2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 #define SLAB_SKB /* Slabified skbuffs */
37 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 2
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* A. Checksumming of received packets by device.
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
66 * B. Checksumming on output.
68 * NONE: skb is checksummed by protocol or csum is not required.
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
84 * Any questions? No questions, good. --ANK
89 #ifdef CONFIG_NETFILTER
92 void (*destroy)(struct nf_conntrack *);
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
104 unsigned long data[32 / sizeof(unsigned long)];
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124 typedef struct skb_frag_struct skb_frag_t;
126 struct skb_frag_struct {
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
135 struct skb_shared_info {
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 unsigned short ufo_size;
141 unsigned int ip6_frag_id;
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
146 /* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
167 SKB_FCLONE_UNAVAILABLE,
173 * struct sk_buff - socket buffer
174 * @next: Next buffer in list
175 * @prev: Previous buffer in list
176 * @sk: Socket we are owned by
177 * @tstamp: Time we arrived
178 * @dev: Device we arrived on/are leaving by
179 * @input_dev: Device we arrived on
180 * @h: Transport layer header
181 * @nh: Network layer header
182 * @mac: Link layer header
183 * @dst: destination entry
184 * @sp: the security path, used for xfrm
185 * @cb: Control buffer. Free for use by every layer. Put private vars here
186 * @len: Length of actual data
187 * @data_len: Data length
188 * @mac_len: Length of link layer header
190 * @local_df: allow local fragmentation
191 * @cloned: Head may be cloned (check refcnt to be sure)
192 * @nohdr: Payload reference only, must not modify header
193 * @pkt_type: Packet class
194 * @fclone: skbuff clone status
195 * @ip_summed: Driver fed us an IP checksum
196 * @priority: Packet queueing priority
197 * @users: User count - see {datagram,tcp}.c
198 * @protocol: Packet protocol from driver
199 * @truesize: Buffer size
200 * @head: Head of buffer
201 * @data: Data head pointer
202 * @tail: Tail pointer
204 * @destructor: Destruct function
205 * @nfmark: Can be used for communication between hooks
206 * @nfct: Associated connection, if any
207 * @ipvs_property: skbuff is owned by ipvs
208 * @nfctinfo: Relationship of this skb to the connection
209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
210 * @tc_index: Traffic control index
211 * @tc_verd: traffic control verdict
215 /* These two members must be first. */
216 struct sk_buff *next;
217 struct sk_buff *prev;
220 struct skb_timeval tstamp;
221 struct net_device *dev;
222 struct net_device *input_dev;
227 struct icmphdr *icmph;
228 struct igmphdr *igmph;
230 struct ipv6hdr *ipv6h;
236 struct ipv6hdr *ipv6h;
245 struct dst_entry *dst;
249 * This is the control buffer. It is free to use for every
250 * layer. Please put your private variables there. If you
251 * want to keep them across layers you have to do a skb_clone()
252 * first. This is owned by whoever has the skb queued ATM.
270 void (*destructor)(struct sk_buff *skb);
271 #ifdef CONFIG_NETFILTER
273 struct nf_conntrack *nfct;
274 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
275 __u8 ipvs_property:1;
277 #ifdef CONFIG_BRIDGE_NETFILTER
278 struct nf_bridge_info *nf_bridge;
280 #endif /* CONFIG_NETFILTER */
281 #ifdef CONFIG_NET_SCHED
282 __u16 tc_index; /* traffic control index */
283 #ifdef CONFIG_NET_CLS_ACT
284 __u16 tc_verd; /* traffic control verdict */
289 /* These elements must be at the end, see alloc_skb() for details. */
290 unsigned int truesize;
300 * Handling routines are only of interest to the kernel
302 #include <linux/slab.h>
304 #include <asm/system.h>
306 extern void __kfree_skb(struct sk_buff *skb);
307 extern struct sk_buff *__alloc_skb(unsigned int size,
308 gfp_t priority, int fclone);
309 static inline struct sk_buff *alloc_skb(unsigned int size,
312 return __alloc_skb(size, priority, 0);
315 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
318 return __alloc_skb(size, priority, 1);
321 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
324 extern void kfree_skbmem(struct sk_buff *skb);
325 extern struct sk_buff *skb_clone(struct sk_buff *skb,
327 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
329 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
331 extern int pskb_expand_head(struct sk_buff *skb,
332 int nhead, int ntail,
334 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
335 unsigned int headroom);
336 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
337 int newheadroom, int newtailroom,
339 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
340 #define dev_kfree_skb(a) kfree_skb(a)
341 extern void skb_over_panic(struct sk_buff *skb, int len,
343 extern void skb_under_panic(struct sk_buff *skb, int len,
346 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
347 int getfrag(void *from, char *to, int offset,
348 int len,int odd, struct sk_buff *skb),
349 void *from, int length);
356 __u32 stepped_offset;
357 struct sk_buff *root_skb;
358 struct sk_buff *cur_skb;
362 extern void skb_prepare_seq_read(struct sk_buff *skb,
363 unsigned int from, unsigned int to,
364 struct skb_seq_state *st);
365 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
366 struct skb_seq_state *st);
367 extern void skb_abort_seq_read(struct skb_seq_state *st);
369 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
370 unsigned int to, struct ts_config *config,
371 struct ts_state *state);
374 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
377 * skb_queue_empty - check if a queue is empty
380 * Returns true if the queue is empty, false otherwise.
382 static inline int skb_queue_empty(const struct sk_buff_head *list)
384 return list->next == (struct sk_buff *)list;
388 * skb_get - reference buffer
389 * @skb: buffer to reference
391 * Makes another reference to a socket buffer and returns a pointer
394 static inline struct sk_buff *skb_get(struct sk_buff *skb)
396 atomic_inc(&skb->users);
401 * If users == 1, we are the only owner and are can avoid redundant
406 * kfree_skb - free an sk_buff
407 * @skb: buffer to free
409 * Drop a reference to the buffer and free it if the usage count has
412 static inline void kfree_skb(struct sk_buff *skb)
414 if (likely(atomic_read(&skb->users) == 1))
416 else if (likely(!atomic_dec_and_test(&skb->users)))
422 * skb_cloned - is the buffer a clone
423 * @skb: buffer to check
425 * Returns true if the buffer was generated with skb_clone() and is
426 * one of multiple shared copies of the buffer. Cloned buffers are
427 * shared data so must not be written to under normal circumstances.
429 static inline int skb_cloned(const struct sk_buff *skb)
431 return skb->cloned &&
432 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
436 * skb_header_cloned - is the header a clone
437 * @skb: buffer to check
439 * Returns true if modifying the header part of the buffer requires
440 * the data to be copied.
442 static inline int skb_header_cloned(const struct sk_buff *skb)
449 dataref = atomic_read(&skb_shinfo(skb)->dataref);
450 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
455 * skb_header_release - release reference to header
456 * @skb: buffer to operate on
458 * Drop a reference to the header part of the buffer. This is done
459 * by acquiring a payload reference. You must not read from the header
460 * part of skb->data after this.
462 static inline void skb_header_release(struct sk_buff *skb)
466 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
470 * skb_shared - is the buffer shared
471 * @skb: buffer to check
473 * Returns true if more than one person has a reference to this
476 static inline int skb_shared(const struct sk_buff *skb)
478 return atomic_read(&skb->users) != 1;
482 * skb_share_check - check if buffer is shared and if so clone it
483 * @skb: buffer to check
484 * @pri: priority for memory allocation
486 * If the buffer is shared the buffer is cloned and the old copy
487 * drops a reference. A new clone with a single reference is returned.
488 * If the buffer is not shared the original buffer is returned. When
489 * being called from interrupt status or with spinlocks held pri must
492 * NULL is returned on a memory allocation failure.
494 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
497 might_sleep_if(pri & __GFP_WAIT);
498 if (skb_shared(skb)) {
499 struct sk_buff *nskb = skb_clone(skb, pri);
507 * Copy shared buffers into a new sk_buff. We effectively do COW on
508 * packets to handle cases where we have a local reader and forward
509 * and a couple of other messy ones. The normal one is tcpdumping
510 * a packet thats being forwarded.
514 * skb_unshare - make a copy of a shared buffer
515 * @skb: buffer to check
516 * @pri: priority for memory allocation
518 * If the socket buffer is a clone then this function creates a new
519 * copy of the data, drops a reference count on the old copy and returns
520 * the new copy with the reference count at 1. If the buffer is not a clone
521 * the original buffer is returned. When called with a spinlock held or
522 * from interrupt state @pri must be %GFP_ATOMIC
524 * %NULL is returned on a memory allocation failure.
526 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
529 might_sleep_if(pri & __GFP_WAIT);
530 if (skb_cloned(skb)) {
531 struct sk_buff *nskb = skb_copy(skb, pri);
532 kfree_skb(skb); /* Free our shared copy */
540 * @list_: list to peek at
542 * Peek an &sk_buff. Unlike most other operations you _MUST_
543 * be careful with this one. A peek leaves the buffer on the
544 * list and someone else may run off with it. You must hold
545 * the appropriate locks or have a private queue to do this.
547 * Returns %NULL for an empty list or a pointer to the head element.
548 * The reference count is not incremented and the reference is therefore
549 * volatile. Use with caution.
551 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
553 struct sk_buff *list = ((struct sk_buff *)list_)->next;
554 if (list == (struct sk_buff *)list_)
561 * @list_: list to peek at
563 * Peek an &sk_buff. Unlike most other operations you _MUST_
564 * be careful with this one. A peek leaves the buffer on the
565 * list and someone else may run off with it. You must hold
566 * the appropriate locks or have a private queue to do this.
568 * Returns %NULL for an empty list or a pointer to the tail element.
569 * The reference count is not incremented and the reference is therefore
570 * volatile. Use with caution.
572 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
574 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
575 if (list == (struct sk_buff *)list_)
581 * skb_queue_len - get queue length
582 * @list_: list to measure
584 * Return the length of an &sk_buff queue.
586 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
591 static inline void skb_queue_head_init(struct sk_buff_head *list)
593 spin_lock_init(&list->lock);
594 list->prev = list->next = (struct sk_buff *)list;
599 * Insert an sk_buff at the start of a list.
601 * The "__skb_xxxx()" functions are the non-atomic ones that
602 * can only be called with interrupts disabled.
606 * __skb_queue_head - queue a buffer at the list head
608 * @newsk: buffer to queue
610 * Queue a buffer at the start of a list. This function takes no locks
611 * and you must therefore hold required locks before calling it.
613 * A buffer cannot be placed on two lists at the same time.
615 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
616 static inline void __skb_queue_head(struct sk_buff_head *list,
617 struct sk_buff *newsk)
619 struct sk_buff *prev, *next;
622 prev = (struct sk_buff *)list;
626 next->prev = prev->next = newsk;
630 * __skb_queue_tail - queue a buffer at the list tail
632 * @newsk: buffer to queue
634 * Queue a buffer at the end of a list. This function takes no locks
635 * and you must therefore hold required locks before calling it.
637 * A buffer cannot be placed on two lists at the same time.
639 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
640 static inline void __skb_queue_tail(struct sk_buff_head *list,
641 struct sk_buff *newsk)
643 struct sk_buff *prev, *next;
646 next = (struct sk_buff *)list;
650 next->prev = prev->next = newsk;
655 * __skb_dequeue - remove from the head of the queue
656 * @list: list to dequeue from
658 * Remove the head of the list. This function does not take any locks
659 * so must be used with appropriate locks held only. The head item is
660 * returned or %NULL if the list is empty.
662 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
663 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
665 struct sk_buff *next, *prev, *result;
667 prev = (struct sk_buff *) list;
676 result->next = result->prev = NULL;
683 * Insert a packet on a list.
685 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
686 static inline void __skb_insert(struct sk_buff *newsk,
687 struct sk_buff *prev, struct sk_buff *next,
688 struct sk_buff_head *list)
692 next->prev = prev->next = newsk;
697 * Place a packet after a given packet in a list.
699 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
700 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
702 __skb_insert(newsk, old, old->next, list);
706 * remove sk_buff from list. _Must_ be called atomically, and with
709 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
710 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
712 struct sk_buff *next, *prev;
717 skb->next = skb->prev = NULL;
723 /* XXX: more streamlined implementation */
726 * __skb_dequeue_tail - remove from the tail of the queue
727 * @list: list to dequeue from
729 * Remove the tail of the list. This function does not take any locks
730 * so must be used with appropriate locks held only. The tail item is
731 * returned or %NULL if the list is empty.
733 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
734 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
736 struct sk_buff *skb = skb_peek_tail(list);
738 __skb_unlink(skb, list);
743 static inline int skb_is_nonlinear(const struct sk_buff *skb)
745 return skb->data_len;
748 static inline unsigned int skb_headlen(const struct sk_buff *skb)
750 return skb->len - skb->data_len;
753 static inline int skb_pagelen(const struct sk_buff *skb)
757 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
758 len += skb_shinfo(skb)->frags[i].size;
759 return len + skb_headlen(skb);
762 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
763 struct page *page, int off, int size)
765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
768 frag->page_offset = off;
770 skb_shinfo(skb)->nr_frags = i + 1;
773 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
774 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
775 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
778 * Add data to an sk_buff
780 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
782 unsigned char *tmp = skb->tail;
783 SKB_LINEAR_ASSERT(skb);
790 * skb_put - add data to a buffer
791 * @skb: buffer to use
792 * @len: amount of data to add
794 * This function extends the used data area of the buffer. If this would
795 * exceed the total buffer size the kernel will panic. A pointer to the
796 * first byte of the extra data is returned.
798 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
800 unsigned char *tmp = skb->tail;
801 SKB_LINEAR_ASSERT(skb);
804 if (unlikely(skb->tail>skb->end))
805 skb_over_panic(skb, len, current_text_addr());
809 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
817 * skb_push - add data to the start of a buffer
818 * @skb: buffer to use
819 * @len: amount of data to add
821 * This function extends the used data area of the buffer at the buffer
822 * start. If this would exceed the total buffer headroom the kernel will
823 * panic. A pointer to the first byte of the extra data is returned.
825 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
829 if (unlikely(skb->data<skb->head))
830 skb_under_panic(skb, len, current_text_addr());
834 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
837 BUG_ON(skb->len < skb->data_len);
838 return skb->data += len;
842 * skb_pull - remove data from the start of a buffer
843 * @skb: buffer to use
844 * @len: amount of data to remove
846 * This function removes data from the start of a buffer, returning
847 * the memory to the headroom. A pointer to the next data in the buffer
848 * is returned. Once the data has been pulled future pushes will overwrite
851 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
853 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
856 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
858 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
860 if (len > skb_headlen(skb) &&
861 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
864 return skb->data += len;
867 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
869 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
872 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
874 if (likely(len <= skb_headlen(skb)))
876 if (unlikely(len > skb->len))
878 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
882 * skb_headroom - bytes at buffer head
883 * @skb: buffer to check
885 * Return the number of bytes of free space at the head of an &sk_buff.
887 static inline int skb_headroom(const struct sk_buff *skb)
889 return skb->data - skb->head;
893 * skb_tailroom - bytes at buffer end
894 * @skb: buffer to check
896 * Return the number of bytes of free space at the tail of an sk_buff
898 static inline int skb_tailroom(const struct sk_buff *skb)
900 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
904 * skb_reserve - adjust headroom
905 * @skb: buffer to alter
906 * @len: bytes to move
908 * Increase the headroom of an empty &sk_buff by reducing the tail
909 * room. This is only allowed for an empty buffer.
911 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
918 * CPUs often take a performance hit when accessing unaligned memory
919 * locations. The actual performance hit varies, it can be small if the
920 * hardware handles it or large if we have to take an exception and fix it
923 * Since an ethernet header is 14 bytes network drivers often end up with
924 * the IP header at an unaligned offset. The IP header can be aligned by
925 * shifting the start of the packet by 2 bytes. Drivers should do this
928 * skb_reserve(NET_IP_ALIGN);
930 * The downside to this alignment of the IP header is that the DMA is now
931 * unaligned. On some architectures the cost of an unaligned DMA is high
932 * and this cost outweighs the gains made by aligning the IP header.
934 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
938 #define NET_IP_ALIGN 2
941 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
943 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
945 if (!skb->data_len) {
947 skb->tail = skb->data + len;
949 ___pskb_trim(skb, len, 0);
953 * skb_trim - remove end from a buffer
954 * @skb: buffer to alter
957 * Cut the length of a buffer down by removing data from the tail. If
958 * the buffer is already under the length specified it is not modified.
960 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
963 __skb_trim(skb, len);
967 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
969 if (!skb->data_len) {
971 skb->tail = skb->data+len;
974 return ___pskb_trim(skb, len, 1);
977 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
979 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
983 * skb_orphan - orphan a buffer
984 * @skb: buffer to orphan
986 * If a buffer currently has an owner then we call the owner's
987 * destructor function and make the @skb unowned. The buffer continues
988 * to exist but is no longer charged to its former owner.
990 static inline void skb_orphan(struct sk_buff *skb)
993 skb->destructor(skb);
994 skb->destructor = NULL;
999 * __skb_queue_purge - empty a list
1000 * @list: list to empty
1002 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1003 * the list and one reference dropped. This function does not take the
1004 * list lock and the caller must hold the relevant locks to use it.
1006 extern void skb_queue_purge(struct sk_buff_head *list);
1007 static inline void __skb_queue_purge(struct sk_buff_head *list)
1009 struct sk_buff *skb;
1010 while ((skb = __skb_dequeue(list)) != NULL)
1014 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1016 * __dev_alloc_skb - allocate an skbuff for sending
1017 * @length: length to allocate
1018 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1020 * Allocate a new &sk_buff and assign it a usage count of one. The
1021 * buffer has unspecified headroom built in. Users should allocate
1022 * the headroom they think they need without accounting for the
1023 * built in space. The built in space is used for optimisations.
1025 * %NULL is returned in there is no free memory.
1027 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1030 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1032 skb_reserve(skb, 16);
1036 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1040 * dev_alloc_skb - allocate an skbuff for sending
1041 * @length: length to allocate
1043 * Allocate a new &sk_buff and assign it a usage count of one. The
1044 * buffer has unspecified headroom built in. Users should allocate
1045 * the headroom they think they need without accounting for the
1046 * built in space. The built in space is used for optimisations.
1048 * %NULL is returned in there is no free memory. Although this function
1049 * allocates memory it can be called from an interrupt.
1051 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1053 return __dev_alloc_skb(length, GFP_ATOMIC);
1057 * skb_cow - copy header of skb when it is required
1058 * @skb: buffer to cow
1059 * @headroom: needed headroom
1061 * If the skb passed lacks sufficient headroom or its data part
1062 * is shared, data is reallocated. If reallocation fails, an error
1063 * is returned and original skb is not changed.
1065 * The result is skb with writable area skb->head...skb->tail
1066 * and at least @headroom of space at head.
1068 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1070 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1075 if (delta || skb_cloned(skb))
1076 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1081 * skb_padto - pad an skbuff up to a minimal size
1082 * @skb: buffer to pad
1083 * @len: minimal length
1085 * Pads up a buffer to ensure the trailing bytes exist and are
1086 * blanked. If the buffer already contains sufficient data it
1087 * is untouched. Returns the buffer, which may be a replacement
1088 * for the original, or NULL for out of memory - in which case
1089 * the original buffer is still freed.
1092 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1094 unsigned int size = skb->len;
1095 if (likely(size >= len))
1097 return skb_pad(skb, len-size);
1100 static inline int skb_add_data(struct sk_buff *skb,
1101 char __user *from, int copy)
1103 const int off = skb->len;
1105 if (skb->ip_summed == CHECKSUM_NONE) {
1107 unsigned int csum = csum_and_copy_from_user(from,
1111 skb->csum = csum_block_add(skb->csum, csum, off);
1114 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1117 __skb_trim(skb, off);
1121 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1122 struct page *page, int off)
1125 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1127 return page == frag->page &&
1128 off == frag->page_offset + frag->size;
1134 * skb_linearize - convert paged skb to linear one
1135 * @skb: buffer to linarize
1136 * @gfp: allocation mode
1138 * If there is no free memory -ENOMEM is returned, otherwise zero
1139 * is returned and the old skb data released.
1141 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1142 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1144 return __skb_linearize(skb, gfp);
1148 * skb_postpull_rcsum - update checksum for received skb after pull
1149 * @skb: buffer to update
1150 * @start: start of data before pull
1151 * @len: length of data pulled
1153 * After doing a pull on a received packet, you need to call this to
1154 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1155 * so that it can be recomputed from scratch.
1158 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1159 const void *start, int len)
1161 if (skb->ip_summed == CHECKSUM_HW)
1162 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1166 * pskb_trim_rcsum - trim received skb and update checksum
1167 * @skb: buffer to trim
1170 * This is exactly the same as pskb_trim except that it ensures the
1171 * checksum of received packets are still valid after the operation.
1174 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1176 if (likely(len >= skb->len))
1178 if (skb->ip_summed == CHECKSUM_HW)
1179 skb->ip_summed = CHECKSUM_NONE;
1180 return __pskb_trim(skb, len);
1183 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1185 #ifdef CONFIG_HIGHMEM
1190 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1193 static inline void kunmap_skb_frag(void *vaddr)
1195 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1196 #ifdef CONFIG_HIGHMEM
1201 #define skb_queue_walk(queue, skb) \
1202 for (skb = (queue)->next; \
1203 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1207 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1208 int noblock, int *err);
1209 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1210 struct poll_table_struct *wait);
1211 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1212 int offset, struct iovec *to,
1214 extern int skb_copy_and_csum_datagram_iovec(const
1215 struct sk_buff *skb,
1218 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1219 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1220 int len, unsigned int csum);
1221 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1223 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1224 void *from, int len);
1225 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1226 int offset, u8 *to, int len,
1228 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1229 extern void skb_split(struct sk_buff *skb,
1230 struct sk_buff *skb1, const u32 len);
1232 extern void skb_release_data(struct sk_buff *skb);
1234 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1235 int len, void *buffer)
1237 int hlen = skb_headlen(skb);
1239 if (hlen - offset >= len)
1240 return skb->data + offset;
1242 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1248 extern void skb_init(void);
1249 extern void skb_add_mtu(int mtu);
1252 * skb_get_timestamp - get timestamp from a skb
1253 * @skb: skb to get stamp from
1254 * @stamp: pointer to struct timeval to store stamp in
1256 * Timestamps are stored in the skb as offsets to a base timestamp.
1257 * This function converts the offset back to a struct timeval and stores
1260 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1262 stamp->tv_sec = skb->tstamp.off_sec;
1263 stamp->tv_usec = skb->tstamp.off_usec;
1267 * skb_set_timestamp - set timestamp of a skb
1268 * @skb: skb to set stamp of
1269 * @stamp: pointer to struct timeval to get stamp from
1271 * Timestamps are stored in the skb as offsets to a base timestamp.
1272 * This function converts a struct timeval to an offset and stores
1275 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1277 skb->tstamp.off_sec = stamp->tv_sec;
1278 skb->tstamp.off_usec = stamp->tv_usec;
1281 extern void __net_timestamp(struct sk_buff *skb);
1283 #ifdef CONFIG_NETFILTER
1284 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1286 if (nfct && atomic_dec_and_test(&nfct->use))
1287 nfct->destroy(nfct);
1289 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1292 atomic_inc(&nfct->use);
1294 static inline void nf_reset(struct sk_buff *skb)
1296 nf_conntrack_put(skb->nfct);
1300 #ifdef CONFIG_BRIDGE_NETFILTER
1301 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1303 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1306 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1309 atomic_inc(&nf_bridge->use);
1311 #endif /* CONFIG_BRIDGE_NETFILTER */
1312 #else /* CONFIG_NETFILTER */
1313 static inline void nf_reset(struct sk_buff *skb) {}
1314 #endif /* CONFIG_NETFILTER */
1316 #endif /* __KERNEL__ */
1317 #endif /* _LINUX_SKBUFF_H */