powerpc/mm: Merge various PTE bits and accessors definitions
[linux-2.6] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4  * This file contains the functions and defines necessary to modify and use
5  * the ppc64 hashed page table.
6  */
7
8 #ifndef __ASSEMBLY__
9 #include <linux/stddef.h>
10 #include <asm/tlbflush.h>
11 #endif /* __ASSEMBLY__ */
12
13 #ifdef CONFIG_PPC_64K_PAGES
14 #include <asm/pgtable-ppc64-64k.h>
15 #else
16 #include <asm/pgtable-ppc64-4k.h>
17 #endif
18
19 #define FIRST_USER_ADDRESS      0
20
21 /*
22  * Size of EA range mapped by our pagetables.
23  */
24 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25                             PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
26 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
27
28
29 /* Some sanity checking */
30 #if TASK_SIZE_USER64 > PGTABLE_RANGE
31 #error TASK_SIZE_USER64 exceeds pagetable range
32 #endif
33
34 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
35 #error TASK_SIZE_USER64 exceeds user VSID range
36 #endif
37
38 /*
39  * Define the address range of the vmalloc VM area.
40  */
41 #define VMALLOC_START ASM_CONST(0xD000000000000000)
42 #define VMALLOC_SIZE  (PGTABLE_RANGE >> 1)
43 #define VMALLOC_END   (VMALLOC_START + VMALLOC_SIZE)
44
45 /*
46  * Define the address ranges for MMIO and IO space :
47  *
48  *  ISA_IO_BASE = VMALLOC_END, 64K reserved area
49  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
50  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
51  */
52 #define FULL_IO_SIZE    0x80000000ul
53 #define  ISA_IO_BASE    (VMALLOC_END)
54 #define  ISA_IO_END     (VMALLOC_END + 0x10000ul)
55 #define  PHB_IO_BASE    (ISA_IO_END)
56 #define  PHB_IO_END     (VMALLOC_END + FULL_IO_SIZE)
57 #define IOREMAP_BASE    (PHB_IO_END)
58 #define IOREMAP_END     (VMALLOC_START + PGTABLE_RANGE)
59
60 /*
61  * Region IDs
62  */
63 #define REGION_SHIFT            60UL
64 #define REGION_MASK             (0xfUL << REGION_SHIFT)
65 #define REGION_ID(ea)           (((unsigned long)(ea)) >> REGION_SHIFT)
66
67 #define VMALLOC_REGION_ID       (REGION_ID(VMALLOC_START))
68 #define KERNEL_REGION_ID        (REGION_ID(PAGE_OFFSET))
69 #define VMEMMAP_REGION_ID       (0xfUL)
70 #define USER_REGION_ID          (0UL)
71
72 /*
73  * Defines the address of the vmemap area, in its own region
74  */
75 #define VMEMMAP_BASE            (VMEMMAP_REGION_ID << REGION_SHIFT)
76 #define vmemmap                 ((struct page *)VMEMMAP_BASE)
77
78
79 /*
80  * Include the PTE bits definitions
81  */
82 #include <asm/pte-hash64.h>
83 #include <asm/pte-common.h>
84
85
86 #ifdef CONFIG_PPC_MM_SLICES
87 #define HAVE_ARCH_UNMAPPED_AREA
88 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
89 #endif /* CONFIG_PPC_MM_SLICES */
90
91 #ifndef __ASSEMBLY__
92
93 /*
94  * This is the default implementation of various PTE accessors, it's
95  * used in all cases except Book3S with 64K pages where we have a
96  * concept of sub-pages
97  */
98 #ifndef __real_pte
99
100 #ifdef STRICT_MM_TYPECHECKS
101 #define __real_pte(e,p)         ((real_pte_t){(e)})
102 #define __rpte_to_pte(r)        ((r).pte)
103 #else
104 #define __real_pte(e,p)         (e)
105 #define __rpte_to_pte(r)        (__pte(r))
106 #endif
107 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
108
109 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
110         do {                                                             \
111                 index = 0;                                               \
112                 shift = mmu_psize_defs[psize].shift;                     \
113
114 #define pte_iterate_hashed_end() } while(0)
115
116 #ifdef CONFIG_PPC_HAS_HASH_64K
117 #define pte_pagesize_index(mm, addr, pte)       get_slice_psize(mm, addr)
118 #else
119 #define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
120 #endif
121
122 #endif /* __real_pte */
123
124
125 /* pte_clear moved to later in this file */
126
127 #define PMD_BAD_BITS            (PTE_TABLE_SIZE-1)
128 #define PUD_BAD_BITS            (PMD_TABLE_SIZE-1)
129
130 #define pmd_set(pmdp, pmdval)   (pmd_val(*(pmdp)) = (pmdval))
131 #define pmd_none(pmd)           (!pmd_val(pmd))
132 #define pmd_bad(pmd)            (!is_kernel_addr(pmd_val(pmd)) \
133                                  || (pmd_val(pmd) & PMD_BAD_BITS))
134 #define pmd_present(pmd)        (pmd_val(pmd) != 0)
135 #define pmd_clear(pmdp)         (pmd_val(*(pmdp)) = 0)
136 #define pmd_page_vaddr(pmd)     (pmd_val(pmd) & ~PMD_MASKED_BITS)
137 #define pmd_page(pmd)           virt_to_page(pmd_page_vaddr(pmd))
138
139 #define pud_set(pudp, pudval)   (pud_val(*(pudp)) = (pudval))
140 #define pud_none(pud)           (!pud_val(pud))
141 #define pud_bad(pud)            (!is_kernel_addr(pud_val(pud)) \
142                                  || (pud_val(pud) & PUD_BAD_BITS))
143 #define pud_present(pud)        (pud_val(pud) != 0)
144 #define pud_clear(pudp)         (pud_val(*(pudp)) = 0)
145 #define pud_page_vaddr(pud)     (pud_val(pud) & ~PUD_MASKED_BITS)
146 #define pud_page(pud)           virt_to_page(pud_page_vaddr(pud))
147
148 #define pgd_set(pgdp, pudp)     ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
149
150 /*
151  * Find an entry in a page-table-directory.  We combine the address region
152  * (the high order N bits) and the pgd portion of the address.
153  */
154 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
155 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
156
157 #define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
158
159 #define pmd_offset(pudp,addr) \
160   (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
161
162 #define pte_offset_kernel(dir,addr) \
163   (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
164
165 #define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
166 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
167 #define pte_unmap(pte)                  do { } while(0)
168 #define pte_unmap_nested(pte)           do { } while(0)
169
170 /* to find an entry in a kernel page-table-directory */
171 /* This now only contains the vmalloc pages */
172 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
173
174
175 /* Atomic PTE updates */
176 static inline unsigned long pte_update(struct mm_struct *mm,
177                                        unsigned long addr,
178                                        pte_t *ptep, unsigned long clr,
179                                        int huge)
180 {
181         unsigned long old, tmp;
182
183         __asm__ __volatile__(
184         "1:     ldarx   %0,0,%3         # pte_update\n\
185         andi.   %1,%0,%6\n\
186         bne-    1b \n\
187         andc    %1,%0,%4 \n\
188         stdcx.  %1,0,%3 \n\
189         bne-    1b"
190         : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
191         : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
192         : "cc" );
193
194         /* huge pages use the old page table lock */
195         if (!huge)
196                 assert_pte_locked(mm, addr);
197
198         if (old & _PAGE_HASHPTE)
199                 hpte_need_flush(mm, addr, ptep, old, huge);
200         return old;
201 }
202
203 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
204                                               unsigned long addr, pte_t *ptep)
205 {
206         unsigned long old;
207
208         if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
209                 return 0;
210         old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
211         return (old & _PAGE_ACCESSED) != 0;
212 }
213 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
214 #define ptep_test_and_clear_young(__vma, __addr, __ptep)                   \
215 ({                                                                         \
216         int __r;                                                           \
217         __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
218         __r;                                                               \
219 })
220
221 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
222 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
223                                       pte_t *ptep)
224 {
225         unsigned long old;
226
227         if ((pte_val(*ptep) & _PAGE_RW) == 0)
228                 return;
229         old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
230 }
231
232 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
233                                            unsigned long addr, pte_t *ptep)
234 {
235         unsigned long old;
236
237         if ((pte_val(*ptep) & _PAGE_RW) == 0)
238                 return;
239         old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
240 }
241
242 /*
243  * We currently remove entries from the hashtable regardless of whether
244  * the entry was young or dirty. The generic routines only flush if the
245  * entry was young or dirty which is not good enough.
246  *
247  * We should be more intelligent about this but for the moment we override
248  * these functions and force a tlb flush unconditionally
249  */
250 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
251 #define ptep_clear_flush_young(__vma, __address, __ptep)                \
252 ({                                                                      \
253         int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
254                                                   __ptep);              \
255         __young;                                                        \
256 })
257
258 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
259 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
260                                        unsigned long addr, pte_t *ptep)
261 {
262         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
263         return __pte(old);
264 }
265
266 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
267                              pte_t * ptep)
268 {
269         pte_update(mm, addr, ptep, ~0UL, 0);
270 }
271
272
273 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
274  * function doesn't need to flush the hash entry
275  */
276 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
277 {
278         unsigned long bits = pte_val(entry) &
279                 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
280                  _PAGE_EXEC | _PAGE_HWEXEC);
281         unsigned long old, tmp;
282
283         __asm__ __volatile__(
284         "1:     ldarx   %0,0,%4\n\
285                 andi.   %1,%0,%6\n\
286                 bne-    1b \n\
287                 or      %0,%3,%0\n\
288                 stdcx.  %0,0,%4\n\
289                 bne-    1b"
290         :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
291         :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
292         :"cc");
293 }
294
295 #define __HAVE_ARCH_PTE_SAME
296 #define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
297
298 #define pte_ERROR(e) \
299         printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
300 #define pmd_ERROR(e) \
301         printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
302 #define pgd_ERROR(e) \
303         printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
304
305 /* Encode and de-code a swap entry */
306 #define __swp_type(entry)       (((entry).val >> 1) & 0x3f)
307 #define __swp_offset(entry)     ((entry).val >> 8)
308 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
309 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
310 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val << PTE_RPN_SHIFT })
311 #define pte_to_pgoff(pte)       (pte_val(pte) >> PTE_RPN_SHIFT)
312 #define pgoff_to_pte(off)       ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
313 #define PTE_FILE_MAX_BITS       (BITS_PER_LONG - PTE_RPN_SHIFT)
314
315 void pgtable_cache_init(void);
316
317 /*
318  * find_linux_pte returns the address of a linux pte for a given
319  * effective address and directory.  If not found, it returns zero.
320  */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
321 {
322         pgd_t *pg;
323         pud_t *pu;
324         pmd_t *pm;
325         pte_t *pt = NULL;
326
327         pg = pgdir + pgd_index(ea);
328         if (!pgd_none(*pg)) {
329                 pu = pud_offset(pg, ea);
330                 if (!pud_none(*pu)) {
331                         pm = pmd_offset(pu, ea);
332                         if (pmd_present(*pm))
333                                 pt = pte_offset_kernel(pm, ea);
334                 }
335         }
336         return pt;
337 }
338
339 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
340
341 #endif /* __ASSEMBLY__ */
342
343 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */