2 * linux/kernel/power/swsusp.c
4 * This file provides code to write suspend image to swap and read it back.
6 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
9 * This file is released under the GPLv2.
11 * I'd like to thank the following people for their work:
13 * Pavel Machek <pavel@ucw.cz>:
14 * Modifications, defectiveness pointing, being with me at the very beginning,
15 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 * Steve Doddi <dirk@loth.demon.co.uk>:
18 * Support the possibility of hardware state restoring.
20 * Raph <grey.havens@earthling.net>:
21 * Support for preserving states of network devices and virtual console
22 * (including X and svgatextmode)
24 * Kurt Garloff <garloff@suse.de>:
25 * Straightened the critical function in order to prevent compilers from
26 * playing tricks with local variables.
28 * Andreas Mohr <a.mohr@mailto.de>
30 * Alex Badea <vampire@go.ro>:
33 * Rafael J. Wysocki <rjw@sisk.pl>
34 * Added the swap map data structure and reworked the handling of swap
36 * More state savers are welcome. Especially for the scsi layer...
38 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
41 #include <linux/module.h>
43 #include <linux/suspend.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/utsname.h>
47 #include <linux/version.h>
48 #include <linux/delay.h>
49 #include <linux/bitops.h>
50 #include <linux/spinlock.h>
51 #include <linux/genhd.h>
52 #include <linux/kernel.h>
53 #include <linux/major.h>
54 #include <linux/swap.h>
56 #include <linux/device.h>
57 #include <linux/buffer_head.h>
58 #include <linux/swapops.h>
59 #include <linux/bootmem.h>
60 #include <linux/syscalls.h>
61 #include <linux/highmem.h>
62 #include <linux/bio.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
73 int save_highmem(void);
74 int restore_highmem(void);
76 static int save_highmem(void) { return 0; }
77 static int restore_highmem(void) { return 0; }
80 extern char resume_file[];
82 #define SWSUSP_SIG "S1SUSPEND"
84 static struct swsusp_header {
85 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
86 swp_entry_t swsusp_info;
89 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
91 static struct swsusp_info swsusp_info;
97 /* We memorize in swapfile_used what swap devices are used for suspension */
98 #define SWAPFILE_UNUSED 0
99 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
100 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
102 static unsigned short swapfile_used[MAX_SWAPFILES];
103 static unsigned short root_swap;
105 static int mark_swapfiles(swp_entry_t prev)
109 rw_swap_page_sync(READ,
110 swp_entry(root_swap, 0),
111 virt_to_page((unsigned long)&swsusp_header));
112 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
113 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
114 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
115 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
116 swsusp_header.swsusp_info = prev;
117 error = rw_swap_page_sync(WRITE,
118 swp_entry(root_swap, 0),
119 virt_to_page((unsigned long)
122 pr_debug("swsusp: Partition is not swap space.\n");
129 * Check whether the swap device is the specified resume
130 * device, irrespective of whether they are specified by
133 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
134 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
135 * and they'll be considered the same device. This is *necessary* for
136 * devfs, since the resume code can only recognize the form /dev/hda4,
137 * but the suspend code would see the long name.)
139 static int is_resume_device(const struct swap_info_struct *swap_info)
141 struct file *file = swap_info->swap_file;
142 struct inode *inode = file->f_dentry->d_inode;
144 return S_ISBLK(inode->i_mode) &&
145 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
148 static int swsusp_swap_check(void) /* This is called before saving image */
152 len=strlen(resume_file);
155 spin_lock(&swap_lock);
156 for (i=0; i<MAX_SWAPFILES; i++) {
157 if (!(swap_info[i].flags & SWP_WRITEOK)) {
158 swapfile_used[i]=SWAPFILE_UNUSED;
161 printk(KERN_WARNING "resume= option should be used to set suspend device" );
162 if (root_swap == 0xFFFF) {
163 swapfile_used[i] = SWAPFILE_SUSPEND;
166 swapfile_used[i] = SWAPFILE_IGNORED;
168 /* we ignore all swap devices that are not the resume_file */
169 if (is_resume_device(&swap_info[i])) {
170 swapfile_used[i] = SWAPFILE_SUSPEND;
173 swapfile_used[i] = SWAPFILE_IGNORED;
178 spin_unlock(&swap_lock);
179 return (root_swap != 0xffff) ? 0 : -ENODEV;
183 * This is called after saving image so modification
184 * will be lost after resume... and that's what we want.
185 * we make the device unusable. A new call to
186 * lock_swapdevices can unlock the devices.
188 static void lock_swapdevices(void)
192 spin_lock(&swap_lock);
193 for (i = 0; i< MAX_SWAPFILES; i++)
194 if (swapfile_used[i] == SWAPFILE_IGNORED) {
195 swap_info[i].flags ^= SWP_WRITEOK;
197 spin_unlock(&swap_lock);
201 * write_page - Write one page to a fresh swap location.
202 * @addr: Address we're writing.
203 * @loc: Place to store the entry we used.
205 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
206 * errors. That is an artifact left over from swsusp. It did not
207 * check the return of rw_swap_page_sync() at all, since most pages
208 * written back to swap would return -EIO.
209 * This is a partial improvement, since we will at least return other
210 * errors, though we need to eventually fix the damn code.
212 static int write_page(unsigned long addr, swp_entry_t *loc)
217 entry = get_swap_page();
218 if (swp_offset(entry) &&
219 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
220 error = rw_swap_page_sync(WRITE, entry,
232 * Swap map-handling functions
234 * The swap map is a data structure used for keeping track of each page
235 * written to the swap. It consists of many swap_map_page structures
236 * that contain each an array of MAP_PAGE_SIZE swap entries.
237 * These structures are linked together with the help of either the
238 * .next (in memory) or the .next_swap (in swap) member.
240 * The swap map is created during suspend. At that time we need to keep
241 * it in memory, because we have to free all of the allocated swap
242 * entries if an error occurs. The memory needed is preallocated
243 * so that we know in advance if there's enough of it.
245 * The first swap_map_page structure is filled with the swap entries that
246 * correspond to the first MAP_PAGE_SIZE data pages written to swap and
247 * so on. After the all of the data pages have been written, the order
248 * of the swap_map_page structures in the map is reversed so that they
249 * can be read from swap in the original order. This causes the data
250 * pages to be loaded in exactly the same order in which they have been
253 * During resume we only need to use one swap_map_page structure
254 * at a time, which means that we only need to use two memory pages for
255 * reading the image - one for reading the swap_map_page structures
256 * and the second for reading the data pages from swap.
259 #define MAP_PAGE_SIZE ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \
260 / sizeof(swp_entry_t))
262 struct swap_map_page {
263 swp_entry_t entries[MAP_PAGE_SIZE];
264 swp_entry_t next_swap;
265 struct swap_map_page *next;
268 static inline void free_swap_map(struct swap_map_page *swap_map)
270 struct swap_map_page *swp;
273 swp = swap_map->next;
274 free_page((unsigned long)swap_map);
279 static struct swap_map_page *alloc_swap_map(unsigned int nr_pages)
281 struct swap_map_page *swap_map, *swp;
287 pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages);
288 swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
290 for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) {
291 swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
294 free_swap_map(swap_map);
302 * reverse_swap_map - reverse the order of pages in the swap map
306 static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map)
308 struct swap_map_page *prev, *next;
312 next = swap_map->next;
313 swap_map->next = prev;
321 * free_swap_map_entries - free the swap entries allocated to store
322 * the swap map @swap_map (this is only called in case of an error)
324 static inline void free_swap_map_entries(struct swap_map_page *swap_map)
327 if (swap_map->next_swap.val)
328 swap_free(swap_map->next_swap);
329 swap_map = swap_map->next;
334 * save_swap_map - save the swap map used for tracing the data pages
338 static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start)
340 swp_entry_t entry = (swp_entry_t){0};
344 swap_map->next_swap = entry;
345 if ((error = write_page((unsigned long)swap_map, &entry)))
347 swap_map = swap_map->next;
354 * free_image_entries - free the swap entries allocated to store
355 * the image data pages (this is only called in case of an error)
358 static inline void free_image_entries(struct swap_map_page *swp)
363 for (k = 0; k < MAP_PAGE_SIZE; k++)
364 if (swp->entries[k].val)
365 swap_free(swp->entries[k]);
371 * The swap_map_handle structure is used for handling the swap map in
375 struct swap_map_handle {
376 struct swap_map_page *cur;
380 static inline void init_swap_map_handle(struct swap_map_handle *handle,
381 struct swap_map_page *map)
387 static inline int swap_map_write_page(struct swap_map_handle *handle,
392 error = write_page(addr, handle->cur->entries + handle->k);
395 if (++handle->k >= MAP_PAGE_SIZE) {
396 handle->cur = handle->cur->next;
403 * save_image_data - save the data pages pointed to by the PBEs
404 * from the list @pblist using the swap map handle @handle
405 * (assume there are @nr_pages data pages to save)
408 static int save_image_data(struct pbe *pblist,
409 struct swap_map_handle *handle,
410 unsigned int nr_pages)
416 printk("Saving image data pages (%u pages) ... ", nr_pages);
421 for_each_pbe (p, pblist) {
422 error = swap_map_write_page(handle, p->address);
426 printk("\b\b\b\b%3d%%", nr_pages / m);
430 printk("\b\b\b\bdone\n");
434 static void dump_info(void)
436 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
437 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
438 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
439 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
440 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
441 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
442 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
443 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
444 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
445 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
446 pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages);
449 static void init_header(unsigned int nr_pages)
451 memset(&swsusp_info, 0, sizeof(swsusp_info));
452 swsusp_info.version_code = LINUX_VERSION_CODE;
453 swsusp_info.num_physpages = num_physpages;
454 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
456 swsusp_info.cpus = num_online_cpus();
457 swsusp_info.image_pages = nr_pages;
458 swsusp_info.pages = nr_pages +
459 ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT);
462 static int close_swap(void)
468 error = write_page((unsigned long)&swsusp_info, &entry);
471 error = mark_swapfiles(entry);
478 * pack_orig_addresses - the .orig_address fields of the PBEs from the
479 * list starting at @pbe are stored in the array @buf[] (1 page)
482 static inline struct pbe *pack_orig_addresses(unsigned long *buf,
487 for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
488 buf[j] = pbe->orig_address;
492 for (; j < PAGE_SIZE / sizeof(long); j++)
498 * save_image_metadata - save the .orig_address fields of the PBEs
499 * from the list @pblist using the swap map handle @handle
502 static int save_image_metadata(struct pbe *pblist,
503 struct swap_map_handle *handle)
510 printk("Saving image metadata ... ");
511 buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
516 p = pack_orig_addresses(buf, p);
517 error = swap_map_write_page(handle, (unsigned long)buf);
522 free_page((unsigned long)buf);
524 printk("done (%u pages saved)\n", n);
529 * enough_swap - Make sure we have enough swap to save the image.
531 * Returns TRUE or FALSE after checking the total amount of swap
534 * FIXME: si_swapinfo(&i) returns all swap devices information.
535 * We should only consider resume_device.
538 static int enough_swap(unsigned int nr_pages)
543 pr_debug("swsusp: available swap: %lu pages\n", i.freeswap);
544 return i.freeswap > (nr_pages + PAGES_FOR_IO +
545 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
549 * write_suspend_image - Write entire image and metadata.
551 static int write_suspend_image(struct pbe *pblist, unsigned int nr_pages)
553 struct swap_map_page *swap_map;
554 struct swap_map_handle handle;
557 if (!enough_swap(nr_pages)) {
558 printk(KERN_ERR "swsusp: Not enough free swap\n");
562 init_header(nr_pages);
563 swap_map = alloc_swap_map(swsusp_info.pages);
566 init_swap_map_handle(&handle, swap_map);
568 error = save_image_metadata(pblist, &handle);
570 error = save_image_data(pblist, &handle, nr_pages);
572 goto Free_image_entries;
574 swap_map = reverse_swap_map(swap_map);
575 error = save_swap_map(swap_map, &swsusp_info.start);
577 goto Free_map_entries;
579 error = close_swap();
581 goto Free_map_entries;
584 free_swap_map(swap_map);
588 free_swap_map_entries(swap_map);
590 free_image_entries(swap_map);
594 /* It is important _NOT_ to umount filesystems at this point. We want
595 * them synced (in case something goes wrong) but we DO not want to mark
596 * filesystem clean: it is not. (And it does not matter, if we resume
597 * correctly, we'll mark system clean, anyway.)
599 int swsusp_write(struct pbe *pblist, unsigned int nr_pages)
603 if ((error = swsusp_swap_check())) {
604 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
608 error = write_suspend_image(pblist, nr_pages);
609 /* This will unlock ignored swap devices since writing is finished */
614 int swsusp_suspend(void)
618 if ((error = arch_prepare_suspend()))
621 /* At this point, device_suspend() has been called, but *not*
622 * device_power_down(). We *must* device_power_down() now.
623 * Otherwise, drivers for some devices (e.g. interrupt controllers)
624 * become desynchronized with the actual state of the hardware
625 * at resume time, and evil weirdness ensues.
627 if ((error = device_power_down(PMSG_FREEZE))) {
628 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
632 if ((error = save_highmem())) {
633 printk(KERN_ERR "swsusp: Not enough free pages for highmem\n");
634 goto Restore_highmem;
637 save_processor_state();
638 if ((error = swsusp_arch_suspend()))
639 printk(KERN_ERR "Error %d suspending\n", error);
640 /* Restore control flow magically appears here */
641 restore_processor_state();
650 int swsusp_resume(void)
654 if (device_power_down(PMSG_FREEZE))
655 printk(KERN_ERR "Some devices failed to power down, very bad\n");
656 /* We'll ignore saved state, but this gets preempt count (etc) right */
657 save_processor_state();
658 error = swsusp_arch_resume();
659 /* Code below is only ever reached in case of failure. Otherwise
660 * execution continues at place where swsusp_arch_suspend was called
663 /* The only reason why swsusp_arch_resume() can fail is memory being
664 * very tight, so we have to free it as soon as we can to avoid
665 * subsequent failures
668 restore_processor_state();
670 touch_softlockup_watchdog();
677 * mark_unsafe_pages - mark the pages that cannot be used for storing
678 * the image during resume, because they conflict with the pages that
679 * had been used before suspend
682 static void mark_unsafe_pages(struct pbe *pblist)
685 unsigned long zone_pfn;
688 if (!pblist) /* a sanity check */
691 /* Clear page flags */
692 for_each_zone (zone) {
693 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
694 if (pfn_valid(zone_pfn + zone->zone_start_pfn))
695 ClearPageNosaveFree(pfn_to_page(zone_pfn +
696 zone->zone_start_pfn));
699 /* Mark orig addresses */
700 for_each_pbe (p, pblist)
701 SetPageNosaveFree(virt_to_page(p->orig_address));
705 static void copy_page_backup_list(struct pbe *dst, struct pbe *src)
707 /* We assume both lists contain the same number of elements */
709 dst->orig_address = src->orig_address;
716 * Using bio to read from swap.
717 * This code requires a bit more work than just using buffer heads
718 * but, it is the recommended way for 2.5/2.6.
719 * The following are to signal the beginning and end of I/O. Bios
720 * finish asynchronously, while we want them to happen synchronously.
721 * A simple atomic_t, and a wait loop take care of this problem.
724 static atomic_t io_done = ATOMIC_INIT(0);
726 static int end_io(struct bio *bio, unsigned int num, int err)
728 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
729 panic("I/O error reading memory image");
730 atomic_set(&io_done, 0);
734 static struct block_device *resume_bdev;
737 * submit - submit BIO request.
738 * @rw: READ or WRITE.
739 * @off physical offset of page.
740 * @page: page we're reading or writing.
742 * Straight from the textbook - allocate and initialize the bio.
743 * If we're writing, make sure the page is marked as dirty.
744 * Then submit it and wait.
747 static int submit(int rw, pgoff_t page_off, void *page)
752 bio = bio_alloc(GFP_ATOMIC, 1);
755 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
757 bio->bi_bdev = resume_bdev;
758 bio->bi_end_io = end_io;
760 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
761 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
767 bio_set_pages_dirty(bio);
769 atomic_set(&io_done, 1);
770 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
771 while (atomic_read(&io_done))
779 static int bio_read_page(pgoff_t page_off, void *page)
781 return submit(READ, page_off, page);
784 static int bio_write_page(pgoff_t page_off, void *page)
786 return submit(WRITE, page_off, page);
790 * The following functions allow us to read data using a swap map
791 * in a file-alike way
794 static inline void release_swap_map_reader(struct swap_map_handle *handle)
797 free_page((unsigned long)handle->cur);
801 static inline int get_swap_map_reader(struct swap_map_handle *handle,
806 if (!swp_offset(start))
808 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
811 error = bio_read_page(swp_offset(start), handle->cur);
813 release_swap_map_reader(handle);
820 static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf)
822 unsigned long offset;
827 offset = swp_offset(handle->cur->entries[handle->k]);
830 error = bio_read_page(offset, buf);
833 if (++handle->k >= MAP_PAGE_SIZE) {
835 offset = swp_offset(handle->cur->next_swap);
837 release_swap_map_reader(handle);
839 error = bio_read_page(offset, handle->cur);
845 * Sanity check if this image makes sense with this kernel/swap context
846 * I really don't think that it's foolproof but more than nothing..
849 static const char *sanity_check(void)
852 if (swsusp_info.version_code != LINUX_VERSION_CODE)
853 return "kernel version";
854 if (swsusp_info.num_physpages != num_physpages)
855 return "memory size";
856 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
857 return "system type";
858 if (strcmp(swsusp_info.uts.release,system_utsname.release))
859 return "kernel release";
860 if (strcmp(swsusp_info.uts.version,system_utsname.version))
862 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
865 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
866 if (swsusp_info.cpus != num_possible_cpus())
867 return "number of cpus";
872 static int check_header(void)
874 const char *reason = NULL;
877 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
880 /* Is this same machine? */
881 if ((reason = sanity_check())) {
882 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
888 static int check_sig(void)
892 memset(&swsusp_header, 0, sizeof(swsusp_header));
893 if ((error = bio_read_page(0, &swsusp_header)))
895 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
896 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
899 * Reset swap signature now.
901 error = bio_write_page(0, &swsusp_header);
906 pr_debug("swsusp: Signature found, resuming\n");
911 * load_image_data - load the image data using the swap map handle
912 * @handle and store them using the page backup list @pblist
913 * (assume there are @nr_pages pages to load)
916 static int load_image_data(struct pbe *pblist,
917 struct swap_map_handle *handle,
918 unsigned int nr_pages)
926 printk("Loading image data pages (%u pages) ... ", nr_pages);
933 error = swap_map_read_page(handle, (void *)p->address);
938 printk("\b\b\b\b%3d%%", nr_pages / m);
942 printk("\b\b\b\bdone\n");
947 * unpack_orig_addresses - copy the elements of @buf[] (1 page) to
948 * the PBEs in the list starting at @pbe
951 static inline struct pbe *unpack_orig_addresses(unsigned long *buf,
956 for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
957 pbe->orig_address = buf[j];
964 * load_image_metadata - load the image metadata using the swap map
965 * handle @handle and put them into the PBEs in the list @pblist
968 static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle)
975 printk("Loading image metadata ... ");
976 buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
981 error = swap_map_read_page(handle, buf);
984 p = unpack_orig_addresses(buf, p);
987 free_page((unsigned long)buf);
989 printk("done (%u pages loaded)\n", n);
993 static int check_suspend_image(void)
997 if ((error = check_sig()))
1000 if ((error = check_header()))
1006 static int read_suspend_image(struct pbe **pblist_ptr)
1009 struct pbe *p, *pblist;
1010 struct swap_map_handle handle;
1011 unsigned int nr_pages = swsusp_info.image_pages;
1013 p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0);
1016 error = get_swap_map_reader(&handle, swsusp_info.start);
1018 /* The PBE list at p will be released by swsusp_free() */
1020 error = load_image_metadata(p, &handle);
1022 mark_unsafe_pages(p);
1023 pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1);
1025 copy_page_backup_list(pblist, p);
1030 /* Allocate memory for the image and read the data from swap */
1032 error = alloc_data_pages(pblist, GFP_ATOMIC, 1);
1034 error = load_image_data(pblist, &handle, nr_pages);
1036 *pblist_ptr = pblist;
1038 release_swap_map_reader(&handle);
1043 * swsusp_check - Check for saved image in swap
1046 int swsusp_check(void)
1050 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1051 if (!IS_ERR(resume_bdev)) {
1052 set_blocksize(resume_bdev, PAGE_SIZE);
1053 error = check_suspend_image();
1055 blkdev_put(resume_bdev);
1057 error = PTR_ERR(resume_bdev);
1060 pr_debug("swsusp: resume file found\n");
1062 pr_debug("swsusp: Error %d check for resume file\n", error);
1067 * swsusp_read - Read saved image from swap.
1070 int swsusp_read(struct pbe **pblist_ptr)
1074 if (IS_ERR(resume_bdev)) {
1075 pr_debug("swsusp: block device not initialised\n");
1076 return PTR_ERR(resume_bdev);
1079 error = read_suspend_image(pblist_ptr);
1080 blkdev_put(resume_bdev);
1083 pr_debug("swsusp: Reading resume file was successful\n");
1085 pr_debug("swsusp: Error %d resuming\n", error);
1090 * swsusp_close - close swap device.
1093 void swsusp_close(void)
1095 if (IS_ERR(resume_bdev)) {
1096 pr_debug("swsusp: block device not initialised\n");
1100 blkdev_put(resume_bdev);