1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
67 #include <linux/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
73 #include <asm/div64.h>
77 #include "s2io-regs.h"
79 #define DRV_VERSION "2.0.14.2"
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
88 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
113 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 mac_info_t *mac_control;
117 mac_control = &sp->mac_control;
118 if (rxb_size <= rxd_count[sp->rxd_mode])
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_data_octets"},
140 {"tmac_pause_ctrl_frms"},
144 {"tmac_any_err_frms"},
145 {"tmac_ttl_less_fb_octets"},
146 {"tmac_vld_ip_octets"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
160 {"rmac_out_rng_len_err_frms"},
162 {"rmac_pause_ctrl_frms"},
163 {"rmac_unsup_ctrl_frms"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
167 {"rmac_discarded_frms"},
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
174 {"rmac_jabber_frms"},
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
188 {"rmac_err_drp_udp"},
189 {"rmac_xgmii_err_sym"},
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
209 {"rmac_accepted_ip"},
213 {"new_rd_req_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
218 {"new_wr_req_rtry_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
285 static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
288 nic_t *nic = dev->priv;
291 spin_lock_irqsave(&nic->tx_lock, flags);
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 nic_t *nic = dev->priv;
302 spin_lock_irqsave(&nic->tx_lock, flags);
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
309 * Constants to be programmed into the Xena's registers, to configure
314 static const u64 herc_act_dtx_cfg[] = {
316 0x8000051536750000ULL, 0x80000515367500E0ULL,
318 0x8000051536750004ULL, 0x80000515367500E4ULL,
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
335 static const u64 xena_dtx_cfg[] = {
337 0x8000051500000000ULL, 0x80000515000000E0ULL,
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 0x8002051500000000ULL, 0x80020515000000E0ULL,
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
352 * Constants for Fixing the MacAddress problem seen mostly on
355 static const u64 fix_mac[] = {
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
373 /* Module Loadable parameters. */
374 static unsigned int tx_fifo_num = 1;
375 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
376 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
377 static unsigned int rx_ring_num = 1;
378 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
379 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
380 static unsigned int rts_frm_len[MAX_RX_RINGS] =
381 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
382 static unsigned int rx_ring_mode = 1;
383 static unsigned int use_continuous_tx_intrs = 1;
384 static unsigned int rmac_pause_time = 0x100;
385 static unsigned int mc_pause_threshold_q0q3 = 187;
386 static unsigned int mc_pause_threshold_q4q7 = 187;
387 static unsigned int shared_splits;
388 static unsigned int tmac_util_period = 5;
389 static unsigned int rmac_util_period = 5;
390 static unsigned int bimodal = 0;
391 static unsigned int l3l4hdr_size = 128;
392 #ifndef CONFIG_S2IO_NAPI
393 static unsigned int indicate_max_pkts;
395 /* Frequency of Rx desc syncs expressed as power of 2 */
396 static unsigned int rxsync_frequency = 3;
397 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
398 static unsigned int intr_type = 0;
399 /* Large receive offload feature */
400 static unsigned int lro = 0;
401 /* Max pkts to be aggregated by LRO at one time. If not specified,
402 * aggregation happens until we hit max IP pkt size(64K)
404 static unsigned int lro_max_pkts = 0xFFFF;
408 * This table lists all the devices that this driver supports.
410 static struct pci_device_id s2io_tbl[] __devinitdata = {
411 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
412 PCI_ANY_ID, PCI_ANY_ID},
413 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
414 PCI_ANY_ID, PCI_ANY_ID},
415 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
416 PCI_ANY_ID, PCI_ANY_ID},
417 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
418 PCI_ANY_ID, PCI_ANY_ID},
422 MODULE_DEVICE_TABLE(pci, s2io_tbl);
424 static struct pci_driver s2io_driver = {
426 .id_table = s2io_tbl,
427 .probe = s2io_init_nic,
428 .remove = __devexit_p(s2io_rem_nic),
431 /* A simplifier macro used both by init and free shared_mem Fns(). */
432 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
435 * init_shared_mem - Allocation and Initialization of Memory
436 * @nic: Device private variable.
437 * Description: The function allocates all the memory areas shared
438 * between the NIC and the driver. This includes Tx descriptors,
439 * Rx descriptors and the statistics block.
442 static int init_shared_mem(struct s2io_nic *nic)
445 void *tmp_v_addr, *tmp_v_addr_next;
446 dma_addr_t tmp_p_addr, tmp_p_addr_next;
447 RxD_block_t *pre_rxd_blk = NULL;
448 int i, j, blk_cnt, rx_sz, tx_sz;
449 int lst_size, lst_per_page;
450 struct net_device *dev = nic->dev;
454 mac_info_t *mac_control;
455 struct config_param *config;
457 mac_control = &nic->mac_control;
458 config = &nic->config;
461 /* Allocation and initialization of TXDLs in FIOFs */
463 for (i = 0; i < config->tx_fifo_num; i++) {
464 size += config->tx_cfg[i].fifo_len;
466 if (size > MAX_AVAILABLE_TXDS) {
467 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
469 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
473 lst_size = (sizeof(TxD_t) * config->max_txds);
474 tx_sz = lst_size * size;
475 lst_per_page = PAGE_SIZE / lst_size;
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 int fifo_len = config->tx_cfg[i].fifo_len;
479 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
480 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
482 if (!mac_control->fifos[i].list_info) {
484 "Malloc failed for list_info\n");
487 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
492 mac_control->fifos[i].tx_curr_put_info.offset = 0;
493 mac_control->fifos[i].tx_curr_put_info.fifo_len =
494 config->tx_cfg[i].fifo_len - 1;
495 mac_control->fifos[i].tx_curr_get_info.offset = 0;
496 mac_control->fifos[i].tx_curr_get_info.fifo_len =
497 config->tx_cfg[i].fifo_len - 1;
498 mac_control->fifos[i].fifo_no = i;
499 mac_control->fifos[i].nic = nic;
500 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
502 for (j = 0; j < page_num; j++) {
506 tmp_v = pci_alloc_consistent(nic->pdev,
510 "pci_alloc_consistent ");
511 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
514 /* If we got a zero DMA address(can happen on
515 * certain platforms like PPC), reallocate.
516 * Store virtual address of page we don't want,
520 mac_control->zerodma_virt_addr = tmp_v;
522 "%s: Zero DMA address for TxDL. ", dev->name);
524 "Virtual address %p\n", tmp_v);
525 tmp_v = pci_alloc_consistent(nic->pdev,
529 "pci_alloc_consistent ");
530 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
534 while (k < lst_per_page) {
535 int l = (j * lst_per_page) + k;
536 if (l == config->tx_cfg[i].fifo_len)
538 mac_control->fifos[i].list_info[l].list_virt_addr =
539 tmp_v + (k * lst_size);
540 mac_control->fifos[i].list_info[l].list_phy_addr =
541 tmp_p + (k * lst_size);
547 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
548 if (!nic->ufo_in_band_v)
551 /* Allocation and initialization of RXDs in Rings */
553 for (i = 0; i < config->rx_ring_num; i++) {
554 if (config->rx_cfg[i].num_rxd %
555 (rxd_count[nic->rxd_mode] + 1)) {
556 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
557 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
559 DBG_PRINT(ERR_DBG, "RxDs per Block");
562 size += config->rx_cfg[i].num_rxd;
563 mac_control->rings[i].block_count =
564 config->rx_cfg[i].num_rxd /
565 (rxd_count[nic->rxd_mode] + 1 );
566 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
567 mac_control->rings[i].block_count;
569 if (nic->rxd_mode == RXD_MODE_1)
570 size = (size * (sizeof(RxD1_t)));
572 size = (size * (sizeof(RxD3_t)));
575 for (i = 0; i < config->rx_ring_num; i++) {
576 mac_control->rings[i].rx_curr_get_info.block_index = 0;
577 mac_control->rings[i].rx_curr_get_info.offset = 0;
578 mac_control->rings[i].rx_curr_get_info.ring_len =
579 config->rx_cfg[i].num_rxd - 1;
580 mac_control->rings[i].rx_curr_put_info.block_index = 0;
581 mac_control->rings[i].rx_curr_put_info.offset = 0;
582 mac_control->rings[i].rx_curr_put_info.ring_len =
583 config->rx_cfg[i].num_rxd - 1;
584 mac_control->rings[i].nic = nic;
585 mac_control->rings[i].ring_no = i;
587 blk_cnt = config->rx_cfg[i].num_rxd /
588 (rxd_count[nic->rxd_mode] + 1);
589 /* Allocating all the Rx blocks */
590 for (j = 0; j < blk_cnt; j++) {
591 rx_block_info_t *rx_blocks;
594 rx_blocks = &mac_control->rings[i].rx_blocks[j];
595 size = SIZE_OF_BLOCK; //size is always page size
596 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
598 if (tmp_v_addr == NULL) {
600 * In case of failure, free_shared_mem()
601 * is called, which should free any
602 * memory that was alloced till the
605 rx_blocks->block_virt_addr = tmp_v_addr;
608 memset(tmp_v_addr, 0, size);
609 rx_blocks->block_virt_addr = tmp_v_addr;
610 rx_blocks->block_dma_addr = tmp_p_addr;
611 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
612 rxd_count[nic->rxd_mode],
614 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
615 rx_blocks->rxds[l].virt_addr =
616 rx_blocks->block_virt_addr +
617 (rxd_size[nic->rxd_mode] * l);
618 rx_blocks->rxds[l].dma_addr =
619 rx_blocks->block_dma_addr +
620 (rxd_size[nic->rxd_mode] * l);
623 /* Interlinking all Rx Blocks */
624 for (j = 0; j < blk_cnt; j++) {
626 mac_control->rings[i].rx_blocks[j].block_virt_addr;
628 mac_control->rings[i].rx_blocks[(j + 1) %
629 blk_cnt].block_virt_addr;
631 mac_control->rings[i].rx_blocks[j].block_dma_addr;
633 mac_control->rings[i].rx_blocks[(j + 1) %
634 blk_cnt].block_dma_addr;
636 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
637 pre_rxd_blk->reserved_2_pNext_RxD_block =
638 (unsigned long) tmp_v_addr_next;
639 pre_rxd_blk->pNext_RxD_Blk_physical =
640 (u64) tmp_p_addr_next;
643 if (nic->rxd_mode >= RXD_MODE_3A) {
645 * Allocation of Storages for buffer addresses in 2BUFF mode
646 * and the buffers as well.
648 for (i = 0; i < config->rx_ring_num; i++) {
649 blk_cnt = config->rx_cfg[i].num_rxd /
650 (rxd_count[nic->rxd_mode]+ 1);
651 mac_control->rings[i].ba =
652 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
654 if (!mac_control->rings[i].ba)
656 for (j = 0; j < blk_cnt; j++) {
658 mac_control->rings[i].ba[j] =
659 kmalloc((sizeof(buffAdd_t) *
660 (rxd_count[nic->rxd_mode] + 1)),
662 if (!mac_control->rings[i].ba[j])
664 while (k != rxd_count[nic->rxd_mode]) {
665 ba = &mac_control->rings[i].ba[j][k];
667 ba->ba_0_org = (void *) kmalloc
668 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
671 tmp = (unsigned long)ba->ba_0_org;
673 tmp &= ~((unsigned long) ALIGN_SIZE);
674 ba->ba_0 = (void *) tmp;
676 ba->ba_1_org = (void *) kmalloc
677 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
680 tmp = (unsigned long) ba->ba_1_org;
682 tmp &= ~((unsigned long) ALIGN_SIZE);
683 ba->ba_1 = (void *) tmp;
690 /* Allocation and initialization of Statistics block */
691 size = sizeof(StatInfo_t);
692 mac_control->stats_mem = pci_alloc_consistent
693 (nic->pdev, size, &mac_control->stats_mem_phy);
695 if (!mac_control->stats_mem) {
697 * In case of failure, free_shared_mem() is called, which
698 * should free any memory that was alloced till the
703 mac_control->stats_mem_sz = size;
705 tmp_v_addr = mac_control->stats_mem;
706 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
707 memset(tmp_v_addr, 0, size);
708 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
709 (unsigned long long) tmp_p_addr);
715 * free_shared_mem - Free the allocated Memory
716 * @nic: Device private variable.
717 * Description: This function is to free all memory locations allocated by
718 * the init_shared_mem() function and return it to the kernel.
721 static void free_shared_mem(struct s2io_nic *nic)
723 int i, j, blk_cnt, size;
725 dma_addr_t tmp_p_addr;
726 mac_info_t *mac_control;
727 struct config_param *config;
728 int lst_size, lst_per_page;
729 struct net_device *dev = nic->dev;
734 mac_control = &nic->mac_control;
735 config = &nic->config;
737 lst_size = (sizeof(TxD_t) * config->max_txds);
738 lst_per_page = PAGE_SIZE / lst_size;
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
743 for (j = 0; j < page_num; j++) {
744 int mem_blks = (j * lst_per_page);
745 if (!mac_control->fifos[i].list_info)
747 if (!mac_control->fifos[i].list_info[mem_blks].
750 pci_free_consistent(nic->pdev, PAGE_SIZE,
751 mac_control->fifos[i].
754 mac_control->fifos[i].
758 /* If we got a zero DMA address during allocation,
761 if (mac_control->zerodma_virt_addr) {
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->zerodma_virt_addr,
766 "%s: Freeing TxDL with zero DMA addr. ",
768 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
769 mac_control->zerodma_virt_addr);
771 kfree(mac_control->fifos[i].list_info);
774 size = SIZE_OF_BLOCK;
775 for (i = 0; i < config->rx_ring_num; i++) {
776 blk_cnt = mac_control->rings[i].block_count;
777 for (j = 0; j < blk_cnt; j++) {
778 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
780 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
782 if (tmp_v_addr == NULL)
784 pci_free_consistent(nic->pdev, size,
785 tmp_v_addr, tmp_p_addr);
786 kfree(mac_control->rings[i].rx_blocks[j].rxds);
790 if (nic->rxd_mode >= RXD_MODE_3A) {
791 /* Freeing buffer storage addresses in 2BUFF mode. */
792 for (i = 0; i < config->rx_ring_num; i++) {
793 blk_cnt = config->rx_cfg[i].num_rxd /
794 (rxd_count[nic->rxd_mode] + 1);
795 for (j = 0; j < blk_cnt; j++) {
797 if (!mac_control->rings[i].ba[j])
799 while (k != rxd_count[nic->rxd_mode]) {
801 &mac_control->rings[i].ba[j][k];
806 kfree(mac_control->rings[i].ba[j]);
808 kfree(mac_control->rings[i].ba);
812 if (mac_control->stats_mem) {
813 pci_free_consistent(nic->pdev,
814 mac_control->stats_mem_sz,
815 mac_control->stats_mem,
816 mac_control->stats_mem_phy);
818 if (nic->ufo_in_band_v)
819 kfree(nic->ufo_in_band_v);
823 * s2io_verify_pci_mode -
826 static int s2io_verify_pci_mode(nic_t *nic)
828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
829 register u64 val64 = 0;
832 val64 = readq(&bar0->pci_mode);
833 mode = (u8)GET_PCI_MODE(val64);
835 if ( val64 & PCI_MODE_UNKNOWN_MODE)
836 return -1; /* Unknown PCI mode */
840 #define NEC_VENID 0x1033
841 #define NEC_DEVID 0x0125
842 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844 struct pci_dev *tdev = NULL;
845 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
846 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
847 if (tdev->bus == s2io_pdev->bus->parent)
854 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
856 * s2io_print_pci_mode -
858 static int s2io_print_pci_mode(nic_t *nic)
860 XENA_dev_config_t __iomem *bar0 = nic->bar0;
861 register u64 val64 = 0;
863 struct config_param *config = &nic->config;
865 val64 = readq(&bar0->pci_mode);
866 mode = (u8)GET_PCI_MODE(val64);
868 if ( val64 & PCI_MODE_UNKNOWN_MODE)
869 return -1; /* Unknown PCI mode */
871 config->bus_speed = bus_speed[mode];
873 if (s2io_on_nec_bridge(nic->pdev)) {
874 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
879 if (val64 & PCI_MODE_32_BITS) {
880 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
882 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
886 case PCI_MODE_PCI_33:
887 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
889 case PCI_MODE_PCI_66:
890 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
892 case PCI_MODE_PCIX_M1_66:
893 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
895 case PCI_MODE_PCIX_M1_100:
896 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
898 case PCI_MODE_PCIX_M1_133:
899 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
901 case PCI_MODE_PCIX_M2_66:
902 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
904 case PCI_MODE_PCIX_M2_100:
905 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
907 case PCI_MODE_PCIX_M2_133:
908 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
911 return -1; /* Unsupported bus speed */
918 * init_nic - Initialization of hardware
919 * @nic: device peivate variable
920 * Description: The function sequentially configures every block
921 * of the H/W from their reset values.
922 * Return Value: SUCCESS on success and
923 * '-1' on failure (endian settings incorrect).
926 static int init_nic(struct s2io_nic *nic)
928 XENA_dev_config_t __iomem *bar0 = nic->bar0;
929 struct net_device *dev = nic->dev;
930 register u64 val64 = 0;
934 mac_info_t *mac_control;
935 struct config_param *config;
937 unsigned long long mem_share;
940 mac_control = &nic->mac_control;
941 config = &nic->config;
943 /* to set the swapper controle on the card */
944 if(s2io_set_swapper(nic)) {
945 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
950 * Herc requires EOI to be removed from reset before XGXS, so..
952 if (nic->device_type & XFRAME_II_DEVICE) {
953 val64 = 0xA500000000ULL;
954 writeq(val64, &bar0->sw_reset);
956 val64 = readq(&bar0->sw_reset);
959 /* Remove XGXS from reset state */
961 writeq(val64, &bar0->sw_reset);
963 val64 = readq(&bar0->sw_reset);
965 /* Enable Receiving broadcasts */
966 add = &bar0->mac_cfg;
967 val64 = readq(&bar0->mac_cfg);
968 val64 |= MAC_RMAC_BCAST_ENABLE;
969 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
970 writel((u32) val64, add);
971 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
972 writel((u32) (val64 >> 32), (add + 4));
974 /* Read registers in all blocks */
975 val64 = readq(&bar0->mac_int_mask);
976 val64 = readq(&bar0->mc_int_mask);
977 val64 = readq(&bar0->xgxs_int_mask);
981 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
983 if (nic->device_type & XFRAME_II_DEVICE) {
984 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
985 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
986 &bar0->dtx_control, UF);
988 msleep(1); /* Necessary!! */
992 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
993 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
994 &bar0->dtx_control, UF);
995 val64 = readq(&bar0->dtx_control);
1000 /* Tx DMA Initialization */
1002 writeq(val64, &bar0->tx_fifo_partition_0);
1003 writeq(val64, &bar0->tx_fifo_partition_1);
1004 writeq(val64, &bar0->tx_fifo_partition_2);
1005 writeq(val64, &bar0->tx_fifo_partition_3);
1008 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1010 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1011 13) | vBIT(config->tx_cfg[i].fifo_priority,
1014 if (i == (config->tx_fifo_num - 1)) {
1021 writeq(val64, &bar0->tx_fifo_partition_0);
1025 writeq(val64, &bar0->tx_fifo_partition_1);
1029 writeq(val64, &bar0->tx_fifo_partition_2);
1033 writeq(val64, &bar0->tx_fifo_partition_3);
1039 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1040 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1042 if ((nic->device_type == XFRAME_I_DEVICE) &&
1043 (get_xena_rev_id(nic->pdev) < 4))
1044 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1046 val64 = readq(&bar0->tx_fifo_partition_0);
1047 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1048 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1051 * Initialization of Tx_PA_CONFIG register to ignore packet
1052 * integrity checking.
1054 val64 = readq(&bar0->tx_pa_cfg);
1055 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1056 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1057 writeq(val64, &bar0->tx_pa_cfg);
1059 /* Rx DMA intialization. */
1061 for (i = 0; i < config->rx_ring_num; i++) {
1063 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1066 writeq(val64, &bar0->rx_queue_priority);
1069 * Allocating equal share of memory to all the
1073 if (nic->device_type & XFRAME_II_DEVICE)
1078 for (i = 0; i < config->rx_ring_num; i++) {
1081 mem_share = (mem_size / config->rx_ring_num +
1082 mem_size % config->rx_ring_num);
1083 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1086 mem_share = (mem_size / config->rx_ring_num);
1087 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1090 mem_share = (mem_size / config->rx_ring_num);
1091 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1094 mem_share = (mem_size / config->rx_ring_num);
1095 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1098 mem_share = (mem_size / config->rx_ring_num);
1099 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1102 mem_share = (mem_size / config->rx_ring_num);
1103 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1106 mem_share = (mem_size / config->rx_ring_num);
1107 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1110 mem_share = (mem_size / config->rx_ring_num);
1111 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1115 writeq(val64, &bar0->rx_queue_cfg);
1118 * Filling Tx round robin registers
1119 * as per the number of FIFOs
1121 switch (config->tx_fifo_num) {
1123 val64 = 0x0000000000000000ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 writeq(val64, &bar0->tx_w_round_robin_2);
1127 writeq(val64, &bar0->tx_w_round_robin_3);
1128 writeq(val64, &bar0->tx_w_round_robin_4);
1131 val64 = 0x0000010000010000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_0);
1133 val64 = 0x0100000100000100ULL;
1134 writeq(val64, &bar0->tx_w_round_robin_1);
1135 val64 = 0x0001000001000001ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_2);
1137 val64 = 0x0000010000010000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_3);
1139 val64 = 0x0100000000000000ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_4);
1143 val64 = 0x0001000102000001ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_0);
1145 val64 = 0x0001020000010001ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_1);
1147 val64 = 0x0200000100010200ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_2);
1149 val64 = 0x0001000102000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_3);
1151 val64 = 0x0001020000000000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_4);
1155 val64 = 0x0001020300010200ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_0);
1157 val64 = 0x0100000102030001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_1);
1159 val64 = 0x0200010000010203ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_2);
1161 val64 = 0x0001020001000001ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_3);
1163 val64 = 0x0203000100000000ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_4);
1167 val64 = 0x0001000203000102ULL;
1168 writeq(val64, &bar0->tx_w_round_robin_0);
1169 val64 = 0x0001020001030004ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_1);
1171 val64 = 0x0001000203000102ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_2);
1173 val64 = 0x0001020001030004ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_3);
1175 val64 = 0x0001000000000000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_4);
1179 val64 = 0x0001020304000102ULL;
1180 writeq(val64, &bar0->tx_w_round_robin_0);
1181 val64 = 0x0304050001020001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_1);
1183 val64 = 0x0203000100000102ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_2);
1185 val64 = 0x0304000102030405ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_3);
1187 val64 = 0x0001000200000000ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_4);
1191 val64 = 0x0001020001020300ULL;
1192 writeq(val64, &bar0->tx_w_round_robin_0);
1193 val64 = 0x0102030400010203ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_1);
1195 val64 = 0x0405060001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_2);
1197 val64 = 0x0304050000010200ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_3);
1199 val64 = 0x0102030000000000ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_4);
1203 val64 = 0x0001020300040105ULL;
1204 writeq(val64, &bar0->tx_w_round_robin_0);
1205 val64 = 0x0200030106000204ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_1);
1207 val64 = 0x0103000502010007ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_2);
1209 val64 = 0x0304010002060500ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_3);
1211 val64 = 0x0103020400000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_4);
1216 /* Enable Tx FIFO partition 0. */
1217 val64 = readq(&bar0->tx_fifo_partition_0);
1218 val64 |= (TX_FIFO_PARTITION_EN);
1219 writeq(val64, &bar0->tx_fifo_partition_0);
1221 /* Filling the Rx round robin registers as per the
1222 * number of Rings and steering based on QoS.
1224 switch (config->rx_ring_num) {
1226 val64 = 0x8080808080808080ULL;
1227 writeq(val64, &bar0->rts_qos_steering);
1230 val64 = 0x0000010000010000ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_0);
1232 val64 = 0x0100000100000100ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_1);
1234 val64 = 0x0001000001000001ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_2);
1236 val64 = 0x0000010000010000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_3);
1238 val64 = 0x0100000000000000ULL;
1239 writeq(val64, &bar0->rx_w_round_robin_4);
1241 val64 = 0x8080808040404040ULL;
1242 writeq(val64, &bar0->rts_qos_steering);
1245 val64 = 0x0001000102000001ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_0);
1247 val64 = 0x0001020000010001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_1);
1249 val64 = 0x0200000100010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_2);
1251 val64 = 0x0001000102000001ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_3);
1253 val64 = 0x0001020000000000ULL;
1254 writeq(val64, &bar0->rx_w_round_robin_4);
1256 val64 = 0x8080804040402020ULL;
1257 writeq(val64, &bar0->rts_qos_steering);
1260 val64 = 0x0001020300010200ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_0);
1262 val64 = 0x0100000102030001ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_1);
1264 val64 = 0x0200010000010203ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_2);
1266 val64 = 0x0001020001000001ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_3);
1268 val64 = 0x0203000100000000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_4);
1271 val64 = 0x8080404020201010ULL;
1272 writeq(val64, &bar0->rts_qos_steering);
1275 val64 = 0x0001000203000102ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_0);
1277 val64 = 0x0001020001030004ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_1);
1279 val64 = 0x0001000203000102ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_2);
1281 val64 = 0x0001020001030004ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_3);
1283 val64 = 0x0001000000000000ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_4);
1286 val64 = 0x8080404020201008ULL;
1287 writeq(val64, &bar0->rts_qos_steering);
1290 val64 = 0x0001020304000102ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_0);
1292 val64 = 0x0304050001020001ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_1);
1294 val64 = 0x0203000100000102ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_2);
1296 val64 = 0x0304000102030405ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_3);
1298 val64 = 0x0001000200000000ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_4);
1301 val64 = 0x8080404020100804ULL;
1302 writeq(val64, &bar0->rts_qos_steering);
1305 val64 = 0x0001020001020300ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_0);
1307 val64 = 0x0102030400010203ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_1);
1309 val64 = 0x0405060001020001ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_2);
1311 val64 = 0x0304050000010200ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_3);
1313 val64 = 0x0102030000000000ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_4);
1316 val64 = 0x8080402010080402ULL;
1317 writeq(val64, &bar0->rts_qos_steering);
1320 val64 = 0x0001020300040105ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_0);
1322 val64 = 0x0200030106000204ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_1);
1324 val64 = 0x0103000502010007ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_2);
1326 val64 = 0x0304010002060500ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_3);
1328 val64 = 0x0103020400000000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_4);
1331 val64 = 0x8040201008040201ULL;
1332 writeq(val64, &bar0->rts_qos_steering);
1338 for (i = 0; i < 8; i++)
1339 writeq(val64, &bar0->rts_frm_len_n[i]);
1341 /* Set the default rts frame length for the rings configured */
1342 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1343 for (i = 0 ; i < config->rx_ring_num ; i++)
1344 writeq(val64, &bar0->rts_frm_len_n[i]);
1346 /* Set the frame length for the configured rings
1347 * desired by the user
1349 for (i = 0; i < config->rx_ring_num; i++) {
1350 /* If rts_frm_len[i] == 0 then it is assumed that user not
1351 * specified frame length steering.
1352 * If the user provides the frame length then program
1353 * the rts_frm_len register for those values or else
1354 * leave it as it is.
1356 if (rts_frm_len[i] != 0) {
1357 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1358 &bar0->rts_frm_len_n[i]);
1362 /* Program statistics memory */
1363 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1365 if (nic->device_type == XFRAME_II_DEVICE) {
1366 val64 = STAT_BC(0x320);
1367 writeq(val64, &bar0->stat_byte_cnt);
1371 * Initializing the sampling rate for the device to calculate the
1372 * bandwidth utilization.
1374 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1375 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1376 writeq(val64, &bar0->mac_link_util);
1380 * Initializing the Transmit and Receive Traffic Interrupt
1384 * TTI Initialization. Default Tx timer gets us about
1385 * 250 interrupts per sec. Continuous interrupts are enabled
1388 if (nic->device_type == XFRAME_II_DEVICE) {
1389 int count = (nic->config.bus_speed * 125)/2;
1390 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1393 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1395 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1396 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1397 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1398 if (use_continuous_tx_intrs)
1399 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1400 writeq(val64, &bar0->tti_data1_mem);
1402 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1403 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1404 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1405 writeq(val64, &bar0->tti_data2_mem);
1407 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1408 writeq(val64, &bar0->tti_command_mem);
1411 * Once the operation completes, the Strobe bit of the command
1412 * register will be reset. We poll for this particular condition
1413 * We wait for a maximum of 500ms for the operation to complete,
1414 * if it's not complete by then we return error.
1418 val64 = readq(&bar0->tti_command_mem);
1419 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1423 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1431 if (nic->config.bimodal) {
1433 for (k = 0; k < config->rx_ring_num; k++) {
1434 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1435 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1436 writeq(val64, &bar0->tti_command_mem);
1439 * Once the operation completes, the Strobe bit of the command
1440 * register will be reset. We poll for this particular condition
1441 * We wait for a maximum of 500ms for the operation to complete,
1442 * if it's not complete by then we return error.
1446 val64 = readq(&bar0->tti_command_mem);
1447 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1452 "%s: TTI init Failed\n",
1462 /* RTI Initialization */
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1465 * Programmed to generate Apprx 500 Intrs per
1468 int count = (nic->config.bus_speed * 125)/4;
1469 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1471 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1473 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1474 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1475 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1477 writeq(val64, &bar0->rti_data1_mem);
1479 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1480 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1481 if (nic->intr_type == MSI_X)
1482 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1483 RTI_DATA2_MEM_RX_UFC_D(0x40));
1485 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1486 RTI_DATA2_MEM_RX_UFC_D(0x80));
1487 writeq(val64, &bar0->rti_data2_mem);
1489 for (i = 0; i < config->rx_ring_num; i++) {
1490 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1491 | RTI_CMD_MEM_OFFSET(i);
1492 writeq(val64, &bar0->rti_command_mem);
1495 * Once the operation completes, the Strobe bit of the
1496 * command register will be reset. We poll for this
1497 * particular condition. We wait for a maximum of 500ms
1498 * for the operation to complete, if it's not complete
1499 * by then we return error.
1503 val64 = readq(&bar0->rti_command_mem);
1504 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1508 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1519 * Initializing proper values as Pause threshold into all
1520 * the 8 Queues on Rx side.
1522 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1525 /* Disable RMAC PAD STRIPPING */
1526 add = &bar0->mac_cfg;
1527 val64 = readq(&bar0->mac_cfg);
1528 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1529 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1530 writel((u32) (val64), add);
1531 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1532 writel((u32) (val64 >> 32), (add + 4));
1533 val64 = readq(&bar0->mac_cfg);
1535 /* Enable FCS stripping by adapter */
1536 add = &bar0->mac_cfg;
1537 val64 = readq(&bar0->mac_cfg);
1538 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 writeq(val64, &bar0->mac_cfg);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1549 * Set the time value to be inserted in the pause frame
1550 * generated by xena.
1552 val64 = readq(&bar0->rmac_pause_cfg);
1553 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1554 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1555 writeq(val64, &bar0->rmac_pause_cfg);
1558 * Set the Threshold Limit for Generating the pause frame
1559 * If the amount of data in any Queue exceeds ratio of
1560 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1561 * pause frame is generated
1564 for (i = 0; i < 4; i++) {
1566 (((u64) 0xFF00 | nic->mac_control.
1567 mc_pause_threshold_q0q3)
1570 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1573 for (i = 0; i < 4; i++) {
1575 (((u64) 0xFF00 | nic->mac_control.
1576 mc_pause_threshold_q4q7)
1579 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1582 * TxDMA will stop Read request if the number of read split has
1583 * exceeded the limit pointed by shared_splits
1585 val64 = readq(&bar0->pic_control);
1586 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1587 writeq(val64, &bar0->pic_control);
1589 if (nic->config.bus_speed == 266) {
1590 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1591 writeq(0x0, &bar0->read_retry_delay);
1592 writeq(0x0, &bar0->write_retry_delay);
1596 * Programming the Herc to split every write transaction
1597 * that does not start on an ADB to reduce disconnects.
1599 if (nic->device_type == XFRAME_II_DEVICE) {
1600 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1601 writeq(val64, &bar0->misc_control);
1602 val64 = readq(&bar0->pic_control2);
1603 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1604 writeq(val64, &bar0->pic_control2);
1606 if (strstr(nic->product_name, "CX4")) {
1607 val64 = TMAC_AVG_IPG(0x17);
1608 writeq(val64, &bar0->tmac_avg_ipg);
1613 #define LINK_UP_DOWN_INTERRUPT 1
1614 #define MAC_RMAC_ERR_TIMER 2
1616 static int s2io_link_fault_indication(nic_t *nic)
1618 if (nic->intr_type != INTA)
1619 return MAC_RMAC_ERR_TIMER;
1620 if (nic->device_type == XFRAME_II_DEVICE)
1621 return LINK_UP_DOWN_INTERRUPT;
1623 return MAC_RMAC_ERR_TIMER;
1627 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1628 * @nic: device private variable,
1629 * @mask: A mask indicating which Intr block must be modified and,
1630 * @flag: A flag indicating whether to enable or disable the Intrs.
1631 * Description: This function will either disable or enable the interrupts
1632 * depending on the flag argument. The mask argument can be used to
1633 * enable/disable any Intr block.
1634 * Return Value: NONE.
1637 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1639 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1640 register u64 val64 = 0, temp64 = 0;
1642 /* Top level interrupt classification */
1643 /* PIC Interrupts */
1644 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1645 /* Enable PIC Intrs in the general intr mask register */
1646 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1647 if (flag == ENABLE_INTRS) {
1648 temp64 = readq(&bar0->general_int_mask);
1649 temp64 &= ~((u64) val64);
1650 writeq(temp64, &bar0->general_int_mask);
1652 * If Hercules adapter enable GPIO otherwise
1653 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1654 * interrupts for now.
1657 if (s2io_link_fault_indication(nic) ==
1658 LINK_UP_DOWN_INTERRUPT ) {
1659 temp64 = readq(&bar0->pic_int_mask);
1660 temp64 &= ~((u64) PIC_INT_GPIO);
1661 writeq(temp64, &bar0->pic_int_mask);
1662 temp64 = readq(&bar0->gpio_int_mask);
1663 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1664 writeq(temp64, &bar0->gpio_int_mask);
1666 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1669 * No MSI Support is available presently, so TTI and
1670 * RTI interrupts are also disabled.
1672 } else if (flag == DISABLE_INTRS) {
1674 * Disable PIC Intrs in the general
1675 * intr mask register
1677 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1678 temp64 = readq(&bar0->general_int_mask);
1680 writeq(val64, &bar0->general_int_mask);
1684 /* DMA Interrupts */
1685 /* Enabling/Disabling Tx DMA interrupts */
1686 if (mask & TX_DMA_INTR) {
1687 /* Enable TxDMA Intrs in the general intr mask register */
1688 val64 = TXDMA_INT_M;
1689 if (flag == ENABLE_INTRS) {
1690 temp64 = readq(&bar0->general_int_mask);
1691 temp64 &= ~((u64) val64);
1692 writeq(temp64, &bar0->general_int_mask);
1694 * Keep all interrupts other than PFC interrupt
1695 * and PCC interrupt disabled in DMA level.
1697 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1699 writeq(val64, &bar0->txdma_int_mask);
1701 * Enable only the MISC error 1 interrupt in PFC block
1703 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1704 writeq(val64, &bar0->pfc_err_mask);
1706 * Enable only the FB_ECC error interrupt in PCC block
1708 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1709 writeq(val64, &bar0->pcc_err_mask);
1710 } else if (flag == DISABLE_INTRS) {
1712 * Disable TxDMA Intrs in the general intr mask
1715 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1716 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1717 temp64 = readq(&bar0->general_int_mask);
1719 writeq(val64, &bar0->general_int_mask);
1723 /* Enabling/Disabling Rx DMA interrupts */
1724 if (mask & RX_DMA_INTR) {
1725 /* Enable RxDMA Intrs in the general intr mask register */
1726 val64 = RXDMA_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1732 * All RxDMA block interrupts are disabled for now
1735 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1736 } else if (flag == DISABLE_INTRS) {
1738 * Disable RxDMA Intrs in the general intr mask
1741 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1744 writeq(val64, &bar0->general_int_mask);
1748 /* MAC Interrupts */
1749 /* Enabling/Disabling MAC interrupts */
1750 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1751 val64 = TXMAC_INT_M | RXMAC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1757 * All MAC block error interrupts are disabled for now
1760 } else if (flag == DISABLE_INTRS) {
1762 * Disable MAC Intrs in the general intr mask register
1764 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1765 writeq(DISABLE_ALL_INTRS,
1766 &bar0->mac_rmac_err_mask);
1768 temp64 = readq(&bar0->general_int_mask);
1770 writeq(val64, &bar0->general_int_mask);
1774 /* XGXS Interrupts */
1775 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1776 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1777 if (flag == ENABLE_INTRS) {
1778 temp64 = readq(&bar0->general_int_mask);
1779 temp64 &= ~((u64) val64);
1780 writeq(temp64, &bar0->general_int_mask);
1782 * All XGXS block error interrupts are disabled for now
1785 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1786 } else if (flag == DISABLE_INTRS) {
1788 * Disable MC Intrs in the general intr mask register
1790 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1791 temp64 = readq(&bar0->general_int_mask);
1793 writeq(val64, &bar0->general_int_mask);
1797 /* Memory Controller(MC) interrupts */
1798 if (mask & MC_INTR) {
1800 if (flag == ENABLE_INTRS) {
1801 temp64 = readq(&bar0->general_int_mask);
1802 temp64 &= ~((u64) val64);
1803 writeq(temp64, &bar0->general_int_mask);
1805 * Enable all MC Intrs.
1807 writeq(0x0, &bar0->mc_int_mask);
1808 writeq(0x0, &bar0->mc_err_mask);
1809 } else if (flag == DISABLE_INTRS) {
1811 * Disable MC Intrs in the general intr mask register
1813 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1814 temp64 = readq(&bar0->general_int_mask);
1816 writeq(val64, &bar0->general_int_mask);
1821 /* Tx traffic interrupts */
1822 if (mask & TX_TRAFFIC_INTR) {
1823 val64 = TXTRAFFIC_INT_M;
1824 if (flag == ENABLE_INTRS) {
1825 temp64 = readq(&bar0->general_int_mask);
1826 temp64 &= ~((u64) val64);
1827 writeq(temp64, &bar0->general_int_mask);
1829 * Enable all the Tx side interrupts
1830 * writing 0 Enables all 64 TX interrupt levels
1832 writeq(0x0, &bar0->tx_traffic_mask);
1833 } else if (flag == DISABLE_INTRS) {
1835 * Disable Tx Traffic Intrs in the general intr mask
1838 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1839 temp64 = readq(&bar0->general_int_mask);
1841 writeq(val64, &bar0->general_int_mask);
1845 /* Rx traffic interrupts */
1846 if (mask & RX_TRAFFIC_INTR) {
1847 val64 = RXTRAFFIC_INT_M;
1848 if (flag == ENABLE_INTRS) {
1849 temp64 = readq(&bar0->general_int_mask);
1850 temp64 &= ~((u64) val64);
1851 writeq(temp64, &bar0->general_int_mask);
1852 /* writing 0 Enables all 8 RX interrupt levels */
1853 writeq(0x0, &bar0->rx_traffic_mask);
1854 } else if (flag == DISABLE_INTRS) {
1856 * Disable Rx Traffic Intrs in the general intr mask
1859 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1860 temp64 = readq(&bar0->general_int_mask);
1862 writeq(val64, &bar0->general_int_mask);
1867 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1871 if (flag == FALSE) {
1872 if ((!herc && (rev_id >= 4)) || herc) {
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1874 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1875 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1879 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1880 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1881 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1886 if ((!herc && (rev_id >= 4)) || herc) {
1887 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1889 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1890 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1891 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1895 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1896 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1897 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1898 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1899 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1908 * verify_xena_quiescence - Checks whether the H/W is ready
1909 * @val64 : Value read from adapter status register.
1910 * @flag : indicates if the adapter enable bit was ever written once
1912 * Description: Returns whether the H/W is ready to go or not. Depending
1913 * on whether adapter enable bit was written or not the comparison
1914 * differs and the calling function passes the input argument flag to
1916 * Return: 1 If xena is quiescence
1917 * 0 If Xena is not quiescence
1920 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1923 u64 tmp64 = ~((u64) val64);
1924 int rev_id = get_xena_rev_id(sp->pdev);
1926 herc = (sp->device_type == XFRAME_II_DEVICE);
1929 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1930 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1931 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1932 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1933 ADAPTER_STATUS_P_PLL_LOCK))) {
1934 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1941 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1942 * @sp: Pointer to device specifc structure
1944 * New procedure to clear mac address reading problems on Alpha platforms
1948 static void fix_mac_address(nic_t * sp)
1950 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1954 while (fix_mac[i] != END_SIGN) {
1955 writeq(fix_mac[i++], &bar0->gpio_control);
1957 val64 = readq(&bar0->gpio_control);
1962 * start_nic - Turns the device on
1963 * @nic : device private variable.
1965 * This function actually turns the device on. Before this function is
1966 * called,all Registers are configured from their reset states
1967 * and shared memory is allocated but the NIC is still quiescent. On
1968 * calling this function, the device interrupts are cleared and the NIC is
1969 * literally switched on by writing into the adapter control register.
1971 * SUCCESS on success and -1 on failure.
1974 static int start_nic(struct s2io_nic *nic)
1976 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1977 struct net_device *dev = nic->dev;
1978 register u64 val64 = 0;
1981 mac_info_t *mac_control;
1982 struct config_param *config;
1984 mac_control = &nic->mac_control;
1985 config = &nic->config;
1987 /* PRC Initialization and configuration */
1988 for (i = 0; i < config->rx_ring_num; i++) {
1989 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1990 &bar0->prc_rxd0_n[i]);
1992 val64 = readq(&bar0->prc_ctrl_n[i]);
1993 if (nic->config.bimodal)
1994 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1995 if (nic->rxd_mode == RXD_MODE_1)
1996 val64 |= PRC_CTRL_RC_ENABLED;
1998 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1999 if (nic->device_type == XFRAME_II_DEVICE)
2000 val64 |= PRC_CTRL_GROUP_READS;
2001 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2002 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2003 writeq(val64, &bar0->prc_ctrl_n[i]);
2006 if (nic->rxd_mode == RXD_MODE_3B) {
2007 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2008 val64 = readq(&bar0->rx_pa_cfg);
2009 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2010 writeq(val64, &bar0->rx_pa_cfg);
2014 * Enabling MC-RLDRAM. After enabling the device, we timeout
2015 * for around 100ms, which is approximately the time required
2016 * for the device to be ready for operation.
2018 val64 = readq(&bar0->mc_rldram_mrs);
2019 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2020 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2021 val64 = readq(&bar0->mc_rldram_mrs);
2023 msleep(100); /* Delay by around 100 ms. */
2025 /* Enabling ECC Protection. */
2026 val64 = readq(&bar0->adapter_control);
2027 val64 &= ~ADAPTER_ECC_EN;
2028 writeq(val64, &bar0->adapter_control);
2031 * Clearing any possible Link state change interrupts that
2032 * could have popped up just before Enabling the card.
2034 val64 = readq(&bar0->mac_rmac_err_reg);
2036 writeq(val64, &bar0->mac_rmac_err_reg);
2039 * Verify if the device is ready to be enabled, if so enable
2042 val64 = readq(&bar0->adapter_status);
2043 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2044 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2045 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2046 (unsigned long long) val64);
2050 /* Enable select interrupts */
2051 if (nic->intr_type != INTA)
2052 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2054 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2055 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2056 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2057 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2061 * With some switches, link might be already up at this point.
2062 * Because of this weird behavior, when we enable laser,
2063 * we may not get link. We need to handle this. We cannot
2064 * figure out which switch is misbehaving. So we are forced to
2065 * make a global change.
2068 /* Enabling Laser. */
2069 val64 = readq(&bar0->adapter_control);
2070 val64 |= ADAPTER_EOI_TX_ON;
2071 writeq(val64, &bar0->adapter_control);
2073 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2075 * Dont see link state interrupts initally on some switches,
2076 * so directly scheduling the link state task here.
2078 schedule_work(&nic->set_link_task);
2080 /* SXE-002: Initialize link and activity LED */
2081 subid = nic->pdev->subsystem_device;
2082 if (((subid & 0xFF) >= 0x07) &&
2083 (nic->device_type == XFRAME_I_DEVICE)) {
2084 val64 = readq(&bar0->gpio_control);
2085 val64 |= 0x0000800000000000ULL;
2086 writeq(val64, &bar0->gpio_control);
2087 val64 = 0x0411040400000000ULL;
2088 writeq(val64, (void __iomem *)bar0 + 0x2700);
2094 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2096 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2098 nic_t *nic = fifo_data->nic;
2099 struct sk_buff *skb;
2104 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2105 pci_unmap_single(nic->pdev, (dma_addr_t)
2106 txds->Buffer_Pointer, sizeof(u64),
2111 skb = (struct sk_buff *) ((unsigned long)
2112 txds->Host_Control);
2114 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2117 pci_unmap_single(nic->pdev, (dma_addr_t)
2118 txds->Buffer_Pointer,
2119 skb->len - skb->data_len,
2121 frg_cnt = skb_shinfo(skb)->nr_frags;
2124 for (j = 0; j < frg_cnt; j++, txds++) {
2125 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2126 if (!txds->Buffer_Pointer)
2128 pci_unmap_page(nic->pdev, (dma_addr_t)
2129 txds->Buffer_Pointer,
2130 frag->size, PCI_DMA_TODEVICE);
2133 txdlp->Host_Control = 0;
2138 * free_tx_buffers - Free all queued Tx buffers
2139 * @nic : device private variable.
2141 * Free all queued Tx buffers.
2142 * Return Value: void
2145 static void free_tx_buffers(struct s2io_nic *nic)
2147 struct net_device *dev = nic->dev;
2148 struct sk_buff *skb;
2151 mac_info_t *mac_control;
2152 struct config_param *config;
2155 mac_control = &nic->mac_control;
2156 config = &nic->config;
2158 for (i = 0; i < config->tx_fifo_num; i++) {
2159 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2160 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2162 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2169 "%s:forcibly freeing %d skbs on FIFO%d\n",
2171 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2172 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2177 * stop_nic - To stop the nic
2178 * @nic ; device private variable.
2180 * This function does exactly the opposite of what the start_nic()
2181 * function does. This function is called to stop the device.
2186 static void stop_nic(struct s2io_nic *nic)
2188 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2189 register u64 val64 = 0;
2191 mac_info_t *mac_control;
2192 struct config_param *config;
2194 mac_control = &nic->mac_control;
2195 config = &nic->config;
2197 /* Disable all interrupts */
2198 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2199 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2200 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2201 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2203 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2204 val64 = readq(&bar0->adapter_control);
2205 val64 &= ~(ADAPTER_CNTL_EN);
2206 writeq(val64, &bar0->adapter_control);
2209 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2211 struct net_device *dev = nic->dev;
2212 struct sk_buff *frag_list;
2215 /* Buffer-1 receives L3/L4 headers */
2216 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2217 (nic->pdev, skb->data, l3l4hdr_size + 4,
2218 PCI_DMA_FROMDEVICE);
2220 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2221 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2222 if (skb_shinfo(skb)->frag_list == NULL) {
2223 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2226 frag_list = skb_shinfo(skb)->frag_list;
2227 frag_list->next = NULL;
2228 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2229 frag_list->data = tmp;
2230 frag_list->tail = tmp;
2232 /* Buffer-2 receives L4 data payload */
2233 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2234 frag_list->data, dev->mtu,
2235 PCI_DMA_FROMDEVICE);
2236 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2237 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2243 * fill_rx_buffers - Allocates the Rx side skbs
2244 * @nic: device private variable
2245 * @ring_no: ring number
2247 * The function allocates Rx side skbs and puts the physical
2248 * address of these buffers into the RxD buffer pointers, so that the NIC
2249 * can DMA the received frame into these locations.
2250 * The NIC supports 3 receive modes, viz
2252 * 2. three buffer and
2253 * 3. Five buffer modes.
2254 * Each mode defines how many fragments the received frame will be split
2255 * up into by the NIC. The frame is split into L3 header, L4 Header,
2256 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2257 * is split into 3 fragments. As of now only single buffer mode is
2260 * SUCCESS on success or an appropriate -ve value on failure.
2263 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2265 struct net_device *dev = nic->dev;
2266 struct sk_buff *skb;
2268 int off, off1, size, block_no, block_no1;
2271 mac_info_t *mac_control;
2272 struct config_param *config;
2275 #ifndef CONFIG_S2IO_NAPI
2276 unsigned long flags;
2278 RxD_t *first_rxdp = NULL;
2280 mac_control = &nic->mac_control;
2281 config = &nic->config;
2282 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2283 atomic_read(&nic->rx_bufs_left[ring_no]);
2285 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2286 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2287 while (alloc_tab < alloc_cnt) {
2288 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2290 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2292 rxdp = mac_control->rings[ring_no].
2293 rx_blocks[block_no].rxds[off].virt_addr;
2295 if ((block_no == block_no1) && (off == off1) &&
2296 (rxdp->Host_Control)) {
2297 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2299 DBG_PRINT(INTR_DBG, " info equated\n");
2302 if (off && (off == rxd_count[nic->rxd_mode])) {
2303 mac_control->rings[ring_no].rx_curr_put_info.
2305 if (mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index == mac_control->rings[ring_no].
2308 mac_control->rings[ring_no].rx_curr_put_info.
2310 block_no = mac_control->rings[ring_no].
2311 rx_curr_put_info.block_index;
2312 if (off == rxd_count[nic->rxd_mode])
2314 mac_control->rings[ring_no].rx_curr_put_info.
2316 rxdp = mac_control->rings[ring_no].
2317 rx_blocks[block_no].block_virt_addr;
2318 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2321 #ifndef CONFIG_S2IO_NAPI
2322 spin_lock_irqsave(&nic->put_lock, flags);
2323 mac_control->rings[ring_no].put_pos =
2324 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2325 spin_unlock_irqrestore(&nic->put_lock, flags);
2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2328 ((nic->rxd_mode >= RXD_MODE_3A) &&
2329 (rxdp->Control_2 & BIT(0)))) {
2330 mac_control->rings[ring_no].rx_curr_put_info.
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
2339 else if (nic->rxd_mode == RXD_MODE_3B)
2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2342 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2345 skb = dev_alloc_skb(size);
2347 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2348 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2351 first_rxdp->Control_1 |= RXD_OWN_XENA;
2355 if (nic->rxd_mode == RXD_MODE_1) {
2356 /* 1 buffer mode - normal operation mode */
2357 memset(rxdp, 0, sizeof(RxD1_t));
2358 skb_reserve(skb, NET_IP_ALIGN);
2359 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2360 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2361 PCI_DMA_FROMDEVICE);
2362 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2364 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2366 * 2 or 3 buffer mode -
2367 * Both 2 buffer mode and 3 buffer mode provides 128
2368 * byte aligned receive buffers.
2370 * 3 buffer mode provides header separation where in
2371 * skb->data will have L3/L4 headers where as
2372 * skb_shinfo(skb)->frag_list will have the L4 data
2376 memset(rxdp, 0, sizeof(RxD3_t));
2377 ba = &mac_control->rings[ring_no].ba[block_no][off];
2378 skb_reserve(skb, BUF0_LEN);
2379 tmp = (u64)(unsigned long) skb->data;
2382 skb->data = (void *) (unsigned long)tmp;
2383 skb->tail = (void *) (unsigned long)tmp;
2385 ((RxD3_t*)rxdp)->Buffer0_ptr =
2386 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2387 PCI_DMA_FROMDEVICE);
2388 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2389 if (nic->rxd_mode == RXD_MODE_3B) {
2390 /* Two buffer mode */
2393 * Buffer2 will have L3/L4 header plus
2396 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2397 (nic->pdev, skb->data, dev->mtu + 4,
2398 PCI_DMA_FROMDEVICE);
2400 /* Buffer-1 will be dummy buffer not used */
2401 ((RxD3_t*)rxdp)->Buffer1_ptr =
2402 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2403 PCI_DMA_FROMDEVICE);
2404 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2405 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2409 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2410 dev_kfree_skb_irq(skb);
2413 first_rxdp->Control_1 |=
2419 rxdp->Control_2 |= BIT(0);
2421 rxdp->Host_Control = (unsigned long) (skb);
2422 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2423 rxdp->Control_1 |= RXD_OWN_XENA;
2425 if (off == (rxd_count[nic->rxd_mode] + 1))
2427 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2429 rxdp->Control_2 |= SET_RXD_MARKER;
2430 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2433 first_rxdp->Control_1 |= RXD_OWN_XENA;
2437 atomic_inc(&nic->rx_bufs_left[ring_no]);
2442 /* Transfer ownership of first descriptor to adapter just before
2443 * exiting. Before that, use memory barrier so that ownership
2444 * and other fields are seen by adapter correctly.
2448 first_rxdp->Control_1 |= RXD_OWN_XENA;
2454 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2456 struct net_device *dev = sp->dev;
2458 struct sk_buff *skb;
2460 mac_info_t *mac_control;
2463 mac_control = &sp->mac_control;
2464 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2465 rxdp = mac_control->rings[ring_no].
2466 rx_blocks[blk].rxds[j].virt_addr;
2467 skb = (struct sk_buff *)
2468 ((unsigned long) rxdp->Host_Control);
2472 if (sp->rxd_mode == RXD_MODE_1) {
2473 pci_unmap_single(sp->pdev, (dma_addr_t)
2474 ((RxD1_t*)rxdp)->Buffer0_ptr,
2476 HEADER_ETHERNET_II_802_3_SIZE
2477 + HEADER_802_2_SIZE +
2479 PCI_DMA_FROMDEVICE);
2480 memset(rxdp, 0, sizeof(RxD1_t));
2481 } else if(sp->rxd_mode == RXD_MODE_3B) {
2482 ba = &mac_control->rings[ring_no].
2484 pci_unmap_single(sp->pdev, (dma_addr_t)
2485 ((RxD3_t*)rxdp)->Buffer0_ptr,
2487 PCI_DMA_FROMDEVICE);
2488 pci_unmap_single(sp->pdev, (dma_addr_t)
2489 ((RxD3_t*)rxdp)->Buffer1_ptr,
2491 PCI_DMA_FROMDEVICE);
2492 pci_unmap_single(sp->pdev, (dma_addr_t)
2493 ((RxD3_t*)rxdp)->Buffer2_ptr,
2495 PCI_DMA_FROMDEVICE);
2496 memset(rxdp, 0, sizeof(RxD3_t));
2498 pci_unmap_single(sp->pdev, (dma_addr_t)
2499 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2500 PCI_DMA_FROMDEVICE);
2501 pci_unmap_single(sp->pdev, (dma_addr_t)
2502 ((RxD3_t*)rxdp)->Buffer1_ptr,
2504 PCI_DMA_FROMDEVICE);
2505 pci_unmap_single(sp->pdev, (dma_addr_t)
2506 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2507 PCI_DMA_FROMDEVICE);
2508 memset(rxdp, 0, sizeof(RxD3_t));
2511 atomic_dec(&sp->rx_bufs_left[ring_no]);
2516 * free_rx_buffers - Frees all Rx buffers
2517 * @sp: device private variable.
2519 * This function will free all Rx buffers allocated by host.
2524 static void free_rx_buffers(struct s2io_nic *sp)
2526 struct net_device *dev = sp->dev;
2527 int i, blk = 0, buf_cnt = 0;
2528 mac_info_t *mac_control;
2529 struct config_param *config;
2531 mac_control = &sp->mac_control;
2532 config = &sp->config;
2534 for (i = 0; i < config->rx_ring_num; i++) {
2535 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2536 free_rxd_blk(sp,i,blk);
2538 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2539 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2540 mac_control->rings[i].rx_curr_put_info.offset = 0;
2541 mac_control->rings[i].rx_curr_get_info.offset = 0;
2542 atomic_set(&sp->rx_bufs_left[i], 0);
2543 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2544 dev->name, buf_cnt, i);
2549 * s2io_poll - Rx interrupt handler for NAPI support
2550 * @dev : pointer to the device structure.
2551 * @budget : The number of packets that were budgeted to be processed
2552 * during one pass through the 'Poll" function.
2554 * Comes into picture only if NAPI support has been incorporated. It does
2555 * the same thing that rx_intr_handler does, but not in a interrupt context
2556 * also It will process only a given number of packets.
2558 * 0 on success and 1 if there are No Rx packets to be processed.
2561 #if defined(CONFIG_S2IO_NAPI)
2562 static int s2io_poll(struct net_device *dev, int *budget)
2564 nic_t *nic = dev->priv;
2565 int pkt_cnt = 0, org_pkts_to_process;
2566 mac_info_t *mac_control;
2567 struct config_param *config;
2568 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2569 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2572 atomic_inc(&nic->isr_cnt);
2573 mac_control = &nic->mac_control;
2574 config = &nic->config;
2576 nic->pkts_to_process = *budget;
2577 if (nic->pkts_to_process > dev->quota)
2578 nic->pkts_to_process = dev->quota;
2579 org_pkts_to_process = nic->pkts_to_process;
2581 writeq(val64, &bar0->rx_traffic_int);
2582 val64 = readl(&bar0->rx_traffic_int);
2584 for (i = 0; i < config->rx_ring_num; i++) {
2585 rx_intr_handler(&mac_control->rings[i]);
2586 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2587 if (!nic->pkts_to_process) {
2588 /* Quota for the current iteration has been met */
2595 dev->quota -= pkt_cnt;
2597 netif_rx_complete(dev);
2599 for (i = 0; i < config->rx_ring_num; i++) {
2600 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2606 /* Re enable the Rx interrupts. */
2607 writeq(0x0, &bar0->rx_traffic_mask);
2608 val64 = readl(&bar0->rx_traffic_mask);
2609 atomic_dec(&nic->isr_cnt);
2613 dev->quota -= pkt_cnt;
2616 for (i = 0; i < config->rx_ring_num; i++) {
2617 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2618 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2619 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2623 atomic_dec(&nic->isr_cnt);
2629 * s2io_netpoll - Rx interrupt service handler for netpoll support
2630 * @dev : pointer to the device structure.
2632 * Polling 'interrupt' - used by things like netconsole to send skbs
2633 * without having to re-enable interrupts. It's not called while
2634 * the interrupt routine is executing.
2637 #ifdef CONFIG_NET_POLL_CONTROLLER
2638 static void s2io_netpoll(struct net_device *dev)
2640 nic_t *nic = dev->priv;
2641 mac_info_t *mac_control;
2642 struct config_param *config;
2643 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2647 disable_irq(dev->irq);
2649 atomic_inc(&nic->isr_cnt);
2650 mac_control = &nic->mac_control;
2651 config = &nic->config;
2653 val64 = readq(&bar0->rx_traffic_int);
2654 writeq(val64, &bar0->rx_traffic_int);
2656 for (i = 0; i < config->rx_ring_num; i++)
2657 rx_intr_handler(&mac_control->rings[i]);
2659 for (i = 0; i < config->rx_ring_num; i++) {
2660 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2661 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2662 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2666 atomic_dec(&nic->isr_cnt);
2667 enable_irq(dev->irq);
2673 * rx_intr_handler - Rx interrupt handler
2674 * @nic: device private variable.
2676 * If the interrupt is because of a received frame or if the
2677 * receive ring contains fresh as yet un-processed frames,this function is
2678 * called. It picks out the RxD at which place the last Rx processing had
2679 * stopped and sends the skb to the OSM's Rx handler and then increments
2684 static void rx_intr_handler(ring_info_t *ring_data)
2686 nic_t *nic = ring_data->nic;
2687 struct net_device *dev = (struct net_device *) nic->dev;
2688 int get_block, put_block, put_offset;
2689 rx_curr_get_info_t get_info, put_info;
2691 struct sk_buff *skb;
2692 #ifndef CONFIG_S2IO_NAPI
2697 spin_lock(&nic->rx_lock);
2698 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2699 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2700 __FUNCTION__, dev->name);
2701 spin_unlock(&nic->rx_lock);
2705 get_info = ring_data->rx_curr_get_info;
2706 get_block = get_info.block_index;
2707 put_info = ring_data->rx_curr_put_info;
2708 put_block = put_info.block_index;
2709 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2710 #ifndef CONFIG_S2IO_NAPI
2711 spin_lock(&nic->put_lock);
2712 put_offset = ring_data->put_pos;
2713 spin_unlock(&nic->put_lock);
2715 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2718 while (RXD_IS_UP2DT(rxdp)) {
2719 /* If your are next to put index then it's FIFO full condition */
2720 if ((get_block == put_block) &&
2721 (get_info.offset + 1) == put_info.offset) {
2722 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2725 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2727 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2729 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2730 spin_unlock(&nic->rx_lock);
2733 if (nic->rxd_mode == RXD_MODE_1) {
2734 pci_unmap_single(nic->pdev, (dma_addr_t)
2735 ((RxD1_t*)rxdp)->Buffer0_ptr,
2737 HEADER_ETHERNET_II_802_3_SIZE +
2740 PCI_DMA_FROMDEVICE);
2741 } else if (nic->rxd_mode == RXD_MODE_3B) {
2742 pci_unmap_single(nic->pdev, (dma_addr_t)
2743 ((RxD3_t*)rxdp)->Buffer0_ptr,
2744 BUF0_LEN, PCI_DMA_FROMDEVICE);
2745 pci_unmap_single(nic->pdev, (dma_addr_t)
2746 ((RxD3_t*)rxdp)->Buffer1_ptr,
2747 BUF1_LEN, PCI_DMA_FROMDEVICE);
2748 pci_unmap_single(nic->pdev, (dma_addr_t)
2749 ((RxD3_t*)rxdp)->Buffer2_ptr,
2751 PCI_DMA_FROMDEVICE);
2753 pci_unmap_single(nic->pdev, (dma_addr_t)
2754 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2755 PCI_DMA_FROMDEVICE);
2756 pci_unmap_single(nic->pdev, (dma_addr_t)
2757 ((RxD3_t*)rxdp)->Buffer1_ptr,
2759 PCI_DMA_FROMDEVICE);
2760 pci_unmap_single(nic->pdev, (dma_addr_t)
2761 ((RxD3_t*)rxdp)->Buffer2_ptr,
2762 dev->mtu, PCI_DMA_FROMDEVICE);
2764 prefetch(skb->data);
2765 rx_osm_handler(ring_data, rxdp);
2767 ring_data->rx_curr_get_info.offset = get_info.offset;
2768 rxdp = ring_data->rx_blocks[get_block].
2769 rxds[get_info.offset].virt_addr;
2770 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2771 get_info.offset = 0;
2772 ring_data->rx_curr_get_info.offset = get_info.offset;
2774 if (get_block == ring_data->block_count)
2776 ring_data->rx_curr_get_info.block_index = get_block;
2777 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2780 #ifdef CONFIG_S2IO_NAPI
2781 nic->pkts_to_process -= 1;
2782 if (!nic->pkts_to_process)
2786 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2791 /* Clear all LRO sessions before exiting */
2792 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2793 lro_t *lro = &nic->lro0_n[i];
2795 update_L3L4_header(nic, lro);
2796 queue_rx_frame(lro->parent);
2797 clear_lro_session(lro);
2802 spin_unlock(&nic->rx_lock);
2806 * tx_intr_handler - Transmit interrupt handler
2807 * @nic : device private variable
2809 * If an interrupt was raised to indicate DMA complete of the
2810 * Tx packet, this function is called. It identifies the last TxD
2811 * whose buffer was freed and frees all skbs whose data have already
2812 * DMA'ed into the NICs internal memory.
2817 static void tx_intr_handler(fifo_info_t *fifo_data)
2819 nic_t *nic = fifo_data->nic;
2820 struct net_device *dev = (struct net_device *) nic->dev;
2821 tx_curr_get_info_t get_info, put_info;
2822 struct sk_buff *skb;
2825 get_info = fifo_data->tx_curr_get_info;
2826 put_info = fifo_data->tx_curr_put_info;
2827 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2829 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2830 (get_info.offset != put_info.offset) &&
2831 (txdlp->Host_Control)) {
2832 /* Check for TxD errors */
2833 if (txdlp->Control_1 & TXD_T_CODE) {
2834 unsigned long long err;
2835 err = txdlp->Control_1 & TXD_T_CODE;
2837 nic->mac_control.stats_info->sw_stat.
2840 if ((err >> 48) == 0xA) {
2841 DBG_PRINT(TX_DBG, "TxD returned due \
2842 to loss of link\n");
2845 DBG_PRINT(ERR_DBG, "***TxD error \
2850 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2852 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2854 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2858 /* Updating the statistics block */
2859 nic->stats.tx_bytes += skb->len;
2860 dev_kfree_skb_irq(skb);
2863 if (get_info.offset == get_info.fifo_len + 1)
2864 get_info.offset = 0;
2865 txdlp = (TxD_t *) fifo_data->list_info
2866 [get_info.offset].list_virt_addr;
2867 fifo_data->tx_curr_get_info.offset =
2871 spin_lock(&nic->tx_lock);
2872 if (netif_queue_stopped(dev))
2873 netif_wake_queue(dev);
2874 spin_unlock(&nic->tx_lock);
2878 * s2io_mdio_write - Function to write in to MDIO registers
2879 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2880 * @addr : address value
2881 * @value : data value
2882 * @dev : pointer to net_device structure
2884 * This function is used to write values to the MDIO registers
2887 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2890 nic_t *sp = dev->priv;
2891 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2893 //address transaction
2894 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2895 | MDIO_MMD_DEV_ADDR(mmd_type)
2896 | MDIO_MMS_PRT_ADDR(0x0);
2897 writeq(val64, &bar0->mdio_control);
2898 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2899 writeq(val64, &bar0->mdio_control);
2904 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2905 | MDIO_MMD_DEV_ADDR(mmd_type)
2906 | MDIO_MMS_PRT_ADDR(0x0)
2907 | MDIO_MDIO_DATA(value)
2908 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2909 writeq(val64, &bar0->mdio_control);
2910 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2911 writeq(val64, &bar0->mdio_control);
2915 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2916 | MDIO_MMD_DEV_ADDR(mmd_type)
2917 | MDIO_MMS_PRT_ADDR(0x0)
2918 | MDIO_OP(MDIO_OP_READ_TRANS);
2919 writeq(val64, &bar0->mdio_control);
2920 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2921 writeq(val64, &bar0->mdio_control);
2927 * s2io_mdio_read - Function to write in to MDIO registers
2928 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2929 * @addr : address value
2930 * @dev : pointer to net_device structure
2932 * This function is used to read values to the MDIO registers
2935 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2939 nic_t *sp = dev->priv;
2940 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2942 /* address transaction */
2943 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2944 | MDIO_MMD_DEV_ADDR(mmd_type)
2945 | MDIO_MMS_PRT_ADDR(0x0);
2946 writeq(val64, &bar0->mdio_control);
2947 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2948 writeq(val64, &bar0->mdio_control);
2951 /* Data transaction */
2953 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2954 | MDIO_MMD_DEV_ADDR(mmd_type)
2955 | MDIO_MMS_PRT_ADDR(0x0)
2956 | MDIO_OP(MDIO_OP_READ_TRANS);
2957 writeq(val64, &bar0->mdio_control);
2958 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2959 writeq(val64, &bar0->mdio_control);
2962 /* Read the value from regs */
2963 rval64 = readq(&bar0->mdio_control);
2964 rval64 = rval64 & 0xFFFF0000;
2965 rval64 = rval64 >> 16;
2969 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2970 * @counter : couter value to be updated
2971 * @flag : flag to indicate the status
2972 * @type : counter type
2974 * This function is to check the status of the xpak counters value
2978 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2983 for(i = 0; i <index; i++)
2988 *counter = *counter + 1;
2989 val64 = *regs_stat & mask;
2990 val64 = val64 >> (index * 0x2);
2997 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2998 "service. Excessive temperatures may "
2999 "result in premature transceiver "
3003 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3004 "service Excessive bias currents may "
3005 "indicate imminent laser diode "
3009 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3010 "service Excessive laser output "
3011 "power may saturate far-end "
3015 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3020 val64 = val64 << (index * 0x2);
3021 *regs_stat = (*regs_stat & (~mask)) | (val64);
3024 *regs_stat = *regs_stat & (~mask);
3029 * s2io_updt_xpak_counter - Function to update the xpak counters
3030 * @dev : pointer to net_device struct
3032 * This function is to upate the status of the xpak counters value
3035 static void s2io_updt_xpak_counter(struct net_device *dev)
3043 nic_t *sp = dev->priv;
3044 StatInfo_t *stat_info = sp->mac_control.stats_info;
3046 /* Check the communication with the MDIO slave */
3049 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3050 if((val64 == 0xFFFF) || (val64 == 0x0000))
3052 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3053 "Returned %llx\n", (unsigned long long)val64);
3057 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3060 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3061 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3062 (unsigned long long)val64);
3066 /* Loading the DOM register to MDIO register */
3068 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3069 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3071 /* Reading the Alarm flags */
3074 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3076 flag = CHECKBIT(val64, 0x7);
3078 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3079 &stat_info->xpak_stat.xpak_regs_stat,
3082 if(CHECKBIT(val64, 0x6))
3083 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3085 flag = CHECKBIT(val64, 0x3);
3087 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3088 &stat_info->xpak_stat.xpak_regs_stat,
3091 if(CHECKBIT(val64, 0x2))
3092 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3094 flag = CHECKBIT(val64, 0x1);
3096 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3097 &stat_info->xpak_stat.xpak_regs_stat,
3100 if(CHECKBIT(val64, 0x0))
3101 stat_info->xpak_stat.alarm_laser_output_power_low++;
3103 /* Reading the Warning flags */
3106 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3108 if(CHECKBIT(val64, 0x7))
3109 stat_info->xpak_stat.warn_transceiver_temp_high++;
3111 if(CHECKBIT(val64, 0x6))
3112 stat_info->xpak_stat.warn_transceiver_temp_low++;
3114 if(CHECKBIT(val64, 0x3))
3115 stat_info->xpak_stat.warn_laser_bias_current_high++;
3117 if(CHECKBIT(val64, 0x2))
3118 stat_info->xpak_stat.warn_laser_bias_current_low++;
3120 if(CHECKBIT(val64, 0x1))
3121 stat_info->xpak_stat.warn_laser_output_power_high++;
3123 if(CHECKBIT(val64, 0x0))
3124 stat_info->xpak_stat.warn_laser_output_power_low++;
3128 * alarm_intr_handler - Alarm Interrrupt handler
3129 * @nic: device private variable
3130 * Description: If the interrupt was neither because of Rx packet or Tx
3131 * complete, this function is called. If the interrupt was to indicate
3132 * a loss of link, the OSM link status handler is invoked for any other
3133 * alarm interrupt the block that raised the interrupt is displayed
3134 * and a H/W reset is issued.
3139 static void alarm_intr_handler(struct s2io_nic *nic)
3141 struct net_device *dev = (struct net_device *) nic->dev;
3142 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3143 register u64 val64 = 0, err_reg = 0;
3146 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3147 /* Handling the XPAK counters update */
3148 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3149 /* waiting for an hour */
3150 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3152 s2io_updt_xpak_counter(dev);
3153 /* reset the count to zero */
3154 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3157 /* Handling link status change error Intr */
3158 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3159 err_reg = readq(&bar0->mac_rmac_err_reg);
3160 writeq(err_reg, &bar0->mac_rmac_err_reg);
3161 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3162 schedule_work(&nic->set_link_task);
3166 /* Handling Ecc errors */
3167 val64 = readq(&bar0->mc_err_reg);
3168 writeq(val64, &bar0->mc_err_reg);
3169 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3170 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3171 nic->mac_control.stats_info->sw_stat.
3173 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3175 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3176 if (nic->device_type != XFRAME_II_DEVICE) {
3177 /* Reset XframeI only if critical error */
3178 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3179 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3180 netif_stop_queue(dev);
3181 schedule_work(&nic->rst_timer_task);
3182 nic->mac_control.stats_info->sw_stat.
3187 nic->mac_control.stats_info->sw_stat.
3192 /* In case of a serious error, the device will be Reset. */
3193 val64 = readq(&bar0->serr_source);
3194 if (val64 & SERR_SOURCE_ANY) {
3195 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3196 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3197 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3198 (unsigned long long)val64);
3199 netif_stop_queue(dev);
3200 schedule_work(&nic->rst_timer_task);
3201 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3205 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3206 * Error occurs, the adapter will be recycled by disabling the
3207 * adapter enable bit and enabling it again after the device
3208 * becomes Quiescent.
3210 val64 = readq(&bar0->pcc_err_reg);
3211 writeq(val64, &bar0->pcc_err_reg);
3212 if (val64 & PCC_FB_ECC_DB_ERR) {
3213 u64 ac = readq(&bar0->adapter_control);
3214 ac &= ~(ADAPTER_CNTL_EN);
3215 writeq(ac, &bar0->adapter_control);
3216 ac = readq(&bar0->adapter_control);
3217 schedule_work(&nic->set_link_task);
3219 /* Check for data parity error */
3220 val64 = readq(&bar0->pic_int_status);
3221 if (val64 & PIC_INT_GPIO) {
3222 val64 = readq(&bar0->gpio_int_reg);
3223 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3224 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3225 schedule_work(&nic->rst_timer_task);
3226 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3230 /* Check for ring full counter */
3231 if (nic->device_type & XFRAME_II_DEVICE) {
3232 val64 = readq(&bar0->ring_bump_counter1);
3233 for (i=0; i<4; i++) {
3234 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3235 cnt >>= 64 - ((i+1)*16);
3236 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3240 val64 = readq(&bar0->ring_bump_counter2);
3241 for (i=0; i<4; i++) {
3242 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3243 cnt >>= 64 - ((i+1)*16);
3244 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3249 /* Other type of interrupts are not being handled now, TODO */
3253 * wait_for_cmd_complete - waits for a command to complete.
3254 * @sp : private member of the device structure, which is a pointer to the
3255 * s2io_nic structure.
3256 * Description: Function that waits for a command to Write into RMAC
3257 * ADDR DATA registers to be completed and returns either success or
3258 * error depending on whether the command was complete or not.
3260 * SUCCESS on success and FAILURE on failure.
3263 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3265 int ret = FAILURE, cnt = 0;
3269 val64 = readq(addr);
3270 if (!(val64 & busy_bit)) {
3287 * s2io_reset - Resets the card.
3288 * @sp : private member of the device structure.
3289 * Description: Function to Reset the card. This function then also
3290 * restores the previously saved PCI configuration space registers as
3291 * the card reset also resets the configuration space.
3296 static void s2io_reset(nic_t * sp)
3298 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3302 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3303 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3305 val64 = SW_RESET_ALL;
3306 writeq(val64, &bar0->sw_reset);
3309 * At this stage, if the PCI write is indeed completed, the
3310 * card is reset and so is the PCI Config space of the device.
3311 * So a read cannot be issued at this stage on any of the
3312 * registers to ensure the write into "sw_reset" register
3314 * Question: Is there any system call that will explicitly force
3315 * all the write commands still pending on the bus to be pushed
3317 * As of now I'am just giving a 250ms delay and hoping that the
3318 * PCI write to sw_reset register is done by this time.
3321 if (strstr(sp->product_name, "CX4")) {
3325 /* Restore the PCI state saved during initialization. */
3326 pci_restore_state(sp->pdev);
3327 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3333 /* Set swapper to enable I/O register access */
3334 s2io_set_swapper(sp);
3336 /* Restore the MSIX table entries from local variables */
3337 restore_xmsi_data(sp);
3339 /* Clear certain PCI/PCI-X fields after reset */
3340 if (sp->device_type == XFRAME_II_DEVICE) {
3341 /* Clear parity err detect bit */
3342 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3344 /* Clearing PCIX Ecc status register */
3345 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3347 /* Clearing PCI_STATUS error reflected here */
3348 writeq(BIT(62), &bar0->txpic_int_reg);
3351 /* Reset device statistics maintained by OS */
3352 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3354 /* SXE-002: Configure link and activity LED to turn it off */
3355 subid = sp->pdev->subsystem_device;
3356 if (((subid & 0xFF) >= 0x07) &&
3357 (sp->device_type == XFRAME_I_DEVICE)) {
3358 val64 = readq(&bar0->gpio_control);
3359 val64 |= 0x0000800000000000ULL;
3360 writeq(val64, &bar0->gpio_control);
3361 val64 = 0x0411040400000000ULL;
3362 writeq(val64, (void __iomem *)bar0 + 0x2700);
3366 * Clear spurious ECC interrupts that would have occured on
3367 * XFRAME II cards after reset.
3369 if (sp->device_type == XFRAME_II_DEVICE) {
3370 val64 = readq(&bar0->pcc_err_reg);
3371 writeq(val64, &bar0->pcc_err_reg);
3374 sp->device_enabled_once = FALSE;
3378 * s2io_set_swapper - to set the swapper controle on the card
3379 * @sp : private member of the device structure,
3380 * pointer to the s2io_nic structure.
3381 * Description: Function to set the swapper control on the card
3382 * correctly depending on the 'endianness' of the system.
3384 * SUCCESS on success and FAILURE on failure.
3387 static int s2io_set_swapper(nic_t * sp)
3389 struct net_device *dev = sp->dev;
3390 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3391 u64 val64, valt, valr;
3394 * Set proper endian settings and verify the same by reading
3395 * the PIF Feed-back register.
3398 val64 = readq(&bar0->pif_rd_swapper_fb);
3399 if (val64 != 0x0123456789ABCDEFULL) {
3401 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3402 0x8100008181000081ULL, /* FE=1, SE=0 */
3403 0x4200004242000042ULL, /* FE=0, SE=1 */
3404 0}; /* FE=0, SE=0 */
3407 writeq(value[i], &bar0->swapper_ctrl);
3408 val64 = readq(&bar0->pif_rd_swapper_fb);
3409 if (val64 == 0x0123456789ABCDEFULL)
3414 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3416 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3417 (unsigned long long) val64);
3422 valr = readq(&bar0->swapper_ctrl);
3425 valt = 0x0123456789ABCDEFULL;
3426 writeq(valt, &bar0->xmsi_address);
3427 val64 = readq(&bar0->xmsi_address);
3431 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3432 0x0081810000818100ULL, /* FE=1, SE=0 */
3433 0x0042420000424200ULL, /* FE=0, SE=1 */
3434 0}; /* FE=0, SE=0 */
3437 writeq((value[i] | valr), &bar0->swapper_ctrl);
3438 writeq(valt, &bar0->xmsi_address);
3439 val64 = readq(&bar0->xmsi_address);
3445 unsigned long long x = val64;
3446 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3447 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3451 val64 = readq(&bar0->swapper_ctrl);
3452 val64 &= 0xFFFF000000000000ULL;
3456 * The device by default set to a big endian format, so a
3457 * big endian driver need not set anything.
3459 val64 |= (SWAPPER_CTRL_TXP_FE |
3460 SWAPPER_CTRL_TXP_SE |
3461 SWAPPER_CTRL_TXD_R_FE |
3462 SWAPPER_CTRL_TXD_W_FE |
3463 SWAPPER_CTRL_TXF_R_FE |
3464 SWAPPER_CTRL_RXD_R_FE |
3465 SWAPPER_CTRL_RXD_W_FE |
3466 SWAPPER_CTRL_RXF_W_FE |
3467 SWAPPER_CTRL_XMSI_FE |
3468 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3469 if (sp->intr_type == INTA)
3470 val64 |= SWAPPER_CTRL_XMSI_SE;
3471 writeq(val64, &bar0->swapper_ctrl);
3474 * Initially we enable all bits to make it accessible by the
3475 * driver, then we selectively enable only those bits that
3478 val64 |= (SWAPPER_CTRL_TXP_FE |
3479 SWAPPER_CTRL_TXP_SE |
3480 SWAPPER_CTRL_TXD_R_FE |
3481 SWAPPER_CTRL_TXD_R_SE |
3482 SWAPPER_CTRL_TXD_W_FE |
3483 SWAPPER_CTRL_TXD_W_SE |
3484 SWAPPER_CTRL_TXF_R_FE |
3485 SWAPPER_CTRL_RXD_R_FE |
3486 SWAPPER_CTRL_RXD_R_SE |
3487 SWAPPER_CTRL_RXD_W_FE |
3488 SWAPPER_CTRL_RXD_W_SE |
3489 SWAPPER_CTRL_RXF_W_FE |
3490 SWAPPER_CTRL_XMSI_FE |
3491 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3492 if (sp->intr_type == INTA)
3493 val64 |= SWAPPER_CTRL_XMSI_SE;
3494 writeq(val64, &bar0->swapper_ctrl);
3496 val64 = readq(&bar0->swapper_ctrl);
3499 * Verifying if endian settings are accurate by reading a
3500 * feedback register.
3502 val64 = readq(&bar0->pif_rd_swapper_fb);
3503 if (val64 != 0x0123456789ABCDEFULL) {
3504 /* Endian settings are incorrect, calls for another dekko. */
3505 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3507 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3508 (unsigned long long) val64);
3515 static int wait_for_msix_trans(nic_t *nic, int i)
3517 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3519 int ret = 0, cnt = 0;
3522 val64 = readq(&bar0->xmsi_access);
3523 if (!(val64 & BIT(15)))
3529 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3536 static void restore_xmsi_data(nic_t *nic)
3538 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3542 for (i=0; i< nic->avail_msix_vectors; i++) {
3543 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3544 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3545 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3546 writeq(val64, &bar0->xmsi_access);
3547 if (wait_for_msix_trans(nic, i)) {
3548 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3554 static void store_xmsi_data(nic_t *nic)
3556 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3557 u64 val64, addr, data;
3560 /* Store and display */
3561 for (i=0; i< nic->avail_msix_vectors; i++) {
3562 val64 = (BIT(15) | vBIT(i, 26, 6));
3563 writeq(val64, &bar0->xmsi_access);
3564 if (wait_for_msix_trans(nic, i)) {
3565 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3568 addr = readq(&bar0->xmsi_address);
3569 data = readq(&bar0->xmsi_data);
3571 nic->msix_info[i].addr = addr;
3572 nic->msix_info[i].data = data;
3577 int s2io_enable_msi(nic_t *nic)
3579 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3580 u16 msi_ctrl, msg_val;
3581 struct config_param *config = &nic->config;
3582 struct net_device *dev = nic->dev;
3583 u64 val64, tx_mat, rx_mat;
3586 val64 = readq(&bar0->pic_control);
3588 writeq(val64, &bar0->pic_control);
3590 err = pci_enable_msi(nic->pdev);
3592 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3598 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3599 * for interrupt handling.
3601 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3603 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3604 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3606 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3608 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3610 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3611 tx_mat = readq(&bar0->tx_mat0_n[0]);
3612 for (i=0; i<config->tx_fifo_num; i++) {
3613 tx_mat |= TX_MAT_SET(i, 1);
3615 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3617 rx_mat = readq(&bar0->rx_mat);
3618 for (i=0; i<config->rx_ring_num; i++) {
3619 rx_mat |= RX_MAT_SET(i, 1);
3621 writeq(rx_mat, &bar0->rx_mat);
3623 dev->irq = nic->pdev->irq;
3627 static int s2io_enable_msi_x(nic_t *nic)
3629 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3631 u16 msi_control; /* Temp variable */
3632 int ret, i, j, msix_indx = 1;
3634 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3636 if (nic->entries == NULL) {
3637 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3640 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3643 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3645 if (nic->s2io_entries == NULL) {
3646 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3647 kfree(nic->entries);
3650 memset(nic->s2io_entries, 0,
3651 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3653 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3654 nic->entries[i].entry = i;
3655 nic->s2io_entries[i].entry = i;
3656 nic->s2io_entries[i].arg = NULL;
3657 nic->s2io_entries[i].in_use = 0;
3660 tx_mat = readq(&bar0->tx_mat0_n[0]);
3661 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3662 tx_mat |= TX_MAT_SET(i, msix_indx);
3663 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3664 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3665 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3667 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3669 if (!nic->config.bimodal) {
3670 rx_mat = readq(&bar0->rx_mat);
3671 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3672 rx_mat |= RX_MAT_SET(j, msix_indx);
3673 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3674 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3675 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3677 writeq(rx_mat, &bar0->rx_mat);
3679 tx_mat = readq(&bar0->tx_mat0_n[7]);
3680 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3681 tx_mat |= TX_MAT_SET(i, msix_indx);
3682 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3683 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3684 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3686 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3689 nic->avail_msix_vectors = 0;
3690 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3691 /* We fail init if error or we get less vectors than min required */
3692 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3693 nic->avail_msix_vectors = ret;
3694 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3697 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3698 kfree(nic->entries);
3699 kfree(nic->s2io_entries);
3700 nic->entries = NULL;
3701 nic->s2io_entries = NULL;
3702 nic->avail_msix_vectors = 0;
3705 if (!nic->avail_msix_vectors)
3706 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3709 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3710 * in the herc NIC. (Temp change, needs to be removed later)
3712 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3713 msi_control |= 0x1; /* Enable MSI */
3714 pci_write_config_word(nic->pdev, 0x42, msi_control);
3719 /* ********************************************************* *
3720 * Functions defined below concern the OS part of the driver *
3721 * ********************************************************* */
3724 * s2io_open - open entry point of the driver
3725 * @dev : pointer to the device structure.
3727 * This function is the open entry point of the driver. It mainly calls a
3728 * function to allocate Rx buffers and inserts them into the buffer
3729 * descriptors and then enables the Rx part of the NIC.
3731 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3735 static int s2io_open(struct net_device *dev)
3737 nic_t *sp = dev->priv;
3741 * Make sure you have link off by default every time
3742 * Nic is initialized
3744 netif_carrier_off(dev);
3745 sp->last_link_state = 0;
3747 /* Initialize H/W and enable interrupts */
3748 err = s2io_card_up(sp);
3750 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3753 goto hw_init_failed;
3755 goto hw_enable_failed;
3758 /* Store the values of the MSIX table in the nic_t structure */
3759 store_xmsi_data(sp);
3761 /* After proper initialization of H/W, register ISR */
3762 if (sp->intr_type == MSI) {
3763 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3764 IRQF_SHARED, sp->name, dev);
3766 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3767 failed\n", dev->name);
3768 goto isr_registration_failed;
3771 if (sp->intr_type == MSI_X) {
3774 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3775 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3776 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3778 err = request_irq(sp->entries[i].vector,
3779 s2io_msix_fifo_handle, 0, sp->desc1,
3780 sp->s2io_entries[i].arg);
3781 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3782 (unsigned long long)sp->msix_info[i].addr);
3784 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3786 err = request_irq(sp->entries[i].vector,
3787 s2io_msix_ring_handle, 0, sp->desc2,
3788 sp->s2io_entries[i].arg);
3789 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3790 (unsigned long long)sp->msix_info[i].addr);
3793 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3794 failed\n", dev->name, i);
3795 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3796 goto isr_registration_failed;
3798 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3801 if (sp->intr_type == INTA) {
3802 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
3805 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3807 goto isr_registration_failed;
3811 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3812 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3814 goto setting_mac_address_failed;
3817 netif_start_queue(dev);
3820 setting_mac_address_failed:
3821 if (sp->intr_type != MSI_X)
3822 free_irq(sp->pdev->irq, dev);
3823 isr_registration_failed:
3824 del_timer_sync(&sp->alarm_timer);
3825 if (sp->intr_type == MSI_X) {
3827 u16 msi_control; /* Temp variable */
3829 for (i=1; (sp->s2io_entries[i].in_use ==
3830 MSIX_REGISTERED_SUCCESS); i++) {
3831 int vector = sp->entries[i].vector;
3832 void *arg = sp->s2io_entries[i].arg;
3834 free_irq(vector, arg);
3836 pci_disable_msix(sp->pdev);
3839 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3840 msi_control &= 0xFFFE; /* Disable MSI */
3841 pci_write_config_word(sp->pdev, 0x42, msi_control);
3843 else if (sp->intr_type == MSI)
3844 pci_disable_msi(sp->pdev);
3848 if (sp->intr_type == MSI_X) {
3851 if (sp->s2io_entries)
3852 kfree(sp->s2io_entries);
3858 * s2io_close -close entry point of the driver
3859 * @dev : device pointer.
3861 * This is the stop entry point of the driver. It needs to undo exactly
3862 * whatever was done by the open entry point,thus it's usually referred to
3863 * as the close function.Among other things this function mainly stops the
3864 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3866 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3870 static int s2io_close(struct net_device *dev)
3872 nic_t *sp = dev->priv;
3874 flush_scheduled_work();
3875 netif_stop_queue(dev);
3876 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3877 s2io_card_down(sp, 1);
3879 sp->device_close_flag = TRUE; /* Device is shut down. */
3884 * s2io_xmit - Tx entry point of te driver
3885 * @skb : the socket buffer containing the Tx data.
3886 * @dev : device pointer.
3888 * This function is the Tx entry point of the driver. S2IO NIC supports
3889 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3890 * NOTE: when device cant queue the pkt,just the trans_start variable will
3893 * 0 on success & 1 on failure.
3896 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3898 nic_t *sp = dev->priv;
3899 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3902 TxFIFO_element_t __iomem *tx_fifo;
3903 unsigned long flags;
3908 int vlan_priority = 0;
3909 mac_info_t *mac_control;
3910 struct config_param *config;
3912 mac_control = &sp->mac_control;
3913 config = &sp->config;
3915 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3916 spin_lock_irqsave(&sp->tx_lock, flags);
3917 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3918 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3920 spin_unlock_irqrestore(&sp->tx_lock, flags);
3927 /* Get Fifo number to Transmit based on vlan priority */
3928 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3929 vlan_tag = vlan_tx_tag_get(skb);
3930 vlan_priority = vlan_tag >> 13;
3931 queue = config->fifo_mapping[vlan_priority];
3934 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3935 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3936 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3939 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3940 /* Avoid "put" pointer going beyond "get" pointer */
3941 if (txdp->Host_Control ||
3942 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3943 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3944 netif_stop_queue(dev);
3946 spin_unlock_irqrestore(&sp->tx_lock, flags);
3950 /* A buffer with no data will be dropped */
3952 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3954 spin_unlock_irqrestore(&sp->tx_lock, flags);
3958 txdp->Control_1 = 0;
3959 txdp->Control_2 = 0;
3961 mss = skb_shinfo(skb)->gso_size;
3962 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3963 txdp->Control_1 |= TXD_TCP_LSO_EN;
3964 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3967 if (skb->ip_summed == CHECKSUM_HW) {
3969 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3972 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3973 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3974 txdp->Control_2 |= config->tx_intr_type;
3976 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3977 txdp->Control_2 |= TXD_VLAN_ENABLE;
3978 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3981 frg_len = skb->len - skb->data_len;
3982 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP) {
3985 ufo_size = skb_shinfo(skb)->gso_size;
3987 txdp->Control_1 |= TXD_UFO_EN;
3988 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3989 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3991 sp->ufo_in_band_v[put_off] =
3992 (u64)skb_shinfo(skb)->ip6_frag_id;
3994 sp->ufo_in_band_v[put_off] =
3995 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3997 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3998 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4000 sizeof(u64), PCI_DMA_TODEVICE);
4002 txdp->Control_1 = 0;
4003 txdp->Control_2 = 0;
4006 txdp->Buffer_Pointer = pci_map_single
4007 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4008 txdp->Host_Control = (unsigned long) skb;
4009 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4011 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
4012 txdp->Control_1 |= TXD_UFO_EN;
4014 frg_cnt = skb_shinfo(skb)->nr_frags;
4015 /* For fragmented SKB. */
4016 for (i = 0; i < frg_cnt; i++) {
4017 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4018 /* A '0' length fragment will be ignored */
4022 txdp->Buffer_Pointer = (u64) pci_map_page
4023 (sp->pdev, frag->page, frag->page_offset,
4024 frag->size, PCI_DMA_TODEVICE);
4025 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4026 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
4027 txdp->Control_1 |= TXD_UFO_EN;
4029 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4031 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
4032 frg_cnt++; /* as Txd0 was used for inband header */
4034 tx_fifo = mac_control->tx_FIFO_start[queue];
4035 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4036 writeq(val64, &tx_fifo->TxDL_Pointer);
4038 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4043 val64 |= TX_FIFO_SPECIAL_FUNC;
4045 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
4046 val64 |= TX_FIFO_SPECIAL_FUNC;
4047 writeq(val64, &tx_fifo->List_Control);
4052 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4054 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4056 /* Avoid "put" pointer going beyond "get" pointer */
4057 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4058 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4060 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4062 netif_stop_queue(dev);
4065 dev->trans_start = jiffies;
4066 spin_unlock_irqrestore(&sp->tx_lock, flags);
4072 s2io_alarm_handle(unsigned long data)
4074 nic_t *sp = (nic_t *)data;
4076 alarm_intr_handler(sp);
4077 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4081 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4083 struct net_device *dev = (struct net_device *) dev_id;
4084 nic_t *sp = dev->priv;
4087 mac_info_t *mac_control;
4088 struct config_param *config;
4090 atomic_inc(&sp->isr_cnt);
4091 mac_control = &sp->mac_control;
4092 config = &sp->config;
4093 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4095 /* If Intr is because of Rx Traffic */
4096 for (i = 0; i < config->rx_ring_num; i++)
4097 rx_intr_handler(&mac_control->rings[i]);
4099 /* If Intr is because of Tx Traffic */
4100 for (i = 0; i < config->tx_fifo_num; i++)
4101 tx_intr_handler(&mac_control->fifos[i]);
4104 * If the Rx buffer count is below the panic threshold then
4105 * reallocate the buffers from the interrupt handler itself,
4106 * else schedule a tasklet to reallocate the buffers.
4108 for (i = 0; i < config->rx_ring_num; i++) {
4110 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4111 int level = rx_buffer_level(sp, rxb_size, i);
4113 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4114 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4116 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4117 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4118 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4120 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4121 clear_bit(0, (&sp->tasklet_status));
4122 atomic_dec(&sp->isr_cnt);
4125 clear_bit(0, (&sp->tasklet_status));
4126 } else if (level == LOW) {
4127 tasklet_schedule(&sp->task);
4130 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4131 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4133 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4138 atomic_dec(&sp->isr_cnt);
4143 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4145 ring_info_t *ring = (ring_info_t *)dev_id;
4146 nic_t *sp = ring->nic;
4147 struct net_device *dev = (struct net_device *) dev_id;
4148 int rxb_size, level, rng_n;
4150 atomic_inc(&sp->isr_cnt);
4151 rx_intr_handler(ring);
4153 rng_n = ring->ring_no;
4155 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4156 level = rx_buffer_level(sp, rxb_size, rng_n);
4158 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4160 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4161 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4162 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4163 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4165 clear_bit(0, (&sp->tasklet_status));
4168 clear_bit(0, (&sp->tasklet_status));
4169 } else if (level == LOW) {
4170 tasklet_schedule(&sp->task);
4173 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4174 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4175 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4178 atomic_dec(&sp->isr_cnt);
4184 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4186 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4187 nic_t *sp = fifo->nic;
4189 atomic_inc(&sp->isr_cnt);
4190 tx_intr_handler(fifo);
4191 atomic_dec(&sp->isr_cnt);
4194 static void s2io_txpic_intr_handle(nic_t *sp)
4196 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4199 val64 = readq(&bar0->pic_int_status);
4200 if (val64 & PIC_INT_GPIO) {
4201 val64 = readq(&bar0->gpio_int_reg);
4202 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4203 (val64 & GPIO_INT_REG_LINK_UP)) {
4205 * This is unstable state so clear both up/down
4206 * interrupt and adapter to re-evaluate the link state.
4208 val64 |= GPIO_INT_REG_LINK_DOWN;
4209 val64 |= GPIO_INT_REG_LINK_UP;
4210 writeq(val64, &bar0->gpio_int_reg);
4211 val64 = readq(&bar0->gpio_int_mask);
4212 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4213 GPIO_INT_MASK_LINK_DOWN);
4214 writeq(val64, &bar0->gpio_int_mask);
4216 else if (val64 & GPIO_INT_REG_LINK_UP) {
4217 val64 = readq(&bar0->adapter_status);
4218 if (verify_xena_quiescence(sp, val64,
4219 sp->device_enabled_once)) {
4220 /* Enable Adapter */
4221 val64 = readq(&bar0->adapter_control);
4222 val64 |= ADAPTER_CNTL_EN;
4223 writeq(val64, &bar0->adapter_control);
4224 val64 |= ADAPTER_LED_ON;
4225 writeq(val64, &bar0->adapter_control);
4226 if (!sp->device_enabled_once)
4227 sp->device_enabled_once = 1;
4229 s2io_link(sp, LINK_UP);
4231 * unmask link down interrupt and mask link-up
4234 val64 = readq(&bar0->gpio_int_mask);
4235 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4236 val64 |= GPIO_INT_MASK_LINK_UP;
4237 writeq(val64, &bar0->gpio_int_mask);
4240 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4241 val64 = readq(&bar0->adapter_status);
4242 if (verify_xena_quiescence(sp, val64,
4243 sp->device_enabled_once)) {
4244 s2io_link(sp, LINK_DOWN);
4245 /* Link is down so unmaks link up interrupt */
4246 val64 = readq(&bar0->gpio_int_mask);
4247 val64 &= ~GPIO_INT_MASK_LINK_UP;
4248 val64 |= GPIO_INT_MASK_LINK_DOWN;
4249 writeq(val64, &bar0->gpio_int_mask);
4253 val64 = readq(&bar0->gpio_int_mask);
4257 * s2io_isr - ISR handler of the device .
4258 * @irq: the irq of the device.
4259 * @dev_id: a void pointer to the dev structure of the NIC.
4260 * @pt_regs: pointer to the registers pushed on the stack.
4261 * Description: This function is the ISR handler of the device. It
4262 * identifies the reason for the interrupt and calls the relevant
4263 * service routines. As a contongency measure, this ISR allocates the
4264 * recv buffers, if their numbers are below the panic value which is
4265 * presently set to 25% of the original number of rcv buffers allocated.
4267 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4268 * IRQ_NONE: will be returned if interrupt is not from our device
4270 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4272 struct net_device *dev = (struct net_device *) dev_id;
4273 nic_t *sp = dev->priv;
4274 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4276 u64 reason = 0, val64, org_mask;
4277 mac_info_t *mac_control;
4278 struct config_param *config;
4280 atomic_inc(&sp->isr_cnt);
4281 mac_control = &sp->mac_control;
4282 config = &sp->config;
4285 * Identify the cause for interrupt and call the appropriate
4286 * interrupt handler. Causes for the interrupt could be;
4290 * 4. Error in any functional blocks of the NIC.
4292 reason = readq(&bar0->general_int_status);
4295 /* The interrupt was not raised by Xena. */
4296 atomic_dec(&sp->isr_cnt);
4300 val64 = 0xFFFFFFFFFFFFFFFFULL;
4301 /* Store current mask before masking all interrupts */
4302 org_mask = readq(&bar0->general_int_mask);
4303 writeq(val64, &bar0->general_int_mask);
4305 #ifdef CONFIG_S2IO_NAPI
4306 if (reason & GEN_INTR_RXTRAFFIC) {
4307 if (netif_rx_schedule_prep(dev)) {
4308 writeq(val64, &bar0->rx_traffic_mask);
4309 __netif_rx_schedule(dev);
4314 * Rx handler is called by default, without checking for the
4315 * cause of interrupt.
4316 * rx_traffic_int reg is an R1 register, writing all 1's
4317 * will ensure that the actual interrupt causing bit get's
4318 * cleared and hence a read can be avoided.
4320 writeq(val64, &bar0->rx_traffic_int);
4321 for (i = 0; i < config->rx_ring_num; i++) {
4322 rx_intr_handler(&mac_control->rings[i]);
4327 * tx_traffic_int reg is an R1 register, writing all 1's
4328 * will ensure that the actual interrupt causing bit get's
4329 * cleared and hence a read can be avoided.
4331 writeq(val64, &bar0->tx_traffic_int);
4333 for (i = 0; i < config->tx_fifo_num; i++)
4334 tx_intr_handler(&mac_control->fifos[i]);
4336 if (reason & GEN_INTR_TXPIC)
4337 s2io_txpic_intr_handle(sp);
4339 * If the Rx buffer count is below the panic threshold then
4340 * reallocate the buffers from the interrupt handler itself,
4341 * else schedule a tasklet to reallocate the buffers.
4343 #ifndef CONFIG_S2IO_NAPI
4344 for (i = 0; i < config->rx_ring_num; i++) {
4347 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4348 int level = rx_buffer_level(sp, rxb_size, i);
4350 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4351 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4353 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4354 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4355 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4357 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4358 clear_bit(0, (&sp->tasklet_status));
4359 atomic_dec(&sp->isr_cnt);
4360 writeq(org_mask, &bar0->general_int_mask);
4363 clear_bit(0, (&sp->tasklet_status));
4364 } else if (level == LOW) {
4365 tasklet_schedule(&sp->task);
4368 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4369 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4371 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4376 writeq(org_mask, &bar0->general_int_mask);
4377 atomic_dec(&sp->isr_cnt);
4384 static void s2io_updt_stats(nic_t *sp)
4386 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4390 if (atomic_read(&sp->card_state) == CARD_UP) {
4391 /* Apprx 30us on a 133 MHz bus */
4392 val64 = SET_UPDT_CLICKS(10) |
4393 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4394 writeq(val64, &bar0->stat_cfg);
4397 val64 = readq(&bar0->stat_cfg);
4398 if (!(val64 & BIT(0)))
4402 break; /* Updt failed */
4408 * s2io_get_stats - Updates the device statistics structure.
4409 * @dev : pointer to the device structure.
4411 * This function updates the device statistics structure in the s2io_nic
4412 * structure and returns a pointer to the same.
4414 * pointer to the updated net_device_stats structure.
4417 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4419 nic_t *sp = dev->priv;
4420 mac_info_t *mac_control;
4421 struct config_param *config;
4424 mac_control = &sp->mac_control;
4425 config = &sp->config;
4427 /* Configure Stats for immediate updt */
4428 s2io_updt_stats(sp);
4430 sp->stats.tx_packets =
4431 le32_to_cpu(mac_control->stats_info->tmac_frms);
4432 sp->stats.tx_errors =
4433 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4434 sp->stats.rx_errors =
4435 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4436 sp->stats.multicast =
4437 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4438 sp->stats.rx_length_errors =
4439 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4441 return (&sp->stats);
4445 * s2io_set_multicast - entry point for multicast address enable/disable.
4446 * @dev : pointer to the device structure
4448 * This function is a driver entry point which gets called by the kernel
4449 * whenever multicast addresses must be enabled/disabled. This also gets
4450 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4451 * determine, if multicast address must be enabled or if promiscuous mode
4452 * is to be disabled etc.
4457 static void s2io_set_multicast(struct net_device *dev)
4460 struct dev_mc_list *mclist;
4461 nic_t *sp = dev->priv;
4462 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4463 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4465 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4468 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4469 /* Enable all Multicast addresses */
4470 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4471 &bar0->rmac_addr_data0_mem);
4472 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4473 &bar0->rmac_addr_data1_mem);
4474 val64 = RMAC_ADDR_CMD_MEM_WE |
4475 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4476 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4477 writeq(val64, &bar0->rmac_addr_cmd_mem);
4478 /* Wait till command completes */
4479 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4480 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4483 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4484 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4485 /* Disable all Multicast addresses */
4486 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4487 &bar0->rmac_addr_data0_mem);
4488 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4489 &bar0->rmac_addr_data1_mem);
4490 val64 = RMAC_ADDR_CMD_MEM_WE |
4491 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4492 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4493 writeq(val64, &bar0->rmac_addr_cmd_mem);
4494 /* Wait till command completes */
4495 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4496 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4499 sp->all_multi_pos = 0;
4502 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4503 /* Put the NIC into promiscuous mode */
4504 add = &bar0->mac_cfg;
4505 val64 = readq(&bar0->mac_cfg);
4506 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4508 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4509 writel((u32) val64, add);
4510 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4511 writel((u32) (val64 >> 32), (add + 4));
4513 val64 = readq(&bar0->mac_cfg);
4514 sp->promisc_flg = 1;
4515 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4517 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4518 /* Remove the NIC from promiscuous mode */
4519 add = &bar0->mac_cfg;
4520 val64 = readq(&bar0->mac_cfg);
4521 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4523 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4524 writel((u32) val64, add);
4525 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4526 writel((u32) (val64 >> 32), (add + 4));
4528 val64 = readq(&bar0->mac_cfg);
4529 sp->promisc_flg = 0;
4530 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4534 /* Update individual M_CAST address list */
4535 if ((!sp->m_cast_flg) && dev->mc_count) {
4537 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4538 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4540 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4541 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4545 prev_cnt = sp->mc_addr_count;
4546 sp->mc_addr_count = dev->mc_count;
4548 /* Clear out the previous list of Mc in the H/W. */
4549 for (i = 0; i < prev_cnt; i++) {
4550 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4551 &bar0->rmac_addr_data0_mem);
4552 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4553 &bar0->rmac_addr_data1_mem);
4554 val64 = RMAC_ADDR_CMD_MEM_WE |
4555 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4556 RMAC_ADDR_CMD_MEM_OFFSET
4557 (MAC_MC_ADDR_START_OFFSET + i);
4558 writeq(val64, &bar0->rmac_addr_cmd_mem);
4560 /* Wait for command completes */
4561 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4562 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4563 DBG_PRINT(ERR_DBG, "%s: Adding ",
4565 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4570 /* Create the new Rx filter list and update the same in H/W. */
4571 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4572 i++, mclist = mclist->next) {
4573 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4576 for (j = 0; j < ETH_ALEN; j++) {
4577 mac_addr |= mclist->dmi_addr[j];
4581 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4582 &bar0->rmac_addr_data0_mem);
4583 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4584 &bar0->rmac_addr_data1_mem);
4585 val64 = RMAC_ADDR_CMD_MEM_WE |
4586 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4587 RMAC_ADDR_CMD_MEM_OFFSET
4588 (i + MAC_MC_ADDR_START_OFFSET);
4589 writeq(val64, &bar0->rmac_addr_cmd_mem);
4591 /* Wait for command completes */
4592 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4594 DBG_PRINT(ERR_DBG, "%s: Adding ",
4596 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4604 * s2io_set_mac_addr - Programs the Xframe mac address
4605 * @dev : pointer to the device structure.
4606 * @addr: a uchar pointer to the new mac address which is to be set.
4607 * Description : This procedure will program the Xframe to receive
4608 * frames with new Mac Address
4609 * Return value: SUCCESS on success and an appropriate (-)ve integer
4610 * as defined in errno.h file on failure.
4613 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4615 nic_t *sp = dev->priv;
4616 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4617 register u64 val64, mac_addr = 0;
4621 * Set the new MAC address as the new unicast filter and reflect this
4622 * change on the device address registered with the OS. It will be
4625 for (i = 0; i < ETH_ALEN; i++) {
4627 mac_addr |= addr[i];
4630 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4631 &bar0->rmac_addr_data0_mem);
4634 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4635 RMAC_ADDR_CMD_MEM_OFFSET(0);
4636 writeq(val64, &bar0->rmac_addr_cmd_mem);
4637 /* Wait till command completes */
4638 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4639 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4640 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4648 * s2io_ethtool_sset - Sets different link parameters.
4649 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4650 * @info: pointer to the structure with parameters given by ethtool to set
4653 * The function sets different link parameters provided by the user onto
4659 static int s2io_ethtool_sset(struct net_device *dev,
4660 struct ethtool_cmd *info)
4662 nic_t *sp = dev->priv;
4663 if ((info->autoneg == AUTONEG_ENABLE) ||
4664 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4667 s2io_close(sp->dev);
4675 * s2io_ethtol_gset - Return link specific information.
4676 * @sp : private member of the device structure, pointer to the
4677 * s2io_nic structure.
4678 * @info : pointer to the structure with parameters given by ethtool
4679 * to return link information.
4681 * Returns link specific information like speed, duplex etc.. to ethtool.
4683 * return 0 on success.
4686 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4688 nic_t *sp = dev->priv;
4689 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4690 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4691 info->port = PORT_FIBRE;
4692 /* info->transceiver?? TODO */
4694 if (netif_carrier_ok(sp->dev)) {
4695 info->speed = 10000;
4696 info->duplex = DUPLEX_FULL;
4702 info->autoneg = AUTONEG_DISABLE;
4707 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4708 * @sp : private member of the device structure, which is a pointer to the
4709 * s2io_nic structure.
4710 * @info : pointer to the structure with parameters given by ethtool to
4711 * return driver information.
4713 * Returns driver specefic information like name, version etc.. to ethtool.
4718 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4719 struct ethtool_drvinfo *info)
4721 nic_t *sp = dev->priv;
4723 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4724 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4725 strncpy(info->fw_version, "", sizeof(info->fw_version));
4726 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4727 info->regdump_len = XENA_REG_SPACE;
4728 info->eedump_len = XENA_EEPROM_SPACE;
4729 info->testinfo_len = S2IO_TEST_LEN;
4730 info->n_stats = S2IO_STAT_LEN;
4734 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4735 * @sp: private member of the device structure, which is a pointer to the
4736 * s2io_nic structure.
4737 * @regs : pointer to the structure with parameters given by ethtool for
4738 * dumping the registers.
4739 * @reg_space: The input argumnet into which all the registers are dumped.
4741 * Dumps the entire register space of xFrame NIC into the user given
4747 static void s2io_ethtool_gregs(struct net_device *dev,
4748 struct ethtool_regs *regs, void *space)
4752 u8 *reg_space = (u8 *) space;
4753 nic_t *sp = dev->priv;
4755 regs->len = XENA_REG_SPACE;
4756 regs->version = sp->pdev->subsystem_device;
4758 for (i = 0; i < regs->len; i += 8) {
4759 reg = readq(sp->bar0 + i);
4760 memcpy((reg_space + i), ®, 8);
4765 * s2io_phy_id - timer function that alternates adapter LED.
4766 * @data : address of the private member of the device structure, which
4767 * is a pointer to the s2io_nic structure, provided as an u32.
4768 * Description: This is actually the timer function that alternates the
4769 * adapter LED bit of the adapter control bit to set/reset every time on
4770 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4771 * once every second.
4773 static void s2io_phy_id(unsigned long data)
4775 nic_t *sp = (nic_t *) data;
4776 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4780 subid = sp->pdev->subsystem_device;
4781 if ((sp->device_type == XFRAME_II_DEVICE) ||
4782 ((subid & 0xFF) >= 0x07)) {
4783 val64 = readq(&bar0->gpio_control);
4784 val64 ^= GPIO_CTRL_GPIO_0;
4785 writeq(val64, &bar0->gpio_control);
4787 val64 = readq(&bar0->adapter_control);
4788 val64 ^= ADAPTER_LED_ON;
4789 writeq(val64, &bar0->adapter_control);
4792 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4796 * s2io_ethtool_idnic - To physically identify the nic on the system.
4797 * @sp : private member of the device structure, which is a pointer to the
4798 * s2io_nic structure.
4799 * @id : pointer to the structure with identification parameters given by
4801 * Description: Used to physically identify the NIC on the system.
4802 * The Link LED will blink for a time specified by the user for
4804 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4805 * identification is possible only if it's link is up.
4807 * int , returns 0 on success
4810 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4812 u64 val64 = 0, last_gpio_ctrl_val;
4813 nic_t *sp = dev->priv;
4814 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4817 subid = sp->pdev->subsystem_device;
4818 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4819 if ((sp->device_type == XFRAME_I_DEVICE) &&
4820 ((subid & 0xFF) < 0x07)) {
4821 val64 = readq(&bar0->adapter_control);
4822 if (!(val64 & ADAPTER_CNTL_EN)) {
4824 "Adapter Link down, cannot blink LED\n");
4828 if (sp->id_timer.function == NULL) {
4829 init_timer(&sp->id_timer);
4830 sp->id_timer.function = s2io_phy_id;
4831 sp->id_timer.data = (unsigned long) sp;
4833 mod_timer(&sp->id_timer, jiffies);
4835 msleep_interruptible(data * HZ);
4837 msleep_interruptible(MAX_FLICKER_TIME);
4838 del_timer_sync(&sp->id_timer);
4840 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4841 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4842 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4849 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4850 * @sp : private member of the device structure, which is a pointer to the
4851 * s2io_nic structure.
4852 * @ep : pointer to the structure with pause parameters given by ethtool.
4854 * Returns the Pause frame generation and reception capability of the NIC.
4858 static void s2io_ethtool_getpause_data(struct net_device *dev,
4859 struct ethtool_pauseparam *ep)
4862 nic_t *sp = dev->priv;
4863 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4865 val64 = readq(&bar0->rmac_pause_cfg);
4866 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4867 ep->tx_pause = TRUE;
4868 if (val64 & RMAC_PAUSE_RX_ENABLE)
4869 ep->rx_pause = TRUE;
4870 ep->autoneg = FALSE;
4874 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4875 * @sp : private member of the device structure, which is a pointer to the
4876 * s2io_nic structure.
4877 * @ep : pointer to the structure with pause parameters given by ethtool.
4879 * It can be used to set or reset Pause frame generation or reception
4880 * support of the NIC.
4882 * int, returns 0 on Success
4885 static int s2io_ethtool_setpause_data(struct net_device *dev,
4886 struct ethtool_pauseparam *ep)
4889 nic_t *sp = dev->priv;
4890 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4892 val64 = readq(&bar0->rmac_pause_cfg);
4894 val64 |= RMAC_PAUSE_GEN_ENABLE;
4896 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4898 val64 |= RMAC_PAUSE_RX_ENABLE;
4900 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4901 writeq(val64, &bar0->rmac_pause_cfg);
4906 * read_eeprom - reads 4 bytes of data from user given offset.
4907 * @sp : private member of the device structure, which is a pointer to the
4908 * s2io_nic structure.
4909 * @off : offset at which the data must be written
4910 * @data : Its an output parameter where the data read at the given
4913 * Will read 4 bytes of data from the user given offset and return the
4915 * NOTE: Will allow to read only part of the EEPROM visible through the
4918 * -1 on failure and 0 on success.
4921 #define S2IO_DEV_ID 5
4922 static int read_eeprom(nic_t * sp, int off, u64 * data)
4927 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4929 if (sp->device_type == XFRAME_I_DEVICE) {
4930 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4931 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4932 I2C_CONTROL_CNTL_START;
4933 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4935 while (exit_cnt < 5) {
4936 val64 = readq(&bar0->i2c_control);
4937 if (I2C_CONTROL_CNTL_END(val64)) {
4938 *data = I2C_CONTROL_GET_DATA(val64);
4947 if (sp->device_type == XFRAME_II_DEVICE) {
4948 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4949 SPI_CONTROL_BYTECNT(0x3) |
4950 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4951 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4952 val64 |= SPI_CONTROL_REQ;
4953 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4954 while (exit_cnt < 5) {
4955 val64 = readq(&bar0->spi_control);
4956 if (val64 & SPI_CONTROL_NACK) {
4959 } else if (val64 & SPI_CONTROL_DONE) {
4960 *data = readq(&bar0->spi_data);
4973 * write_eeprom - actually writes the relevant part of the data value.
4974 * @sp : private member of the device structure, which is a pointer to the
4975 * s2io_nic structure.
4976 * @off : offset at which the data must be written
4977 * @data : The data that is to be written
4978 * @cnt : Number of bytes of the data that are actually to be written into
4979 * the Eeprom. (max of 3)
4981 * Actually writes the relevant part of the data value into the Eeprom
4982 * through the I2C bus.
4984 * 0 on success, -1 on failure.
4987 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4989 int exit_cnt = 0, ret = -1;
4991 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4993 if (sp->device_type == XFRAME_I_DEVICE) {
4994 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4995 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4996 I2C_CONTROL_CNTL_START;
4997 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4999 while (exit_cnt < 5) {
5000 val64 = readq(&bar0->i2c_control);
5001 if (I2C_CONTROL_CNTL_END(val64)) {
5002 if (!(val64 & I2C_CONTROL_NACK))
5011 if (sp->device_type == XFRAME_II_DEVICE) {
5012 int write_cnt = (cnt == 8) ? 0 : cnt;
5013 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5015 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5016 SPI_CONTROL_BYTECNT(write_cnt) |
5017 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5018 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5019 val64 |= SPI_CONTROL_REQ;
5020 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5021 while (exit_cnt < 5) {
5022 val64 = readq(&bar0->spi_control);
5023 if (val64 & SPI_CONTROL_NACK) {
5026 } else if (val64 & SPI_CONTROL_DONE) {
5036 static void s2io_vpd_read(nic_t *nic)
5038 u8 vpd_data[256],data;
5039 int i=0, cnt, fail = 0;
5040 int vpd_addr = 0x80;
5042 if (nic->device_type == XFRAME_II_DEVICE) {
5043 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5047 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5051 for (i = 0; i < 256; i +=4 ) {
5052 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5053 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5054 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5055 for (cnt = 0; cnt <5; cnt++) {
5057 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5062 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5066 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5067 (u32 *)&vpd_data[i]);
5069 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5070 memset(nic->product_name, 0, vpd_data[1]);
5071 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5076 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5077 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5078 * @eeprom : pointer to the user level structure provided by ethtool,
5079 * containing all relevant information.
5080 * @data_buf : user defined value to be written into Eeprom.
5081 * Description: Reads the values stored in the Eeprom at given offset
5082 * for a given length. Stores these values int the input argument data
5083 * buffer 'data_buf' and returns these to the caller (ethtool.)
5088 static int s2io_ethtool_geeprom(struct net_device *dev,
5089 struct ethtool_eeprom *eeprom, u8 * data_buf)
5093 nic_t *sp = dev->priv;
5095 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5097 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5098 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5100 for (i = 0; i < eeprom->len; i += 4) {
5101 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5102 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5106 memcpy((data_buf + i), &valid, 4);
5112 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5113 * @sp : private member of the device structure, which is a pointer to the
5114 * s2io_nic structure.
5115 * @eeprom : pointer to the user level structure provided by ethtool,
5116 * containing all relevant information.
5117 * @data_buf ; user defined value to be written into Eeprom.
5119 * Tries to write the user provided value in the Eeprom, at the offset
5120 * given by the user.
5122 * 0 on success, -EFAULT on failure.
5125 static int s2io_ethtool_seeprom(struct net_device *dev,
5126 struct ethtool_eeprom *eeprom,
5129 int len = eeprom->len, cnt = 0;
5130 u64 valid = 0, data;
5131 nic_t *sp = dev->priv;
5133 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5135 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5136 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5142 data = (u32) data_buf[cnt] & 0x000000FF;
5144 valid = (u32) (data << 24);
5148 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5150 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5152 "write into the specified offset\n");
5163 * s2io_register_test - reads and writes into all clock domains.
5164 * @sp : private member of the device structure, which is a pointer to the
5165 * s2io_nic structure.
5166 * @data : variable that returns the result of each of the test conducted b
5169 * Read and write into all clock domains. The NIC has 3 clock domains,
5170 * see that registers in all the three regions are accessible.
5175 static int s2io_register_test(nic_t * sp, uint64_t * data)
5177 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5178 u64 val64 = 0, exp_val;
5181 val64 = readq(&bar0->pif_rd_swapper_fb);
5182 if (val64 != 0x123456789abcdefULL) {
5184 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5187 val64 = readq(&bar0->rmac_pause_cfg);
5188 if (val64 != 0xc000ffff00000000ULL) {
5190 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5193 val64 = readq(&bar0->rx_queue_cfg);
5194 if (sp->device_type == XFRAME_II_DEVICE)
5195 exp_val = 0x0404040404040404ULL;
5197 exp_val = 0x0808080808080808ULL;
5198 if (val64 != exp_val) {
5200 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5203 val64 = readq(&bar0->xgxs_efifo_cfg);
5204 if (val64 != 0x000000001923141EULL) {
5206 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5209 val64 = 0x5A5A5A5A5A5A5A5AULL;
5210 writeq(val64, &bar0->xmsi_data);
5211 val64 = readq(&bar0->xmsi_data);
5212 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5214 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5217 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5218 writeq(val64, &bar0->xmsi_data);
5219 val64 = readq(&bar0->xmsi_data);
5220 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5222 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5230 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5231 * @sp : private member of the device structure, which is a pointer to the
5232 * s2io_nic structure.
5233 * @data:variable that returns the result of each of the test conducted by
5236 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5242 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5245 u64 ret_data, org_4F0, org_7F0;
5246 u8 saved_4F0 = 0, saved_7F0 = 0;
5247 struct net_device *dev = sp->dev;
5249 /* Test Write Error at offset 0 */
5250 /* Note that SPI interface allows write access to all areas
5251 * of EEPROM. Hence doing all negative testing only for Xframe I.
5253 if (sp->device_type == XFRAME_I_DEVICE)
5254 if (!write_eeprom(sp, 0, 0, 3))
5257 /* Save current values at offsets 0x4F0 and 0x7F0 */
5258 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5260 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5263 /* Test Write at offset 4f0 */
5264 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5266 if (read_eeprom(sp, 0x4F0, &ret_data))
5269 if (ret_data != 0x012345) {
5270 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5271 "Data written %llx Data read %llx\n",
5272 dev->name, (unsigned long long)0x12345,
5273 (unsigned long long)ret_data);
5277 /* Reset the EEPROM data go FFFF */
5278 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5280 /* Test Write Request Error at offset 0x7c */
5281 if (sp->device_type == XFRAME_I_DEVICE)
5282 if (!write_eeprom(sp, 0x07C, 0, 3))
5285 /* Test Write Request at offset 0x7f0 */
5286 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5288 if (read_eeprom(sp, 0x7F0, &ret_data))
5291 if (ret_data != 0x012345) {
5292 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5293 "Data written %llx Data read %llx\n",
5294 dev->name, (unsigned long long)0x12345,
5295 (unsigned long long)ret_data);
5299 /* Reset the EEPROM data go FFFF */
5300 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5302 if (sp->device_type == XFRAME_I_DEVICE) {
5303 /* Test Write Error at offset 0x80 */
5304 if (!write_eeprom(sp, 0x080, 0, 3))
5307 /* Test Write Error at offset 0xfc */
5308 if (!write_eeprom(sp, 0x0FC, 0, 3))
5311 /* Test Write Error at offset 0x100 */
5312 if (!write_eeprom(sp, 0x100, 0, 3))
5315 /* Test Write Error at offset 4ec */
5316 if (!write_eeprom(sp, 0x4EC, 0, 3))
5320 /* Restore values at offsets 0x4F0 and 0x7F0 */
5322 write_eeprom(sp, 0x4F0, org_4F0, 3);
5324 write_eeprom(sp, 0x7F0, org_7F0, 3);
5331 * s2io_bist_test - invokes the MemBist test of the card .
5332 * @sp : private member of the device structure, which is a pointer to the
5333 * s2io_nic structure.
5334 * @data:variable that returns the result of each of the test conducted by
5337 * This invokes the MemBist test of the card. We give around
5338 * 2 secs time for the Test to complete. If it's still not complete
5339 * within this peiod, we consider that the test failed.
5341 * 0 on success and -1 on failure.
5344 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5347 int cnt = 0, ret = -1;
5349 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5350 bist |= PCI_BIST_START;
5351 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5354 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5355 if (!(bist & PCI_BIST_START)) {
5356 *data = (bist & PCI_BIST_CODE_MASK);
5368 * s2io-link_test - verifies the link state of the nic
5369 * @sp ; private member of the device structure, which is a pointer to the
5370 * s2io_nic structure.
5371 * @data: variable that returns the result of each of the test conducted by
5374 * The function verifies the link state of the NIC and updates the input
5375 * argument 'data' appropriately.
5380 static int s2io_link_test(nic_t * sp, uint64_t * data)
5382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5385 val64 = readq(&bar0->adapter_status);
5386 if(!(LINK_IS_UP(val64)))
5395 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5396 * @sp - private member of the device structure, which is a pointer to the
5397 * s2io_nic structure.
5398 * @data - variable that returns the result of each of the test
5399 * conducted by the driver.
5401 * This is one of the offline test that tests the read and write
5402 * access to the RldRam chip on the NIC.
5407 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5409 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5411 int cnt, iteration = 0, test_fail = 0;
5413 val64 = readq(&bar0->adapter_control);
5414 val64 &= ~ADAPTER_ECC_EN;
5415 writeq(val64, &bar0->adapter_control);
5417 val64 = readq(&bar0->mc_rldram_test_ctrl);
5418 val64 |= MC_RLDRAM_TEST_MODE;
5419 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5421 val64 = readq(&bar0->mc_rldram_mrs);
5422 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5423 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5425 val64 |= MC_RLDRAM_MRS_ENABLE;
5426 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5428 while (iteration < 2) {
5429 val64 = 0x55555555aaaa0000ULL;
5430 if (iteration == 1) {
5431 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5433 writeq(val64, &bar0->mc_rldram_test_d0);
5435 val64 = 0xaaaa5a5555550000ULL;
5436 if (iteration == 1) {
5437 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5439 writeq(val64, &bar0->mc_rldram_test_d1);
5441 val64 = 0x55aaaaaaaa5a0000ULL;
5442 if (iteration == 1) {
5443 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5445 writeq(val64, &bar0->mc_rldram_test_d2);
5447 val64 = (u64) (0x0000003ffffe0100ULL);
5448 writeq(val64, &bar0->mc_rldram_test_add);
5450 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5452 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5454 for (cnt = 0; cnt < 5; cnt++) {
5455 val64 = readq(&bar0->mc_rldram_test_ctrl);
5456 if (val64 & MC_RLDRAM_TEST_DONE)
5464 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5465 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5467 for (cnt = 0; cnt < 5; cnt++) {
5468 val64 = readq(&bar0->mc_rldram_test_ctrl);
5469 if (val64 & MC_RLDRAM_TEST_DONE)
5477 val64 = readq(&bar0->mc_rldram_test_ctrl);
5478 if (!(val64 & MC_RLDRAM_TEST_PASS))
5486 /* Bring the adapter out of test mode */
5487 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5493 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5494 * @sp : private member of the device structure, which is a pointer to the
5495 * s2io_nic structure.
5496 * @ethtest : pointer to a ethtool command specific structure that will be
5497 * returned to the user.
5498 * @data : variable that returns the result of each of the test
5499 * conducted by the driver.
5501 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5502 * the health of the card.
5507 static void s2io_ethtool_test(struct net_device *dev,
5508 struct ethtool_test *ethtest,
5511 nic_t *sp = dev->priv;
5512 int orig_state = netif_running(sp->dev);
5514 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5515 /* Offline Tests. */
5517 s2io_close(sp->dev);
5519 if (s2io_register_test(sp, &data[0]))
5520 ethtest->flags |= ETH_TEST_FL_FAILED;
5524 if (s2io_rldram_test(sp, &data[3]))
5525 ethtest->flags |= ETH_TEST_FL_FAILED;
5529 if (s2io_eeprom_test(sp, &data[1]))
5530 ethtest->flags |= ETH_TEST_FL_FAILED;
5532 if (s2io_bist_test(sp, &data[4]))
5533 ethtest->flags |= ETH_TEST_FL_FAILED;
5543 "%s: is not up, cannot run test\n",
5552 if (s2io_link_test(sp, &data[2]))
5553 ethtest->flags |= ETH_TEST_FL_FAILED;
5562 static void s2io_get_ethtool_stats(struct net_device *dev,
5563 struct ethtool_stats *estats,
5567 nic_t *sp = dev->priv;
5568 StatInfo_t *stat_info = sp->mac_control.stats_info;
5570 s2io_updt_stats(sp);
5572 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5573 le32_to_cpu(stat_info->tmac_frms);
5575 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5576 le32_to_cpu(stat_info->tmac_data_octets);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5579 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5580 le32_to_cpu(stat_info->tmac_mcst_frms);
5582 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5583 le32_to_cpu(stat_info->tmac_bcst_frms);
5584 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5586 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5587 le32_to_cpu(stat_info->tmac_ttl_octets);
5589 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5590 le32_to_cpu(stat_info->tmac_ucst_frms);
5592 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5593 le32_to_cpu(stat_info->tmac_nucst_frms);
5595 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5596 le32_to_cpu(stat_info->tmac_any_err_frms);
5597 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5598 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5600 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5601 le32_to_cpu(stat_info->tmac_vld_ip);
5603 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5604 le32_to_cpu(stat_info->tmac_drop_ip);
5606 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5607 le32_to_cpu(stat_info->tmac_icmp);
5609 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5610 le32_to_cpu(stat_info->tmac_rst_tcp);
5611 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5612 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5613 le32_to_cpu(stat_info->tmac_udp);
5615 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5616 le32_to_cpu(stat_info->rmac_vld_frms);
5618 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5619 le32_to_cpu(stat_info->rmac_data_octets);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5623 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5624 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5626 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5627 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5628 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5629 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5630 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5631 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5632 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5634 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5635 le32_to_cpu(stat_info->rmac_ttl_octets);
5637 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5638 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5640 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5641 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5643 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5644 le32_to_cpu(stat_info->rmac_discarded_frms);
5646 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5647 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5649 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5651 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5652 le32_to_cpu(stat_info->rmac_usized_frms);
5654 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5655 le32_to_cpu(stat_info->rmac_osized_frms);
5657 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5658 le32_to_cpu(stat_info->rmac_frag_frms);
5660 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5661 le32_to_cpu(stat_info->rmac_jabber_frms);
5662 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5663 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5664 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5665 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5666 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5667 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5669 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5670 le32_to_cpu(stat_info->rmac_ip);
5671 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5674 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5675 le32_to_cpu(stat_info->rmac_drop_ip);
5677 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5678 le32_to_cpu(stat_info->rmac_icmp);
5679 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5681 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5682 le32_to_cpu(stat_info->rmac_udp);
5684 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5685 le32_to_cpu(stat_info->rmac_err_drp_udp);
5686 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5695 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5696 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5697 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5698 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5699 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5700 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5701 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5702 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5704 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5705 le32_to_cpu(stat_info->rmac_pause_cnt);
5706 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5707 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5709 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5710 le32_to_cpu(stat_info->rmac_accepted_ip);
5711 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5712 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5713 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5714 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5715 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5716 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5717 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5718 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5719 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5720 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5721 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5722 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5723 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5724 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5725 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5726 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5727 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5728 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5729 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5730 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5731 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5732 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5733 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5734 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5735 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5736 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5737 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5738 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5739 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5740 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5741 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5742 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5743 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5744 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5745 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5747 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5748 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5749 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5750 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5751 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5752 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5753 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5754 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5755 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5756 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5757 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5758 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5759 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5760 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5761 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5762 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5763 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5764 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5765 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5766 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5767 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5768 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5769 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5770 if (stat_info->sw_stat.num_aggregations) {
5771 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5774 * Since 64-bit divide does not work on all platforms,
5775 * do repeated subtraction.
5777 while (tmp >= stat_info->sw_stat.num_aggregations) {
5778 tmp -= stat_info->sw_stat.num_aggregations;
5781 tmp_stats[i++] = count;
5787 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5789 return (XENA_REG_SPACE);
5793 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5795 nic_t *sp = dev->priv;
5797 return (sp->rx_csum);
5800 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5802 nic_t *sp = dev->priv;
5812 static int s2io_get_eeprom_len(struct net_device *dev)
5814 return (XENA_EEPROM_SPACE);
5817 static int s2io_ethtool_self_test_count(struct net_device *dev)
5819 return (S2IO_TEST_LEN);
5822 static void s2io_ethtool_get_strings(struct net_device *dev,
5823 u32 stringset, u8 * data)
5825 switch (stringset) {
5827 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5830 memcpy(data, ðtool_stats_keys,
5831 sizeof(ethtool_stats_keys));
5834 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5836 return (S2IO_STAT_LEN);
5839 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5842 dev->features |= NETIF_F_IP_CSUM;
5844 dev->features &= ~NETIF_F_IP_CSUM;
5850 static struct ethtool_ops netdev_ethtool_ops = {
5851 .get_settings = s2io_ethtool_gset,
5852 .set_settings = s2io_ethtool_sset,
5853 .get_drvinfo = s2io_ethtool_gdrvinfo,
5854 .get_regs_len = s2io_ethtool_get_regs_len,
5855 .get_regs = s2io_ethtool_gregs,
5856 .get_link = ethtool_op_get_link,
5857 .get_eeprom_len = s2io_get_eeprom_len,
5858 .get_eeprom = s2io_ethtool_geeprom,
5859 .set_eeprom = s2io_ethtool_seeprom,
5860 .get_pauseparam = s2io_ethtool_getpause_data,
5861 .set_pauseparam = s2io_ethtool_setpause_data,
5862 .get_rx_csum = s2io_ethtool_get_rx_csum,
5863 .set_rx_csum = s2io_ethtool_set_rx_csum,
5864 .get_tx_csum = ethtool_op_get_tx_csum,
5865 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5866 .get_sg = ethtool_op_get_sg,
5867 .set_sg = ethtool_op_set_sg,
5869 .get_tso = ethtool_op_get_tso,
5870 .set_tso = ethtool_op_set_tso,
5872 .get_ufo = ethtool_op_get_ufo,
5873 .set_ufo = ethtool_op_set_ufo,
5874 .self_test_count = s2io_ethtool_self_test_count,
5875 .self_test = s2io_ethtool_test,
5876 .get_strings = s2io_ethtool_get_strings,
5877 .phys_id = s2io_ethtool_idnic,
5878 .get_stats_count = s2io_ethtool_get_stats_count,
5879 .get_ethtool_stats = s2io_get_ethtool_stats
5883 * s2io_ioctl - Entry point for the Ioctl
5884 * @dev : Device pointer.
5885 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5886 * a proprietary structure used to pass information to the driver.
5887 * @cmd : This is used to distinguish between the different commands that
5888 * can be passed to the IOCTL functions.
5890 * Currently there are no special functionality supported in IOCTL, hence
5891 * function always return EOPNOTSUPPORTED
5894 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5900 * s2io_change_mtu - entry point to change MTU size for the device.
5901 * @dev : device pointer.
5902 * @new_mtu : the new MTU size for the device.
5903 * Description: A driver entry point to change MTU size for the device.
5904 * Before changing the MTU the device must be stopped.
5906 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5910 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5912 nic_t *sp = dev->priv;
5914 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5915 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5921 if (netif_running(dev)) {
5922 s2io_card_down(sp, 0);
5923 netif_stop_queue(dev);
5924 if (s2io_card_up(sp)) {
5925 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5928 if (netif_queue_stopped(dev))
5929 netif_wake_queue(dev);
5930 } else { /* Device is down */
5931 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5932 u64 val64 = new_mtu;
5934 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5941 * s2io_tasklet - Bottom half of the ISR.
5942 * @dev_adr : address of the device structure in dma_addr_t format.
5944 * This is the tasklet or the bottom half of the ISR. This is
5945 * an extension of the ISR which is scheduled by the scheduler to be run
5946 * when the load on the CPU is low. All low priority tasks of the ISR can
5947 * be pushed into the tasklet. For now the tasklet is used only to
5948 * replenish the Rx buffers in the Rx buffer descriptors.
5953 static void s2io_tasklet(unsigned long dev_addr)
5955 struct net_device *dev = (struct net_device *) dev_addr;
5956 nic_t *sp = dev->priv;
5958 mac_info_t *mac_control;
5959 struct config_param *config;
5961 mac_control = &sp->mac_control;
5962 config = &sp->config;
5964 if (!TASKLET_IN_USE) {
5965 for (i = 0; i < config->rx_ring_num; i++) {
5966 ret = fill_rx_buffers(sp, i);
5967 if (ret == -ENOMEM) {
5968 DBG_PRINT(ERR_DBG, "%s: Out of ",
5970 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5972 } else if (ret == -EFILL) {
5974 "%s: Rx Ring %d is full\n",
5979 clear_bit(0, (&sp->tasklet_status));
5984 * s2io_set_link - Set the LInk status
5985 * @data: long pointer to device private structue
5986 * Description: Sets the link status for the adapter
5989 static void s2io_set_link(unsigned long data)
5991 nic_t *nic = (nic_t *) data;
5992 struct net_device *dev = nic->dev;
5993 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5997 if (test_and_set_bit(0, &(nic->link_state))) {
5998 /* The card is being reset, no point doing anything */
6002 subid = nic->pdev->subsystem_device;
6003 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6005 * Allow a small delay for the NICs self initiated
6006 * cleanup to complete.
6011 val64 = readq(&bar0->adapter_status);
6012 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
6013 if (LINK_IS_UP(val64)) {
6014 val64 = readq(&bar0->adapter_control);
6015 val64 |= ADAPTER_CNTL_EN;
6016 writeq(val64, &bar0->adapter_control);
6017 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6019 val64 = readq(&bar0->gpio_control);
6020 val64 |= GPIO_CTRL_GPIO_0;
6021 writeq(val64, &bar0->gpio_control);
6022 val64 = readq(&bar0->gpio_control);
6024 val64 |= ADAPTER_LED_ON;
6025 writeq(val64, &bar0->adapter_control);
6027 if (s2io_link_fault_indication(nic) ==
6028 MAC_RMAC_ERR_TIMER) {
6029 val64 = readq(&bar0->adapter_status);
6030 if (!LINK_IS_UP(val64)) {
6031 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6032 DBG_PRINT(ERR_DBG, " Link down");
6033 DBG_PRINT(ERR_DBG, "after ");
6034 DBG_PRINT(ERR_DBG, "enabling ");
6035 DBG_PRINT(ERR_DBG, "device \n");
6038 if (nic->device_enabled_once == FALSE) {
6039 nic->device_enabled_once = TRUE;
6041 s2io_link(nic, LINK_UP);
6043 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6045 val64 = readq(&bar0->gpio_control);
6046 val64 &= ~GPIO_CTRL_GPIO_0;
6047 writeq(val64, &bar0->gpio_control);
6048 val64 = readq(&bar0->gpio_control);
6050 s2io_link(nic, LINK_DOWN);
6052 } else { /* NIC is not Quiescent. */
6053 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6054 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6055 netif_stop_queue(dev);
6057 clear_bit(0, &(nic->link_state));
6060 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6061 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6062 u64 *temp2, int size)
6064 struct net_device *dev = sp->dev;
6065 struct sk_buff *frag_list;
6067 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6070 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6072 * As Rx frame are not going to be processed,
6073 * using same mapped address for the Rxd
6076 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6078 *skb = dev_alloc_skb(size);
6080 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6081 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6084 /* storing the mapped addr in a temp variable
6085 * such it will be used for next rxd whose
6086 * Host Control is NULL
6088 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6089 pci_map_single( sp->pdev, (*skb)->data,
6090 size - NET_IP_ALIGN,
6091 PCI_DMA_FROMDEVICE);
6092 rxdp->Host_Control = (unsigned long) (*skb);
6094 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6095 /* Two buffer Mode */
6097 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6098 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6099 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6101 *skb = dev_alloc_skb(size);
6102 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6103 pci_map_single(sp->pdev, (*skb)->data,
6105 PCI_DMA_FROMDEVICE);
6106 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6107 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6108 PCI_DMA_FROMDEVICE);
6109 rxdp->Host_Control = (unsigned long) (*skb);
6111 /* Buffer-1 will be dummy buffer not used */
6112 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6113 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6114 PCI_DMA_FROMDEVICE);
6116 } else if ((rxdp->Host_Control == 0)) {
6117 /* Three buffer mode */
6119 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6120 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6121 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6123 *skb = dev_alloc_skb(size);
6125 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6126 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6127 PCI_DMA_FROMDEVICE);
6128 /* Buffer-1 receives L3/L4 headers */
6129 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6130 pci_map_single( sp->pdev, (*skb)->data,
6132 PCI_DMA_FROMDEVICE);
6134 * skb_shinfo(skb)->frag_list will have L4
6137 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6139 if (skb_shinfo(*skb)->frag_list == NULL) {
6140 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6141 failed\n ", dev->name);
6144 frag_list = skb_shinfo(*skb)->frag_list;
6145 frag_list->next = NULL;
6147 * Buffer-2 receives L4 data payload
6149 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6150 pci_map_single( sp->pdev, frag_list->data,
6151 dev->mtu, PCI_DMA_FROMDEVICE);
6156 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6158 struct net_device *dev = sp->dev;
6159 if (sp->rxd_mode == RXD_MODE_1) {
6160 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6161 } else if (sp->rxd_mode == RXD_MODE_3B) {
6162 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6163 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6164 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6166 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6167 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6168 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6172 static int rxd_owner_bit_reset(nic_t *sp)
6174 int i, j, k, blk_cnt = 0, size;
6175 mac_info_t * mac_control = &sp->mac_control;
6176 struct config_param *config = &sp->config;
6177 struct net_device *dev = sp->dev;
6179 struct sk_buff *skb = NULL;
6180 buffAdd_t *ba = NULL;
6181 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6183 /* Calculate the size based on ring mode */
6184 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6185 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6186 if (sp->rxd_mode == RXD_MODE_1)
6187 size += NET_IP_ALIGN;
6188 else if (sp->rxd_mode == RXD_MODE_3B)
6189 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6191 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6193 for (i = 0; i < config->rx_ring_num; i++) {
6194 blk_cnt = config->rx_cfg[i].num_rxd /
6195 (rxd_count[sp->rxd_mode] +1);
6197 for (j = 0; j < blk_cnt; j++) {
6198 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6199 rxdp = mac_control->rings[i].
6200 rx_blocks[j].rxds[k].virt_addr;
6201 if(sp->rxd_mode >= RXD_MODE_3A)
6202 ba = &mac_control->rings[i].ba[j][k];
6203 set_rxd_buffer_pointer(sp, rxdp, ba,
6204 &skb,(u64 *)&temp0_64,
6206 (u64 *)&temp2_64, size);
6208 set_rxd_buffer_size(sp, rxdp, size);
6210 /* flip the Ownership bit to Hardware */
6211 rxdp->Control_1 |= RXD_OWN_XENA;
6219 static void s2io_card_down(nic_t * sp, int flag)
6222 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6223 unsigned long flags;
6224 register u64 val64 = 0;
6225 struct net_device *dev = sp->dev;
6227 del_timer_sync(&sp->alarm_timer);
6228 /* If s2io_set_link task is executing, wait till it completes. */
6229 while (test_and_set_bit(0, &(sp->link_state))) {
6232 atomic_set(&sp->card_state, CARD_DOWN);
6234 /* disable Tx and Rx traffic on the NIC */
6237 if (sp->intr_type == MSI_X) {
6241 for (i=1; (sp->s2io_entries[i].in_use ==
6242 MSIX_REGISTERED_SUCCESS); i++) {
6243 int vector = sp->entries[i].vector;
6244 void *arg = sp->s2io_entries[i].arg;
6246 free_irq(vector, arg);
6248 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6249 msi_control &= 0xFFFE; /* Disable MSI */
6250 pci_write_config_word(sp->pdev, 0x42, msi_control);
6251 pci_disable_msix(sp->pdev);
6253 free_irq(sp->pdev->irq, dev);
6254 if (sp->intr_type == MSI)
6255 pci_disable_msi(sp->pdev);
6258 /* Waiting till all Interrupt handlers are complete */
6262 if (!atomic_read(&sp->isr_cnt))
6268 tasklet_kill(&sp->task);
6270 /* Check if the device is Quiescent and then Reset the NIC */
6272 /* As per the HW requirement we need to replenish the
6273 * receive buffer to avoid the ring bump. Since there is
6274 * no intention of processing the Rx frame at this pointwe are
6275 * just settting the ownership bit of rxd in Each Rx
6276 * ring to HW and set the appropriate buffer size
6277 * based on the ring mode
6279 rxd_owner_bit_reset(sp);
6281 val64 = readq(&bar0->adapter_status);
6282 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6290 "s2io_close:Device not Quiescent ");
6291 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6292 (unsigned long long) val64);
6298 spin_lock_irqsave(&sp->tx_lock, flags);
6299 /* Free all Tx buffers */
6300 free_tx_buffers(sp);
6301 spin_unlock_irqrestore(&sp->tx_lock, flags);
6303 /* Free all Rx buffers */
6304 spin_lock_irqsave(&sp->rx_lock, flags);
6305 free_rx_buffers(sp);
6306 spin_unlock_irqrestore(&sp->rx_lock, flags);
6308 clear_bit(0, &(sp->link_state));
6311 static int s2io_card_up(nic_t * sp)
6314 mac_info_t *mac_control;
6315 struct config_param *config;
6316 struct net_device *dev = (struct net_device *) sp->dev;
6318 /* Initialize the H/W I/O registers */
6319 if (init_nic(sp) != 0) {
6320 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6325 if (sp->intr_type == MSI)
6326 ret = s2io_enable_msi(sp);
6327 else if (sp->intr_type == MSI_X)
6328 ret = s2io_enable_msi_x(sp);
6330 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6331 sp->intr_type = INTA;
6335 * Initializing the Rx buffers. For now we are considering only 1
6336 * Rx ring and initializing buffers into 30 Rx blocks
6338 mac_control = &sp->mac_control;
6339 config = &sp->config;
6341 for (i = 0; i < config->rx_ring_num; i++) {
6342 if ((ret = fill_rx_buffers(sp, i))) {
6343 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6346 free_rx_buffers(sp);
6349 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6350 atomic_read(&sp->rx_bufs_left[i]));
6353 /* Setting its receive mode */
6354 s2io_set_multicast(dev);
6357 /* Initialize max aggregatable pkts based on MTU */
6358 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6359 /* Check if we can use(if specified) user provided value */
6360 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6361 sp->lro_max_aggr_per_sess = lro_max_pkts;
6364 /* Enable tasklet for the device */
6365 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6367 /* Enable Rx Traffic and interrupts on the NIC */
6368 if (start_nic(sp)) {
6369 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6370 tasklet_kill(&sp->task);
6372 free_irq(dev->irq, dev);
6373 free_rx_buffers(sp);
6377 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6379 atomic_set(&sp->card_state, CARD_UP);
6384 * s2io_restart_nic - Resets the NIC.
6385 * @data : long pointer to the device private structure
6387 * This function is scheduled to be run by the s2io_tx_watchdog
6388 * function after 0.5 secs to reset the NIC. The idea is to reduce
6389 * the run time of the watch dog routine which is run holding a
6393 static void s2io_restart_nic(unsigned long data)
6395 struct net_device *dev = (struct net_device *) data;
6396 nic_t *sp = dev->priv;
6398 s2io_card_down(sp, 0);
6399 if (s2io_card_up(sp)) {
6400 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6403 netif_wake_queue(dev);
6404 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6410 * s2io_tx_watchdog - Watchdog for transmit side.
6411 * @dev : Pointer to net device structure
6413 * This function is triggered if the Tx Queue is stopped
6414 * for a pre-defined amount of time when the Interface is still up.
6415 * If the Interface is jammed in such a situation, the hardware is
6416 * reset (by s2io_close) and restarted again (by s2io_open) to
6417 * overcome any problem that might have been caused in the hardware.
6422 static void s2io_tx_watchdog(struct net_device *dev)
6424 nic_t *sp = dev->priv;
6426 if (netif_carrier_ok(dev)) {
6427 schedule_work(&sp->rst_timer_task);
6428 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6433 * rx_osm_handler - To perform some OS related operations on SKB.
6434 * @sp: private member of the device structure,pointer to s2io_nic structure.
6435 * @skb : the socket buffer pointer.
6436 * @len : length of the packet
6437 * @cksum : FCS checksum of the frame.
6438 * @ring_no : the ring from which this RxD was extracted.
6440 * This function is called by the Tx interrupt serivce routine to perform
6441 * some OS related operations on the SKB before passing it to the upper
6442 * layers. It mainly checks if the checksum is OK, if so adds it to the
6443 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6444 * to the upper layer. If the checksum is wrong, it increments the Rx
6445 * packet error count, frees the SKB and returns error.
6447 * SUCCESS on success and -1 on failure.
6449 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6451 nic_t *sp = ring_data->nic;
6452 struct net_device *dev = (struct net_device *) sp->dev;
6453 struct sk_buff *skb = (struct sk_buff *)
6454 ((unsigned long) rxdp->Host_Control);
6455 int ring_no = ring_data->ring_no;
6456 u16 l3_csum, l4_csum;
6457 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6463 /* Check for parity error */
6465 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6469 * Drop the packet if bad transfer code. Exception being
6470 * 0x5, which could be due to unsupported IPv6 extension header.
6471 * In this case, we let stack handle the packet.
6472 * Note that in this case, since checksum will be incorrect,
6473 * stack will validate the same.
6475 if (err && ((err >> 48) != 0x5)) {
6476 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6478 sp->stats.rx_crc_errors++;
6480 atomic_dec(&sp->rx_bufs_left[ring_no]);
6481 rxdp->Host_Control = 0;
6486 /* Updating statistics */
6487 rxdp->Host_Control = 0;
6489 sp->stats.rx_packets++;
6490 if (sp->rxd_mode == RXD_MODE_1) {
6491 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6493 sp->stats.rx_bytes += len;
6496 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6497 int get_block = ring_data->rx_curr_get_info.block_index;
6498 int get_off = ring_data->rx_curr_get_info.offset;
6499 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6500 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6501 unsigned char *buff = skb_push(skb, buf0_len);
6503 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6504 sp->stats.rx_bytes += buf0_len + buf2_len;
6505 memcpy(buff, ba->ba_0, buf0_len);
6507 if (sp->rxd_mode == RXD_MODE_3A) {
6508 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6510 skb_put(skb, buf1_len);
6511 skb->len += buf2_len;
6512 skb->data_len += buf2_len;
6513 skb->truesize += buf2_len;
6514 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6515 sp->stats.rx_bytes += buf1_len;
6518 skb_put(skb, buf2_len);
6521 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6522 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6524 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6525 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6526 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6528 * NIC verifies if the Checksum of the received
6529 * frame is Ok or not and accordingly returns
6530 * a flag in the RxD.
6532 skb->ip_summed = CHECKSUM_UNNECESSARY;
6538 ret = s2io_club_tcp_session(skb->data, &tcp,
6539 &tcp_len, &lro, rxdp, sp);
6541 case 3: /* Begin anew */
6544 case 1: /* Aggregate */
6546 lro_append_pkt(sp, lro,
6550 case 4: /* Flush session */
6552 lro_append_pkt(sp, lro,
6554 queue_rx_frame(lro->parent);
6555 clear_lro_session(lro);
6556 sp->mac_control.stats_info->
6557 sw_stat.flush_max_pkts++;
6560 case 2: /* Flush both */
6561 lro->parent->data_len =
6563 sp->mac_control.stats_info->
6564 sw_stat.sending_both++;
6565 queue_rx_frame(lro->parent);
6566 clear_lro_session(lro);
6568 case 0: /* sessions exceeded */
6569 case -1: /* non-TCP or not
6573 * First pkt in session not
6574 * L3/L4 aggregatable
6579 "%s: Samadhana!!\n",
6586 * Packet with erroneous checksum, let the
6587 * upper layers deal with it.
6589 skb->ip_summed = CHECKSUM_NONE;
6592 skb->ip_summed = CHECKSUM_NONE;
6596 skb->protocol = eth_type_trans(skb, dev);
6597 #ifdef CONFIG_S2IO_NAPI
6598 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6599 /* Queueing the vlan frame to the upper layer */
6600 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6601 RXD_GET_VLAN_TAG(rxdp->Control_2));
6603 netif_receive_skb(skb);
6606 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6607 /* Queueing the vlan frame to the upper layer */
6608 vlan_hwaccel_rx(skb, sp->vlgrp,
6609 RXD_GET_VLAN_TAG(rxdp->Control_2));
6616 queue_rx_frame(skb);
6618 dev->last_rx = jiffies;
6620 atomic_dec(&sp->rx_bufs_left[ring_no]);
6625 * s2io_link - stops/starts the Tx queue.
6626 * @sp : private member of the device structure, which is a pointer to the
6627 * s2io_nic structure.
6628 * @link : inidicates whether link is UP/DOWN.
6630 * This function stops/starts the Tx queue depending on whether the link
6631 * status of the NIC is is down or up. This is called by the Alarm
6632 * interrupt handler whenever a link change interrupt comes up.
6637 static void s2io_link(nic_t * sp, int link)
6639 struct net_device *dev = (struct net_device *) sp->dev;
6641 if (link != sp->last_link_state) {
6642 if (link == LINK_DOWN) {
6643 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6644 netif_carrier_off(dev);
6646 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6647 netif_carrier_on(dev);
6650 sp->last_link_state = link;
6654 * get_xena_rev_id - to identify revision ID of xena.
6655 * @pdev : PCI Dev structure
6657 * Function to identify the Revision ID of xena.
6659 * returns the revision ID of the device.
6662 static int get_xena_rev_id(struct pci_dev *pdev)
6666 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6671 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6672 * @sp : private member of the device structure, which is a pointer to the
6673 * s2io_nic structure.
6675 * This function initializes a few of the PCI and PCI-X configuration registers
6676 * with recommended values.
6681 static void s2io_init_pci(nic_t * sp)
6683 u16 pci_cmd = 0, pcix_cmd = 0;
6685 /* Enable Data Parity Error Recovery in PCI-X command register. */
6686 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6688 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6690 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6693 /* Set the PErr Response bit in PCI command register. */
6694 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6695 pci_write_config_word(sp->pdev, PCI_COMMAND,
6696 (pci_cmd | PCI_COMMAND_PARITY));
6697 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6700 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6701 MODULE_LICENSE("GPL");
6702 MODULE_VERSION(DRV_VERSION);
6704 module_param(tx_fifo_num, int, 0);
6705 module_param(rx_ring_num, int, 0);
6706 module_param(rx_ring_mode, int, 0);
6707 module_param_array(tx_fifo_len, uint, NULL, 0);
6708 module_param_array(rx_ring_sz, uint, NULL, 0);
6709 module_param_array(rts_frm_len, uint, NULL, 0);
6710 module_param(use_continuous_tx_intrs, int, 1);
6711 module_param(rmac_pause_time, int, 0);
6712 module_param(mc_pause_threshold_q0q3, int, 0);
6713 module_param(mc_pause_threshold_q4q7, int, 0);
6714 module_param(shared_splits, int, 0);
6715 module_param(tmac_util_period, int, 0);
6716 module_param(rmac_util_period, int, 0);
6717 module_param(bimodal, bool, 0);
6718 module_param(l3l4hdr_size, int , 0);
6719 #ifndef CONFIG_S2IO_NAPI
6720 module_param(indicate_max_pkts, int, 0);
6722 module_param(rxsync_frequency, int, 0);
6723 module_param(intr_type, int, 0);
6724 module_param(lro, int, 0);
6725 module_param(lro_max_pkts, int, 0);
6727 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6729 if ( tx_fifo_num > 8) {
6730 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6732 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6735 if ( rx_ring_num > 8) {
6736 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6738 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6741 #ifdef CONFIG_S2IO_NAPI
6742 if (*dev_intr_type != INTA) {
6743 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6744 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6745 *dev_intr_type = INTA;
6748 #ifndef CONFIG_PCI_MSI
6749 if (*dev_intr_type != INTA) {
6750 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6751 "MSI/MSI-X. Defaulting to INTA\n");
6752 *dev_intr_type = INTA;
6755 if (*dev_intr_type > MSI_X) {
6756 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6757 "Defaulting to INTA\n");
6758 *dev_intr_type = INTA;
6761 if ((*dev_intr_type == MSI_X) &&
6762 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6763 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6764 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6765 "Defaulting to INTA\n");
6766 *dev_intr_type = INTA;
6768 if (rx_ring_mode > 3) {
6769 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6770 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6777 * s2io_init_nic - Initialization of the adapter .
6778 * @pdev : structure containing the PCI related information of the device.
6779 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6781 * The function initializes an adapter identified by the pci_dec structure.
6782 * All OS related initialization including memory and device structure and
6783 * initlaization of the device private variable is done. Also the swapper
6784 * control register is initialized to enable read and write into the I/O
6785 * registers of the device.
6787 * returns 0 on success and negative on failure.
6790 static int __devinit
6791 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6794 struct net_device *dev;
6796 int dma_flag = FALSE;
6797 u32 mac_up, mac_down;
6798 u64 val64 = 0, tmp64 = 0;
6799 XENA_dev_config_t __iomem *bar0 = NULL;
6801 mac_info_t *mac_control;
6802 struct config_param *config;
6804 u8 dev_intr_type = intr_type;
6806 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6809 if ((ret = pci_enable_device(pdev))) {
6811 "s2io_init_nic: pci_enable_device failed\n");
6815 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6816 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6818 if (pci_set_consistent_dma_mask
6819 (pdev, DMA_64BIT_MASK)) {
6821 "Unable to obtain 64bit DMA for \
6822 consistent allocations\n");
6823 pci_disable_device(pdev);
6826 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6827 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6829 pci_disable_device(pdev);
6832 if (dev_intr_type != MSI_X) {
6833 if (pci_request_regions(pdev, s2io_driver_name)) {
6834 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6835 pci_disable_device(pdev);
6840 if (!(request_mem_region(pci_resource_start(pdev, 0),
6841 pci_resource_len(pdev, 0), s2io_driver_name))) {
6842 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6843 pci_disable_device(pdev);
6846 if (!(request_mem_region(pci_resource_start(pdev, 2),
6847 pci_resource_len(pdev, 2), s2io_driver_name))) {
6848 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6849 release_mem_region(pci_resource_start(pdev, 0),
6850 pci_resource_len(pdev, 0));
6851 pci_disable_device(pdev);
6856 dev = alloc_etherdev(sizeof(nic_t));
6858 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6859 pci_disable_device(pdev);
6860 pci_release_regions(pdev);
6864 pci_set_master(pdev);
6865 pci_set_drvdata(pdev, dev);
6866 SET_MODULE_OWNER(dev);
6867 SET_NETDEV_DEV(dev, &pdev->dev);
6869 /* Private member variable initialized to s2io NIC structure */
6871 memset(sp, 0, sizeof(nic_t));
6874 sp->high_dma_flag = dma_flag;
6875 sp->device_enabled_once = FALSE;
6876 if (rx_ring_mode == 1)
6877 sp->rxd_mode = RXD_MODE_1;
6878 if (rx_ring_mode == 2)
6879 sp->rxd_mode = RXD_MODE_3B;
6880 if (rx_ring_mode == 3)
6881 sp->rxd_mode = RXD_MODE_3A;
6883 sp->intr_type = dev_intr_type;
6885 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6886 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6887 sp->device_type = XFRAME_II_DEVICE;
6889 sp->device_type = XFRAME_I_DEVICE;
6893 /* Initialize some PCI/PCI-X fields of the NIC. */
6897 * Setting the device configuration parameters.
6898 * Most of these parameters can be specified by the user during
6899 * module insertion as they are module loadable parameters. If
6900 * these parameters are not not specified during load time, they
6901 * are initialized with default values.
6903 mac_control = &sp->mac_control;
6904 config = &sp->config;
6906 /* Tx side parameters. */
6907 config->tx_fifo_num = tx_fifo_num;
6908 for (i = 0; i < MAX_TX_FIFOS; i++) {
6909 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6910 config->tx_cfg[i].fifo_priority = i;
6913 /* mapping the QoS priority to the configured fifos */
6914 for (i = 0; i < MAX_TX_FIFOS; i++)
6915 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6917 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6918 for (i = 0; i < config->tx_fifo_num; i++) {
6919 config->tx_cfg[i].f_no_snoop =
6920 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6921 if (config->tx_cfg[i].fifo_len < 65) {
6922 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6926 /* + 2 because one Txd for skb->data and one Txd for UFO */
6927 config->max_txds = MAX_SKB_FRAGS + 2;
6929 /* Rx side parameters. */
6930 config->rx_ring_num = rx_ring_num;
6931 for (i = 0; i < MAX_RX_RINGS; i++) {
6932 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6933 (rxd_count[sp->rxd_mode] + 1);
6934 config->rx_cfg[i].ring_priority = i;
6937 for (i = 0; i < rx_ring_num; i++) {
6938 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6939 config->rx_cfg[i].f_no_snoop =
6940 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6943 /* Setting Mac Control parameters */
6944 mac_control->rmac_pause_time = rmac_pause_time;
6945 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6946 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6949 /* Initialize Ring buffer parameters. */
6950 for (i = 0; i < config->rx_ring_num; i++)
6951 atomic_set(&sp->rx_bufs_left[i], 0);
6953 /* Initialize the number of ISRs currently running */
6954 atomic_set(&sp->isr_cnt, 0);
6956 /* initialize the shared memory used by the NIC and the host */
6957 if (init_shared_mem(sp)) {
6958 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6961 goto mem_alloc_failed;
6964 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6965 pci_resource_len(pdev, 0));
6967 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6970 goto bar0_remap_failed;
6973 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6974 pci_resource_len(pdev, 2));
6976 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6979 goto bar1_remap_failed;
6982 dev->irq = pdev->irq;
6983 dev->base_addr = (unsigned long) sp->bar0;
6985 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6986 for (j = 0; j < MAX_TX_FIFOS; j++) {
6987 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6988 (sp->bar1 + (j * 0x00020000));
6991 /* Driver entry points */
6992 dev->open = &s2io_open;
6993 dev->stop = &s2io_close;
6994 dev->hard_start_xmit = &s2io_xmit;
6995 dev->get_stats = &s2io_get_stats;
6996 dev->set_multicast_list = &s2io_set_multicast;
6997 dev->do_ioctl = &s2io_ioctl;
6998 dev->change_mtu = &s2io_change_mtu;
6999 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7000 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7001 dev->vlan_rx_register = s2io_vlan_rx_register;
7002 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7005 * will use eth_mac_addr() for dev->set_mac_address
7006 * mac address will be set every time dev->open() is called
7008 #if defined(CONFIG_S2IO_NAPI)
7009 dev->poll = s2io_poll;
7013 #ifdef CONFIG_NET_POLL_CONTROLLER
7014 dev->poll_controller = s2io_netpoll;
7017 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7018 if (sp->high_dma_flag == TRUE)
7019 dev->features |= NETIF_F_HIGHDMA;
7021 dev->features |= NETIF_F_TSO;
7024 dev->features |= NETIF_F_TSO6;
7026 if (sp->device_type & XFRAME_II_DEVICE) {
7027 dev->features |= NETIF_F_UFO;
7028 dev->features |= NETIF_F_HW_CSUM;
7031 dev->tx_timeout = &s2io_tx_watchdog;
7032 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7033 INIT_WORK(&sp->rst_timer_task,
7034 (void (*)(void *)) s2io_restart_nic, dev);
7035 INIT_WORK(&sp->set_link_task,
7036 (void (*)(void *)) s2io_set_link, sp);
7038 pci_save_state(sp->pdev);
7040 /* Setting swapper control on the NIC, for proper reset operation */
7041 if (s2io_set_swapper(sp)) {
7042 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7045 goto set_swap_failed;
7048 /* Verify if the Herc works on the slot its placed into */
7049 if (sp->device_type & XFRAME_II_DEVICE) {
7050 mode = s2io_verify_pci_mode(sp);
7052 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7053 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7055 goto set_swap_failed;
7059 /* Not needed for Herc */
7060 if (sp->device_type & XFRAME_I_DEVICE) {
7062 * Fix for all "FFs" MAC address problems observed on
7065 fix_mac_address(sp);
7070 * MAC address initialization.
7071 * For now only one mac address will be read and used.
7074 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7075 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7076 writeq(val64, &bar0->rmac_addr_cmd_mem);
7077 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7078 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7079 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7080 mac_down = (u32) tmp64;
7081 mac_up = (u32) (tmp64 >> 32);
7083 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7085 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7086 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7087 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7088 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7089 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7090 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7092 /* Set the factory defined MAC address initially */
7093 dev->addr_len = ETH_ALEN;
7094 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7097 * Initialize the tasklet status and link state flags
7098 * and the card state parameter
7100 atomic_set(&(sp->card_state), 0);
7101 sp->tasklet_status = 0;
7104 /* Initialize spinlocks */
7105 spin_lock_init(&sp->tx_lock);
7106 #ifndef CONFIG_S2IO_NAPI
7107 spin_lock_init(&sp->put_lock);
7109 spin_lock_init(&sp->rx_lock);
7112 * SXE-002: Configure link and activity LED to init state
7115 subid = sp->pdev->subsystem_device;
7116 if ((subid & 0xFF) >= 0x07) {
7117 val64 = readq(&bar0->gpio_control);
7118 val64 |= 0x0000800000000000ULL;
7119 writeq(val64, &bar0->gpio_control);
7120 val64 = 0x0411040400000000ULL;
7121 writeq(val64, (void __iomem *) bar0 + 0x2700);
7122 val64 = readq(&bar0->gpio_control);
7125 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7127 if (register_netdev(dev)) {
7128 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7130 goto register_failed;
7133 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7134 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
7135 get_xena_rev_id(sp->pdev),
7136 s2io_driver_version);
7137 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7138 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7139 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7140 sp->def_mac_addr[0].mac_addr[0],
7141 sp->def_mac_addr[0].mac_addr[1],
7142 sp->def_mac_addr[0].mac_addr[2],
7143 sp->def_mac_addr[0].mac_addr[3],
7144 sp->def_mac_addr[0].mac_addr[4],
7145 sp->def_mac_addr[0].mac_addr[5]);
7146 if (sp->device_type & XFRAME_II_DEVICE) {
7147 mode = s2io_print_pci_mode(sp);
7149 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7151 unregister_netdev(dev);
7152 goto set_swap_failed;
7155 switch(sp->rxd_mode) {
7157 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7161 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7165 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7169 #ifdef CONFIG_S2IO_NAPI
7170 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7172 switch(sp->intr_type) {
7174 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7177 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7180 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7184 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7187 /* Initialize device name */
7188 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7190 /* Initialize bimodal Interrupts */
7191 sp->config.bimodal = bimodal;
7192 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7193 sp->config.bimodal = 0;
7194 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7199 * Make Link state as off at this point, when the Link change
7200 * interrupt comes the state will be automatically changed to
7203 netif_carrier_off(dev);
7214 free_shared_mem(sp);
7215 pci_disable_device(pdev);
7216 if (dev_intr_type != MSI_X)
7217 pci_release_regions(pdev);
7219 release_mem_region(pci_resource_start(pdev, 0),
7220 pci_resource_len(pdev, 0));
7221 release_mem_region(pci_resource_start(pdev, 2),
7222 pci_resource_len(pdev, 2));
7224 pci_set_drvdata(pdev, NULL);
7231 * s2io_rem_nic - Free the PCI device
7232 * @pdev: structure containing the PCI related information of the device.
7233 * Description: This function is called by the Pci subsystem to release a
7234 * PCI device and free up all resource held up by the device. This could
7235 * be in response to a Hot plug event or when the driver is to be removed
7239 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7241 struct net_device *dev =
7242 (struct net_device *) pci_get_drvdata(pdev);
7246 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7251 unregister_netdev(dev);
7253 free_shared_mem(sp);
7256 pci_disable_device(pdev);
7257 if (sp->intr_type != MSI_X)
7258 pci_release_regions(pdev);
7260 release_mem_region(pci_resource_start(pdev, 0),
7261 pci_resource_len(pdev, 0));
7262 release_mem_region(pci_resource_start(pdev, 2),
7263 pci_resource_len(pdev, 2));
7265 pci_set_drvdata(pdev, NULL);
7270 * s2io_starter - Entry point for the driver
7271 * Description: This function is the entry point for the driver. It verifies
7272 * the module loadable parameters and initializes PCI configuration space.
7275 int __init s2io_starter(void)
7277 return pci_module_init(&s2io_driver);
7281 * s2io_closer - Cleanup routine for the driver
7282 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7285 static void s2io_closer(void)
7287 pci_unregister_driver(&s2io_driver);
7288 DBG_PRINT(INIT_DBG, "cleanup done\n");
7291 module_init(s2io_starter);
7292 module_exit(s2io_closer);
7294 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7295 struct tcphdr **tcp, RxD_t *rxdp)
7298 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7300 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7301 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7307 * By default the VLAN field in the MAC is stripped by the card, if this
7308 * feature is turned off in rx_pa_cfg register, then the ip_off field
7309 * has to be shifted by a further 2 bytes
7312 case 0: /* DIX type */
7313 case 4: /* DIX type with VLAN */
7314 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7316 /* LLC, SNAP etc are considered non-mergeable */
7321 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7322 ip_len = (u8)((*ip)->ihl);
7324 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7329 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7332 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7333 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7334 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7339 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7341 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7344 static void initiate_new_session(lro_t *lro, u8 *l2h,
7345 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7347 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7351 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7352 lro->tcp_ack = ntohl(tcp->ack_seq);
7354 lro->total_len = ntohs(ip->tot_len);
7357 * check if we saw TCP timestamp. Other consistency checks have
7358 * already been done.
7360 if (tcp->doff == 8) {
7362 ptr = (u32 *)(tcp+1);
7364 lro->cur_tsval = *(ptr+1);
7365 lro->cur_tsecr = *(ptr+2);
7370 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7372 struct iphdr *ip = lro->iph;
7373 struct tcphdr *tcp = lro->tcph;
7375 StatInfo_t *statinfo = sp->mac_control.stats_info;
7376 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7378 /* Update L3 header */
7379 ip->tot_len = htons(lro->total_len);
7381 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7384 /* Update L4 header */
7385 tcp->ack_seq = lro->tcp_ack;
7386 tcp->window = lro->window;
7388 /* Update tsecr field if this session has timestamps enabled */
7390 u32 *ptr = (u32 *)(tcp + 1);
7391 *(ptr+2) = lro->cur_tsecr;
7394 /* Update counters required for calculation of
7395 * average no. of packets aggregated.
7397 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7398 statinfo->sw_stat.num_aggregations++;
7401 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7402 struct tcphdr *tcp, u32 l4_pyld)
7404 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7405 lro->total_len += l4_pyld;
7406 lro->frags_len += l4_pyld;
7407 lro->tcp_next_seq += l4_pyld;
7410 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7411 lro->tcp_ack = tcp->ack_seq;
7412 lro->window = tcp->window;
7416 /* Update tsecr and tsval from this packet */
7417 ptr = (u32 *) (tcp + 1);
7418 lro->cur_tsval = *(ptr + 1);
7419 lro->cur_tsecr = *(ptr + 2);
7423 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7424 struct tcphdr *tcp, u32 tcp_pyld_len)
7428 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7430 if (!tcp_pyld_len) {
7431 /* Runt frame or a pure ack */
7435 if (ip->ihl != 5) /* IP has options */
7438 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7441 * Currently recognize only the ack control word and
7442 * any other control field being set would result in
7443 * flushing the LRO session
7449 * Allow only one TCP timestamp option. Don't aggregate if
7450 * any other options are detected.
7452 if (tcp->doff != 5 && tcp->doff != 8)
7455 if (tcp->doff == 8) {
7456 ptr = (u8 *)(tcp + 1);
7457 while (*ptr == TCPOPT_NOP)
7459 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7462 /* Ensure timestamp value increases monotonically */
7464 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7467 /* timestamp echo reply should be non-zero */
7468 if (*((u32 *)(ptr+6)) == 0)
7476 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7477 RxD_t *rxdp, nic_t *sp)
7480 struct tcphdr *tcph;
7483 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7485 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7486 ip->saddr, ip->daddr);
7491 tcph = (struct tcphdr *)*tcp;
7492 *tcp_len = get_l4_pyld_length(ip, tcph);
7493 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7494 lro_t *l_lro = &sp->lro0_n[i];
7495 if (l_lro->in_use) {
7496 if (check_for_socket_match(l_lro, ip, tcph))
7498 /* Sock pair matched */
7501 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7502 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7503 "0x%x, actual 0x%x\n", __FUNCTION__,
7504 (*lro)->tcp_next_seq,
7507 sp->mac_control.stats_info->
7508 sw_stat.outof_sequence_pkts++;
7513 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7514 ret = 1; /* Aggregate */
7516 ret = 2; /* Flush both */
7522 /* Before searching for available LRO objects,
7523 * check if the pkt is L3/L4 aggregatable. If not
7524 * don't create new LRO session. Just send this
7527 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7531 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7532 lro_t *l_lro = &sp->lro0_n[i];
7533 if (!(l_lro->in_use)) {
7535 ret = 3; /* Begin anew */
7541 if (ret == 0) { /* sessions exceeded */
7542 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7550 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7553 update_L3L4_header(sp, *lro);
7556 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7557 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7558 update_L3L4_header(sp, *lro);
7559 ret = 4; /* Flush the LRO */
7563 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7571 static void clear_lro_session(lro_t *lro)
7573 static u16 lro_struct_size = sizeof(lro_t);
7575 memset(lro, 0, lro_struct_size);
7578 static void queue_rx_frame(struct sk_buff *skb)
7580 struct net_device *dev = skb->dev;
7582 skb->protocol = eth_type_trans(skb, dev);
7583 #ifdef CONFIG_S2IO_NAPI
7584 netif_receive_skb(skb);
7590 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7593 struct sk_buff *tmp, *first = lro->parent;
7595 first->len += tcp_len;
7596 first->data_len = lro->frags_len;
7597 skb_pull(skb, (skb->len - tcp_len));
7598 if ((tmp = skb_shinfo(first)->frag_list)) {
7604 skb_shinfo(first)->frag_list = skb;
7605 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;