2 * Code for replacing ftrace calls with jumps.
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
12 #include <linux/spinlock.h>
13 #include <linux/hardirq.h>
14 #include <linux/uaccess.h>
15 #include <linux/ftrace.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
21 #include <asm/ftrace.h>
22 #include <linux/ftrace.h>
27 #ifdef CONFIG_DYNAMIC_FTRACE
29 union ftrace_code_union {
30 char code[MCOUNT_INSN_SIZE];
34 } __attribute__((packed));
37 static int ftrace_calc_offset(long ip, long addr)
39 return (int)(addr - ip);
42 static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
44 static union ftrace_code_union calc;
47 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
50 * No locking needed, this must be called via kstop_machine
51 * which in essence is like running on a uniprocessor machine.
57 * Modifying code must take extra care. On an SMP machine, if
58 * the code being modified is also being executed on another CPU
59 * that CPU will have undefined results and possibly take a GPF.
60 * We use kstop_machine to stop other CPUS from exectuing code.
61 * But this does not stop NMIs from happening. We still need
62 * to protect against that. We separate out the modification of
63 * the code to take care of this.
65 * Two buffers are added: An IP buffer and a "code" buffer.
67 * 1) Put the instruction pointer into the IP buffer
68 * and the new code into the "code" buffer.
69 * 2) Set a flag that says we are modifying code
70 * 3) Wait for any running NMIs to finish.
73 * 6) Wait for any running NMIs to finish.
75 * If an NMI is executed, the first thing it does is to call
76 * "ftrace_nmi_enter". This will check if the flag is set to write
77 * and if it is, it will write what is in the IP and "code" buffers.
79 * The trick is, it does not matter if everyone is writing the same
80 * content to the code location. Also, if a CPU is executing code
81 * it is OK to write to that code location if the contents being written
82 * are the same as what exists.
85 static atomic_t in_nmi = ATOMIC_INIT(0);
86 static int mod_code_status; /* holds return value of text write */
87 static int mod_code_write; /* set when NMI should do the write */
88 static void *mod_code_ip; /* holds the IP to write to */
89 static void *mod_code_newcode; /* holds the text to write to the IP */
91 static unsigned nmi_wait_count;
92 static atomic_t nmi_update_count = ATOMIC_INIT(0);
94 int ftrace_arch_read_dyn_info(char *buf, int size)
98 r = snprintf(buf, size, "%u %u",
100 atomic_read(&nmi_update_count));
104 static void ftrace_mod_code(void)
107 * Yes, more than one CPU process can be writing to mod_code_status.
108 * (and the code itself)
109 * But if one were to fail, then they all should, and if one were
110 * to succeed, then they all should.
112 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
116 void ftrace_nmi_enter(void)
119 /* Must have in_nmi seen before reading write flag */
121 if (mod_code_write) {
123 atomic_inc(&nmi_update_count);
127 void ftrace_nmi_exit(void)
129 /* Finish all executions before clearing in_nmi */
134 static void wait_for_nmi(void)
138 while (atomic_read(&in_nmi)) {
148 do_ftrace_mod_code(unsigned long ip, void *new_code)
150 mod_code_ip = (void *)ip;
151 mod_code_newcode = new_code;
153 /* The buffers need to be visible before we let NMIs write them */
158 /* Make sure write bit is visible before we wait on NMIs */
163 /* Make sure all running NMIs have finished before we write the code */
168 /* Make sure the write happens before clearing the bit */
173 /* make sure NMIs see the cleared bit */
178 return mod_code_status;
184 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
186 static unsigned char *ftrace_nop_replace(void)
192 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
193 unsigned char *new_code)
195 unsigned char replaced[MCOUNT_INSN_SIZE];
198 * Note: Due to modules and __init, code can
199 * disappear and change, we need to protect against faulting
200 * as well as code changing. We do this by using the
201 * probe_kernel_* functions.
203 * No real locking needed, this code is run through
204 * kstop_machine, or before SMP starts.
207 /* read the text we want to modify */
208 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
211 /* Make sure it is what we expect it to be */
212 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
215 /* replace the text with the new text */
216 if (do_ftrace_mod_code(ip, new_code))
224 int ftrace_make_nop(struct module *mod,
225 struct dyn_ftrace *rec, unsigned long addr)
227 unsigned char *new, *old;
228 unsigned long ip = rec->ip;
230 old = ftrace_call_replace(ip, addr);
231 new = ftrace_nop_replace();
233 return ftrace_modify_code(rec->ip, old, new);
236 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
238 unsigned char *new, *old;
239 unsigned long ip = rec->ip;
241 old = ftrace_nop_replace();
242 new = ftrace_call_replace(ip, addr);
244 return ftrace_modify_code(rec->ip, old, new);
247 int ftrace_update_ftrace_func(ftrace_func_t func)
249 unsigned long ip = (unsigned long)(&ftrace_call);
250 unsigned char old[MCOUNT_INSN_SIZE], *new;
253 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
254 new = ftrace_call_replace(ip, (unsigned long)func);
255 ret = ftrace_modify_code(ip, old, new);
260 int __init ftrace_dyn_arch_init(void *data)
262 extern const unsigned char ftrace_test_p6nop[];
263 extern const unsigned char ftrace_test_nop5[];
264 extern const unsigned char ftrace_test_jmp[];
268 * There is no good nop for all x86 archs.
269 * We will default to using the P6_NOP5, but first we
270 * will test to make sure that the nop will actually
271 * work on this CPU. If it faults, we will then
272 * go to a lesser efficient 5 byte nop. If that fails
273 * we then just use a jmp as our nop. This isn't the most
274 * efficient nop, but we can not use a multi part nop
275 * since we would then risk being preempted in the middle
276 * of that nop, and if we enabled tracing then, it might
277 * cause a system crash.
279 * TODO: check the cpuid to determine the best nop.
283 "jmp ftrace_test_p6nop\n"
286 "nop\n" /* 2 byte jmp + 3 bytes */
291 ".byte 0x66,0x66,0x66,0x66,0x90\n"
293 ".section .fixup, \"ax\"\n"
295 " jmp ftrace_test_nop5\n"
299 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
300 _ASM_EXTABLE(ftrace_test_nop5, 3b)
301 : "=r"(faulted) : "0" (faulted));
305 pr_info("ftrace: converting mcount calls to 0f 1f 44 00 00\n");
306 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
309 pr_info("ftrace: converting mcount calls to 66 66 66 66 90\n");
310 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
313 pr_info("ftrace: converting mcount calls to jmp . + 5\n");
314 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
318 /* The return code is retured via data */
319 *(unsigned long *)data = 0;
325 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
327 #ifdef CONFIG_DYNAMIC_FTRACE
328 extern void ftrace_graph_call(void);
330 static int ftrace_mod_jmp(unsigned long ip,
331 int old_offset, int new_offset)
333 unsigned char code[MCOUNT_INSN_SIZE];
335 if (probe_kernel_read(code, (void *)ip, MCOUNT_INSN_SIZE))
338 if (code[0] != 0xe9 || old_offset != *(int *)(&code[1]))
341 *(int *)(&code[1]) = new_offset;
343 if (do_ftrace_mod_code(ip, &code))
349 int ftrace_enable_ftrace_graph_caller(void)
351 unsigned long ip = (unsigned long)(&ftrace_graph_call);
352 int old_offset, new_offset;
354 old_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
355 new_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
357 return ftrace_mod_jmp(ip, old_offset, new_offset);
360 int ftrace_disable_ftrace_graph_caller(void)
362 unsigned long ip = (unsigned long)(&ftrace_graph_call);
363 int old_offset, new_offset;
365 old_offset = (unsigned long)(&ftrace_graph_caller) - (ip + MCOUNT_INSN_SIZE);
366 new_offset = (unsigned long)(&ftrace_stub) - (ip + MCOUNT_INSN_SIZE);
368 return ftrace_mod_jmp(ip, old_offset, new_offset);
371 #else /* CONFIG_DYNAMIC_FTRACE */
374 * These functions are picked from those used on
375 * this page for dynamic ftrace. They have been
376 * simplified to ignore all traces in NMI context.
378 static atomic_t in_nmi;
380 void ftrace_nmi_enter(void)
385 void ftrace_nmi_exit(void)
390 #endif /* !CONFIG_DYNAMIC_FTRACE */
393 * Hook the return address and push it in the stack of return addrs
394 * in current thread info.
396 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
399 unsigned long long calltime;
401 struct ftrace_graph_ent trace;
402 unsigned long return_hooker = (unsigned long)
405 /* Nmi's are currently unsupported */
406 if (unlikely(atomic_read(&in_nmi)))
409 if (unlikely(atomic_read(¤t->tracing_graph_pause)))
413 * Protect against fault, even if it shouldn't
414 * happen. This tool is too much intrusive to
415 * ignore such a protection.
418 "1: " _ASM_MOV " (%[parent]), %[old]\n"
419 "2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
420 " movl $0, %[faulted]\n"
423 ".section .fixup, \"ax\"\n"
424 "4: movl $1, %[faulted]\n"
431 : [old] "=r" (old), [faulted] "=r" (faulted)
432 : [parent] "r" (parent), [return_hooker] "r" (return_hooker)
436 if (unlikely(faulted)) {
442 if (unlikely(!__kernel_text_address(old))) {
449 calltime = cpu_clock(raw_smp_processor_id());
451 if (ftrace_push_return_trace(old, calltime,
452 self_addr, &trace.depth) == -EBUSY) {
457 trace.func = self_addr;
459 /* Only trace if the calling function expects to */
460 if (!ftrace_graph_entry(&trace)) {
461 current->curr_ret_stack--;
465 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */