2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
59 static struct kvm_stats_debugfs_item {
62 struct dentry *dentry;
63 } debugfs_entries[] = {
64 { "pf_fixed", STAT_OFFSET(pf_fixed) },
65 { "pf_guest", STAT_OFFSET(pf_guest) },
66 { "tlb_flush", STAT_OFFSET(tlb_flush) },
67 { "invlpg", STAT_OFFSET(invlpg) },
68 { "exits", STAT_OFFSET(exits) },
69 { "io_exits", STAT_OFFSET(io_exits) },
70 { "mmio_exits", STAT_OFFSET(mmio_exits) },
71 { "signal_exits", STAT_OFFSET(signal_exits) },
72 { "irq_window", STAT_OFFSET(irq_window_exits) },
73 { "halt_exits", STAT_OFFSET(halt_exits) },
74 { "request_irq", STAT_OFFSET(request_irq_exits) },
75 { "irq_exits", STAT_OFFSET(irq_exits) },
76 { "light_exits", STAT_OFFSET(light_exits) },
77 { "efer_reload", STAT_OFFSET(efer_reload) },
81 static struct dentry *debugfs_dir;
83 #define MAX_IO_MSRS 256
85 #define CR0_RESERVED_BITS \
86 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define LMSW_GUEST_MASK 0x0eULL
90 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
91 #define CR8_RESEVED_BITS (~0x0fULL)
92 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
95 // LDT or TSS descriptor in the GDT. 16 bytes.
96 struct segment_descriptor_64 {
97 struct segment_descriptor s;
104 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long segment_base(u16 selector)
109 struct descriptor_table gdt;
110 struct segment_descriptor *d;
111 unsigned long table_base;
112 typedef unsigned long ul;
118 asm ("sgdt %0" : "=m"(gdt));
119 table_base = gdt.base;
121 if (selector & 4) { /* from ldt */
124 asm ("sldt %0" : "=g"(ldt_selector));
125 table_base = segment_base(ldt_selector);
127 d = (struct segment_descriptor *)(table_base + (selector & ~7));
128 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
131 && (d->type == 2 || d->type == 9 || d->type == 11))
132 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
136 EXPORT_SYMBOL_GPL(segment_base);
138 static inline int valid_vcpu(int n)
140 return likely(n >= 0 && n < KVM_MAX_VCPUS);
143 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
146 unsigned char *host_buf = dest;
147 unsigned long req_size = size;
155 paddr = gva_to_hpa(vcpu, addr);
157 if (is_error_hpa(paddr))
160 guest_buf = (hva_t)kmap_atomic(
161 pfn_to_page(paddr >> PAGE_SHIFT),
163 offset = addr & ~PAGE_MASK;
165 now = min(size, PAGE_SIZE - offset);
166 memcpy(host_buf, (void*)guest_buf, now);
170 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
172 return req_size - size;
174 EXPORT_SYMBOL_GPL(kvm_read_guest);
176 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
179 unsigned char *host_buf = data;
180 unsigned long req_size = size;
189 paddr = gva_to_hpa(vcpu, addr);
191 if (is_error_hpa(paddr))
194 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
195 mark_page_dirty(vcpu->kvm, gfn);
196 guest_buf = (hva_t)kmap_atomic(
197 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
198 offset = addr & ~PAGE_MASK;
200 now = min(size, PAGE_SIZE - offset);
201 memcpy((void*)guest_buf, host_buf, now);
205 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
207 return req_size - size;
209 EXPORT_SYMBOL_GPL(kvm_write_guest);
211 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
213 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
216 vcpu->guest_fpu_loaded = 1;
217 fx_save(vcpu->host_fx_image);
218 fx_restore(vcpu->guest_fx_image);
220 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
222 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
224 if (!vcpu->guest_fpu_loaded)
227 vcpu->guest_fpu_loaded = 0;
228 fx_save(vcpu->guest_fx_image);
229 fx_restore(vcpu->host_fx_image);
231 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
234 * Switches to specified vcpu, until a matching vcpu_put()
236 static void vcpu_load(struct kvm_vcpu *vcpu)
238 mutex_lock(&vcpu->mutex);
239 kvm_arch_ops->vcpu_load(vcpu);
242 static void vcpu_put(struct kvm_vcpu *vcpu)
244 kvm_arch_ops->vcpu_put(vcpu);
245 mutex_unlock(&vcpu->mutex);
248 static void ack_flush(void *_completed)
250 atomic_t *completed = _completed;
252 atomic_inc(completed);
255 void kvm_flush_remote_tlbs(struct kvm *kvm)
259 struct kvm_vcpu *vcpu;
262 atomic_set(&completed, 0);
265 for (i = 0; i < kvm->nvcpus; ++i) {
266 vcpu = &kvm->vcpus[i];
267 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
270 if (cpu != -1 && cpu != raw_smp_processor_id())
271 if (!cpu_isset(cpu, cpus)) {
278 * We really want smp_call_function_mask() here. But that's not
279 * available, so ipi all cpus in parallel and wait for them
282 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
283 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
284 while (atomic_read(&completed) != needed) {
290 static struct kvm *kvm_create_vm(void)
292 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
296 return ERR_PTR(-ENOMEM);
298 kvm_io_bus_init(&kvm->pio_bus);
299 spin_lock_init(&kvm->lock);
300 INIT_LIST_HEAD(&kvm->active_mmu_pages);
301 kvm_io_bus_init(&kvm->mmio_bus);
302 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
303 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
305 mutex_init(&vcpu->mutex);
308 vcpu->mmu.root_hpa = INVALID_PAGE;
310 spin_lock(&kvm_lock);
311 list_add(&kvm->vm_list, &vm_list);
312 spin_unlock(&kvm_lock);
316 static int kvm_dev_open(struct inode *inode, struct file *filp)
322 * Free any memory in @free but not in @dont.
324 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
325 struct kvm_memory_slot *dont)
329 if (!dont || free->phys_mem != dont->phys_mem)
330 if (free->phys_mem) {
331 for (i = 0; i < free->npages; ++i)
332 if (free->phys_mem[i])
333 __free_page(free->phys_mem[i]);
334 vfree(free->phys_mem);
337 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
338 vfree(free->dirty_bitmap);
340 free->phys_mem = NULL;
342 free->dirty_bitmap = NULL;
345 static void kvm_free_physmem(struct kvm *kvm)
349 for (i = 0; i < kvm->nmemslots; ++i)
350 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
353 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
357 for (i = 0; i < 2; ++i)
358 if (vcpu->pio.guest_pages[i]) {
359 __free_page(vcpu->pio.guest_pages[i]);
360 vcpu->pio.guest_pages[i] = NULL;
364 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
370 kvm_mmu_unload(vcpu);
374 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
380 kvm_mmu_destroy(vcpu);
382 kvm_arch_ops->vcpu_free(vcpu);
383 free_page((unsigned long)vcpu->run);
385 free_page((unsigned long)vcpu->pio_data);
386 vcpu->pio_data = NULL;
387 free_pio_guest_pages(vcpu);
390 static void kvm_free_vcpus(struct kvm *kvm)
395 * Unpin any mmu pages first.
397 for (i = 0; i < KVM_MAX_VCPUS; ++i)
398 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
399 for (i = 0; i < KVM_MAX_VCPUS; ++i)
400 kvm_free_vcpu(&kvm->vcpus[i]);
403 static int kvm_dev_release(struct inode *inode, struct file *filp)
408 static void kvm_destroy_vm(struct kvm *kvm)
410 spin_lock(&kvm_lock);
411 list_del(&kvm->vm_list);
412 spin_unlock(&kvm_lock);
413 kvm_io_bus_destroy(&kvm->pio_bus);
414 kvm_io_bus_destroy(&kvm->mmio_bus);
416 kvm_free_physmem(kvm);
420 static int kvm_vm_release(struct inode *inode, struct file *filp)
422 struct kvm *kvm = filp->private_data;
428 static void inject_gp(struct kvm_vcpu *vcpu)
430 kvm_arch_ops->inject_gp(vcpu, 0);
434 * Load the pae pdptrs. Return true is they are all valid.
436 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
446 spin_lock(&vcpu->kvm->lock);
447 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
448 /* FIXME: !page - emulate? 0xff? */
449 pdpt = kmap_atomic(page, KM_USER0);
452 for (i = 0; i < 4; ++i) {
453 pdpte = pdpt[offset + i];
454 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
460 for (i = 0; i < 4; ++i)
461 vcpu->pdptrs[i] = pdpt[offset + i];
464 kunmap_atomic(pdpt, KM_USER0);
465 spin_unlock(&vcpu->kvm->lock);
470 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
472 if (cr0 & CR0_RESERVED_BITS) {
473 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
479 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
480 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
485 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
486 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
487 "and a clear PE flag\n");
492 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
494 if ((vcpu->shadow_efer & EFER_LME)) {
498 printk(KERN_DEBUG "set_cr0: #GP, start paging "
499 "in long mode while PAE is disabled\n");
503 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
505 printk(KERN_DEBUG "set_cr0: #GP, start paging "
506 "in long mode while CS.L == 1\n");
513 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
514 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
522 kvm_arch_ops->set_cr0(vcpu, cr0);
525 spin_lock(&vcpu->kvm->lock);
526 kvm_mmu_reset_context(vcpu);
527 spin_unlock(&vcpu->kvm->lock);
530 EXPORT_SYMBOL_GPL(set_cr0);
532 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
534 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
536 EXPORT_SYMBOL_GPL(lmsw);
538 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
540 if (cr4 & CR4_RESEVED_BITS) {
541 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
546 if (is_long_mode(vcpu)) {
547 if (!(cr4 & CR4_PAE_MASK)) {
548 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
553 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
554 && !load_pdptrs(vcpu, vcpu->cr3)) {
555 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
559 if (cr4 & CR4_VMXE_MASK) {
560 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
564 kvm_arch_ops->set_cr4(vcpu, cr4);
565 spin_lock(&vcpu->kvm->lock);
566 kvm_mmu_reset_context(vcpu);
567 spin_unlock(&vcpu->kvm->lock);
569 EXPORT_SYMBOL_GPL(set_cr4);
571 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
573 if (is_long_mode(vcpu)) {
574 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
575 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
580 if (cr3 & CR3_RESEVED_BITS) {
581 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
585 if (is_paging(vcpu) && is_pae(vcpu) &&
586 !load_pdptrs(vcpu, cr3)) {
587 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
595 spin_lock(&vcpu->kvm->lock);
597 * Does the new cr3 value map to physical memory? (Note, we
598 * catch an invalid cr3 even in real-mode, because it would
599 * cause trouble later on when we turn on paging anyway.)
601 * A real CPU would silently accept an invalid cr3 and would
602 * attempt to use it - with largely undefined (and often hard
603 * to debug) behavior on the guest side.
605 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
608 vcpu->mmu.new_cr3(vcpu);
609 spin_unlock(&vcpu->kvm->lock);
611 EXPORT_SYMBOL_GPL(set_cr3);
613 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
615 if ( cr8 & CR8_RESEVED_BITS) {
616 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
622 EXPORT_SYMBOL_GPL(set_cr8);
624 void fx_init(struct kvm_vcpu *vcpu)
626 struct __attribute__ ((__packed__)) fx_image_s {
632 u64 operand;// fpu dp
638 fx_save(vcpu->host_fx_image);
640 fx_save(vcpu->guest_fx_image);
641 fx_restore(vcpu->host_fx_image);
643 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
644 fx_image->mxcsr = 0x1f80;
645 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
646 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
648 EXPORT_SYMBOL_GPL(fx_init);
651 * Allocate some memory and give it an address in the guest physical address
654 * Discontiguous memory is allowed, mostly for framebuffers.
656 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
657 struct kvm_memory_region *mem)
661 unsigned long npages;
663 struct kvm_memory_slot *memslot;
664 struct kvm_memory_slot old, new;
665 int memory_config_version;
668 /* General sanity checks */
669 if (mem->memory_size & (PAGE_SIZE - 1))
671 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
673 if (mem->slot >= KVM_MEMORY_SLOTS)
675 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
678 memslot = &kvm->memslots[mem->slot];
679 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
680 npages = mem->memory_size >> PAGE_SHIFT;
683 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
686 spin_lock(&kvm->lock);
688 memory_config_version = kvm->memory_config_version;
689 new = old = *memslot;
691 new.base_gfn = base_gfn;
693 new.flags = mem->flags;
695 /* Disallow changing a memory slot's size. */
697 if (npages && old.npages && npages != old.npages)
700 /* Check for overlaps */
702 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
703 struct kvm_memory_slot *s = &kvm->memslots[i];
707 if (!((base_gfn + npages <= s->base_gfn) ||
708 (base_gfn >= s->base_gfn + s->npages)))
712 * Do memory allocations outside lock. memory_config_version will
715 spin_unlock(&kvm->lock);
717 /* Deallocate if slot is being removed */
721 /* Free page dirty bitmap if unneeded */
722 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
723 new.dirty_bitmap = NULL;
727 /* Allocate if a slot is being created */
728 if (npages && !new.phys_mem) {
729 new.phys_mem = vmalloc(npages * sizeof(struct page *));
734 memset(new.phys_mem, 0, npages * sizeof(struct page *));
735 for (i = 0; i < npages; ++i) {
736 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
738 if (!new.phys_mem[i])
740 set_page_private(new.phys_mem[i],0);
744 /* Allocate page dirty bitmap if needed */
745 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
746 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
748 new.dirty_bitmap = vmalloc(dirty_bytes);
749 if (!new.dirty_bitmap)
751 memset(new.dirty_bitmap, 0, dirty_bytes);
754 spin_lock(&kvm->lock);
756 if (memory_config_version != kvm->memory_config_version) {
757 spin_unlock(&kvm->lock);
758 kvm_free_physmem_slot(&new, &old);
766 if (mem->slot >= kvm->nmemslots)
767 kvm->nmemslots = mem->slot + 1;
770 ++kvm->memory_config_version;
772 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
773 kvm_flush_remote_tlbs(kvm);
775 spin_unlock(&kvm->lock);
777 kvm_free_physmem_slot(&old, &new);
781 spin_unlock(&kvm->lock);
783 kvm_free_physmem_slot(&new, &old);
789 * Get (and clear) the dirty memory log for a memory slot.
791 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
792 struct kvm_dirty_log *log)
794 struct kvm_memory_slot *memslot;
797 unsigned long any = 0;
799 spin_lock(&kvm->lock);
802 * Prevent changes to guest memory configuration even while the lock
806 spin_unlock(&kvm->lock);
808 if (log->slot >= KVM_MEMORY_SLOTS)
811 memslot = &kvm->memslots[log->slot];
813 if (!memslot->dirty_bitmap)
816 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
818 for (i = 0; !any && i < n/sizeof(long); ++i)
819 any = memslot->dirty_bitmap[i];
822 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
825 spin_lock(&kvm->lock);
826 kvm_mmu_slot_remove_write_access(kvm, log->slot);
827 kvm_flush_remote_tlbs(kvm);
828 memset(memslot->dirty_bitmap, 0, n);
829 spin_unlock(&kvm->lock);
834 spin_lock(&kvm->lock);
836 spin_unlock(&kvm->lock);
841 * Set a new alias region. Aliases map a portion of physical memory into
842 * another portion. This is useful for memory windows, for example the PC
845 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
846 struct kvm_memory_alias *alias)
849 struct kvm_mem_alias *p;
852 /* General sanity checks */
853 if (alias->memory_size & (PAGE_SIZE - 1))
855 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
857 if (alias->slot >= KVM_ALIAS_SLOTS)
859 if (alias->guest_phys_addr + alias->memory_size
860 < alias->guest_phys_addr)
862 if (alias->target_phys_addr + alias->memory_size
863 < alias->target_phys_addr)
866 spin_lock(&kvm->lock);
868 p = &kvm->aliases[alias->slot];
869 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
870 p->npages = alias->memory_size >> PAGE_SHIFT;
871 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
873 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
874 if (kvm->aliases[n - 1].npages)
878 kvm_mmu_zap_all(kvm);
880 spin_unlock(&kvm->lock);
888 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
891 struct kvm_mem_alias *alias;
893 for (i = 0; i < kvm->naliases; ++i) {
894 alias = &kvm->aliases[i];
895 if (gfn >= alias->base_gfn
896 && gfn < alias->base_gfn + alias->npages)
897 return alias->target_gfn + gfn - alias->base_gfn;
902 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
906 for (i = 0; i < kvm->nmemslots; ++i) {
907 struct kvm_memory_slot *memslot = &kvm->memslots[i];
909 if (gfn >= memslot->base_gfn
910 && gfn < memslot->base_gfn + memslot->npages)
916 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
918 gfn = unalias_gfn(kvm, gfn);
919 return __gfn_to_memslot(kvm, gfn);
922 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
924 struct kvm_memory_slot *slot;
926 gfn = unalias_gfn(kvm, gfn);
927 slot = __gfn_to_memslot(kvm, gfn);
930 return slot->phys_mem[gfn - slot->base_gfn];
932 EXPORT_SYMBOL_GPL(gfn_to_page);
934 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
937 struct kvm_memory_slot *memslot;
938 unsigned long rel_gfn;
940 for (i = 0; i < kvm->nmemslots; ++i) {
941 memslot = &kvm->memslots[i];
943 if (gfn >= memslot->base_gfn
944 && gfn < memslot->base_gfn + memslot->npages) {
946 if (!memslot->dirty_bitmap)
949 rel_gfn = gfn - memslot->base_gfn;
952 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
953 set_bit(rel_gfn, memslot->dirty_bitmap);
959 static int emulator_read_std(unsigned long addr,
962 struct x86_emulate_ctxt *ctxt)
964 struct kvm_vcpu *vcpu = ctxt->vcpu;
968 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
969 unsigned offset = addr & (PAGE_SIZE-1);
970 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
975 if (gpa == UNMAPPED_GVA)
976 return X86EMUL_PROPAGATE_FAULT;
977 pfn = gpa >> PAGE_SHIFT;
978 page = gfn_to_page(vcpu->kvm, pfn);
980 return X86EMUL_UNHANDLEABLE;
981 page_virt = kmap_atomic(page, KM_USER0);
983 memcpy(data, page_virt + offset, tocopy);
985 kunmap_atomic(page_virt, KM_USER0);
992 return X86EMUL_CONTINUE;
995 static int emulator_write_std(unsigned long addr,
998 struct x86_emulate_ctxt *ctxt)
1000 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1002 return X86EMUL_UNHANDLEABLE;
1005 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1009 * Note that its important to have this wrapper function because
1010 * in the very near future we will be checking for MMIOs against
1011 * the LAPIC as well as the general MMIO bus
1013 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1016 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1019 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1022 static int emulator_read_emulated(unsigned long addr,
1025 struct x86_emulate_ctxt *ctxt)
1027 struct kvm_vcpu *vcpu = ctxt->vcpu;
1028 struct kvm_io_device *mmio_dev;
1031 if (vcpu->mmio_read_completed) {
1032 memcpy(val, vcpu->mmio_data, bytes);
1033 vcpu->mmio_read_completed = 0;
1034 return X86EMUL_CONTINUE;
1035 } else if (emulator_read_std(addr, val, bytes, ctxt)
1036 == X86EMUL_CONTINUE)
1037 return X86EMUL_CONTINUE;
1039 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1040 if (gpa == UNMAPPED_GVA)
1041 return X86EMUL_PROPAGATE_FAULT;
1044 * Is this MMIO handled locally?
1046 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1048 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1049 return X86EMUL_CONTINUE;
1052 vcpu->mmio_needed = 1;
1053 vcpu->mmio_phys_addr = gpa;
1054 vcpu->mmio_size = bytes;
1055 vcpu->mmio_is_write = 0;
1057 return X86EMUL_UNHANDLEABLE;
1060 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1061 const void *val, int bytes)
1065 unsigned offset = offset_in_page(gpa);
1067 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1069 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1072 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1073 virt = kmap_atomic(page, KM_USER0);
1074 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1075 memcpy(virt + offset_in_page(gpa), val, bytes);
1076 kunmap_atomic(virt, KM_USER0);
1080 static int emulator_write_emulated_onepage(unsigned long addr,
1083 struct x86_emulate_ctxt *ctxt)
1085 struct kvm_vcpu *vcpu = ctxt->vcpu;
1086 struct kvm_io_device *mmio_dev;
1087 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1089 if (gpa == UNMAPPED_GVA) {
1090 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1091 return X86EMUL_PROPAGATE_FAULT;
1094 if (emulator_write_phys(vcpu, gpa, val, bytes))
1095 return X86EMUL_CONTINUE;
1098 * Is this MMIO handled locally?
1100 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1102 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1103 return X86EMUL_CONTINUE;
1106 vcpu->mmio_needed = 1;
1107 vcpu->mmio_phys_addr = gpa;
1108 vcpu->mmio_size = bytes;
1109 vcpu->mmio_is_write = 1;
1110 memcpy(vcpu->mmio_data, val, bytes);
1112 return X86EMUL_CONTINUE;
1115 static int emulator_write_emulated(unsigned long addr,
1118 struct x86_emulate_ctxt *ctxt)
1120 /* Crossing a page boundary? */
1121 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1124 now = -addr & ~PAGE_MASK;
1125 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1126 if (rc != X86EMUL_CONTINUE)
1132 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1135 static int emulator_cmpxchg_emulated(unsigned long addr,
1139 struct x86_emulate_ctxt *ctxt)
1141 static int reported;
1145 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1147 return emulator_write_emulated(addr, new, bytes, ctxt);
1150 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1152 return kvm_arch_ops->get_segment_base(vcpu, seg);
1155 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1157 return X86EMUL_CONTINUE;
1160 int emulate_clts(struct kvm_vcpu *vcpu)
1164 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1165 kvm_arch_ops->set_cr0(vcpu, cr0);
1166 return X86EMUL_CONTINUE;
1169 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1171 struct kvm_vcpu *vcpu = ctxt->vcpu;
1175 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1176 return X86EMUL_CONTINUE;
1178 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1180 return X86EMUL_UNHANDLEABLE;
1184 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1186 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1189 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1191 /* FIXME: better handling */
1192 return X86EMUL_UNHANDLEABLE;
1194 return X86EMUL_CONTINUE;
1197 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1199 static int reported;
1201 unsigned long rip = ctxt->vcpu->rip;
1202 unsigned long rip_linear;
1204 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1209 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1211 printk(KERN_ERR "emulation failed but !mmio_needed?"
1212 " rip %lx %02x %02x %02x %02x\n",
1213 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1217 struct x86_emulate_ops emulate_ops = {
1218 .read_std = emulator_read_std,
1219 .write_std = emulator_write_std,
1220 .read_emulated = emulator_read_emulated,
1221 .write_emulated = emulator_write_emulated,
1222 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1225 int emulate_instruction(struct kvm_vcpu *vcpu,
1226 struct kvm_run *run,
1230 struct x86_emulate_ctxt emulate_ctxt;
1234 vcpu->mmio_fault_cr2 = cr2;
1235 kvm_arch_ops->cache_regs(vcpu);
1237 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1239 emulate_ctxt.vcpu = vcpu;
1240 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1241 emulate_ctxt.cr2 = cr2;
1242 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1243 ? X86EMUL_MODE_REAL : cs_l
1244 ? X86EMUL_MODE_PROT64 : cs_db
1245 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1247 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1248 emulate_ctxt.cs_base = 0;
1249 emulate_ctxt.ds_base = 0;
1250 emulate_ctxt.es_base = 0;
1251 emulate_ctxt.ss_base = 0;
1253 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1254 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1255 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1256 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1259 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1260 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1262 vcpu->mmio_is_write = 0;
1263 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1265 if ((r || vcpu->mmio_is_write) && run) {
1266 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1267 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1268 run->mmio.len = vcpu->mmio_size;
1269 run->mmio.is_write = vcpu->mmio_is_write;
1273 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1274 return EMULATE_DONE;
1275 if (!vcpu->mmio_needed) {
1276 report_emulation_failure(&emulate_ctxt);
1277 return EMULATE_FAIL;
1279 return EMULATE_DO_MMIO;
1282 kvm_arch_ops->decache_regs(vcpu);
1283 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1285 if (vcpu->mmio_is_write) {
1286 vcpu->mmio_needed = 0;
1287 return EMULATE_DO_MMIO;
1290 return EMULATE_DONE;
1292 EXPORT_SYMBOL_GPL(emulate_instruction);
1294 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1296 if (vcpu->irq_summary)
1299 vcpu->run->exit_reason = KVM_EXIT_HLT;
1300 ++vcpu->stat.halt_exits;
1303 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1305 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1307 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1309 kvm_arch_ops->cache_regs(vcpu);
1311 #ifdef CONFIG_X86_64
1312 if (is_long_mode(vcpu)) {
1313 nr = vcpu->regs[VCPU_REGS_RAX];
1314 a0 = vcpu->regs[VCPU_REGS_RDI];
1315 a1 = vcpu->regs[VCPU_REGS_RSI];
1316 a2 = vcpu->regs[VCPU_REGS_RDX];
1317 a3 = vcpu->regs[VCPU_REGS_RCX];
1318 a4 = vcpu->regs[VCPU_REGS_R8];
1319 a5 = vcpu->regs[VCPU_REGS_R9];
1323 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1324 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1325 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1326 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1327 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1328 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1329 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1333 run->hypercall.args[0] = a0;
1334 run->hypercall.args[1] = a1;
1335 run->hypercall.args[2] = a2;
1336 run->hypercall.args[3] = a3;
1337 run->hypercall.args[4] = a4;
1338 run->hypercall.args[5] = a5;
1339 run->hypercall.ret = ret;
1340 run->hypercall.longmode = is_long_mode(vcpu);
1341 kvm_arch_ops->decache_regs(vcpu);
1344 vcpu->regs[VCPU_REGS_RAX] = ret;
1345 kvm_arch_ops->decache_regs(vcpu);
1348 EXPORT_SYMBOL_GPL(kvm_hypercall);
1350 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1352 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1355 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1357 struct descriptor_table dt = { limit, base };
1359 kvm_arch_ops->set_gdt(vcpu, &dt);
1362 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1364 struct descriptor_table dt = { limit, base };
1366 kvm_arch_ops->set_idt(vcpu, &dt);
1369 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1370 unsigned long *rflags)
1373 *rflags = kvm_arch_ops->get_rflags(vcpu);
1376 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1378 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1389 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1394 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1395 unsigned long *rflags)
1399 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1400 *rflags = kvm_arch_ops->get_rflags(vcpu);
1409 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1412 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1417 * Register the para guest with the host:
1419 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1421 struct kvm_vcpu_para_state *para_state;
1422 hpa_t para_state_hpa, hypercall_hpa;
1423 struct page *para_state_page;
1424 unsigned char *hypercall;
1425 gpa_t hypercall_gpa;
1427 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1428 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1431 * Needs to be page aligned:
1433 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1436 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1437 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1438 if (is_error_hpa(para_state_hpa))
1441 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1442 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1443 para_state = kmap_atomic(para_state_page, KM_USER0);
1445 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1446 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1448 para_state->host_version = KVM_PARA_API_VERSION;
1450 * We cannot support guests that try to register themselves
1451 * with a newer API version than the host supports:
1453 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1454 para_state->ret = -KVM_EINVAL;
1455 goto err_kunmap_skip;
1458 hypercall_gpa = para_state->hypercall_gpa;
1459 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1460 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1461 if (is_error_hpa(hypercall_hpa)) {
1462 para_state->ret = -KVM_EINVAL;
1463 goto err_kunmap_skip;
1466 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1467 vcpu->para_state_page = para_state_page;
1468 vcpu->para_state_gpa = para_state_gpa;
1469 vcpu->hypercall_gpa = hypercall_gpa;
1471 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1472 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1473 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1474 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1475 kunmap_atomic(hypercall, KM_USER1);
1477 para_state->ret = 0;
1479 kunmap_atomic(para_state, KM_USER0);
1485 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1490 case 0xc0010010: /* SYSCFG */
1491 case 0xc0010015: /* HWCR */
1492 case MSR_IA32_PLATFORM_ID:
1493 case MSR_IA32_P5_MC_ADDR:
1494 case MSR_IA32_P5_MC_TYPE:
1495 case MSR_IA32_MC0_CTL:
1496 case MSR_IA32_MCG_STATUS:
1497 case MSR_IA32_MCG_CAP:
1498 case MSR_IA32_MC0_MISC:
1499 case MSR_IA32_MC0_MISC+4:
1500 case MSR_IA32_MC0_MISC+8:
1501 case MSR_IA32_MC0_MISC+12:
1502 case MSR_IA32_MC0_MISC+16:
1503 case MSR_IA32_UCODE_REV:
1504 case MSR_IA32_PERF_STATUS:
1505 case MSR_IA32_EBL_CR_POWERON:
1506 /* MTRR registers */
1508 case 0x200 ... 0x2ff:
1511 case 0xcd: /* fsb frequency */
1514 case MSR_IA32_APICBASE:
1515 data = vcpu->apic_base;
1517 case MSR_IA32_MISC_ENABLE:
1518 data = vcpu->ia32_misc_enable_msr;
1520 #ifdef CONFIG_X86_64
1522 data = vcpu->shadow_efer;
1526 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1532 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1535 * Reads an msr value (of 'msr_index') into 'pdata'.
1536 * Returns 0 on success, non-0 otherwise.
1537 * Assumes vcpu_load() was already called.
1539 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1541 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1544 #ifdef CONFIG_X86_64
1546 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1548 if (efer & EFER_RESERVED_BITS) {
1549 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1556 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1557 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1562 kvm_arch_ops->set_efer(vcpu, efer);
1565 efer |= vcpu->shadow_efer & EFER_LMA;
1567 vcpu->shadow_efer = efer;
1572 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1575 #ifdef CONFIG_X86_64
1577 set_efer(vcpu, data);
1580 case MSR_IA32_MC0_STATUS:
1581 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1582 __FUNCTION__, data);
1584 case MSR_IA32_MCG_STATUS:
1585 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1586 __FUNCTION__, data);
1588 case MSR_IA32_UCODE_REV:
1589 case MSR_IA32_UCODE_WRITE:
1590 case 0x200 ... 0x2ff: /* MTRRs */
1592 case MSR_IA32_APICBASE:
1593 vcpu->apic_base = data;
1595 case MSR_IA32_MISC_ENABLE:
1596 vcpu->ia32_misc_enable_msr = data;
1599 * This is the 'probe whether the host is KVM' logic:
1601 case MSR_KVM_API_MAGIC:
1602 return vcpu_register_para(vcpu, data);
1605 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1610 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1613 * Writes msr value into into the appropriate "register".
1614 * Returns 0 on success, non-0 otherwise.
1615 * Assumes vcpu_load() was already called.
1617 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1619 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1622 void kvm_resched(struct kvm_vcpu *vcpu)
1624 if (!need_resched())
1630 EXPORT_SYMBOL_GPL(kvm_resched);
1632 void load_msrs(struct vmx_msr_entry *e, int n)
1636 for (i = 0; i < n; ++i)
1637 wrmsrl(e[i].index, e[i].data);
1639 EXPORT_SYMBOL_GPL(load_msrs);
1641 void save_msrs(struct vmx_msr_entry *e, int n)
1645 for (i = 0; i < n; ++i)
1646 rdmsrl(e[i].index, e[i].data);
1648 EXPORT_SYMBOL_GPL(save_msrs);
1650 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1654 struct kvm_cpuid_entry *e, *best;
1656 kvm_arch_ops->cache_regs(vcpu);
1657 function = vcpu->regs[VCPU_REGS_RAX];
1658 vcpu->regs[VCPU_REGS_RAX] = 0;
1659 vcpu->regs[VCPU_REGS_RBX] = 0;
1660 vcpu->regs[VCPU_REGS_RCX] = 0;
1661 vcpu->regs[VCPU_REGS_RDX] = 0;
1663 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1664 e = &vcpu->cpuid_entries[i];
1665 if (e->function == function) {
1670 * Both basic or both extended?
1672 if (((e->function ^ function) & 0x80000000) == 0)
1673 if (!best || e->function > best->function)
1677 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1678 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1679 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1680 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1682 kvm_arch_ops->decache_regs(vcpu);
1683 kvm_arch_ops->skip_emulated_instruction(vcpu);
1685 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1687 static int pio_copy_data(struct kvm_vcpu *vcpu)
1689 void *p = vcpu->pio_data;
1692 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1694 kvm_arch_ops->vcpu_put(vcpu);
1695 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1698 kvm_arch_ops->vcpu_load(vcpu);
1699 free_pio_guest_pages(vcpu);
1702 q += vcpu->pio.guest_page_offset;
1703 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1705 memcpy(q, p, bytes);
1707 memcpy(p, q, bytes);
1708 q -= vcpu->pio.guest_page_offset;
1710 kvm_arch_ops->vcpu_load(vcpu);
1711 free_pio_guest_pages(vcpu);
1715 static int complete_pio(struct kvm_vcpu *vcpu)
1717 struct kvm_pio_request *io = &vcpu->pio;
1721 kvm_arch_ops->cache_regs(vcpu);
1725 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1729 r = pio_copy_data(vcpu);
1731 kvm_arch_ops->cache_regs(vcpu);
1738 delta *= io->cur_count;
1740 * The size of the register should really depend on
1741 * current address size.
1743 vcpu->regs[VCPU_REGS_RCX] -= delta;
1749 vcpu->regs[VCPU_REGS_RDI] += delta;
1751 vcpu->regs[VCPU_REGS_RSI] += delta;
1754 kvm_arch_ops->decache_regs(vcpu);
1756 io->count -= io->cur_count;
1760 kvm_arch_ops->skip_emulated_instruction(vcpu);
1764 static void kernel_pio(struct kvm_io_device *pio_dev,
1765 struct kvm_vcpu *vcpu,
1768 /* TODO: String I/O for in kernel device */
1771 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1775 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1780 static void pio_string_write(struct kvm_io_device *pio_dev,
1781 struct kvm_vcpu *vcpu)
1783 struct kvm_pio_request *io = &vcpu->pio;
1784 void *pd = vcpu->pio_data;
1787 for (i = 0; i < io->cur_count; i++) {
1788 kvm_iodevice_write(pio_dev, io->port,
1795 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1796 int size, unsigned long count, int string, int down,
1797 gva_t address, int rep, unsigned port)
1799 unsigned now, in_page;
1803 struct kvm_io_device *pio_dev;
1805 vcpu->run->exit_reason = KVM_EXIT_IO;
1806 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1807 vcpu->run->io.size = size;
1808 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1809 vcpu->run->io.count = count;
1810 vcpu->run->io.port = port;
1811 vcpu->pio.count = count;
1812 vcpu->pio.cur_count = count;
1813 vcpu->pio.size = size;
1815 vcpu->pio.port = port;
1816 vcpu->pio.string = string;
1817 vcpu->pio.down = down;
1818 vcpu->pio.guest_page_offset = offset_in_page(address);
1819 vcpu->pio.rep = rep;
1821 pio_dev = vcpu_find_pio_dev(vcpu, port);
1823 kvm_arch_ops->cache_regs(vcpu);
1824 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1825 kvm_arch_ops->decache_regs(vcpu);
1827 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1835 kvm_arch_ops->skip_emulated_instruction(vcpu);
1839 now = min(count, PAGE_SIZE / size);
1842 in_page = PAGE_SIZE - offset_in_page(address);
1844 in_page = offset_in_page(address) + size;
1845 now = min(count, (unsigned long)in_page / size);
1848 * String I/O straddles page boundary. Pin two guest pages
1849 * so that we satisfy atomicity constraints. Do just one
1850 * transaction to avoid complexity.
1857 * String I/O in reverse. Yuck. Kill the guest, fix later.
1859 printk(KERN_ERR "kvm: guest string pio down\n");
1863 vcpu->run->io.count = now;
1864 vcpu->pio.cur_count = now;
1866 for (i = 0; i < nr_pages; ++i) {
1867 spin_lock(&vcpu->kvm->lock);
1868 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1871 vcpu->pio.guest_pages[i] = page;
1872 spin_unlock(&vcpu->kvm->lock);
1875 free_pio_guest_pages(vcpu);
1880 if (!vcpu->pio.in) {
1881 /* string PIO write */
1882 ret = pio_copy_data(vcpu);
1883 if (ret >= 0 && pio_dev) {
1884 pio_string_write(pio_dev, vcpu);
1886 if (vcpu->pio.count == 0)
1890 printk(KERN_ERR "no string pio read support yet, "
1891 "port %x size %d count %ld\n",
1896 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1898 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1905 if (vcpu->sigset_active)
1906 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1908 /* re-sync apic's tpr */
1909 vcpu->cr8 = kvm_run->cr8;
1911 if (vcpu->pio.cur_count) {
1912 r = complete_pio(vcpu);
1917 if (vcpu->mmio_needed) {
1918 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1919 vcpu->mmio_read_completed = 1;
1920 vcpu->mmio_needed = 0;
1921 r = emulate_instruction(vcpu, kvm_run,
1922 vcpu->mmio_fault_cr2, 0);
1923 if (r == EMULATE_DO_MMIO) {
1925 * Read-modify-write. Back to userspace.
1927 kvm_run->exit_reason = KVM_EXIT_MMIO;
1933 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1934 kvm_arch_ops->cache_regs(vcpu);
1935 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1936 kvm_arch_ops->decache_regs(vcpu);
1939 r = kvm_arch_ops->run(vcpu, kvm_run);
1942 if (vcpu->sigset_active)
1943 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1949 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1950 struct kvm_regs *regs)
1954 kvm_arch_ops->cache_regs(vcpu);
1956 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1957 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1958 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1959 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1960 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1961 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1962 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1963 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1964 #ifdef CONFIG_X86_64
1965 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1966 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1967 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1968 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1969 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1970 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1971 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1972 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1975 regs->rip = vcpu->rip;
1976 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1979 * Don't leak debug flags in case they were set for guest debugging
1981 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1982 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1989 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1990 struct kvm_regs *regs)
1994 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1995 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1996 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1997 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1998 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1999 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2000 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2001 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2002 #ifdef CONFIG_X86_64
2003 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2004 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2005 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2006 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2007 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2008 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2009 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2010 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2013 vcpu->rip = regs->rip;
2014 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2016 kvm_arch_ops->decache_regs(vcpu);
2023 static void get_segment(struct kvm_vcpu *vcpu,
2024 struct kvm_segment *var, int seg)
2026 return kvm_arch_ops->get_segment(vcpu, var, seg);
2029 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2030 struct kvm_sregs *sregs)
2032 struct descriptor_table dt;
2036 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2037 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2038 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2039 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2040 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2041 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2043 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2044 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2046 kvm_arch_ops->get_idt(vcpu, &dt);
2047 sregs->idt.limit = dt.limit;
2048 sregs->idt.base = dt.base;
2049 kvm_arch_ops->get_gdt(vcpu, &dt);
2050 sregs->gdt.limit = dt.limit;
2051 sregs->gdt.base = dt.base;
2053 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2054 sregs->cr0 = vcpu->cr0;
2055 sregs->cr2 = vcpu->cr2;
2056 sregs->cr3 = vcpu->cr3;
2057 sregs->cr4 = vcpu->cr4;
2058 sregs->cr8 = vcpu->cr8;
2059 sregs->efer = vcpu->shadow_efer;
2060 sregs->apic_base = vcpu->apic_base;
2062 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2063 sizeof sregs->interrupt_bitmap);
2070 static void set_segment(struct kvm_vcpu *vcpu,
2071 struct kvm_segment *var, int seg)
2073 return kvm_arch_ops->set_segment(vcpu, var, seg);
2076 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2077 struct kvm_sregs *sregs)
2079 int mmu_reset_needed = 0;
2081 struct descriptor_table dt;
2085 dt.limit = sregs->idt.limit;
2086 dt.base = sregs->idt.base;
2087 kvm_arch_ops->set_idt(vcpu, &dt);
2088 dt.limit = sregs->gdt.limit;
2089 dt.base = sregs->gdt.base;
2090 kvm_arch_ops->set_gdt(vcpu, &dt);
2092 vcpu->cr2 = sregs->cr2;
2093 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2094 vcpu->cr3 = sregs->cr3;
2096 vcpu->cr8 = sregs->cr8;
2098 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2099 #ifdef CONFIG_X86_64
2100 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2102 vcpu->apic_base = sregs->apic_base;
2104 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2106 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2107 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2109 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2110 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2111 if (!is_long_mode(vcpu) && is_pae(vcpu))
2112 load_pdptrs(vcpu, vcpu->cr3);
2114 if (mmu_reset_needed)
2115 kvm_mmu_reset_context(vcpu);
2117 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2118 sizeof vcpu->irq_pending);
2119 vcpu->irq_summary = 0;
2120 for (i = 0; i < NR_IRQ_WORDS; ++i)
2121 if (vcpu->irq_pending[i])
2122 __set_bit(i, &vcpu->irq_summary);
2124 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2125 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2126 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2127 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2128 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2129 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2131 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2132 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2140 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2141 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2143 * This list is modified at module load time to reflect the
2144 * capabilities of the host cpu.
2146 static u32 msrs_to_save[] = {
2147 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2149 #ifdef CONFIG_X86_64
2150 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2152 MSR_IA32_TIME_STAMP_COUNTER,
2155 static unsigned num_msrs_to_save;
2157 static u32 emulated_msrs[] = {
2158 MSR_IA32_MISC_ENABLE,
2161 static __init void kvm_init_msr_list(void)
2166 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2167 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2170 msrs_to_save[j] = msrs_to_save[i];
2173 num_msrs_to_save = j;
2177 * Adapt set_msr() to msr_io()'s calling convention
2179 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2181 return kvm_set_msr(vcpu, index, *data);
2185 * Read or write a bunch of msrs. All parameters are kernel addresses.
2187 * @return number of msrs set successfully.
2189 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2190 struct kvm_msr_entry *entries,
2191 int (*do_msr)(struct kvm_vcpu *vcpu,
2192 unsigned index, u64 *data))
2198 for (i = 0; i < msrs->nmsrs; ++i)
2199 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2208 * Read or write a bunch of msrs. Parameters are user addresses.
2210 * @return number of msrs set successfully.
2212 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2213 int (*do_msr)(struct kvm_vcpu *vcpu,
2214 unsigned index, u64 *data),
2217 struct kvm_msrs msrs;
2218 struct kvm_msr_entry *entries;
2223 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2227 if (msrs.nmsrs >= MAX_IO_MSRS)
2231 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2232 entries = vmalloc(size);
2237 if (copy_from_user(entries, user_msrs->entries, size))
2240 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2245 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2257 * Translate a guest virtual address to a guest physical address.
2259 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2260 struct kvm_translation *tr)
2262 unsigned long vaddr = tr->linear_address;
2266 spin_lock(&vcpu->kvm->lock);
2267 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2268 tr->physical_address = gpa;
2269 tr->valid = gpa != UNMAPPED_GVA;
2272 spin_unlock(&vcpu->kvm->lock);
2278 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2279 struct kvm_interrupt *irq)
2281 if (irq->irq < 0 || irq->irq >= 256)
2285 set_bit(irq->irq, vcpu->irq_pending);
2286 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2293 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2294 struct kvm_debug_guest *dbg)
2300 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2307 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2308 unsigned long address,
2311 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2312 unsigned long pgoff;
2315 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2317 page = virt_to_page(vcpu->run);
2318 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2319 page = virt_to_page(vcpu->pio_data);
2321 return NOPAGE_SIGBUS;
2324 *type = VM_FAULT_MINOR;
2329 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2330 .nopage = kvm_vcpu_nopage,
2333 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2335 vma->vm_ops = &kvm_vcpu_vm_ops;
2339 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2341 struct kvm_vcpu *vcpu = filp->private_data;
2343 fput(vcpu->kvm->filp);
2347 static struct file_operations kvm_vcpu_fops = {
2348 .release = kvm_vcpu_release,
2349 .unlocked_ioctl = kvm_vcpu_ioctl,
2350 .compat_ioctl = kvm_vcpu_ioctl,
2351 .mmap = kvm_vcpu_mmap,
2355 * Allocates an inode for the vcpu.
2357 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2360 struct inode *inode;
2363 r = anon_inode_getfd(&fd, &inode, &file,
2364 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2367 atomic_inc(&vcpu->kvm->filp->f_count);
2372 * Creates some virtual cpus. Good luck creating more than one.
2374 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2377 struct kvm_vcpu *vcpu;
2384 vcpu = &kvm->vcpus[n];
2387 mutex_lock(&vcpu->mutex);
2390 mutex_unlock(&vcpu->mutex);
2394 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2398 vcpu->run = page_address(page);
2400 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2404 vcpu->pio_data = page_address(page);
2406 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2408 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2411 r = kvm_arch_ops->vcpu_create(vcpu);
2413 goto out_free_vcpus;
2415 r = kvm_mmu_create(vcpu);
2417 goto out_free_vcpus;
2419 kvm_arch_ops->vcpu_load(vcpu);
2420 r = kvm_mmu_setup(vcpu);
2422 r = kvm_arch_ops->vcpu_setup(vcpu);
2426 goto out_free_vcpus;
2428 r = create_vcpu_fd(vcpu);
2430 goto out_free_vcpus;
2432 spin_lock(&kvm_lock);
2433 if (n >= kvm->nvcpus)
2434 kvm->nvcpus = n + 1;
2435 spin_unlock(&kvm_lock);
2440 kvm_free_vcpu(vcpu);
2442 free_page((unsigned long)vcpu->run);
2445 mutex_unlock(&vcpu->mutex);
2450 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2454 struct kvm_cpuid_entry *e, *entry;
2456 rdmsrl(MSR_EFER, efer);
2458 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2459 e = &vcpu->cpuid_entries[i];
2460 if (e->function == 0x80000001) {
2465 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2466 entry->edx &= ~(1 << 20);
2467 printk(KERN_INFO "kvm: guest NX capability removed\n");
2471 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2472 struct kvm_cpuid *cpuid,
2473 struct kvm_cpuid_entry __user *entries)
2478 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2481 if (copy_from_user(&vcpu->cpuid_entries, entries,
2482 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2484 vcpu->cpuid_nent = cpuid->nent;
2485 cpuid_fix_nx_cap(vcpu);
2492 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2495 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2496 vcpu->sigset_active = 1;
2497 vcpu->sigset = *sigset;
2499 vcpu->sigset_active = 0;
2504 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2505 * we have asm/x86/processor.h
2516 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2517 #ifdef CONFIG_X86_64
2518 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2520 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2524 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2526 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2530 memcpy(fpu->fpr, fxsave->st_space, 128);
2531 fpu->fcw = fxsave->cwd;
2532 fpu->fsw = fxsave->swd;
2533 fpu->ftwx = fxsave->twd;
2534 fpu->last_opcode = fxsave->fop;
2535 fpu->last_ip = fxsave->rip;
2536 fpu->last_dp = fxsave->rdp;
2537 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2544 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2546 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2550 memcpy(fxsave->st_space, fpu->fpr, 128);
2551 fxsave->cwd = fpu->fcw;
2552 fxsave->swd = fpu->fsw;
2553 fxsave->twd = fpu->ftwx;
2554 fxsave->fop = fpu->last_opcode;
2555 fxsave->rip = fpu->last_ip;
2556 fxsave->rdp = fpu->last_dp;
2557 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2564 static long kvm_vcpu_ioctl(struct file *filp,
2565 unsigned int ioctl, unsigned long arg)
2567 struct kvm_vcpu *vcpu = filp->private_data;
2568 void __user *argp = (void __user *)arg;
2576 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2578 case KVM_GET_REGS: {
2579 struct kvm_regs kvm_regs;
2581 memset(&kvm_regs, 0, sizeof kvm_regs);
2582 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2586 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2591 case KVM_SET_REGS: {
2592 struct kvm_regs kvm_regs;
2595 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2597 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2603 case KVM_GET_SREGS: {
2604 struct kvm_sregs kvm_sregs;
2606 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2607 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2611 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2616 case KVM_SET_SREGS: {
2617 struct kvm_sregs kvm_sregs;
2620 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2622 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2628 case KVM_TRANSLATE: {
2629 struct kvm_translation tr;
2632 if (copy_from_user(&tr, argp, sizeof tr))
2634 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2638 if (copy_to_user(argp, &tr, sizeof tr))
2643 case KVM_INTERRUPT: {
2644 struct kvm_interrupt irq;
2647 if (copy_from_user(&irq, argp, sizeof irq))
2649 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2655 case KVM_DEBUG_GUEST: {
2656 struct kvm_debug_guest dbg;
2659 if (copy_from_user(&dbg, argp, sizeof dbg))
2661 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2668 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2671 r = msr_io(vcpu, argp, do_set_msr, 0);
2673 case KVM_SET_CPUID: {
2674 struct kvm_cpuid __user *cpuid_arg = argp;
2675 struct kvm_cpuid cpuid;
2678 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2680 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2685 case KVM_SET_SIGNAL_MASK: {
2686 struct kvm_signal_mask __user *sigmask_arg = argp;
2687 struct kvm_signal_mask kvm_sigmask;
2688 sigset_t sigset, *p;
2693 if (copy_from_user(&kvm_sigmask, argp,
2694 sizeof kvm_sigmask))
2697 if (kvm_sigmask.len != sizeof sigset)
2700 if (copy_from_user(&sigset, sigmask_arg->sigset,
2705 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2711 memset(&fpu, 0, sizeof fpu);
2712 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2716 if (copy_to_user(argp, &fpu, sizeof fpu))
2725 if (copy_from_user(&fpu, argp, sizeof fpu))
2727 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2740 static long kvm_vm_ioctl(struct file *filp,
2741 unsigned int ioctl, unsigned long arg)
2743 struct kvm *kvm = filp->private_data;
2744 void __user *argp = (void __user *)arg;
2748 case KVM_CREATE_VCPU:
2749 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2753 case KVM_SET_MEMORY_REGION: {
2754 struct kvm_memory_region kvm_mem;
2757 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2759 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2764 case KVM_GET_DIRTY_LOG: {
2765 struct kvm_dirty_log log;
2768 if (copy_from_user(&log, argp, sizeof log))
2770 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2775 case KVM_SET_MEMORY_ALIAS: {
2776 struct kvm_memory_alias alias;
2779 if (copy_from_user(&alias, argp, sizeof alias))
2781 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2793 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2794 unsigned long address,
2797 struct kvm *kvm = vma->vm_file->private_data;
2798 unsigned long pgoff;
2801 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2802 page = gfn_to_page(kvm, pgoff);
2804 return NOPAGE_SIGBUS;
2807 *type = VM_FAULT_MINOR;
2812 static struct vm_operations_struct kvm_vm_vm_ops = {
2813 .nopage = kvm_vm_nopage,
2816 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2818 vma->vm_ops = &kvm_vm_vm_ops;
2822 static struct file_operations kvm_vm_fops = {
2823 .release = kvm_vm_release,
2824 .unlocked_ioctl = kvm_vm_ioctl,
2825 .compat_ioctl = kvm_vm_ioctl,
2826 .mmap = kvm_vm_mmap,
2829 static int kvm_dev_ioctl_create_vm(void)
2832 struct inode *inode;
2836 kvm = kvm_create_vm();
2838 return PTR_ERR(kvm);
2839 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2841 kvm_destroy_vm(kvm);
2850 static long kvm_dev_ioctl(struct file *filp,
2851 unsigned int ioctl, unsigned long arg)
2853 void __user *argp = (void __user *)arg;
2857 case KVM_GET_API_VERSION:
2861 r = KVM_API_VERSION;
2867 r = kvm_dev_ioctl_create_vm();
2869 case KVM_GET_MSR_INDEX_LIST: {
2870 struct kvm_msr_list __user *user_msr_list = argp;
2871 struct kvm_msr_list msr_list;
2875 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2878 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2879 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2882 if (n < num_msrs_to_save)
2885 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2886 num_msrs_to_save * sizeof(u32)))
2888 if (copy_to_user(user_msr_list->indices
2889 + num_msrs_to_save * sizeof(u32),
2891 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2896 case KVM_CHECK_EXTENSION:
2898 * No extensions defined at present.
2902 case KVM_GET_VCPU_MMAP_SIZE:
2915 static struct file_operations kvm_chardev_ops = {
2916 .open = kvm_dev_open,
2917 .release = kvm_dev_release,
2918 .unlocked_ioctl = kvm_dev_ioctl,
2919 .compat_ioctl = kvm_dev_ioctl,
2922 static struct miscdevice kvm_dev = {
2929 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2932 static void decache_vcpus_on_cpu(int cpu)
2935 struct kvm_vcpu *vcpu;
2938 spin_lock(&kvm_lock);
2939 list_for_each_entry(vm, &vm_list, vm_list)
2940 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2941 vcpu = &vm->vcpus[i];
2943 * If the vcpu is locked, then it is running on some
2944 * other cpu and therefore it is not cached on the
2947 * If it's not locked, check the last cpu it executed
2950 if (mutex_trylock(&vcpu->mutex)) {
2951 if (vcpu->cpu == cpu) {
2952 kvm_arch_ops->vcpu_decache(vcpu);
2955 mutex_unlock(&vcpu->mutex);
2958 spin_unlock(&kvm_lock);
2961 static void hardware_enable(void *junk)
2963 int cpu = raw_smp_processor_id();
2965 if (cpu_isset(cpu, cpus_hardware_enabled))
2967 cpu_set(cpu, cpus_hardware_enabled);
2968 kvm_arch_ops->hardware_enable(NULL);
2971 static void hardware_disable(void *junk)
2973 int cpu = raw_smp_processor_id();
2975 if (!cpu_isset(cpu, cpus_hardware_enabled))
2977 cpu_clear(cpu, cpus_hardware_enabled);
2978 decache_vcpus_on_cpu(cpu);
2979 kvm_arch_ops->hardware_disable(NULL);
2982 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2989 case CPU_DYING_FROZEN:
2990 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2992 hardware_disable(NULL);
2994 case CPU_UP_CANCELED:
2995 case CPU_UP_CANCELED_FROZEN:
2996 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2998 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3001 case CPU_ONLINE_FROZEN:
3002 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3004 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3010 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3013 if (val == SYS_RESTART) {
3015 * Some (well, at least mine) BIOSes hang on reboot if
3018 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3019 on_each_cpu(hardware_disable, NULL, 0, 1);
3024 static struct notifier_block kvm_reboot_notifier = {
3025 .notifier_call = kvm_reboot,
3029 void kvm_io_bus_init(struct kvm_io_bus *bus)
3031 memset(bus, 0, sizeof(*bus));
3034 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3038 for (i = 0; i < bus->dev_count; i++) {
3039 struct kvm_io_device *pos = bus->devs[i];
3041 kvm_iodevice_destructor(pos);
3045 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3049 for (i = 0; i < bus->dev_count; i++) {
3050 struct kvm_io_device *pos = bus->devs[i];
3052 if (pos->in_range(pos, addr))
3059 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3061 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3063 bus->devs[bus->dev_count++] = dev;
3066 static struct notifier_block kvm_cpu_notifier = {
3067 .notifier_call = kvm_cpu_hotplug,
3068 .priority = 20, /* must be > scheduler priority */
3071 static u64 stat_get(void *_offset)
3073 unsigned offset = (long)_offset;
3076 struct kvm_vcpu *vcpu;
3079 spin_lock(&kvm_lock);
3080 list_for_each_entry(kvm, &vm_list, vm_list)
3081 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3082 vcpu = &kvm->vcpus[i];
3083 total += *(u32 *)((void *)vcpu + offset);
3085 spin_unlock(&kvm_lock);
3089 static void stat_set(void *offset, u64 val)
3093 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3095 static __init void kvm_init_debug(void)
3097 struct kvm_stats_debugfs_item *p;
3099 debugfs_dir = debugfs_create_dir("kvm", NULL);
3100 for (p = debugfs_entries; p->name; ++p)
3101 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3102 (void *)(long)p->offset,
3106 static void kvm_exit_debug(void)
3108 struct kvm_stats_debugfs_item *p;
3110 for (p = debugfs_entries; p->name; ++p)
3111 debugfs_remove(p->dentry);
3112 debugfs_remove(debugfs_dir);
3115 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3117 hardware_disable(NULL);
3121 static int kvm_resume(struct sys_device *dev)
3123 hardware_enable(NULL);
3127 static struct sysdev_class kvm_sysdev_class = {
3128 set_kset_name("kvm"),
3129 .suspend = kvm_suspend,
3130 .resume = kvm_resume,
3133 static struct sys_device kvm_sysdev = {
3135 .cls = &kvm_sysdev_class,
3138 hpa_t bad_page_address;
3140 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3145 printk(KERN_ERR "kvm: already loaded the other module\n");
3149 if (!ops->cpu_has_kvm_support()) {
3150 printk(KERN_ERR "kvm: no hardware support\n");
3153 if (ops->disabled_by_bios()) {
3154 printk(KERN_ERR "kvm: disabled by bios\n");
3160 r = kvm_arch_ops->hardware_setup();
3164 on_each_cpu(hardware_enable, NULL, 0, 1);
3165 r = register_cpu_notifier(&kvm_cpu_notifier);
3168 register_reboot_notifier(&kvm_reboot_notifier);
3170 r = sysdev_class_register(&kvm_sysdev_class);
3174 r = sysdev_register(&kvm_sysdev);
3178 kvm_chardev_ops.owner = module;
3180 r = misc_register(&kvm_dev);
3182 printk (KERN_ERR "kvm: misc device register failed\n");
3189 sysdev_unregister(&kvm_sysdev);
3191 sysdev_class_unregister(&kvm_sysdev_class);
3193 unregister_reboot_notifier(&kvm_reboot_notifier);
3194 unregister_cpu_notifier(&kvm_cpu_notifier);
3196 on_each_cpu(hardware_disable, NULL, 0, 1);
3197 kvm_arch_ops->hardware_unsetup();
3199 kvm_arch_ops = NULL;
3203 void kvm_exit_arch(void)
3205 misc_deregister(&kvm_dev);
3206 sysdev_unregister(&kvm_sysdev);
3207 sysdev_class_unregister(&kvm_sysdev_class);
3208 unregister_reboot_notifier(&kvm_reboot_notifier);
3209 unregister_cpu_notifier(&kvm_cpu_notifier);
3210 on_each_cpu(hardware_disable, NULL, 0, 1);
3211 kvm_arch_ops->hardware_unsetup();
3212 kvm_arch_ops = NULL;
3215 static __init int kvm_init(void)
3217 static struct page *bad_page;
3220 r = kvm_mmu_module_init();
3226 kvm_init_msr_list();
3228 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3233 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3234 memset(__va(bad_page_address), 0, PAGE_SIZE);
3240 kvm_mmu_module_exit();
3245 static __exit void kvm_exit(void)
3248 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3249 kvm_mmu_module_exit();
3252 module_init(kvm_init)
3253 module_exit(kvm_exit)
3255 EXPORT_SYMBOL_GPL(kvm_init_arch);
3256 EXPORT_SYMBOL_GPL(kvm_exit_arch);