4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/module.h>
42 #include <linux/namei.h>
43 #include <linux/proc_fs.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/rmap.h>
49 #include <linux/acct.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
57 #include <linux/kmod.h>
61 char core_pattern[65] = "core";
62 int suid_dumpable = 0;
64 EXPORT_SYMBOL(suid_dumpable);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
67 static struct linux_binfmt *formats;
68 static DEFINE_RWLOCK(binfmt_lock);
70 int register_binfmt(struct linux_binfmt * fmt)
72 struct linux_binfmt ** tmp = &formats;
78 write_lock(&binfmt_lock);
81 write_unlock(&binfmt_lock);
88 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(register_binfmt);
94 int unregister_binfmt(struct linux_binfmt * fmt)
96 struct linux_binfmt ** tmp = &formats;
98 write_lock(&binfmt_lock);
102 write_unlock(&binfmt_lock);
107 write_unlock(&binfmt_lock);
111 EXPORT_SYMBOL(unregister_binfmt);
113 static inline void put_binfmt(struct linux_binfmt * fmt)
115 module_put(fmt->module);
119 * Note that a shared library must be both readable and executable due to
122 * Also note that we take the address to load from from the file itself.
124 asmlinkage long sys_uselib(const char __user * library)
130 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
135 if (!S_ISREG(nd.dentry->d_inode->i_mode))
138 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
142 file = nameidata_to_filp(&nd, O_RDONLY);
143 error = PTR_ERR(file);
149 struct linux_binfmt * fmt;
151 read_lock(&binfmt_lock);
152 for (fmt = formats ; fmt ; fmt = fmt->next) {
153 if (!fmt->load_shlib)
155 if (!try_module_get(fmt->module))
157 read_unlock(&binfmt_lock);
158 error = fmt->load_shlib(file);
159 read_lock(&binfmt_lock);
161 if (error != -ENOEXEC)
164 read_unlock(&binfmt_lock);
170 release_open_intent(&nd);
176 * count() counts the number of strings in array ARGV.
178 static int count(char __user * __user * argv, int max)
186 if (get_user(p, argv))
200 * 'copy_strings()' copies argument/environment strings from user
201 * memory to free pages in kernel mem. These are in a format ready
202 * to be put directly into the top of new user memory.
204 static int copy_strings(int argc, char __user * __user * argv,
205 struct linux_binprm *bprm)
207 struct page *kmapped_page = NULL;
216 if (get_user(str, argv+argc) ||
217 !(len = strnlen_user(str, bprm->p))) {
228 /* XXX: add architecture specific overflow check here. */
233 int offset, bytes_to_copy;
236 offset = pos % PAGE_SIZE;
238 page = bprm->page[i];
241 page = alloc_page(GFP_HIGHUSER);
242 bprm->page[i] = page;
250 if (page != kmapped_page) {
252 kunmap(kmapped_page);
254 kaddr = kmap(kmapped_page);
257 memset(kaddr, 0, offset);
258 bytes_to_copy = PAGE_SIZE - offset;
259 if (bytes_to_copy > len) {
262 memset(kaddr+offset+len, 0,
263 PAGE_SIZE-offset-len);
265 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
271 pos += bytes_to_copy;
272 str += bytes_to_copy;
273 len -= bytes_to_copy;
279 kunmap(kmapped_page);
284 * Like copy_strings, but get argv and its values from kernel memory.
286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
289 mm_segment_t oldfs = get_fs();
291 r = copy_strings(argc, (char __user * __user *)argv, bprm);
296 EXPORT_SYMBOL(copy_strings_kernel);
300 * This routine is used to map in a page into an address space: needed by
301 * execve() for the initial stack and environment pages.
303 * vma->vm_mm->mmap_sem is held for writing.
305 void install_arg_page(struct vm_area_struct *vma,
306 struct page *page, unsigned long address)
308 struct mm_struct *mm = vma->vm_mm;
312 if (unlikely(anon_vma_prepare(vma)))
315 flush_dcache_page(page);
316 pte = get_locked_pte(mm, address, &ptl);
319 if (!pte_none(*pte)) {
320 pte_unmap_unlock(pte, ptl);
323 inc_mm_counter(mm, anon_rss);
324 lru_cache_add_active(page);
325 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
326 page, vma->vm_page_prot))));
327 page_add_new_anon_rmap(page, vma, address);
328 pte_unmap_unlock(pte, ptl);
330 /* no need for flush_tlb */
334 force_sig(SIGKILL, current);
337 #define EXTRA_STACK_VM_PAGES 20 /* random */
339 int setup_arg_pages(struct linux_binprm *bprm,
340 unsigned long stack_top,
341 int executable_stack)
343 unsigned long stack_base;
344 struct vm_area_struct *mpnt;
345 struct mm_struct *mm = current->mm;
349 #ifdef CONFIG_STACK_GROWSUP
350 /* Move the argument and environment strings to the bottom of the
356 /* Start by shifting all the pages down */
358 for (j = 0; j < MAX_ARG_PAGES; j++) {
359 struct page *page = bprm->page[j];
362 bprm->page[i++] = page;
365 /* Now move them within their pages */
366 offset = bprm->p % PAGE_SIZE;
367 to = kmap(bprm->page[0]);
368 for (j = 1; j < i; j++) {
369 memmove(to, to + offset, PAGE_SIZE - offset);
370 from = kmap(bprm->page[j]);
371 memcpy(to + PAGE_SIZE - offset, from, offset);
372 kunmap(bprm->page[j - 1]);
375 memmove(to, to + offset, PAGE_SIZE - offset);
376 kunmap(bprm->page[j - 1]);
378 /* Limit stack size to 1GB */
379 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
380 if (stack_base > (1 << 30))
381 stack_base = 1 << 30;
382 stack_base = PAGE_ALIGN(stack_top - stack_base);
384 /* Adjust bprm->p to point to the end of the strings. */
385 bprm->p = stack_base + PAGE_SIZE * i - offset;
387 mm->arg_start = stack_base;
388 arg_size = i << PAGE_SHIFT;
390 /* zero pages that were copied above */
391 while (i < MAX_ARG_PAGES)
392 bprm->page[i++] = NULL;
394 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
395 stack_base = PAGE_ALIGN(stack_base);
396 bprm->p += stack_base;
397 mm->arg_start = bprm->p;
398 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
401 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
404 bprm->loader += stack_base;
405 bprm->exec += stack_base;
407 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
411 memset(mpnt, 0, sizeof(*mpnt));
413 down_write(&mm->mmap_sem);
416 #ifdef CONFIG_STACK_GROWSUP
417 mpnt->vm_start = stack_base;
418 mpnt->vm_end = stack_base + arg_size;
420 mpnt->vm_end = stack_top;
421 mpnt->vm_start = mpnt->vm_end - arg_size;
423 /* Adjust stack execute permissions; explicitly enable
424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425 * and leave alone (arch default) otherwise. */
426 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
427 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
428 else if (executable_stack == EXSTACK_DISABLE_X)
429 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
431 mpnt->vm_flags = VM_STACK_FLAGS;
432 mpnt->vm_flags |= mm->def_flags;
433 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
434 if ((ret = insert_vm_struct(mm, mpnt))) {
435 up_write(&mm->mmap_sem);
436 kmem_cache_free(vm_area_cachep, mpnt);
439 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
442 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
443 struct page *page = bprm->page[i];
445 bprm->page[i] = NULL;
446 install_arg_page(mpnt, page, stack_base);
448 stack_base += PAGE_SIZE;
450 up_write(&mm->mmap_sem);
455 EXPORT_SYMBOL(setup_arg_pages);
457 #define free_arg_pages(bprm) do { } while (0)
461 static inline void free_arg_pages(struct linux_binprm *bprm)
465 for (i = 0; i < MAX_ARG_PAGES; i++) {
467 __free_page(bprm->page[i]);
468 bprm->page[i] = NULL;
472 #endif /* CONFIG_MMU */
474 struct file *open_exec(const char *name)
480 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
484 struct inode *inode = nd.dentry->d_inode;
485 file = ERR_PTR(-EACCES);
486 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
487 S_ISREG(inode->i_mode)) {
488 int err = vfs_permission(&nd, MAY_EXEC);
489 if (!err && !(inode->i_mode & 0111))
493 file = nameidata_to_filp(&nd, O_RDONLY);
495 err = deny_write_access(file);
505 release_open_intent(&nd);
511 EXPORT_SYMBOL(open_exec);
513 int kernel_read(struct file *file, unsigned long offset,
514 char *addr, unsigned long count)
522 /* The cast to a user pointer is valid due to the set_fs() */
523 result = vfs_read(file, (void __user *)addr, count, &pos);
528 EXPORT_SYMBOL(kernel_read);
530 static int exec_mmap(struct mm_struct *mm)
532 struct task_struct *tsk;
533 struct mm_struct * old_mm, *active_mm;
535 /* Notify parent that we're no longer interested in the old VM */
537 old_mm = current->mm;
538 mm_release(tsk, old_mm);
542 * Make sure that if there is a core dump in progress
543 * for the old mm, we get out and die instead of going
544 * through with the exec. We must hold mmap_sem around
545 * checking core_waiters and changing tsk->mm. The
546 * core-inducing thread will increment core_waiters for
547 * each thread whose ->mm == old_mm.
549 down_read(&old_mm->mmap_sem);
550 if (unlikely(old_mm->core_waiters)) {
551 up_read(&old_mm->mmap_sem);
556 active_mm = tsk->active_mm;
559 activate_mm(active_mm, mm);
561 arch_pick_mmap_layout(mm);
563 up_read(&old_mm->mmap_sem);
564 BUG_ON(active_mm != old_mm);
573 * This function makes sure the current process has its own signal table,
574 * so that flush_signal_handlers can later reset the handlers without
575 * disturbing other processes. (Other processes might share the signal
576 * table via the CLONE_SIGHAND option to clone().)
578 static int de_thread(struct task_struct *tsk)
580 struct signal_struct *sig = tsk->signal;
581 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
582 spinlock_t *lock = &oldsighand->siglock;
583 struct task_struct *leader = NULL;
587 * If we don't share sighandlers, then we aren't sharing anything
588 * and we can just re-use it all.
590 if (atomic_read(&oldsighand->count) <= 1) {
591 BUG_ON(atomic_read(&sig->count) != 1);
596 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
600 if (thread_group_empty(current))
601 goto no_thread_group;
604 * Kill all other threads in the thread group.
605 * We must hold tasklist_lock to call zap_other_threads.
607 read_lock(&tasklist_lock);
609 if (sig->flags & SIGNAL_GROUP_EXIT) {
611 * Another group action in progress, just
612 * return so that the signal is processed.
614 spin_unlock_irq(lock);
615 read_unlock(&tasklist_lock);
616 kmem_cache_free(sighand_cachep, newsighand);
621 * child_reaper ignores SIGKILL, change it now.
622 * Reparenting needs write_lock on tasklist_lock,
623 * so it is safe to do it under read_lock.
625 if (unlikely(current->group_leader == child_reaper))
626 child_reaper = current;
628 zap_other_threads(current);
629 read_unlock(&tasklist_lock);
632 * Account for the thread group leader hanging around:
635 if (!thread_group_leader(current)) {
638 * The SIGALRM timer survives the exec, but needs to point
639 * at us as the new group leader now. We have a race with
640 * a timer firing now getting the old leader, so we need to
641 * synchronize with any firing (by calling del_timer_sync)
642 * before we can safely let the old group leader die.
645 spin_unlock_irq(lock);
646 if (hrtimer_cancel(&sig->real_timer))
647 hrtimer_restart(&sig->real_timer);
650 while (atomic_read(&sig->count) > count) {
651 sig->group_exit_task = current;
652 sig->notify_count = count;
653 __set_current_state(TASK_UNINTERRUPTIBLE);
654 spin_unlock_irq(lock);
658 sig->group_exit_task = NULL;
659 sig->notify_count = 0;
660 spin_unlock_irq(lock);
663 * At this point all other threads have exited, all we have to
664 * do is to wait for the thread group leader to become inactive,
665 * and to assume its PID:
667 if (!thread_group_leader(current)) {
669 * Wait for the thread group leader to be a zombie.
670 * It should already be zombie at this point, most
673 leader = current->group_leader;
674 while (leader->exit_state != EXIT_ZOMBIE)
678 * The only record we have of the real-time age of a
679 * process, regardless of execs it's done, is start_time.
680 * All the past CPU time is accumulated in signal_struct
681 * from sister threads now dead. But in this non-leader
682 * exec, nothing survives from the original leader thread,
683 * whose birth marks the true age of this process now.
684 * When we take on its identity by switching to its PID, we
685 * also take its birthdate (always earlier than our own).
687 current->start_time = leader->start_time;
689 write_lock_irq(&tasklist_lock);
691 BUG_ON(leader->tgid != current->tgid);
692 BUG_ON(current->pid == current->tgid);
694 * An exec() starts a new thread group with the
695 * TGID of the previous thread group. Rehash the
696 * two threads with a switched PID, and release
697 * the former thread group leader:
700 /* Become a process group leader with the old leader's pid.
701 * Note: The old leader also uses thispid until release_task
702 * is called. Odd but simple and correct.
704 detach_pid(current, PIDTYPE_PID);
705 current->pid = leader->pid;
706 attach_pid(current, PIDTYPE_PID, current->pid);
707 attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
708 attach_pid(current, PIDTYPE_SID, current->signal->session);
709 list_replace_rcu(&leader->tasks, ¤t->tasks);
711 current->group_leader = current;
712 leader->group_leader = current;
714 /* Reduce leader to a thread */
715 detach_pid(leader, PIDTYPE_PGID);
716 detach_pid(leader, PIDTYPE_SID);
718 current->exit_signal = SIGCHLD;
720 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
721 leader->exit_state = EXIT_DEAD;
723 write_unlock_irq(&tasklist_lock);
727 * There may be one thread left which is just exiting,
728 * but it's safe to stop telling the group to kill themselves.
735 release_task(leader);
737 BUG_ON(atomic_read(&sig->count) != 1);
739 if (atomic_read(&oldsighand->count) == 1) {
741 * Now that we nuked the rest of the thread group,
742 * it turns out we are not sharing sighand any more either.
743 * So we can just keep it.
745 kmem_cache_free(sighand_cachep, newsighand);
748 * Move our state over to newsighand and switch it in.
750 atomic_set(&newsighand->count, 1);
751 memcpy(newsighand->action, oldsighand->action,
752 sizeof(newsighand->action));
754 write_lock_irq(&tasklist_lock);
755 spin_lock(&oldsighand->siglock);
756 spin_lock(&newsighand->siglock);
758 rcu_assign_pointer(current->sighand, newsighand);
761 spin_unlock(&newsighand->siglock);
762 spin_unlock(&oldsighand->siglock);
763 write_unlock_irq(&tasklist_lock);
765 if (atomic_dec_and_test(&oldsighand->count))
766 kmem_cache_free(sighand_cachep, oldsighand);
769 BUG_ON(!thread_group_leader(current));
774 * These functions flushes out all traces of the currently running executable
775 * so that a new one can be started
778 static void flush_old_files(struct files_struct * files)
783 spin_lock(&files->file_lock);
785 unsigned long set, i;
789 fdt = files_fdtable(files);
790 if (i >= fdt->max_fds || i >= fdt->max_fdset)
792 set = fdt->close_on_exec->fds_bits[j];
795 fdt->close_on_exec->fds_bits[j] = 0;
796 spin_unlock(&files->file_lock);
797 for ( ; set ; i++,set >>= 1) {
802 spin_lock(&files->file_lock);
805 spin_unlock(&files->file_lock);
808 void get_task_comm(char *buf, struct task_struct *tsk)
810 /* buf must be at least sizeof(tsk->comm) in size */
812 strncpy(buf, tsk->comm, sizeof(tsk->comm));
816 void set_task_comm(struct task_struct *tsk, char *buf)
819 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
823 int flush_old_exec(struct linux_binprm * bprm)
827 struct files_struct *files;
828 char tcomm[sizeof(current->comm)];
831 * Make sure we have a private signal table and that
832 * we are unassociated from the previous thread group.
834 retval = de_thread(current);
839 * Make sure we have private file handles. Ask the
840 * fork helper to do the work for us and the exit
841 * helper to do the cleanup of the old one.
843 files = current->files; /* refcounted so safe to hold */
844 retval = unshare_files();
848 * Release all of the old mmap stuff
850 retval = exec_mmap(bprm->mm);
854 bprm->mm = NULL; /* We're using it now */
856 /* This is the point of no return */
857 put_files_struct(files);
859 current->sas_ss_sp = current->sas_ss_size = 0;
861 if (current->euid == current->uid && current->egid == current->gid)
862 current->mm->dumpable = 1;
864 current->mm->dumpable = suid_dumpable;
866 name = bprm->filename;
868 /* Copies the binary name from after last slash */
869 for (i=0; (ch = *(name++)) != '\0';) {
871 i = 0; /* overwrite what we wrote */
873 if (i < (sizeof(tcomm) - 1))
877 set_task_comm(current, tcomm);
879 current->flags &= ~PF_RANDOMIZE;
882 /* Set the new mm task size. We have to do that late because it may
883 * depend on TIF_32BIT which is only updated in flush_thread() on
884 * some architectures like powerpc
886 current->mm->task_size = TASK_SIZE;
888 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
889 file_permission(bprm->file, MAY_READ) ||
890 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
892 current->mm->dumpable = suid_dumpable;
895 /* An exec changes our domain. We are no longer part of the thread
898 current->self_exec_id++;
900 flush_signal_handlers(current, 0);
901 flush_old_files(current->files);
906 put_files_struct(current->files);
907 current->files = files;
912 EXPORT_SYMBOL(flush_old_exec);
915 * Fill the binprm structure from the inode.
916 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
918 int prepare_binprm(struct linux_binprm *bprm)
921 struct inode * inode = bprm->file->f_dentry->d_inode;
924 mode = inode->i_mode;
926 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
927 * generic_permission lets a non-executable through
929 if (!(mode & 0111)) /* with at least _one_ execute bit set */
931 if (bprm->file->f_op == NULL)
934 bprm->e_uid = current->euid;
935 bprm->e_gid = current->egid;
937 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
939 if (mode & S_ISUID) {
940 current->personality &= ~PER_CLEAR_ON_SETID;
941 bprm->e_uid = inode->i_uid;
946 * If setgid is set but no group execute bit then this
947 * is a candidate for mandatory locking, not a setgid
950 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
951 current->personality &= ~PER_CLEAR_ON_SETID;
952 bprm->e_gid = inode->i_gid;
956 /* fill in binprm security blob */
957 retval = security_bprm_set(bprm);
961 memset(bprm->buf,0,BINPRM_BUF_SIZE);
962 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
965 EXPORT_SYMBOL(prepare_binprm);
967 static int unsafe_exec(struct task_struct *p)
970 if (p->ptrace & PT_PTRACED) {
971 if (p->ptrace & PT_PTRACE_CAP)
972 unsafe |= LSM_UNSAFE_PTRACE_CAP;
974 unsafe |= LSM_UNSAFE_PTRACE;
976 if (atomic_read(&p->fs->count) > 1 ||
977 atomic_read(&p->files->count) > 1 ||
978 atomic_read(&p->sighand->count) > 1)
979 unsafe |= LSM_UNSAFE_SHARE;
984 void compute_creds(struct linux_binprm *bprm)
988 if (bprm->e_uid != current->uid)
993 unsafe = unsafe_exec(current);
994 security_bprm_apply_creds(bprm, unsafe);
995 task_unlock(current);
996 security_bprm_post_apply_creds(bprm);
999 EXPORT_SYMBOL(compute_creds);
1001 void remove_arg_zero(struct linux_binprm *bprm)
1004 unsigned long offset;
1008 offset = bprm->p % PAGE_SIZE;
1011 while (bprm->p++, *(kaddr+offset++)) {
1012 if (offset != PAGE_SIZE)
1015 kunmap_atomic(kaddr, KM_USER0);
1017 page = bprm->page[bprm->p/PAGE_SIZE];
1018 kaddr = kmap_atomic(page, KM_USER0);
1020 kunmap_atomic(kaddr, KM_USER0);
1025 EXPORT_SYMBOL(remove_arg_zero);
1028 * cycle the list of binary formats handler, until one recognizes the image
1030 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1033 struct linux_binfmt *fmt;
1035 /* handle /sbin/loader.. */
1037 struct exec * eh = (struct exec *) bprm->buf;
1039 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1040 (eh->fh.f_flags & 0x3000) == 0x3000)
1043 unsigned long loader;
1045 allow_write_access(bprm->file);
1049 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1051 file = open_exec("/sbin/loader");
1052 retval = PTR_ERR(file);
1056 /* Remember if the application is TASO. */
1057 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1060 bprm->loader = loader;
1061 retval = prepare_binprm(bprm);
1064 /* should call search_binary_handler recursively here,
1065 but it does not matter */
1069 retval = security_bprm_check(bprm);
1073 /* kernel module loader fixup */
1074 /* so we don't try to load run modprobe in kernel space. */
1077 retval = audit_bprm(bprm);
1082 for (try=0; try<2; try++) {
1083 read_lock(&binfmt_lock);
1084 for (fmt = formats ; fmt ; fmt = fmt->next) {
1085 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1088 if (!try_module_get(fmt->module))
1090 read_unlock(&binfmt_lock);
1091 retval = fn(bprm, regs);
1094 allow_write_access(bprm->file);
1098 current->did_exec = 1;
1099 proc_exec_connector(current);
1102 read_lock(&binfmt_lock);
1104 if (retval != -ENOEXEC || bprm->mm == NULL)
1107 read_unlock(&binfmt_lock);
1111 read_unlock(&binfmt_lock);
1112 if (retval != -ENOEXEC || bprm->mm == NULL) {
1116 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1117 if (printable(bprm->buf[0]) &&
1118 printable(bprm->buf[1]) &&
1119 printable(bprm->buf[2]) &&
1120 printable(bprm->buf[3]))
1121 break; /* -ENOEXEC */
1122 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1129 EXPORT_SYMBOL(search_binary_handler);
1132 * sys_execve() executes a new program.
1134 int do_execve(char * filename,
1135 char __user *__user *argv,
1136 char __user *__user *envp,
1137 struct pt_regs * regs)
1139 struct linux_binprm *bprm;
1145 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1149 file = open_exec(filename);
1150 retval = PTR_ERR(file);
1156 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1159 bprm->filename = filename;
1160 bprm->interp = filename;
1161 bprm->mm = mm_alloc();
1166 retval = init_new_context(current, bprm->mm);
1170 bprm->argc = count(argv, bprm->p / sizeof(void *));
1171 if ((retval = bprm->argc) < 0)
1174 bprm->envc = count(envp, bprm->p / sizeof(void *));
1175 if ((retval = bprm->envc) < 0)
1178 retval = security_bprm_alloc(bprm);
1182 retval = prepare_binprm(bprm);
1186 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1190 bprm->exec = bprm->p;
1191 retval = copy_strings(bprm->envc, envp, bprm);
1195 retval = copy_strings(bprm->argc, argv, bprm);
1199 retval = search_binary_handler(bprm,regs);
1201 free_arg_pages(bprm);
1203 /* execve success */
1204 security_bprm_free(bprm);
1205 acct_update_integrals(current);
1211 /* Something went wrong, return the inode and free the argument pages*/
1212 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1213 struct page * page = bprm->page[i];
1219 security_bprm_free(bprm);
1227 allow_write_access(bprm->file);
1238 int set_binfmt(struct linux_binfmt *new)
1240 struct linux_binfmt *old = current->binfmt;
1243 if (!try_module_get(new->module))
1246 current->binfmt = new;
1248 module_put(old->module);
1252 EXPORT_SYMBOL(set_binfmt);
1254 #define CORENAME_MAX_SIZE 64
1256 /* format_corename will inspect the pattern parameter, and output a
1257 * name into corename, which must have space for at least
1258 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1260 static void format_corename(char *corename, const char *pattern, long signr)
1262 const char *pat_ptr = pattern;
1263 char *out_ptr = corename;
1264 char *const out_end = corename + CORENAME_MAX_SIZE;
1266 int pid_in_pattern = 0;
1268 /* Repeat as long as we have more pattern to process and more output
1271 if (*pat_ptr != '%') {
1272 if (out_ptr == out_end)
1274 *out_ptr++ = *pat_ptr++;
1276 switch (*++pat_ptr) {
1279 /* Double percent, output one percent */
1281 if (out_ptr == out_end)
1288 rc = snprintf(out_ptr, out_end - out_ptr,
1289 "%d", current->tgid);
1290 if (rc > out_end - out_ptr)
1296 rc = snprintf(out_ptr, out_end - out_ptr,
1297 "%d", current->uid);
1298 if (rc > out_end - out_ptr)
1304 rc = snprintf(out_ptr, out_end - out_ptr,
1305 "%d", current->gid);
1306 if (rc > out_end - out_ptr)
1310 /* signal that caused the coredump */
1312 rc = snprintf(out_ptr, out_end - out_ptr,
1314 if (rc > out_end - out_ptr)
1318 /* UNIX time of coredump */
1321 do_gettimeofday(&tv);
1322 rc = snprintf(out_ptr, out_end - out_ptr,
1324 if (rc > out_end - out_ptr)
1331 down_read(&uts_sem);
1332 rc = snprintf(out_ptr, out_end - out_ptr,
1333 "%s", system_utsname.nodename);
1335 if (rc > out_end - out_ptr)
1341 rc = snprintf(out_ptr, out_end - out_ptr,
1342 "%s", current->comm);
1343 if (rc > out_end - out_ptr)
1353 /* Backward compatibility with core_uses_pid:
1355 * If core_pattern does not include a %p (as is the default)
1356 * and core_uses_pid is set, then .%pid will be appended to
1359 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1360 rc = snprintf(out_ptr, out_end - out_ptr,
1361 ".%d", current->tgid);
1362 if (rc > out_end - out_ptr)
1370 static void zap_process(struct task_struct *start)
1372 struct task_struct *t;
1374 start->signal->flags = SIGNAL_GROUP_EXIT;
1375 start->signal->group_stop_count = 0;
1379 if (t != current && t->mm) {
1380 t->mm->core_waiters++;
1381 sigaddset(&t->pending.signal, SIGKILL);
1382 signal_wake_up(t, 1);
1384 } while ((t = next_thread(t)) != start);
1387 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1390 struct task_struct *g, *p;
1391 unsigned long flags;
1394 spin_lock_irq(&tsk->sighand->siglock);
1395 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1396 tsk->signal->group_exit_code = exit_code;
1400 spin_unlock_irq(&tsk->sighand->siglock);
1404 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1408 for_each_process(g) {
1409 if (g == tsk->group_leader)
1417 * p->sighand can't disappear, but
1418 * may be changed by de_thread()
1420 lock_task_sighand(p, &flags);
1422 unlock_task_sighand(p, &flags);
1426 } while ((p = next_thread(p)) != g);
1430 return mm->core_waiters;
1433 static int coredump_wait(int exit_code)
1435 struct task_struct *tsk = current;
1436 struct mm_struct *mm = tsk->mm;
1437 struct completion startup_done;
1438 struct completion *vfork_done;
1441 init_completion(&mm->core_done);
1442 init_completion(&startup_done);
1443 mm->core_startup_done = &startup_done;
1445 core_waiters = zap_threads(tsk, mm, exit_code);
1446 up_write(&mm->mmap_sem);
1448 if (unlikely(core_waiters < 0))
1452 * Make sure nobody is waiting for us to release the VM,
1453 * otherwise we can deadlock when we wait on each other
1455 vfork_done = tsk->vfork_done;
1457 tsk->vfork_done = NULL;
1458 complete(vfork_done);
1462 wait_for_completion(&startup_done);
1464 BUG_ON(mm->core_waiters);
1465 return core_waiters;
1468 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1470 char corename[CORENAME_MAX_SIZE + 1];
1471 struct mm_struct *mm = current->mm;
1472 struct linux_binfmt * binfmt;
1473 struct inode * inode;
1476 int fsuid = current->fsuid;
1479 binfmt = current->binfmt;
1480 if (!binfmt || !binfmt->core_dump)
1482 down_write(&mm->mmap_sem);
1483 if (!mm->dumpable) {
1484 up_write(&mm->mmap_sem);
1489 * We cannot trust fsuid as being the "true" uid of the
1490 * process nor do we know its entire history. We only know it
1491 * was tainted so we dump it as root in mode 2.
1493 if (mm->dumpable == 2) { /* Setuid core dump mode */
1494 flag = O_EXCL; /* Stop rewrite attacks */
1495 current->fsuid = 0; /* Dump root private */
1499 retval = coredump_wait(exit_code);
1504 * Clear any false indication of pending signals that might
1505 * be seen by the filesystem code called to write the core file.
1507 clear_thread_flag(TIF_SIGPENDING);
1509 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1513 * lock_kernel() because format_corename() is controlled by sysctl, which
1514 * uses lock_kernel()
1517 format_corename(corename, core_pattern, signr);
1519 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1522 inode = file->f_dentry->d_inode;
1523 if (inode->i_nlink > 1)
1524 goto close_fail; /* multiple links - don't dump */
1525 if (d_unhashed(file->f_dentry))
1528 if (!S_ISREG(inode->i_mode))
1532 if (!file->f_op->write)
1534 if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1537 retval = binfmt->core_dump(signr, regs, file);
1540 current->signal->group_exit_code |= 0x80;
1542 filp_close(file, NULL);
1544 current->fsuid = fsuid;
1545 complete_all(&mm->core_done);