Merge branch 'viro'
[linux-2.6] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  *
12  * All EFI Runtime Services are not implemented yet as EFI only
13  * supports physical mode addressing on SoftSDV. This is to be fixed
14  * in a future version.  --drummond 1999-07-20
15  *
16  * Implemented EFI runtime services and virtual mode calls.  --davidm
17  *
18  * Goutham Rao: <goutham.rao@intel.com>
19  *      Skip non-WB memory and ignore empty memory ranges.
20  */
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
28
29 #include <asm/io.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/mca.h>
35
36 #define EFI_DEBUG       0
37
38 extern efi_status_t efi_call_phys (void *, ...);
39
40 struct efi efi;
41 EXPORT_SYMBOL(efi);
42 static efi_runtime_services_t *runtime;
43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
44
45 #define efi_call_virt(f, args...)       (*(f))(args)
46
47 #define STUB_GET_TIME(prefix, adjust_arg)                                                         \
48 static efi_status_t                                                                               \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                                            \
50 {                                                                                                 \
51         struct ia64_fpreg fr[6];                                                                  \
52         efi_time_cap_t *atc = NULL;                                                               \
53         efi_status_t ret;                                                                         \
54                                                                                                   \
55         if (tc)                                                                                   \
56                 atc = adjust_arg(tc);                                                             \
57         ia64_save_scratch_fpregs(fr);                                                             \
58         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59         ia64_load_scratch_fpregs(fr);                                                             \
60         return ret;                                                                               \
61 }
62
63 #define STUB_SET_TIME(prefix, adjust_arg)                                                       \
64 static efi_status_t                                                                             \
65 prefix##_set_time (efi_time_t *tm)                                                              \
66 {                                                                                               \
67         struct ia64_fpreg fr[6];                                                                \
68         efi_status_t ret;                                                                       \
69                                                                                                 \
70         ia64_save_scratch_fpregs(fr);                                                           \
71         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));    \
72         ia64_load_scratch_fpregs(fr);                                                           \
73         return ret;                                                                             \
74 }
75
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                                                \
77 static efi_status_t                                                                             \
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)             \
79 {                                                                                               \
80         struct ia64_fpreg fr[6];                                                                \
81         efi_status_t ret;                                                                       \
82                                                                                                 \
83         ia64_save_scratch_fpregs(fr);                                                           \
84         ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),       \
85                                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));      \
86         ia64_load_scratch_fpregs(fr);                                                           \
87         return ret;                                                                             \
88 }
89
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                                                \
91 static efi_status_t                                                                             \
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                                   \
93 {                                                                                               \
94         struct ia64_fpreg fr[6];                                                                \
95         efi_time_t *atm = NULL;                                                                 \
96         efi_status_t ret;                                                                       \
97                                                                                                 \
98         if (tm)                                                                                 \
99                 atm = adjust_arg(tm);                                                           \
100         ia64_save_scratch_fpregs(fr);                                                           \
101         ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),       \
102                                 enabled, atm);                                                  \
103         ia64_load_scratch_fpregs(fr);                                                           \
104         return ret;                                                                             \
105 }
106
107 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                           \
108 static efi_status_t                                                                     \
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,               \
110                        unsigned long *data_size, void *data)                            \
111 {                                                                                       \
112         struct ia64_fpreg fr[6];                                                        \
113         u32 *aattr = NULL;                                                                      \
114         efi_status_t ret;                                                               \
115                                                                                         \
116         if (attr)                                                                       \
117                 aattr = adjust_arg(attr);                                               \
118         ia64_save_scratch_fpregs(fr);                                                   \
119         ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),     \
120                                 adjust_arg(name), adjust_arg(vendor), aattr,            \
121                                 adjust_arg(data_size), adjust_arg(data));               \
122         ia64_load_scratch_fpregs(fr);                                                   \
123         return ret;                                                                     \
124 }
125
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                                              \
127 static efi_status_t                                                                             \
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)   \
129 {                                                                                               \
130         struct ia64_fpreg fr[6];                                                                \
131         efi_status_t ret;                                                                       \
132                                                                                                 \
133         ia64_save_scratch_fpregs(fr);                                                           \
134         ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),   \
135                                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));   \
136         ia64_load_scratch_fpregs(fr);                                                           \
137         return ret;                                                                             \
138 }
139
140 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                           \
141 static efi_status_t                                                                     \
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,      \
143                        unsigned long data_size, void *data)                             \
144 {                                                                                       \
145         struct ia64_fpreg fr[6];                                                        \
146         efi_status_t ret;                                                               \
147                                                                                         \
148         ia64_save_scratch_fpregs(fr);                                                   \
149         ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),     \
150                                 adjust_arg(name), adjust_arg(vendor), attr, data_size,  \
151                                 adjust_arg(data));                                      \
152         ia64_load_scratch_fpregs(fr);                                                   \
153         return ret;                                                                     \
154 }
155
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                                       \
157 static efi_status_t                                                                             \
158 prefix##_get_next_high_mono_count (u32 *count)                                                  \
159 {                                                                                               \
160         struct ia64_fpreg fr[6];                                                                \
161         efi_status_t ret;                                                                       \
162                                                                                                 \
163         ia64_save_scratch_fpregs(fr);                                                           \
164         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)                              \
165                                 __va(runtime->get_next_high_mono_count), adjust_arg(count));    \
166         ia64_load_scratch_fpregs(fr);                                                           \
167         return ret;                                                                             \
168 }
169
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                   \
171 static void                                                                     \
172 prefix##_reset_system (int reset_type, efi_status_t status,                     \
173                        unsigned long data_size, efi_char16_t *data)             \
174 {                                                                               \
175         struct ia64_fpreg fr[6];                                                \
176         efi_char16_t *adata = NULL;                                             \
177                                                                                 \
178         if (data)                                                               \
179                 adata = adjust_arg(data);                                       \
180                                                                                 \
181         ia64_save_scratch_fpregs(fr);                                           \
182         efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),   \
183                           reset_type, status, data_size, adata);                \
184         /* should not return, but just in case... */                            \
185         ia64_load_scratch_fpregs(fr);                                           \
186 }
187
188 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
189
190 STUB_GET_TIME(phys, phys_ptr)
191 STUB_SET_TIME(phys, phys_ptr)
192 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
193 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_GET_VARIABLE(phys, phys_ptr)
195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
196 STUB_SET_VARIABLE(phys, phys_ptr)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
198 STUB_RESET_SYSTEM(phys, phys_ptr)
199
200 #define id(arg) arg
201
202 STUB_GET_TIME(virt, id)
203 STUB_SET_TIME(virt, id)
204 STUB_GET_WAKEUP_TIME(virt, id)
205 STUB_SET_WAKEUP_TIME(virt, id)
206 STUB_GET_VARIABLE(virt, id)
207 STUB_GET_NEXT_VARIABLE(virt, id)
208 STUB_SET_VARIABLE(virt, id)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
210 STUB_RESET_SYSTEM(virt, id)
211
212 void
213 efi_gettimeofday (struct timespec *ts)
214 {
215         efi_time_t tm;
216
217         memset(ts, 0, sizeof(ts));
218         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
219                 return;
220
221         ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
222         ts->tv_nsec = tm.nanosecond;
223 }
224
225 static int
226 is_available_memory (efi_memory_desc_t *md)
227 {
228         if (!(md->attribute & EFI_MEMORY_WB))
229                 return 0;
230
231         switch (md->type) {
232               case EFI_LOADER_CODE:
233               case EFI_LOADER_DATA:
234               case EFI_BOOT_SERVICES_CODE:
235               case EFI_BOOT_SERVICES_DATA:
236               case EFI_CONVENTIONAL_MEMORY:
237                 return 1;
238         }
239         return 0;
240 }
241
242 typedef struct kern_memdesc {
243         u64 attribute;
244         u64 start;
245         u64 num_pages;
246 } kern_memdesc_t;
247
248 static kern_memdesc_t *kern_memmap;
249
250 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
251
252 static inline u64
253 kmd_end(kern_memdesc_t *kmd)
254 {
255         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
256 }
257
258 static inline u64
259 efi_md_end(efi_memory_desc_t *md)
260 {
261         return (md->phys_addr + efi_md_size(md));
262 }
263
264 static inline int
265 efi_wb(efi_memory_desc_t *md)
266 {
267         return (md->attribute & EFI_MEMORY_WB);
268 }
269
270 static inline int
271 efi_uc(efi_memory_desc_t *md)
272 {
273         return (md->attribute & EFI_MEMORY_UC);
274 }
275
276 static void
277 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
278 {
279         kern_memdesc_t *k;
280         u64 start, end, voff;
281
282         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
283         for (k = kern_memmap; k->start != ~0UL; k++) {
284                 if (k->attribute != attr)
285                         continue;
286                 start = PAGE_ALIGN(k->start);
287                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
288                 if (start < end)
289                         if ((*callback)(start + voff, end + voff, arg) < 0)
290                                 return;
291         }
292 }
293
294 /*
295  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
296  * has memory that is available for OS use.
297  */
298 void
299 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
300 {
301         walk(callback, arg, EFI_MEMORY_WB);
302 }
303
304 /*
305  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
306  * has memory that is available for uncached allocator.
307  */
308 void
309 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
310 {
311         walk(callback, arg, EFI_MEMORY_UC);
312 }
313
314 /*
315  * Look for the PAL_CODE region reported by EFI and maps it using an
316  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
317  * Abstraction Layer chapter 11 in ADAG
318  */
319
320 void *
321 efi_get_pal_addr (void)
322 {
323         void *efi_map_start, *efi_map_end, *p;
324         efi_memory_desc_t *md;
325         u64 efi_desc_size;
326         int pal_code_count = 0;
327         u64 vaddr, mask;
328
329         efi_map_start = __va(ia64_boot_param->efi_memmap);
330         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
331         efi_desc_size = ia64_boot_param->efi_memdesc_size;
332
333         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
334                 md = p;
335                 if (md->type != EFI_PAL_CODE)
336                         continue;
337
338                 if (++pal_code_count > 1) {
339                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
340                                md->phys_addr);
341                         continue;
342                 }
343                 /*
344                  * The only ITLB entry in region 7 that is used is the one installed by
345                  * __start().  That entry covers a 64MB range.
346                  */
347                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
348                 vaddr = PAGE_OFFSET + md->phys_addr;
349
350                 /*
351                  * We must check that the PAL mapping won't overlap with the kernel
352                  * mapping.
353                  *
354                  * PAL code is guaranteed to be aligned on a power of 2 between 4k and
355                  * 256KB and that only one ITR is needed to map it. This implies that the
356                  * PAL code is always aligned on its size, i.e., the closest matching page
357                  * size supported by the TLB. Therefore PAL code is guaranteed never to
358                  * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
359                  * now the following test is enough to determine whether or not we need a
360                  * dedicated ITR for the PAL code.
361                  */
362                 if ((vaddr & mask) == (KERNEL_START & mask)) {
363                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
364                                __FUNCTION__);
365                         continue;
366                 }
367
368                 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
369                         panic("Woah!  PAL code size bigger than a granule!");
370
371 #if EFI_DEBUG
372                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
373
374                 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
375                         smp_processor_id(), md->phys_addr,
376                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
377                         vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
378 #endif
379                 return __va(md->phys_addr);
380         }
381         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
382                __FUNCTION__);
383         return NULL;
384 }
385
386 void
387 efi_map_pal_code (void)
388 {
389         void *pal_vaddr = efi_get_pal_addr ();
390         u64 psr;
391
392         if (!pal_vaddr)
393                 return;
394
395         /*
396          * Cannot write to CRx with PSR.ic=1
397          */
398         psr = ia64_clear_ic();
399         ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
400                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
401                  IA64_GRANULE_SHIFT);
402         ia64_set_psr(psr);              /* restore psr */
403         ia64_srlz_i();
404 }
405
406 void __init
407 efi_init (void)
408 {
409         void *efi_map_start, *efi_map_end;
410         efi_config_table_t *config_tables;
411         efi_char16_t *c16;
412         u64 efi_desc_size;
413         char *cp, vendor[100] = "unknown";
414         extern char saved_command_line[];
415         int i;
416
417         /* it's too early to be able to use the standard kernel command line support... */
418         for (cp = saved_command_line; *cp; ) {
419                 if (memcmp(cp, "mem=", 4) == 0) {
420                         mem_limit = memparse(cp + 4, &cp);
421                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
422                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
423                 } else {
424                         while (*cp != ' ' && *cp)
425                                 ++cp;
426                         while (*cp == ' ')
427                                 ++cp;
428                 }
429         }
430         if (max_addr != ~0UL)
431                 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
432
433         efi.systab = __va(ia64_boot_param->efi_systab);
434
435         /*
436          * Verify the EFI Table
437          */
438         if (efi.systab == NULL)
439                 panic("Woah! Can't find EFI system table.\n");
440         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
441                 panic("Woah! EFI system table signature incorrect\n");
442         if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
443                 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
444                        "got %d.%02d, expected %d.%02d\n",
445                        efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
446                        EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
447
448         config_tables = __va(efi.systab->tables);
449
450         /* Show what we know for posterity */
451         c16 = __va(efi.systab->fw_vendor);
452         if (c16) {
453                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
454                         vendor[i] = *c16++;
455                 vendor[i] = '\0';
456         }
457
458         printk(KERN_INFO "EFI v%u.%.02u by %s:",
459                efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
460
461         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
462                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
463                         efi.mps = __va(config_tables[i].table);
464                         printk(" MPS=0x%lx", config_tables[i].table);
465                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
466                         efi.acpi20 = __va(config_tables[i].table);
467                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
468                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
469                         efi.acpi = __va(config_tables[i].table);
470                         printk(" ACPI=0x%lx", config_tables[i].table);
471                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
472                         efi.smbios = __va(config_tables[i].table);
473                         printk(" SMBIOS=0x%lx", config_tables[i].table);
474                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
475                         efi.sal_systab = __va(config_tables[i].table);
476                         printk(" SALsystab=0x%lx", config_tables[i].table);
477                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
478                         efi.hcdp = __va(config_tables[i].table);
479                         printk(" HCDP=0x%lx", config_tables[i].table);
480                 }
481         }
482         printk("\n");
483
484         runtime = __va(efi.systab->runtime);
485         efi.get_time = phys_get_time;
486         efi.set_time = phys_set_time;
487         efi.get_wakeup_time = phys_get_wakeup_time;
488         efi.set_wakeup_time = phys_set_wakeup_time;
489         efi.get_variable = phys_get_variable;
490         efi.get_next_variable = phys_get_next_variable;
491         efi.set_variable = phys_set_variable;
492         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
493         efi.reset_system = phys_reset_system;
494
495         efi_map_start = __va(ia64_boot_param->efi_memmap);
496         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
497         efi_desc_size = ia64_boot_param->efi_memdesc_size;
498
499 #if EFI_DEBUG
500         /* print EFI memory map: */
501         {
502                 efi_memory_desc_t *md;
503                 void *p;
504
505                 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
506                         md = p;
507                         printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
508                                i, md->type, md->attribute, md->phys_addr,
509                                md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
510                                md->num_pages >> (20 - EFI_PAGE_SHIFT));
511                 }
512         }
513 #endif
514
515         efi_map_pal_code();
516         efi_enter_virtual_mode();
517 }
518
519 void
520 efi_enter_virtual_mode (void)
521 {
522         void *efi_map_start, *efi_map_end, *p;
523         efi_memory_desc_t *md;
524         efi_status_t status;
525         u64 efi_desc_size;
526
527         efi_map_start = __va(ia64_boot_param->efi_memmap);
528         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
529         efi_desc_size = ia64_boot_param->efi_memdesc_size;
530
531         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
532                 md = p;
533                 if (md->attribute & EFI_MEMORY_RUNTIME) {
534                         /*
535                          * Some descriptors have multiple bits set, so the order of
536                          * the tests is relevant.
537                          */
538                         if (md->attribute & EFI_MEMORY_WB) {
539                                 md->virt_addr = (u64) __va(md->phys_addr);
540                         } else if (md->attribute & EFI_MEMORY_UC) {
541                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
542                         } else if (md->attribute & EFI_MEMORY_WC) {
543 #if 0
544                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
545                                                                            | _PAGE_D
546                                                                            | _PAGE_MA_WC
547                                                                            | _PAGE_PL_0
548                                                                            | _PAGE_AR_RW));
549 #else
550                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
551                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
552 #endif
553                         } else if (md->attribute & EFI_MEMORY_WT) {
554 #if 0
555                                 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
556                                                                            | _PAGE_D | _PAGE_MA_WT
557                                                                            | _PAGE_PL_0
558                                                                            | _PAGE_AR_RW));
559 #else
560                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
561                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
562 #endif
563                         }
564                 }
565         }
566
567         status = efi_call_phys(__va(runtime->set_virtual_address_map),
568                                ia64_boot_param->efi_memmap_size,
569                                efi_desc_size, ia64_boot_param->efi_memdesc_version,
570                                ia64_boot_param->efi_memmap);
571         if (status != EFI_SUCCESS) {
572                 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
573                        "(status=%lu)\n", status);
574                 return;
575         }
576
577         /*
578          * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
579          */
580         efi.get_time = virt_get_time;
581         efi.set_time = virt_set_time;
582         efi.get_wakeup_time = virt_get_wakeup_time;
583         efi.set_wakeup_time = virt_set_wakeup_time;
584         efi.get_variable = virt_get_variable;
585         efi.get_next_variable = virt_get_next_variable;
586         efi.set_variable = virt_set_variable;
587         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
588         efi.reset_system = virt_reset_system;
589 }
590
591 /*
592  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
593  * this type, other I/O port ranges should be described via ACPI.
594  */
595 u64
596 efi_get_iobase (void)
597 {
598         void *efi_map_start, *efi_map_end, *p;
599         efi_memory_desc_t *md;
600         u64 efi_desc_size;
601
602         efi_map_start = __va(ia64_boot_param->efi_memmap);
603         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
604         efi_desc_size = ia64_boot_param->efi_memdesc_size;
605
606         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
607                 md = p;
608                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
609                         if (md->attribute & EFI_MEMORY_UC)
610                                 return md->phys_addr;
611                 }
612         }
613         return 0;
614 }
615
616 static efi_memory_desc_t *
617 efi_memory_descriptor (unsigned long phys_addr)
618 {
619         void *efi_map_start, *efi_map_end, *p;
620         efi_memory_desc_t *md;
621         u64 efi_desc_size;
622
623         efi_map_start = __va(ia64_boot_param->efi_memmap);
624         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
625         efi_desc_size = ia64_boot_param->efi_memdesc_size;
626
627         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
628                 md = p;
629
630                 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
631                          return md;
632         }
633         return 0;
634 }
635
636 static int
637 efi_memmap_has_mmio (void)
638 {
639         void *efi_map_start, *efi_map_end, *p;
640         efi_memory_desc_t *md;
641         u64 efi_desc_size;
642
643         efi_map_start = __va(ia64_boot_param->efi_memmap);
644         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
645         efi_desc_size = ia64_boot_param->efi_memdesc_size;
646
647         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
648                 md = p;
649
650                 if (md->type == EFI_MEMORY_MAPPED_IO)
651                         return 1;
652         }
653         return 0;
654 }
655
656 u32
657 efi_mem_type (unsigned long phys_addr)
658 {
659         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
660
661         if (md)
662                 return md->type;
663         return 0;
664 }
665
666 u64
667 efi_mem_attributes (unsigned long phys_addr)
668 {
669         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
670
671         if (md)
672                 return md->attribute;
673         return 0;
674 }
675 EXPORT_SYMBOL(efi_mem_attributes);
676
677 /*
678  * Determines whether the memory at phys_addr supports the desired
679  * attribute (WB, UC, etc).  If this returns 1, the caller can safely
680  * access *size bytes at phys_addr with the specified attribute.
681  */
682 static int
683 efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr)
684 {
685         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
686         unsigned long md_end;
687
688         if (!md || (md->attribute & attr) != attr)
689                 return 0;
690
691         do {
692                 md_end = efi_md_end(md);
693                 if (phys_addr + *size <= md_end)
694                         return 1;
695
696                 md = efi_memory_descriptor(md_end);
697                 if (!md || (md->attribute & attr) != attr) {
698                         *size = md_end - phys_addr;
699                         return 1;
700                 }
701         } while (md);
702         return 0;
703 }
704
705 /*
706  * For /dev/mem, we only allow read & write system calls to access
707  * write-back memory, because read & write don't allow the user to
708  * control access size.
709  */
710 int
711 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
712 {
713         return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
714 }
715
716 /*
717  * We allow mmap of anything in the EFI memory map that supports
718  * either write-back or uncacheable access.  For uncacheable regions,
719  * the supported access sizes are system-dependent, and the user is
720  * responsible for using the correct size.
721  *
722  * Note that this doesn't currently allow access to hot-added memory,
723  * because that doesn't appear in the boot-time EFI memory map.
724  */
725 int
726 valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size)
727 {
728         if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
729                 return 1;
730
731         if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
732                 return 1;
733
734         /*
735          * Some firmware doesn't report MMIO regions in the EFI memory map.
736          * The Intel BigSur (a.k.a. HP i2000) has this problem.  In this
737          * case, we can't use the EFI memory map to validate mmap requests.
738          */
739         if (!efi_memmap_has_mmio())
740                 return 1;
741
742         return 0;
743 }
744
745 int __init
746 efi_uart_console_only(void)
747 {
748         efi_status_t status;
749         char *s, name[] = "ConOut";
750         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
751         efi_char16_t *utf16, name_utf16[32];
752         unsigned char data[1024];
753         unsigned long size = sizeof(data);
754         struct efi_generic_dev_path *hdr, *end_addr;
755         int uart = 0;
756
757         /* Convert to UTF-16 */
758         utf16 = name_utf16;
759         s = name;
760         while (*s)
761                 *utf16++ = *s++ & 0x7f;
762         *utf16 = 0;
763
764         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
765         if (status != EFI_SUCCESS) {
766                 printk(KERN_ERR "No EFI %s variable?\n", name);
767                 return 0;
768         }
769
770         hdr = (struct efi_generic_dev_path *) data;
771         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
772         while (hdr < end_addr) {
773                 if (hdr->type == EFI_DEV_MSG &&
774                     hdr->sub_type == EFI_DEV_MSG_UART)
775                         uart = 1;
776                 else if (hdr->type == EFI_DEV_END_PATH ||
777                           hdr->type == EFI_DEV_END_PATH2) {
778                         if (!uart)
779                                 return 0;
780                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
781                                 return 1;
782                         uart = 0;
783                 }
784                 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
785         }
786         printk(KERN_ERR "Malformed %s value\n", name);
787         return 0;
788 }
789
790 /*
791  * Look for the first granule aligned memory descriptor memory
792  * that is big enough to hold EFI memory map. Make sure this
793  * descriptor is atleast granule sized so it does not get trimmed
794  */
795 struct kern_memdesc *
796 find_memmap_space (void)
797 {
798         u64     contig_low=0, contig_high=0;
799         u64     as = 0, ae;
800         void *efi_map_start, *efi_map_end, *p, *q;
801         efi_memory_desc_t *md, *pmd = NULL, *check_md;
802         u64     space_needed, efi_desc_size;
803         unsigned long total_mem = 0;
804
805         efi_map_start = __va(ia64_boot_param->efi_memmap);
806         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
807         efi_desc_size = ia64_boot_param->efi_memdesc_size;
808
809         /*
810          * Worst case: we need 3 kernel descriptors for each efi descriptor
811          * (if every entry has a WB part in the middle, and UC head and tail),
812          * plus one for the end marker.
813          */
814         space_needed = sizeof(kern_memdesc_t) *
815                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
816
817         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
818                 md = p;
819                 if (!efi_wb(md)) {
820                         continue;
821                 }
822                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
823                         contig_low = GRANULEROUNDUP(md->phys_addr);
824                         contig_high = efi_md_end(md);
825                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
826                                 check_md = q;
827                                 if (!efi_wb(check_md))
828                                         break;
829                                 if (contig_high != check_md->phys_addr)
830                                         break;
831                                 contig_high = efi_md_end(check_md);
832                         }
833                         contig_high = GRANULEROUNDDOWN(contig_high);
834                 }
835                 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
836                         continue;
837
838                 /* Round ends inward to granule boundaries */
839                 as = max(contig_low, md->phys_addr);
840                 ae = min(contig_high, efi_md_end(md));
841
842                 /* keep within max_addr= command line arg */
843                 ae = min(ae, max_addr);
844                 if (ae <= as)
845                         continue;
846
847                 /* avoid going over mem= command line arg */
848                 if (total_mem + (ae - as) > mem_limit)
849                         ae -= total_mem + (ae - as) - mem_limit;
850
851                 if (ae <= as)
852                         continue;
853
854                 if (ae - as > space_needed)
855                         break;
856         }
857         if (p >= efi_map_end)
858                 panic("Can't allocate space for kernel memory descriptors");
859
860         return __va(as);
861 }
862
863 /*
864  * Walk the EFI memory map and gather all memory available for kernel
865  * to use.  We can allocate partial granules only if the unavailable
866  * parts exist, and are WB.
867  */
868 void
869 efi_memmap_init(unsigned long *s, unsigned long *e)
870 {
871         struct kern_memdesc *k, *prev = 0;
872         u64     contig_low=0, contig_high=0;
873         u64     as, ae, lim;
874         void *efi_map_start, *efi_map_end, *p, *q;
875         efi_memory_desc_t *md, *pmd = NULL, *check_md;
876         u64     efi_desc_size;
877         unsigned long total_mem = 0;
878
879         k = kern_memmap = find_memmap_space();
880
881         efi_map_start = __va(ia64_boot_param->efi_memmap);
882         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
883         efi_desc_size = ia64_boot_param->efi_memdesc_size;
884
885         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
886                 md = p;
887                 if (!efi_wb(md)) {
888                         if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
889                                            md->type == EFI_BOOT_SERVICES_DATA)) {
890                                 k->attribute = EFI_MEMORY_UC;
891                                 k->start = md->phys_addr;
892                                 k->num_pages = md->num_pages;
893                                 k++;
894                         }
895                         continue;
896                 }
897                 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
898                         contig_low = GRANULEROUNDUP(md->phys_addr);
899                         contig_high = efi_md_end(md);
900                         for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
901                                 check_md = q;
902                                 if (!efi_wb(check_md))
903                                         break;
904                                 if (contig_high != check_md->phys_addr)
905                                         break;
906                                 contig_high = efi_md_end(check_md);
907                         }
908                         contig_high = GRANULEROUNDDOWN(contig_high);
909                 }
910                 if (!is_available_memory(md))
911                         continue;
912
913                 /*
914                  * Round ends inward to granule boundaries
915                  * Give trimmings to uncached allocator
916                  */
917                 if (md->phys_addr < contig_low) {
918                         lim = min(efi_md_end(md), contig_low);
919                         if (efi_uc(md)) {
920                                 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
921                                     kmd_end(k-1) == md->phys_addr) {
922                                         (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
923                                 } else {
924                                         k->attribute = EFI_MEMORY_UC;
925                                         k->start = md->phys_addr;
926                                         k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
927                                         k++;
928                                 }
929                         }
930                         as = contig_low;
931                 } else
932                         as = md->phys_addr;
933
934                 if (efi_md_end(md) > contig_high) {
935                         lim = max(md->phys_addr, contig_high);
936                         if (efi_uc(md)) {
937                                 if (lim == md->phys_addr && k > kern_memmap &&
938                                     (k-1)->attribute == EFI_MEMORY_UC &&
939                                     kmd_end(k-1) == md->phys_addr) {
940                                         (k-1)->num_pages += md->num_pages;
941                                 } else {
942                                         k->attribute = EFI_MEMORY_UC;
943                                         k->start = lim;
944                                         k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
945                                         k++;
946                                 }
947                         }
948                         ae = contig_high;
949                 } else
950                         ae = efi_md_end(md);
951
952                 /* keep within max_addr= command line arg */
953                 ae = min(ae, max_addr);
954                 if (ae <= as)
955                         continue;
956
957                 /* avoid going over mem= command line arg */
958                 if (total_mem + (ae - as) > mem_limit)
959                         ae -= total_mem + (ae - as) - mem_limit;
960
961                 if (ae <= as)
962                         continue;
963                 if (prev && kmd_end(prev) == md->phys_addr) {
964                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
965                         total_mem += ae - as;
966                         continue;
967                 }
968                 k->attribute = EFI_MEMORY_WB;
969                 k->start = as;
970                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
971                 total_mem += ae - as;
972                 prev = k++;
973         }
974         k->start = ~0L; /* end-marker */
975
976         /* reserve the memory we are using for kern_memmap */
977         *s = (u64)kern_memmap;
978         *e = (u64)++k;
979 }
980
981 void
982 efi_initialize_iomem_resources(struct resource *code_resource,
983                                struct resource *data_resource)
984 {
985         struct resource *res;
986         void *efi_map_start, *efi_map_end, *p;
987         efi_memory_desc_t *md;
988         u64 efi_desc_size;
989         char *name;
990         unsigned long flags;
991
992         efi_map_start = __va(ia64_boot_param->efi_memmap);
993         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
994         efi_desc_size = ia64_boot_param->efi_memdesc_size;
995
996         res = NULL;
997
998         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
999                 md = p;
1000
1001                 if (md->num_pages == 0) /* should not happen */
1002                         continue;
1003
1004                 flags = IORESOURCE_MEM;
1005                 switch (md->type) {
1006
1007                         case EFI_MEMORY_MAPPED_IO:
1008                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1009                                 continue;
1010
1011                         case EFI_LOADER_CODE:
1012                         case EFI_LOADER_DATA:
1013                         case EFI_BOOT_SERVICES_DATA:
1014                         case EFI_BOOT_SERVICES_CODE:
1015                         case EFI_CONVENTIONAL_MEMORY:
1016                                 if (md->attribute & EFI_MEMORY_WP) {
1017                                         name = "System ROM";
1018                                         flags |= IORESOURCE_READONLY;
1019                                 } else {
1020                                         name = "System RAM";
1021                                 }
1022                                 break;
1023
1024                         case EFI_ACPI_MEMORY_NVS:
1025                                 name = "ACPI Non-volatile Storage";
1026                                 flags |= IORESOURCE_BUSY;
1027                                 break;
1028
1029                         case EFI_UNUSABLE_MEMORY:
1030                                 name = "reserved";
1031                                 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1032                                 break;
1033
1034                         case EFI_RESERVED_TYPE:
1035                         case EFI_RUNTIME_SERVICES_CODE:
1036                         case EFI_RUNTIME_SERVICES_DATA:
1037                         case EFI_ACPI_RECLAIM_MEMORY:
1038                         default:
1039                                 name = "reserved";
1040                                 flags |= IORESOURCE_BUSY;
1041                                 break;
1042                 }
1043
1044                 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1045                         printk(KERN_ERR "failed to alocate resource for iomem\n");
1046                         return;
1047                 }
1048
1049                 res->name = name;
1050                 res->start = md->phys_addr;
1051                 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1052                 res->flags = flags;
1053
1054                 if (insert_resource(&iomem_resource, res) < 0)
1055                         kfree(res);
1056                 else {
1057                         /*
1058                          * We don't know which region contains
1059                          * kernel data so we try it repeatedly and
1060                          * let the resource manager test it.
1061                          */
1062                         insert_resource(res, code_resource);
1063                         insert_resource(res, data_resource);
1064                 }
1065         }
1066 }