279         out_8(psurge_sec_intr, ~0);
280         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
281         PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
282         if (psurge_type != PSURGE_QUAD_ICEGRASS)
283                 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
284         PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
285         mdelay(33);
286         PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
287         mdelay(33);
288         PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
289         mdelay(33);
290 }
291
292 static int __init smp_psurge_probe(void)
293 {
294         int i, ncpus;
295
296         /* We don't do SMP on the PPC601 -- paulus */
297         if (PVR_VER(mfspr(SPRN_PVR)) == 1)
298                 return 1;
299
300         /*
301          * The powersurge cpu board can be used in the generation
302          * of powermacs that have a socket for an upgradeable cpu card,
303          * including the 7500, 8500, 9500, 9600.
304          * The device tree doesn't tell you if you have 2 cpus because
305          * OF doesn't know anything about the 2nd processor.
306          * Instead we look for magic bits in magic registers,
307          * in the hammerhead memory controller in the case of the
308          * dual-cpu powersurge board.  -- paulus.
309          */
310         if (find_devices("hammerhead") == NULL)
311                 return 1;
312
313         hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
314         quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
315         psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
316
317         psurge_type = psurge_quad_probe();
318         if (psurge_type != PSURGE_DUAL) {
319                 psurge_quad_init();
320                 /* All released cards using this HW design have 4 CPUs */
321                 ncpus = 4;
322         } else {
323                 iounmap(quad_base);
324                 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
325                         /* not a dual-cpu card */
326                         iounmap(hhead_base);
327                         psurge_type = PSURGE_NONE;
328                         return 1;
329                 }
330                 ncpus = 2;
331         }
332
333         psurge_start = ioremap(PSURGE_START, 4);
334         psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
335
336         /* this is not actually strictly necessary -- paulus. */
337         for (i = 1; i < ncpus; ++i)
338                 smp_hw_index[i] = i;
339
340         if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
341
342         return ncpus;
343 }
344
345 static void __init smp_psurge_kick_cpu(int nr)
346 {
347         unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
348         unsigned long a;
349
350         /* may need to flush here if secondary bats aren't setup */
351         for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
352                 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
353         asm volatile("sync");
354
355         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
356
357         out_be32(psurge_start, start);
358         mb();
359
360         psurge_set_ipi(nr);
361         udelay(10);
362         psurge_clr_ipi(nr);
363
364         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
365 }
366
367 /*
368  * With the dual-cpu powersurge board, the decrementers and timebases
369  * of both cpus are frozen after the secondary cpu is started up,
370  * until we give the secondary cpu another interrupt.  This routine
371  * uses this to get the timebases synchronized.
372  *  -- paulus.
373  */
374 static void __init psurge_dual_sync_tb(int cpu_nr)
375 {
376         int t;
377
378         set_dec(tb_ticks_per_jiffy);
379         set_tb(0, 0);
380         last_jiffy_stamp(cpu_nr) = 0;
381
382         if (cpu_nr > 0) {
383                 mb();
384                 sec_tb_reset = 1;
385                 return;
386         }
387
388         /* wait for the secondary to have reset its TB before proceeding */
389         for (t = 10000000; t > 0 && !sec_tb_reset; --t)
390                 ;
391
392         /* now interrupt the secondary, starting both TBs */
393         psurge_set_ipi(1);
394
395         smp_tb_synchronized = 1;
396 }
397
398 static struct irqaction psurge_irqaction = {
399         .handler = psurge_primary_intr,
400         .flags = SA_INTERRUPT,
401         .mask = CPU_MASK_NONE,
402         .name = "primary IPI",
403 };
404
405 static void __init smp_psurge_setup_cpu(int cpu_nr)
406 {
407
408         if (cpu_nr == 0) {
409                 /* If we failed to start the second CPU, we should still
410                  * send it an IPI to start the timebase & DEC or we might
411                  * have them stuck.
412                  */
413                 if (num_online_cpus() < 2) {
414                         if (psurge_type == PSURGE_DUAL)
415                                 psurge_set_ipi(1);
416                         return;
417                 }
418                 /* reset the entry point so if we get another intr we won't
419                  * try to startup again */
420                 out_be32(psurge_start, 0x100);
421                 if (setup_irq(30, &psurge_irqaction))
422                         printk(KERN_ERR "Couldn't get primary IPI interrupt");
423         }
424
425         if (psurge_type == PSURGE_DUAL)
426                 psurge_dual_sync_tb(cpu_nr);
427 }
428
429 void __init smp_psurge_take_timebase(void)
430 {
431         /* Dummy implementation */
432 }
433
434 void __init smp_psurge_give_timebase(void)
435 {
436         /* Dummy implementation */
437 }
438
439 static int __init smp_core99_probe(void)
440 {
441 #ifdef CONFIG_6xx
442         extern int powersave_nap;
443 #endif
444         struct device_node *cpus, *firstcpu;
445         int i, ncpus = 0, boot_cpu = -1;
446         u32 *tbprop = NULL;
447
448         if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
449         cpus = firstcpu = find_type_devices("cpu");
450         while(cpus != NULL) {
451                 u32 *regprop = (u32 *)get_property(cpus, "reg", NULL);
452                 char *stateprop = (char *)get_property(cpus, "state", NULL);
453                 if (regprop != NULL && stateprop != NULL &&
454                     !strncmp(stateprop, "running", 7))
455                         boot_cpu = *regprop;
456                 ++ncpus;
457                 cpus = cpus->next;
458         }
459         if (boot_cpu == -1)
460                 printk(KERN_WARNING "Couldn't detect boot CPU !\n");
461         if (boot_cpu != 0)
462                 printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu);
463
464         if (machine_is_compatible("MacRISC4")) {
465                 extern struct smp_ops_t core99_smp_ops;
466
467                 core99_smp_ops.take_timebase = smp_generic_take_timebase;
468                 core99_smp_ops.give_timebase = smp_generic_give_timebase;
469         } else {
470                 if (firstcpu != NULL)
471                         tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL);
472                 if (tbprop)
473                         core99_tb_gpio = *tbprop;
474                 else
475                         core99_tb_gpio = KL_GPIO_TB_ENABLE;
476         }
477
478         if (ncpus > 1) {
479                 openpic_request_IPIs();
480                 for (i = 1; i < ncpus; ++i)
481                         smp_hw_index[i] = i;
482 #ifdef CONFIG_6xx
483                 powersave_nap = 0;
484 #endif
485                 core99_init_caches(0);
486         }
487
488         return ncpus;
489 }
490
491 static void __devinit smp_core99_kick_cpu(int nr)
492 {
493         unsigned long save_vector, new_vector;
494         unsigned long flags;
495
496         volatile unsigned long *vector
497                  = ((volatile unsigned long *)(KERNELBASE+0x100));
498         if (nr < 0 || nr > 3)
499                 return;
500         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
501
502         local_irq_save(flags);
503         local_irq_disable();
504
505         /* Save reset vector */
506         save_vector = *vector;
507
508         /* Setup fake reset vector that does    
509          *   b __secondary_start_pmac_0 + nr*8 - KERNELBASE
510          */
511         new_vector = (unsigned long) __secondary_start_pmac_0 + nr * 8;
512         *vector = 0x48000002 + new_vector - KERNELBASE;
513
514         /* flush data cache and inval instruction cache */
515         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
516
517         /* Put some life in our friend */
518         pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
519
520         /* FIXME: We wait a bit for the CPU to take the exception, I should
521          * instead wait for the entry code to set something for me. Well,
522          * ideally, all that crap will be done in prom.c and the CPU left
523          * in a RAM-based wait loop like CHRP.
524          */
525         mdelay(1);
526
527         /* Restore our exception vector */
528         *vector = save_vector;
529         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
530
531         local_irq_restore(flags);
532         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
533 }
534
535 static void __devinit smp_core99_setup_cpu(int cpu_nr)
536 {
537         /* Setup L2/L3 */
538         if (cpu_nr != 0)
539                 core99_init_caches(cpu_nr);
540
541         /* Setup openpic */
542         do_openpic_setup_cpu();
543
544         if (cpu_nr == 0) {
545 #ifdef CONFIG_POWER4
546                 extern void g5_phy_disable_cpu1(void);
547
548                 /* If we didn't start the second CPU, we must take
549                  * it off the bus
550                  */
551                 if (machine_is_compatible("MacRISC4") &&
552                     num_online_cpus() < 2)              
553                         g5_phy_disable_cpu1();
554 #endif /* CONFIG_POWER4 */
555                 if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
556         }
557 }
558
559 /* not __init, called in sleep/wakeup code */
560 void smp_core99_take_timebase(void)
561 {
562         unsigned long flags;
563
564         /* tell the primary we're here */
565         sec_tb_reset = 1;
566         mb();
567
568         /* wait for the primary to set pri_tb_hi/lo */
569         while (sec_tb_reset < 2)
570                 mb();
571
572         /* set our stuff the same as the primary */
573         local_irq_save(flags);
574         set_dec(1);
575         set_tb(pri_tb_hi, pri_tb_lo);
576         last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp;
577         mb();
578
579         /* tell the primary we're done */
580         sec_tb_reset = 0;
581         mb();
582         local_irq_restore(flags);
583 }
584
585 /* not __init, called in sleep/wakeup code */
586 void smp_core99_give_timebase(void)
587 {
588         unsigned long flags;
589         unsigned int t;
590
591         /* wait for the secondary to be in take_timebase */
592         for (t = 100000; t > 0 && !sec_tb_reset; --t)
593                 udelay(10);
594         if (!sec_tb_reset) {
595                 printk(KERN_WARNING "Timeout waiting sync on second CPU\n");
596                 return;
597         }
598
599         /* freeze the timebase and read it */
600         /* disable interrupts so the timebase is disabled for the
601            shortest possible time */
602         local_irq_save(flags);
603         pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
604         pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
605         mb();
606         pri_tb_hi = get_tbu();
607         pri_tb_lo = get_tbl();
608         pri_tb_stamp = last_jiffy_stamp(smp_processor_id());
609         mb();
610
611         /* tell the secondary we're ready */
612         sec_tb_reset = 2;
613         mb();
614
615         /* wait for the secondary to have taken it */
616         for (t = 100000; t > 0 && sec_tb_reset; --t)
617                 udelay(10);
618         if (sec_tb_reset)
619                 printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n");
620         else
621                 smp_tb_synchronized = 1;
622
623         /* Now, restart the timebase by leaving the GPIO to an open collector */
624         pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
625         pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
626         local_irq_restore(flags);
627 }
628
629
630 /* PowerSurge-style Macs */
631 struct smp_ops_t psurge_smp_ops = {
632         .message_pass   = smp_psurge_message_pass,
633         .probe          = smp_psurge_probe,
634         .kick_cpu       = smp_psurge_kick_cpu,
635         .setup_cpu      = smp_psurge_setup_cpu,
636         .give_timebase  = smp_psurge_give_timebase,
637         .take_timebase  = smp_psurge_take_timebase,
638 };
639
640 /* Core99 Macs (dual G4s) */
641 struct smp_ops_t core99_smp_ops = {
642         .message_pass   = smp_openpic_message_pass,
643         .probe          = smp_core99_probe,
644         .kick_cpu       = smp_core99_kick_cpu,
645         .setup_cpu      = smp_core99_setup_cpu,
646         .give_timebase  = smp_core99_give_timebase,
647         .take_timebase  = smp_core99_take_timebase,
648 };
649
650 #ifdef CONFIG_HOTPLUG_CPU
651
652 int __cpu_disable(void)
653 {
654         cpu_clear(smp_processor_id(), cpu_online_map);
655
656         /* XXX reset cpu affinity here */
657         openpic_set_priority(0xf);
658         asm volatile("mtdec %0" : : "r" (0x7fffffff));
659         mb();
660         udelay(20);
661         asm volatile("mtdec %0" : : "r" (0x7fffffff));
662         return 0;
663 }
664
665 extern void low_cpu_die(void) __attribute__((noreturn)); /* in pmac_sleep.S */
666 static int cpu_dead[NR_CPUS];
667
668 void cpu_die(void)
669 {
670         local_irq_disable();
671         cpu_dead[smp_processor_id()] = 1;
672         mb();
673         low_cpu_die();
674 }
675
676 void __cpu_die(unsigned int cpu)
677 {
678         int timeout;
679
680         timeout = 1000;
681         while (!cpu_dead[cpu]) {
682                 if (--timeout == 0) {
683                         printk("CPU %u refused to die!\n", cpu);
684                         break;
685                 }
686                 msleep(1);
687         }
688         cpu_callin_map[cpu] = 0;
689         cpu_dead[cpu] = 0;
690 }
691
692 #endif