1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_TXFLOWED 3
151 * Define an array of board names as printable strings. Handy for
152 * referencing boards when printing trace and stuff.
154 static char *stl_brdnames[] = {
186 /*****************************************************************************/
189 * Define some string labels for arguments passed from the module
190 * load line. These allow for easy board definitions, and easy
191 * modification of the io, memory and irq resoucres.
193 static unsigned int stl_nargs;
194 static char *board0[4];
195 static char *board1[4];
196 static char *board2[4];
197 static char *board3[4];
199 static char **stl_brdsp[] = {
207 * Define a set of common board names, and types. This is used to
208 * parse any module arguments.
215 { "easyio", BRD_EASYIO },
216 { "eio", BRD_EASYIO },
217 { "20", BRD_EASYIO },
218 { "ec8/32", BRD_ECH },
219 { "ec8/32-at", BRD_ECH },
220 { "ec8/32-isa", BRD_ECH },
222 { "echat", BRD_ECH },
224 { "ec8/32-mc", BRD_ECHMC },
225 { "ec8/32-mca", BRD_ECHMC },
226 { "echmc", BRD_ECHMC },
227 { "echmca", BRD_ECHMC },
229 { "ec8/32-pc", BRD_ECHPCI },
230 { "ec8/32-pci", BRD_ECHPCI },
231 { "26", BRD_ECHPCI },
232 { "ec8/64-pc", BRD_ECH64PCI },
233 { "ec8/64-pci", BRD_ECH64PCI },
234 { "ech-pci", BRD_ECH64PCI },
235 { "echpci", BRD_ECH64PCI },
236 { "echpc", BRD_ECH64PCI },
237 { "27", BRD_ECH64PCI },
238 { "easyio-pc", BRD_EASYIOPCI },
239 { "easyio-pci", BRD_EASYIOPCI },
240 { "eio-pci", BRD_EASYIOPCI },
241 { "eiopci", BRD_EASYIOPCI },
242 { "28", BRD_EASYIOPCI },
246 * Define the module agruments.
249 module_param_array(board0, charp, &stl_nargs, 0);
250 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
251 module_param_array(board1, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board2, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board3, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 /*****************************************************************************/
261 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
262 * to the directly accessible io ports of these boards (not the uarts -
263 * they are in cd1400.h and sc26198.h).
265 #define EIO_8PORTRS 0x04
266 #define EIO_4PORTRS 0x05
267 #define EIO_8PORTDI 0x00
268 #define EIO_8PORTM 0x06
270 #define EIO_IDBITMASK 0x07
272 #define EIO_BRDMASK 0xf0
275 #define ID_BRD16 0x30
277 #define EIO_INTRPEND 0x08
278 #define EIO_INTEDGE 0x00
279 #define EIO_INTLEVEL 0x08
283 #define ECH_IDBITMASK 0xe0
284 #define ECH_BRDENABLE 0x08
285 #define ECH_BRDDISABLE 0x00
286 #define ECH_INTENABLE 0x01
287 #define ECH_INTDISABLE 0x00
288 #define ECH_INTLEVEL 0x02
289 #define ECH_INTEDGE 0x00
290 #define ECH_INTRPEND 0x01
291 #define ECH_BRDRESET 0x01
293 #define ECHMC_INTENABLE 0x01
294 #define ECHMC_BRDRESET 0x02
296 #define ECH_PNLSTATUS 2
297 #define ECH_PNL16PORT 0x20
298 #define ECH_PNLIDMASK 0x07
299 #define ECH_PNLXPID 0x40
300 #define ECH_PNLINTRPEND 0x80
302 #define ECH_ADDR2MASK 0x1e0
305 * Define the vector mapping bits for the programmable interrupt board
306 * hardware. These bits encode the interrupt for the board to use - it
307 * is software selectable (except the EIO-8M).
309 static unsigned char stl_vecmap[] = {
310 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
311 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315 * Lock ordering is that you may not take stallion_lock holding
319 static spinlock_t brd_lock; /* Guard the board mapping */
320 static spinlock_t stallion_lock; /* Guard the tty driver */
323 * Set up enable and disable macros for the ECH boards. They require
324 * the secondary io address space to be activated and deactivated.
325 * This way all ECH boards can share their secondary io region.
326 * If this is an ECH-PCI board then also need to set the page pointer
327 * to point to the correct page.
329 #define BRDENABLE(brdnr,pagenr) \
330 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
331 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
332 stl_brds[(brdnr)]->ioctrl); \
333 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
334 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
336 #define BRDDISABLE(brdnr) \
337 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
338 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
339 stl_brds[(brdnr)]->ioctrl);
341 #define STL_CD1400MAXBAUD 230400
342 #define STL_SC26198MAXBAUD 460800
344 #define STL_BAUDBASE 115200
345 #define STL_CLOSEDELAY (5 * HZ / 10)
347 /*****************************************************************************/
350 * Define the Stallion PCI vendor and device IDs.
352 #ifndef PCI_VENDOR_ID_STALLION
353 #define PCI_VENDOR_ID_STALLION 0x124d
355 #ifndef PCI_DEVICE_ID_ECHPCI832
356 #define PCI_DEVICE_ID_ECHPCI832 0x0000
358 #ifndef PCI_DEVICE_ID_ECHPCI864
359 #define PCI_DEVICE_ID_ECHPCI864 0x0002
361 #ifndef PCI_DEVICE_ID_EIOPCI
362 #define PCI_DEVICE_ID_EIOPCI 0x0003
366 * Define structure to hold all Stallion PCI boards.
369 static struct pci_device_id stl_pcibrds[] = {
370 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
371 .driver_data = BRD_ECH64PCI },
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
373 .driver_data = BRD_EASYIOPCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
375 .driver_data = BRD_ECHPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
377 .driver_data = BRD_ECHPCI },
380 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
382 /*****************************************************************************/
385 * Define macros to extract a brd/port number from a minor number.
387 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
388 #define MINOR2PORT(min) ((min) & 0x3f)
391 * Define a baud rate table that converts termios baud rate selector
392 * into the actual baud rate value. All baud rate calculations are
393 * based on the actual baud rate required.
395 static unsigned int stl_baudrates[] = {
396 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
397 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
400 /*****************************************************************************/
403 * Declare all those functions in this driver!
406 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
407 static int stl_brdinit(struct stlbrd *brdp);
408 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp);
409 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
410 static int stl_waitcarrier(struct tty_struct *tty, struct stlport *portp, struct file *filp);
413 * CD1400 uart specific handling functions.
415 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
416 static int stl_cd1400getreg(struct stlport *portp, int regnr);
417 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
418 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
419 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
420 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
421 static int stl_cd1400getsignals(struct stlport *portp);
422 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
423 static void stl_cd1400ccrwait(struct stlport *portp);
424 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
425 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400disableintrs(struct stlport *portp);
427 static void stl_cd1400sendbreak(struct stlport *portp, int len);
428 static void stl_cd1400flowctrl(struct stlport *portp, int state);
429 static void stl_cd1400sendflow(struct stlport *portp, int state);
430 static void stl_cd1400flush(struct stlport *portp);
431 static int stl_cd1400datastate(struct stlport *portp);
432 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
433 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
435 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
438 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441 * SC26198 uart specific handling functions.
443 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
444 static int stl_sc26198getreg(struct stlport *portp, int regnr);
445 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
446 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
447 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
448 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
449 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
450 static int stl_sc26198getsignals(struct stlport *portp);
451 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
452 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
453 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198disableintrs(struct stlport *portp);
455 static void stl_sc26198sendbreak(struct stlport *portp, int len);
456 static void stl_sc26198flowctrl(struct stlport *portp, int state);
457 static void stl_sc26198sendflow(struct stlport *portp, int state);
458 static void stl_sc26198flush(struct stlport *portp);
459 static int stl_sc26198datastate(struct stlport *portp);
460 static void stl_sc26198wait(struct stlport *portp);
461 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
462 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
463 static void stl_sc26198txisr(struct stlport *port);
464 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
465 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
466 static void stl_sc26198rxbadchars(struct stlport *portp);
467 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
469 /*****************************************************************************/
472 * Generic UART support structure.
474 typedef struct uart {
475 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
476 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
477 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
478 int (*getsignals)(struct stlport *portp);
479 void (*setsignals)(struct stlport *portp, int dtr, int rts);
480 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
481 void (*startrxtx)(struct stlport *portp, int rx, int tx);
482 void (*disableintrs)(struct stlport *portp);
483 void (*sendbreak)(struct stlport *portp, int len);
484 void (*flowctrl)(struct stlport *portp, int state);
485 void (*sendflow)(struct stlport *portp, int state);
486 void (*flush)(struct stlport *portp);
487 int (*datastate)(struct stlport *portp);
488 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
492 * Define some macros to make calling these functions nice and clean.
494 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
495 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
496 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
497 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
498 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
499 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
500 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
501 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
502 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
503 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
504 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
505 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
506 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
508 /*****************************************************************************/
511 * CD1400 UART specific data initialization.
513 static uart_t stl_cd1400uart = {
517 stl_cd1400getsignals,
518 stl_cd1400setsignals,
519 stl_cd1400enablerxtx,
521 stl_cd1400disableintrs,
531 * Define the offsets within the register bank of a cd1400 based panel.
532 * These io address offsets are common to the EasyIO board as well.
540 #define EREG_BANKSIZE 8
542 #define CD1400_CLK 25000000
543 #define CD1400_CLK8M 20000000
546 * Define the cd1400 baud rate clocks. These are used when calculating
547 * what clock and divisor to use for the required baud rate. Also
548 * define the maximum baud rate allowed, and the default base baud.
550 static int stl_cd1400clkdivs[] = {
551 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554 /*****************************************************************************/
557 * SC26198 UART specific data initization.
559 static uart_t stl_sc26198uart = {
560 stl_sc26198panelinit,
563 stl_sc26198getsignals,
564 stl_sc26198setsignals,
565 stl_sc26198enablerxtx,
566 stl_sc26198startrxtx,
567 stl_sc26198disableintrs,
568 stl_sc26198sendbreak,
572 stl_sc26198datastate,
577 * Define the offsets within the register bank of a sc26198 based panel.
585 #define XP_BANKSIZE 4
588 * Define the sc26198 baud rate table. Offsets within the table
589 * represent the actual baud rate selector of sc26198 registers.
591 static unsigned int sc26198_baudtable[] = {
592 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
593 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
594 230400, 460800, 921600
597 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
599 /*****************************************************************************/
602 * Define the driver info for a user level control device. Used mainly
603 * to get at port stats - only not using the port device itself.
605 static const struct file_operations stl_fsiomem = {
606 .owner = THIS_MODULE,
607 .ioctl = stl_memioctl,
610 static struct class *stallion_class;
612 static void stl_cd_change(struct stlport *portp)
614 unsigned int oldsigs = portp->sigs;
615 struct tty_struct *tty = tty_port_tty_get(&portp->port);
620 portp->sigs = stl_getsignals(portp);
622 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
623 wake_up_interruptible(&portp->port.open_wait);
625 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
626 if (portp->port.flags & ASYNC_CHECK_CD)
632 * Check for any arguments passed in on the module load command line.
635 /*****************************************************************************/
638 * Parse the supplied argument string, into the board conf struct.
641 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
646 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
648 if ((argp[0] == NULL) || (*argp[0] == 0))
651 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
654 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
655 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
658 if (i == ARRAY_SIZE(stl_brdstr)) {
659 printk("STALLION: unknown board name, %s?\n", argp[0]);
663 confp->brdtype = stl_brdstr[i].type;
666 if ((argp[i] != NULL) && (*argp[i] != 0))
667 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
669 if (confp->brdtype == BRD_ECH) {
670 if ((argp[i] != NULL) && (*argp[i] != 0))
671 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
674 if ((argp[i] != NULL) && (*argp[i] != 0))
675 confp->irq = simple_strtoul(argp[i], NULL, 0);
679 /*****************************************************************************/
682 * Allocate a new board structure. Fill out the basic info in it.
685 static struct stlbrd *stl_allocbrd(void)
689 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
691 printk("STALLION: failed to allocate memory (size=%Zd)\n",
692 sizeof(struct stlbrd));
696 brdp->magic = STL_BOARDMAGIC;
700 /*****************************************************************************/
702 static int stl_open(struct tty_struct *tty, struct file *filp)
704 struct stlport *portp;
706 unsigned int minordev, brdnr, panelnr;
709 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
711 minordev = tty->index;
712 brdnr = MINOR2BRD(minordev);
713 if (brdnr >= stl_nrbrds)
715 brdp = stl_brds[brdnr];
718 minordev = MINOR2PORT(minordev);
719 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
720 if (brdp->panels[panelnr] == NULL)
722 if (minordev < brdp->panels[panelnr]->nrports) {
726 minordev -= brdp->panels[panelnr]->nrports;
731 portp = brdp->panels[panelnr]->ports[portnr];
736 * On the first open of the device setup the port hardware, and
737 * initialize the per port data structure.
739 tty_port_tty_set(&portp->port, tty);
740 tty->driver_data = portp;
743 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
744 if (!portp->tx.buf) {
745 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
748 portp->tx.head = portp->tx.buf;
749 portp->tx.tail = portp->tx.buf;
751 stl_setport(portp, tty->termios);
752 portp->sigs = stl_getsignals(portp);
753 stl_setsignals(portp, 1, 1);
754 stl_enablerxtx(portp, 1, 1);
755 stl_startrxtx(portp, 1, 0);
756 clear_bit(TTY_IO_ERROR, &tty->flags);
757 portp->port.flags |= ASYNC_INITIALIZED;
761 * Check if this port is in the middle of closing. If so then wait
762 * until it is closed then return error status, based on flag settings.
763 * The sleep here does not need interrupt protection since the wakeup
764 * for it is done with the same context.
766 if (portp->port.flags & ASYNC_CLOSING) {
767 interruptible_sleep_on(&portp->port.close_wait);
768 if (portp->port.flags & ASYNC_HUP_NOTIFY)
774 * Based on type of open being done check if it can overlap with any
775 * previous opens still in effect. If we are a normal serial device
776 * then also we might have to wait for carrier.
778 if (!(filp->f_flags & O_NONBLOCK))
779 if ((rc = stl_waitcarrier(tty, portp, filp)) != 0)
782 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
787 /*****************************************************************************/
790 * Possibly need to wait for carrier (DCD signal) to come high. Say
791 * maybe because if we are clocal then we don't need to wait...
794 static int stl_waitcarrier(struct tty_struct *tty, struct stlport *portp,
800 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
805 spin_lock_irqsave(&stallion_lock, flags);
807 if (tty->termios->c_cflag & CLOCAL)
810 portp->openwaitcnt++;
811 if (! tty_hung_up_p(filp))
815 /* Takes brd_lock internally */
816 stl_setsignals(portp, 1, 1);
817 if (tty_hung_up_p(filp) ||
818 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
819 if (portp->port.flags & ASYNC_HUP_NOTIFY)
825 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
826 (doclocal || (portp->sigs & TIOCM_CD)))
828 if (signal_pending(current)) {
833 interruptible_sleep_on(&portp->port.open_wait);
836 if (! tty_hung_up_p(filp))
838 portp->openwaitcnt--;
839 spin_unlock_irqrestore(&stallion_lock, flags);
844 /*****************************************************************************/
846 static void stl_flushbuffer(struct tty_struct *tty)
848 struct stlport *portp;
850 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
852 portp = tty->driver_data;
860 /*****************************************************************************/
862 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
864 struct stlport *portp;
867 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
869 portp = tty->driver_data;
875 tend = jiffies + timeout;
878 while (stl_datastate(portp)) {
879 if (signal_pending(current))
881 msleep_interruptible(20);
882 if (time_after_eq(jiffies, tend))
888 /*****************************************************************************/
890 static void stl_close(struct tty_struct *tty, struct file *filp)
892 struct stlport *portp;
895 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
897 portp = tty->driver_data;
901 spin_lock_irqsave(&stallion_lock, flags);
902 if (tty_hung_up_p(filp)) {
903 spin_unlock_irqrestore(&stallion_lock, flags);
906 if ((tty->count == 1) && (portp->port.count != 1))
907 portp->port.count = 1;
908 if (portp->port.count-- > 1) {
909 spin_unlock_irqrestore(&stallion_lock, flags);
913 portp->port.count = 0;
914 portp->port.flags |= ASYNC_CLOSING;
917 * May want to wait for any data to drain before closing. The BUSY
918 * flag keeps track of whether we are still sending or not - it is
919 * very accurate for the cd1400, not quite so for the sc26198.
920 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
924 spin_unlock_irqrestore(&stallion_lock, flags);
926 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
927 tty_wait_until_sent(tty, portp->closing_wait);
928 stl_waituntilsent(tty, (HZ / 2));
931 spin_lock_irqsave(&stallion_lock, flags);
932 portp->port.flags &= ~ASYNC_INITIALIZED;
933 spin_unlock_irqrestore(&stallion_lock, flags);
935 stl_disableintrs(portp);
936 if (tty->termios->c_cflag & HUPCL)
937 stl_setsignals(portp, 0, 0);
938 stl_enablerxtx(portp, 0, 0);
939 stl_flushbuffer(tty);
941 if (portp->tx.buf != NULL) {
942 kfree(portp->tx.buf);
943 portp->tx.buf = NULL;
944 portp->tx.head = NULL;
945 portp->tx.tail = NULL;
947 set_bit(TTY_IO_ERROR, &tty->flags);
948 tty_ldisc_flush(tty);
951 tty_port_tty_set(&portp->port, NULL);
953 if (portp->openwaitcnt) {
954 if (portp->close_delay)
955 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
956 wake_up_interruptible(&portp->port.open_wait);
959 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
960 wake_up_interruptible(&portp->port.close_wait);
963 /*****************************************************************************/
966 * Write routine. Take data and stuff it in to the TX ring queue.
967 * If transmit interrupts are not running then start them.
970 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
972 struct stlport *portp;
973 unsigned int len, stlen;
974 unsigned char *chbuf;
977 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
979 portp = tty->driver_data;
982 if (portp->tx.buf == NULL)
986 * If copying direct from user space we must cater for page faults,
987 * causing us to "sleep" here for a while. To handle this copy in all
988 * the data we need now, into a local buffer. Then when we got it all
989 * copy it into the TX buffer.
991 chbuf = (unsigned char *) buf;
993 head = portp->tx.head;
994 tail = portp->tx.tail;
996 len = STL_TXBUFSIZE - (head - tail) - 1;
997 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
999 len = tail - head - 1;
1003 len = min(len, (unsigned int)count);
1006 stlen = min(len, stlen);
1007 memcpy(head, chbuf, stlen);
1012 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1013 head = portp->tx.buf;
1014 stlen = tail - head;
1017 portp->tx.head = head;
1019 clear_bit(ASYI_TXLOW, &portp->istate);
1020 stl_startrxtx(portp, -1, 1);
1025 /*****************************************************************************/
1027 static int stl_putchar(struct tty_struct *tty, unsigned char ch)
1029 struct stlport *portp;
1033 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1035 portp = tty->driver_data;
1038 if (portp->tx.buf == NULL)
1041 head = portp->tx.head;
1042 tail = portp->tx.tail;
1044 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1049 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1050 head = portp->tx.buf;
1052 portp->tx.head = head;
1056 /*****************************************************************************/
1059 * If there are any characters in the buffer then make sure that TX
1060 * interrupts are on and get'em out. Normally used after the putchar
1061 * routine has been called.
1064 static void stl_flushchars(struct tty_struct *tty)
1066 struct stlport *portp;
1068 pr_debug("stl_flushchars(tty=%p)\n", tty);
1070 portp = tty->driver_data;
1073 if (portp->tx.buf == NULL)
1076 stl_startrxtx(portp, -1, 1);
1079 /*****************************************************************************/
1081 static int stl_writeroom(struct tty_struct *tty)
1083 struct stlport *portp;
1086 pr_debug("stl_writeroom(tty=%p)\n", tty);
1088 portp = tty->driver_data;
1091 if (portp->tx.buf == NULL)
1094 head = portp->tx.head;
1095 tail = portp->tx.tail;
1096 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1099 /*****************************************************************************/
1102 * Return number of chars in the TX buffer. Normally we would just
1103 * calculate the number of chars in the buffer and return that, but if
1104 * the buffer is empty and TX interrupts are still on then we return
1105 * that the buffer still has 1 char in it. This way whoever called us
1106 * will not think that ALL chars have drained - since the UART still
1107 * must have some chars in it (we are busy after all).
1110 static int stl_charsinbuffer(struct tty_struct *tty)
1112 struct stlport *portp;
1116 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1118 portp = tty->driver_data;
1121 if (portp->tx.buf == NULL)
1124 head = portp->tx.head;
1125 tail = portp->tx.tail;
1126 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1127 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1132 /*****************************************************************************/
1135 * Generate the serial struct info.
1138 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1140 struct serial_struct sio;
1141 struct stlbrd *brdp;
1143 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1145 memset(&sio, 0, sizeof(struct serial_struct));
1146 sio.line = portp->portnr;
1147 sio.port = portp->ioaddr;
1148 sio.flags = portp->port.flags;
1149 sio.baud_base = portp->baud_base;
1150 sio.close_delay = portp->close_delay;
1151 sio.closing_wait = portp->closing_wait;
1152 sio.custom_divisor = portp->custom_divisor;
1154 if (portp->uartp == &stl_cd1400uart) {
1155 sio.type = PORT_CIRRUS;
1156 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1158 sio.type = PORT_UNKNOWN;
1159 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1162 brdp = stl_brds[portp->brdnr];
1164 sio.irq = brdp->irq;
1166 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1169 /*****************************************************************************/
1172 * Set port according to the serial struct info.
1173 * At this point we do not do any auto-configure stuff, so we will
1174 * just quietly ignore any requests to change irq, etc.
1177 static int stl_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1179 struct stlport * portp = tty->driver_data;
1180 struct serial_struct sio;
1182 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1184 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1186 if (!capable(CAP_SYS_ADMIN)) {
1187 if ((sio.baud_base != portp->baud_base) ||
1188 (sio.close_delay != portp->close_delay) ||
1189 ((sio.flags & ~ASYNC_USR_MASK) !=
1190 (portp->port.flags & ~ASYNC_USR_MASK)))
1194 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1195 (sio.flags & ASYNC_USR_MASK);
1196 portp->baud_base = sio.baud_base;
1197 portp->close_delay = sio.close_delay;
1198 portp->closing_wait = sio.closing_wait;
1199 portp->custom_divisor = sio.custom_divisor;
1200 stl_setport(portp, tty->termios);
1204 /*****************************************************************************/
1206 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1208 struct stlport *portp;
1210 portp = tty->driver_data;
1213 if (tty->flags & (1 << TTY_IO_ERROR))
1216 return stl_getsignals(portp);
1219 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1220 unsigned int set, unsigned int clear)
1222 struct stlport *portp;
1223 int rts = -1, dtr = -1;
1225 portp = tty->driver_data;
1228 if (tty->flags & (1 << TTY_IO_ERROR))
1231 if (set & TIOCM_RTS)
1233 if (set & TIOCM_DTR)
1235 if (clear & TIOCM_RTS)
1237 if (clear & TIOCM_DTR)
1240 stl_setsignals(portp, dtr, rts);
1244 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1246 struct stlport *portp;
1248 void __user *argp = (void __user *)arg;
1250 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1253 portp = tty->driver_data;
1257 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1258 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1259 if (tty->flags & (1 << TTY_IO_ERROR))
1268 rc = stl_getserial(portp, argp);
1271 rc = stl_setserial(tty, argp);
1273 case COM_GETPORTSTATS:
1274 rc = stl_getportstats(tty, portp, argp);
1276 case COM_CLRPORTSTATS:
1277 rc = stl_clrportstats(portp, argp);
1283 case TIOCSERGSTRUCT:
1284 case TIOCSERGETMULTI:
1285 case TIOCSERSETMULTI:
1294 /*****************************************************************************/
1297 * Start the transmitter again. Just turn TX interrupts back on.
1300 static void stl_start(struct tty_struct *tty)
1302 struct stlport *portp;
1304 pr_debug("stl_start(tty=%p)\n", tty);
1306 portp = tty->driver_data;
1309 stl_startrxtx(portp, -1, 1);
1312 /*****************************************************************************/
1314 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1316 struct stlport *portp;
1317 struct ktermios *tiosp;
1319 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1321 portp = tty->driver_data;
1325 tiosp = tty->termios;
1326 if ((tiosp->c_cflag == old->c_cflag) &&
1327 (tiosp->c_iflag == old->c_iflag))
1330 stl_setport(portp, tiosp);
1331 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1333 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1334 tty->hw_stopped = 0;
1337 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1338 wake_up_interruptible(&portp->port.open_wait);
1341 /*****************************************************************************/
1344 * Attempt to flow control who ever is sending us data. Based on termios
1345 * settings use software or/and hardware flow control.
1348 static void stl_throttle(struct tty_struct *tty)
1350 struct stlport *portp;
1352 pr_debug("stl_throttle(tty=%p)\n", tty);
1354 portp = tty->driver_data;
1357 stl_flowctrl(portp, 0);
1360 /*****************************************************************************/
1363 * Unflow control the device sending us data...
1366 static void stl_unthrottle(struct tty_struct *tty)
1368 struct stlport *portp;
1370 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1372 portp = tty->driver_data;
1375 stl_flowctrl(portp, 1);
1378 /*****************************************************************************/
1381 * Stop the transmitter. Basically to do this we will just turn TX
1385 static void stl_stop(struct tty_struct *tty)
1387 struct stlport *portp;
1389 pr_debug("stl_stop(tty=%p)\n", tty);
1391 portp = tty->driver_data;
1394 stl_startrxtx(portp, -1, 0);
1397 /*****************************************************************************/
1400 * Hangup this port. This is pretty much like closing the port, only
1401 * a little more brutal. No waiting for data to drain. Shutdown the
1402 * port and maybe drop signals.
1405 static void stl_hangup(struct tty_struct *tty)
1407 struct stlport *portp;
1409 pr_debug("stl_hangup(tty=%p)\n", tty);
1411 portp = tty->driver_data;
1415 portp->port.flags &= ~ASYNC_INITIALIZED;
1416 stl_disableintrs(portp);
1417 if (tty->termios->c_cflag & HUPCL)
1418 stl_setsignals(portp, 0, 0);
1419 stl_enablerxtx(portp, 0, 0);
1420 stl_flushbuffer(tty);
1422 set_bit(TTY_IO_ERROR, &tty->flags);
1423 if (portp->tx.buf != NULL) {
1424 kfree(portp->tx.buf);
1425 portp->tx.buf = NULL;
1426 portp->tx.head = NULL;
1427 portp->tx.tail = NULL;
1429 tty_port_tty_set(&portp->port, NULL);
1430 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1431 portp->port.count = 0;
1432 wake_up_interruptible(&portp->port.open_wait);
1435 /*****************************************************************************/
1437 static int stl_breakctl(struct tty_struct *tty, int state)
1439 struct stlport *portp;
1441 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1443 portp = tty->driver_data;
1447 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1451 /*****************************************************************************/
1453 static void stl_sendxchar(struct tty_struct *tty, char ch)
1455 struct stlport *portp;
1457 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1459 portp = tty->driver_data;
1463 if (ch == STOP_CHAR(tty))
1464 stl_sendflow(portp, 0);
1465 else if (ch == START_CHAR(tty))
1466 stl_sendflow(portp, 1);
1468 stl_putchar(tty, ch);
1471 /*****************************************************************************/
1476 * Format info for a specified port. The line is deliberately limited
1477 * to 80 characters. (If it is too long it will be truncated, if too
1478 * short then padded with spaces).
1481 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1487 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1488 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1489 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1491 if (portp->stats.rxframing)
1492 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1493 if (portp->stats.rxparity)
1494 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1495 if (portp->stats.rxbreaks)
1496 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1497 if (portp->stats.rxoverrun)
1498 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1500 sigs = stl_getsignals(portp);
1501 cnt = sprintf(sp, "%s%s%s%s%s ",
1502 (sigs & TIOCM_RTS) ? "|RTS" : "",
1503 (sigs & TIOCM_CTS) ? "|CTS" : "",
1504 (sigs & TIOCM_DTR) ? "|DTR" : "",
1505 (sigs & TIOCM_CD) ? "|DCD" : "",
1506 (sigs & TIOCM_DSR) ? "|DSR" : "");
1510 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1513 pos[(MAXLINE - 2)] = '+';
1514 pos[(MAXLINE - 1)] = '\n';
1519 /*****************************************************************************/
1522 * Port info, read from the /proc file system.
1525 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1527 struct stlbrd *brdp;
1528 struct stlpanel *panelp;
1529 struct stlport *portp;
1530 unsigned int brdnr, panelnr, portnr;
1531 int totalport, curoff, maxoff;
1534 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1535 "data=%p\n", page, start, off, count, eof, data);
1542 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1544 while (pos < (page + MAXLINE - 1))
1551 * We scan through for each board, panel and port. The offset is
1552 * calculated on the fly, and irrelevant ports are skipped.
1554 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1555 brdp = stl_brds[brdnr];
1558 if (brdp->state == 0)
1561 maxoff = curoff + (brdp->nrports * MAXLINE);
1562 if (off >= maxoff) {
1567 totalport = brdnr * STL_MAXPORTS;
1568 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1569 panelp = brdp->panels[panelnr];
1573 maxoff = curoff + (panelp->nrports * MAXLINE);
1574 if (off >= maxoff) {
1576 totalport += panelp->nrports;
1580 for (portnr = 0; portnr < panelp->nrports; portnr++,
1582 portp = panelp->ports[portnr];
1585 if (off >= (curoff += MAXLINE))
1587 if ((pos - page + MAXLINE) > count)
1589 pos += stl_portinfo(portp, totalport, pos);
1601 /*****************************************************************************/
1604 * All board interrupts are vectored through here first. This code then
1605 * calls off to the approrpriate board interrupt handlers.
1608 static irqreturn_t stl_intr(int irq, void *dev_id)
1610 struct stlbrd *brdp = dev_id;
1612 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1614 return IRQ_RETVAL((* brdp->isr)(brdp));
1617 /*****************************************************************************/
1620 * Interrupt service routine for EasyIO board types.
1623 static int stl_eiointr(struct stlbrd *brdp)
1625 struct stlpanel *panelp;
1626 unsigned int iobase;
1629 spin_lock(&brd_lock);
1630 panelp = brdp->panels[0];
1631 iobase = panelp->iobase;
1632 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1634 (* panelp->isr)(panelp, iobase);
1636 spin_unlock(&brd_lock);
1640 /*****************************************************************************/
1643 * Interrupt service routine for ECH-AT board types.
1646 static int stl_echatintr(struct stlbrd *brdp)
1648 struct stlpanel *panelp;
1649 unsigned int ioaddr, bnknr;
1652 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1654 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1656 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1657 ioaddr = brdp->bnkstataddr[bnknr];
1658 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1659 panelp = brdp->bnk2panel[bnknr];
1660 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1665 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1670 /*****************************************************************************/
1673 * Interrupt service routine for ECH-MCA board types.
1676 static int stl_echmcaintr(struct stlbrd *brdp)
1678 struct stlpanel *panelp;
1679 unsigned int ioaddr, bnknr;
1682 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1684 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1685 ioaddr = brdp->bnkstataddr[bnknr];
1686 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1687 panelp = brdp->bnk2panel[bnknr];
1688 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1695 /*****************************************************************************/
1698 * Interrupt service routine for ECH-PCI board types.
1701 static int stl_echpciintr(struct stlbrd *brdp)
1703 struct stlpanel *panelp;
1704 unsigned int ioaddr, bnknr, recheck;
1709 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1710 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1711 ioaddr = brdp->bnkstataddr[bnknr];
1712 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1713 panelp = brdp->bnk2panel[bnknr];
1714 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1725 /*****************************************************************************/
1728 * Interrupt service routine for ECH-8/64-PCI board types.
1731 static int stl_echpci64intr(struct stlbrd *brdp)
1733 struct stlpanel *panelp;
1734 unsigned int ioaddr, bnknr;
1737 while (inb(brdp->ioctrl) & 0x1) {
1739 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1740 ioaddr = brdp->bnkstataddr[bnknr];
1741 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1742 panelp = brdp->bnk2panel[bnknr];
1743 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1751 /*****************************************************************************/
1754 * Initialize all the ports on a panel.
1757 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1759 struct stlport *portp;
1763 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1765 chipmask = stl_panelinit(brdp, panelp);
1768 * All UART's are initialized (if found!). Now go through and setup
1769 * each ports data structures.
1771 for (i = 0; i < panelp->nrports; i++) {
1772 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1774 printk("STALLION: failed to allocate memory "
1775 "(size=%Zd)\n", sizeof(struct stlport));
1778 tty_port_init(&portp->port);
1779 portp->magic = STL_PORTMAGIC;
1781 portp->brdnr = panelp->brdnr;
1782 portp->panelnr = panelp->panelnr;
1783 portp->uartp = panelp->uartp;
1784 portp->clk = brdp->clk;
1785 portp->baud_base = STL_BAUDBASE;
1786 portp->close_delay = STL_CLOSEDELAY;
1787 portp->closing_wait = 30 * HZ;
1788 init_waitqueue_head(&portp->port.open_wait);
1789 init_waitqueue_head(&portp->port.close_wait);
1790 portp->stats.brd = portp->brdnr;
1791 portp->stats.panel = portp->panelnr;
1792 portp->stats.port = portp->portnr;
1793 panelp->ports[i] = portp;
1794 stl_portinit(brdp, panelp, portp);
1800 static void stl_cleanup_panels(struct stlbrd *brdp)
1802 struct stlpanel *panelp;
1803 struct stlport *portp;
1805 struct tty_struct *tty;
1807 for (j = 0; j < STL_MAXPANELS; j++) {
1808 panelp = brdp->panels[j];
1811 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1812 portp = panelp->ports[k];
1815 tty = tty_port_tty_get(&portp->port);
1820 kfree(portp->tx.buf);
1827 /*****************************************************************************/
1830 * Try to find and initialize an EasyIO board.
1833 static int __devinit stl_initeio(struct stlbrd *brdp)
1835 struct stlpanel *panelp;
1836 unsigned int status;
1840 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1842 brdp->ioctrl = brdp->ioaddr1 + 1;
1843 brdp->iostatus = brdp->ioaddr1 + 2;
1845 status = inb(brdp->iostatus);
1846 if ((status & EIO_IDBITMASK) == EIO_MK3)
1850 * Handle board specific stuff now. The real difference is PCI
1853 if (brdp->brdtype == BRD_EASYIOPCI) {
1854 brdp->iosize1 = 0x80;
1855 brdp->iosize2 = 0x80;
1856 name = "serial(EIO-PCI)";
1857 outb(0x41, (brdp->ioaddr2 + 0x4c));
1860 name = "serial(EIO)";
1861 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1862 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1863 printk("STALLION: invalid irq=%d for brd=%d\n",
1864 brdp->irq, brdp->brdnr);
1868 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1869 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1874 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1875 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1876 "%x conflicts with another device\n", brdp->brdnr,
1881 if (brdp->iosize2 > 0)
1882 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1883 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1884 "address %x conflicts with another device\n",
1885 brdp->brdnr, brdp->ioaddr2);
1886 printk(KERN_WARNING "STALLION: Warning, also "
1887 "releasing board %d I/O address %x \n",
1888 brdp->brdnr, brdp->ioaddr1);
1893 * Everything looks OK, so let's go ahead and probe for the hardware.
1895 brdp->clk = CD1400_CLK;
1896 brdp->isr = stl_eiointr;
1899 switch (status & EIO_IDBITMASK) {
1901 brdp->clk = CD1400_CLK8M;
1911 switch (status & EIO_BRDMASK) {
1930 * We have verified that the board is actually present, so now we
1931 * can complete the setup.
1934 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1936 printk(KERN_WARNING "STALLION: failed to allocate memory "
1937 "(size=%Zd)\n", sizeof(struct stlpanel));
1942 panelp->magic = STL_PANELMAGIC;
1943 panelp->brdnr = brdp->brdnr;
1944 panelp->panelnr = 0;
1945 panelp->nrports = brdp->nrports;
1946 panelp->iobase = brdp->ioaddr1;
1947 panelp->hwid = status;
1948 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1949 panelp->uartp = &stl_sc26198uart;
1950 panelp->isr = stl_sc26198intr;
1952 panelp->uartp = &stl_cd1400uart;
1953 panelp->isr = stl_cd1400eiointr;
1956 brdp->panels[0] = panelp;
1958 brdp->state |= BRD_FOUND;
1959 brdp->hwid = status;
1960 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1961 printk("STALLION: failed to register interrupt "
1962 "routine for %s irq=%d\n", name, brdp->irq);
1969 stl_cleanup_panels(brdp);
1971 if (brdp->iosize2 > 0)
1972 release_region(brdp->ioaddr2, brdp->iosize2);
1974 release_region(brdp->ioaddr1, brdp->iosize1);
1979 /*****************************************************************************/
1982 * Try to find an ECH board and initialize it. This code is capable of
1983 * dealing with all types of ECH board.
1986 static int __devinit stl_initech(struct stlbrd *brdp)
1988 struct stlpanel *panelp;
1989 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
1993 pr_debug("stl_initech(brdp=%p)\n", brdp);
1999 * Set up the initial board register contents for boards. This varies a
2000 * bit between the different board types. So we need to handle each
2001 * separately. Also do a check that the supplied IRQ is good.
2003 switch (brdp->brdtype) {
2006 brdp->isr = stl_echatintr;
2007 brdp->ioctrl = brdp->ioaddr1 + 1;
2008 brdp->iostatus = brdp->ioaddr1 + 1;
2009 status = inb(brdp->iostatus);
2010 if ((status & ECH_IDBITMASK) != ECH_ID) {
2014 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2015 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2016 printk("STALLION: invalid irq=%d for brd=%d\n",
2017 brdp->irq, brdp->brdnr);
2021 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2022 status |= (stl_vecmap[brdp->irq] << 1);
2023 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2024 brdp->ioctrlval = ECH_INTENABLE |
2025 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2026 for (i = 0; i < 10; i++)
2027 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2030 name = "serial(EC8/32)";
2031 outb(status, brdp->ioaddr1);
2035 brdp->isr = stl_echmcaintr;
2036 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2037 brdp->iostatus = brdp->ioctrl;
2038 status = inb(brdp->iostatus);
2039 if ((status & ECH_IDBITMASK) != ECH_ID) {
2043 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2044 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2045 printk("STALLION: invalid irq=%d for brd=%d\n",
2046 brdp->irq, brdp->brdnr);
2050 outb(ECHMC_BRDRESET, brdp->ioctrl);
2051 outb(ECHMC_INTENABLE, brdp->ioctrl);
2053 name = "serial(EC8/32-MC)";
2057 brdp->isr = stl_echpciintr;
2058 brdp->ioctrl = brdp->ioaddr1 + 2;
2061 name = "serial(EC8/32-PCI)";
2065 brdp->isr = stl_echpci64intr;
2066 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2067 outb(0x43, (brdp->ioaddr1 + 0x4c));
2068 brdp->iosize1 = 0x80;
2069 brdp->iosize2 = 0x80;
2070 name = "serial(EC8/64-PCI)";
2074 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2080 * Check boards for possible IO address conflicts and return fail status
2081 * if an IO conflict found.
2084 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2085 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2086 "%x conflicts with another device\n", brdp->brdnr,
2091 if (brdp->iosize2 > 0)
2092 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2093 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2094 "address %x conflicts with another device\n",
2095 brdp->brdnr, brdp->ioaddr2);
2096 printk(KERN_WARNING "STALLION: Warning, also "
2097 "releasing board %d I/O address %x \n",
2098 brdp->brdnr, brdp->ioaddr1);
2103 * Scan through the secondary io address space looking for panels.
2104 * As we find'em allocate and initialize panel structures for each.
2106 brdp->clk = CD1400_CLK;
2107 brdp->hwid = status;
2109 ioaddr = brdp->ioaddr2;
2114 for (i = 0; i < STL_MAXPANELS; i++) {
2115 if (brdp->brdtype == BRD_ECHPCI) {
2116 outb(nxtid, brdp->ioctrl);
2117 ioaddr = brdp->ioaddr2;
2119 status = inb(ioaddr + ECH_PNLSTATUS);
2120 if ((status & ECH_PNLIDMASK) != nxtid)
2122 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2124 printk("STALLION: failed to allocate memory "
2125 "(size=%Zd)\n", sizeof(struct stlpanel));
2129 panelp->magic = STL_PANELMAGIC;
2130 panelp->brdnr = brdp->brdnr;
2131 panelp->panelnr = panelnr;
2132 panelp->iobase = ioaddr;
2133 panelp->pagenr = nxtid;
2134 panelp->hwid = status;
2135 brdp->bnk2panel[banknr] = panelp;
2136 brdp->bnkpageaddr[banknr] = nxtid;
2137 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2139 if (status & ECH_PNLXPID) {
2140 panelp->uartp = &stl_sc26198uart;
2141 panelp->isr = stl_sc26198intr;
2142 if (status & ECH_PNL16PORT) {
2143 panelp->nrports = 16;
2144 brdp->bnk2panel[banknr] = panelp;
2145 brdp->bnkpageaddr[banknr] = nxtid;
2146 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2149 panelp->nrports = 8;
2151 panelp->uartp = &stl_cd1400uart;
2152 panelp->isr = stl_cd1400echintr;
2153 if (status & ECH_PNL16PORT) {
2154 panelp->nrports = 16;
2155 panelp->ackmask = 0x80;
2156 if (brdp->brdtype != BRD_ECHPCI)
2157 ioaddr += EREG_BANKSIZE;
2158 brdp->bnk2panel[banknr] = panelp;
2159 brdp->bnkpageaddr[banknr] = ++nxtid;
2160 brdp->bnkstataddr[banknr++] = ioaddr +
2163 panelp->nrports = 8;
2164 panelp->ackmask = 0xc0;
2169 ioaddr += EREG_BANKSIZE;
2170 brdp->nrports += panelp->nrports;
2171 brdp->panels[panelnr++] = panelp;
2172 if ((brdp->brdtype != BRD_ECHPCI) &&
2173 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2179 brdp->nrpanels = panelnr;
2180 brdp->nrbnks = banknr;
2181 if (brdp->brdtype == BRD_ECH)
2182 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2184 brdp->state |= BRD_FOUND;
2185 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2186 printk("STALLION: failed to register interrupt "
2187 "routine for %s irq=%d\n", name, brdp->irq);
2194 stl_cleanup_panels(brdp);
2195 if (brdp->iosize2 > 0)
2196 release_region(brdp->ioaddr2, brdp->iosize2);
2198 release_region(brdp->ioaddr1, brdp->iosize1);
2203 /*****************************************************************************/
2206 * Initialize and configure the specified board.
2207 * Scan through all the boards in the configuration and see what we
2208 * can find. Handle EIO and the ECH boards a little differently here
2209 * since the initial search and setup is very different.
2212 static int __devinit stl_brdinit(struct stlbrd *brdp)
2216 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2218 switch (brdp->brdtype) {
2221 retval = stl_initeio(brdp);
2229 retval = stl_initech(brdp);
2234 printk("STALLION: board=%d is unknown board type=%d\n",
2235 brdp->brdnr, brdp->brdtype);
2240 if ((brdp->state & BRD_FOUND) == 0) {
2241 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2242 stl_brdnames[brdp->brdtype], brdp->brdnr,
2243 brdp->ioaddr1, brdp->irq);
2247 for (i = 0; i < STL_MAXPANELS; i++)
2248 if (brdp->panels[i] != NULL)
2249 stl_initports(brdp, brdp->panels[i]);
2251 printk("STALLION: %s found, board=%d io=%x irq=%d "
2252 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2253 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2258 free_irq(brdp->irq, brdp);
2260 stl_cleanup_panels(brdp);
2262 release_region(brdp->ioaddr1, brdp->iosize1);
2263 if (brdp->iosize2 > 0)
2264 release_region(brdp->ioaddr2, brdp->iosize2);
2269 /*****************************************************************************/
2272 * Find the next available board number that is free.
2275 static int __devinit stl_getbrdnr(void)
2279 for (i = 0; i < STL_MAXBRDS; i++)
2280 if (stl_brds[i] == NULL) {
2281 if (i >= stl_nrbrds)
2289 /*****************************************************************************/
2291 * We have a Stallion board. Allocate a board structure and
2292 * initialize it. Read its IO and IRQ resources from PCI
2293 * configuration space.
2296 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2297 const struct pci_device_id *ent)
2299 struct stlbrd *brdp;
2300 unsigned int i, brdtype = ent->driver_data;
2301 int brdnr, retval = -ENODEV;
2303 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2306 retval = pci_enable_device(pdev);
2309 brdp = stl_allocbrd();
2314 mutex_lock(&stl_brdslock);
2315 brdnr = stl_getbrdnr();
2317 dev_err(&pdev->dev, "too many boards found, "
2318 "maximum supported %d\n", STL_MAXBRDS);
2319 mutex_unlock(&stl_brdslock);
2323 brdp->brdnr = (unsigned int)brdnr;
2324 stl_brds[brdp->brdnr] = brdp;
2325 mutex_unlock(&stl_brdslock);
2327 brdp->brdtype = brdtype;
2328 brdp->state |= STL_PROBED;
2331 * We have all resources from the board, so let's setup the actual
2332 * board structure now.
2336 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2337 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2340 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2341 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2344 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2345 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2348 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2352 brdp->irq = pdev->irq;
2353 retval = stl_brdinit(brdp);
2357 pci_set_drvdata(pdev, brdp);
2359 for (i = 0; i < brdp->nrports; i++)
2360 tty_register_device(stl_serial,
2361 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2365 stl_brds[brdp->brdnr] = NULL;
2372 static void __devexit stl_pciremove(struct pci_dev *pdev)
2374 struct stlbrd *brdp = pci_get_drvdata(pdev);
2377 free_irq(brdp->irq, brdp);
2379 stl_cleanup_panels(brdp);
2381 release_region(brdp->ioaddr1, brdp->iosize1);
2382 if (brdp->iosize2 > 0)
2383 release_region(brdp->ioaddr2, brdp->iosize2);
2385 for (i = 0; i < brdp->nrports; i++)
2386 tty_unregister_device(stl_serial,
2387 brdp->brdnr * STL_MAXPORTS + i);
2389 stl_brds[brdp->brdnr] = NULL;
2393 static struct pci_driver stl_pcidriver = {
2395 .id_table = stl_pcibrds,
2396 .probe = stl_pciprobe,
2397 .remove = __devexit_p(stl_pciremove)
2400 /*****************************************************************************/
2403 * Return the board stats structure to user app.
2406 static int stl_getbrdstats(combrd_t __user *bp)
2408 combrd_t stl_brdstats;
2409 struct stlbrd *brdp;
2410 struct stlpanel *panelp;
2413 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2415 if (stl_brdstats.brd >= STL_MAXBRDS)
2417 brdp = stl_brds[stl_brdstats.brd];
2421 memset(&stl_brdstats, 0, sizeof(combrd_t));
2422 stl_brdstats.brd = brdp->brdnr;
2423 stl_brdstats.type = brdp->brdtype;
2424 stl_brdstats.hwid = brdp->hwid;
2425 stl_brdstats.state = brdp->state;
2426 stl_brdstats.ioaddr = brdp->ioaddr1;
2427 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2428 stl_brdstats.irq = brdp->irq;
2429 stl_brdstats.nrpanels = brdp->nrpanels;
2430 stl_brdstats.nrports = brdp->nrports;
2431 for (i = 0; i < brdp->nrpanels; i++) {
2432 panelp = brdp->panels[i];
2433 stl_brdstats.panels[i].panel = i;
2434 stl_brdstats.panels[i].hwid = panelp->hwid;
2435 stl_brdstats.panels[i].nrports = panelp->nrports;
2438 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2441 /*****************************************************************************/
2444 * Resolve the referenced port number into a port struct pointer.
2447 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2449 struct stlbrd *brdp;
2450 struct stlpanel *panelp;
2452 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2454 brdp = stl_brds[brdnr];
2457 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2459 panelp = brdp->panels[panelnr];
2462 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2464 return panelp->ports[portnr];
2467 /*****************************************************************************/
2470 * Return the port stats structure to user app. A NULL port struct
2471 * pointer passed in means that we need to find out from the app
2472 * what port to get stats for (used through board control device).
2475 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp)
2477 comstats_t stl_comstats;
2478 unsigned char *head, *tail;
2479 unsigned long flags;
2482 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2484 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2490 portp->stats.state = portp->istate;
2491 portp->stats.flags = portp->port.flags;
2492 portp->stats.hwid = portp->hwid;
2494 portp->stats.ttystate = 0;
2495 portp->stats.cflags = 0;
2496 portp->stats.iflags = 0;
2497 portp->stats.oflags = 0;
2498 portp->stats.lflags = 0;
2499 portp->stats.rxbuffered = 0;
2501 spin_lock_irqsave(&stallion_lock, flags);
2502 if (tty != NULL && portp->port.tty == tty) {
2503 portp->stats.ttystate = tty->flags;
2504 /* No longer available as a statistic */
2505 portp->stats.rxbuffered = 1; /*tty->flip.count; */
2506 if (tty->termios != NULL) {
2507 portp->stats.cflags = tty->termios->c_cflag;
2508 portp->stats.iflags = tty->termios->c_iflag;
2509 portp->stats.oflags = tty->termios->c_oflag;
2510 portp->stats.lflags = tty->termios->c_lflag;
2513 spin_unlock_irqrestore(&stallion_lock, flags);
2515 head = portp->tx.head;
2516 tail = portp->tx.tail;
2517 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2518 (STL_TXBUFSIZE - (tail - head));
2520 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2522 return copy_to_user(cp, &portp->stats,
2523 sizeof(comstats_t)) ? -EFAULT : 0;
2526 /*****************************************************************************/
2529 * Clear the port stats structure. We also return it zeroed out...
2532 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2534 comstats_t stl_comstats;
2537 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2539 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2545 memset(&portp->stats, 0, sizeof(comstats_t));
2546 portp->stats.brd = portp->brdnr;
2547 portp->stats.panel = portp->panelnr;
2548 portp->stats.port = portp->portnr;
2549 return copy_to_user(cp, &portp->stats,
2550 sizeof(comstats_t)) ? -EFAULT : 0;
2553 /*****************************************************************************/
2556 * Return the entire driver ports structure to a user app.
2559 static int stl_getportstruct(struct stlport __user *arg)
2561 struct stlport stl_dummyport;
2562 struct stlport *portp;
2564 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2566 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2567 stl_dummyport.portnr);
2570 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2573 /*****************************************************************************/
2576 * Return the entire driver board structure to a user app.
2579 static int stl_getbrdstruct(struct stlbrd __user *arg)
2581 struct stlbrd stl_dummybrd;
2582 struct stlbrd *brdp;
2584 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2586 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2588 brdp = stl_brds[stl_dummybrd.brdnr];
2591 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2594 /*****************************************************************************/
2597 * The "staliomem" device is also required to do some special operations
2598 * on the board and/or ports. In this driver it is mostly used for stats
2602 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2605 void __user *argp = (void __user *)arg;
2607 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2610 if (brdnr >= STL_MAXBRDS)
2615 case COM_GETPORTSTATS:
2616 rc = stl_getportstats(NULL, NULL, argp);
2618 case COM_CLRPORTSTATS:
2619 rc = stl_clrportstats(NULL, argp);
2621 case COM_GETBRDSTATS:
2622 rc = stl_getbrdstats(argp);
2625 rc = stl_getportstruct(argp);
2628 rc = stl_getbrdstruct(argp);
2638 static const struct tty_operations stl_ops = {
2642 .put_char = stl_putchar,
2643 .flush_chars = stl_flushchars,
2644 .write_room = stl_writeroom,
2645 .chars_in_buffer = stl_charsinbuffer,
2647 .set_termios = stl_settermios,
2648 .throttle = stl_throttle,
2649 .unthrottle = stl_unthrottle,
2652 .hangup = stl_hangup,
2653 .flush_buffer = stl_flushbuffer,
2654 .break_ctl = stl_breakctl,
2655 .wait_until_sent = stl_waituntilsent,
2656 .send_xchar = stl_sendxchar,
2657 .read_proc = stl_readproc,
2658 .tiocmget = stl_tiocmget,
2659 .tiocmset = stl_tiocmset,
2662 /*****************************************************************************/
2663 /* CD1400 HARDWARE FUNCTIONS */
2664 /*****************************************************************************/
2667 * These functions get/set/update the registers of the cd1400 UARTs.
2668 * Access to the cd1400 registers is via an address/data io port pair.
2669 * (Maybe should make this inline...)
2672 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2674 outb((regnr + portp->uartaddr), portp->ioaddr);
2675 return inb(portp->ioaddr + EREG_DATA);
2678 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2680 outb(regnr + portp->uartaddr, portp->ioaddr);
2681 outb(value, portp->ioaddr + EREG_DATA);
2684 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2686 outb(regnr + portp->uartaddr, portp->ioaddr);
2687 if (inb(portp->ioaddr + EREG_DATA) != value) {
2688 outb(value, portp->ioaddr + EREG_DATA);
2694 /*****************************************************************************/
2697 * Inbitialize the UARTs in a panel. We don't care what sort of board
2698 * these ports are on - since the port io registers are almost
2699 * identical when dealing with ports.
2702 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2706 int nrchips, uartaddr, ioaddr;
2707 unsigned long flags;
2709 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2711 spin_lock_irqsave(&brd_lock, flags);
2712 BRDENABLE(panelp->brdnr, panelp->pagenr);
2715 * Check that each chip is present and started up OK.
2718 nrchips = panelp->nrports / CD1400_PORTS;
2719 for (i = 0; i < nrchips; i++) {
2720 if (brdp->brdtype == BRD_ECHPCI) {
2721 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2722 ioaddr = panelp->iobase;
2724 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2725 uartaddr = (i & 0x01) ? 0x080 : 0;
2726 outb((GFRCR + uartaddr), ioaddr);
2727 outb(0, (ioaddr + EREG_DATA));
2728 outb((CCR + uartaddr), ioaddr);
2729 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2730 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2731 outb((GFRCR + uartaddr), ioaddr);
2732 for (j = 0; j < CCR_MAXWAIT; j++)
2733 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2736 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2737 printk("STALLION: cd1400 not responding, "
2738 "brd=%d panel=%d chip=%d\n",
2739 panelp->brdnr, panelp->panelnr, i);
2742 chipmask |= (0x1 << i);
2743 outb((PPR + uartaddr), ioaddr);
2744 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2747 BRDDISABLE(panelp->brdnr);
2748 spin_unlock_irqrestore(&brd_lock, flags);
2752 /*****************************************************************************/
2755 * Initialize hardware specific port registers.
2758 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2760 unsigned long flags;
2761 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2764 if ((brdp == NULL) || (panelp == NULL) ||
2768 spin_lock_irqsave(&brd_lock, flags);
2769 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2770 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2771 portp->uartaddr = (portp->portnr & 0x04) << 5;
2772 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2774 BRDENABLE(portp->brdnr, portp->pagenr);
2775 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2776 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2777 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2778 BRDDISABLE(portp->brdnr);
2779 spin_unlock_irqrestore(&brd_lock, flags);
2782 /*****************************************************************************/
2785 * Wait for the command register to be ready. We will poll this,
2786 * since it won't usually take too long to be ready.
2789 static void stl_cd1400ccrwait(struct stlport *portp)
2793 for (i = 0; i < CCR_MAXWAIT; i++)
2794 if (stl_cd1400getreg(portp, CCR) == 0)
2797 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2798 portp->portnr, portp->panelnr, portp->brdnr);
2801 /*****************************************************************************/
2804 * Set up the cd1400 registers for a port based on the termios port
2808 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2810 struct stlbrd *brdp;
2811 unsigned long flags;
2812 unsigned int clkdiv, baudrate;
2813 unsigned char cor1, cor2, cor3;
2814 unsigned char cor4, cor5, ccr;
2815 unsigned char srer, sreron, sreroff;
2816 unsigned char mcor1, mcor2, rtpr;
2817 unsigned char clk, div;
2833 brdp = stl_brds[portp->brdnr];
2838 * Set up the RX char ignore mask with those RX error types we
2839 * can ignore. We can get the cd1400 to help us out a little here,
2840 * it will ignore parity errors and breaks for us.
2842 portp->rxignoremsk = 0;
2843 if (tiosp->c_iflag & IGNPAR) {
2844 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2845 cor1 |= COR1_PARIGNORE;
2847 if (tiosp->c_iflag & IGNBRK) {
2848 portp->rxignoremsk |= ST_BREAK;
2849 cor4 |= COR4_IGNBRK;
2852 portp->rxmarkmsk = ST_OVERRUN;
2853 if (tiosp->c_iflag & (INPCK | PARMRK))
2854 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2855 if (tiosp->c_iflag & BRKINT)
2856 portp->rxmarkmsk |= ST_BREAK;
2859 * Go through the char size, parity and stop bits and set all the
2860 * option register appropriately.
2862 switch (tiosp->c_cflag & CSIZE) {
2877 if (tiosp->c_cflag & CSTOPB)
2882 if (tiosp->c_cflag & PARENB) {
2883 if (tiosp->c_cflag & PARODD)
2884 cor1 |= (COR1_PARENB | COR1_PARODD);
2886 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2888 cor1 |= COR1_PARNONE;
2892 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2893 * space for hardware flow control and the like. This should be set to
2894 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2895 * really be based on VTIME.
2897 cor3 |= FIFO_RXTHRESHOLD;
2901 * Calculate the baud rate timers. For now we will just assume that
2902 * the input and output baud are the same. Could have used a baud
2903 * table here, but this way we can generate virtually any baud rate
2906 baudrate = tiosp->c_cflag & CBAUD;
2907 if (baudrate & CBAUDEX) {
2908 baudrate &= ~CBAUDEX;
2909 if ((baudrate < 1) || (baudrate > 4))
2910 tiosp->c_cflag &= ~CBAUDEX;
2914 baudrate = stl_baudrates[baudrate];
2915 if ((tiosp->c_cflag & CBAUD) == B38400) {
2916 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2918 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2920 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2922 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2924 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2925 baudrate = (portp->baud_base / portp->custom_divisor);
2927 if (baudrate > STL_CD1400MAXBAUD)
2928 baudrate = STL_CD1400MAXBAUD;
2931 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2932 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2936 div = (unsigned char) clkdiv;
2940 * Check what form of modem signaling is required and set it up.
2942 if ((tiosp->c_cflag & CLOCAL) == 0) {
2945 sreron |= SRER_MODEM;
2946 portp->port.flags |= ASYNC_CHECK_CD;
2948 portp->port.flags &= ~ASYNC_CHECK_CD;
2951 * Setup cd1400 enhanced modes if we can. In particular we want to
2952 * handle as much of the flow control as possible automatically. As
2953 * well as saving a few CPU cycles it will also greatly improve flow
2954 * control reliability.
2956 if (tiosp->c_iflag & IXON) {
2959 if (tiosp->c_iflag & IXANY)
2963 if (tiosp->c_cflag & CRTSCTS) {
2965 mcor1 |= FIFO_RTSTHRESHOLD;
2969 * All cd1400 register values calculated so go through and set
2973 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2974 portp->portnr, portp->panelnr, portp->brdnr);
2975 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2976 cor1, cor2, cor3, cor4, cor5);
2977 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2978 mcor1, mcor2, rtpr, sreron, sreroff);
2979 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
2980 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2981 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
2982 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
2984 spin_lock_irqsave(&brd_lock, flags);
2985 BRDENABLE(portp->brdnr, portp->pagenr);
2986 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
2987 srer = stl_cd1400getreg(portp, SRER);
2988 stl_cd1400setreg(portp, SRER, 0);
2989 if (stl_cd1400updatereg(portp, COR1, cor1))
2991 if (stl_cd1400updatereg(portp, COR2, cor2))
2993 if (stl_cd1400updatereg(portp, COR3, cor3))
2996 stl_cd1400ccrwait(portp);
2997 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
2999 stl_cd1400setreg(portp, COR4, cor4);
3000 stl_cd1400setreg(portp, COR5, cor5);
3001 stl_cd1400setreg(portp, MCOR1, mcor1);
3002 stl_cd1400setreg(portp, MCOR2, mcor2);
3004 stl_cd1400setreg(portp, TCOR, clk);
3005 stl_cd1400setreg(portp, TBPR, div);
3006 stl_cd1400setreg(portp, RCOR, clk);
3007 stl_cd1400setreg(portp, RBPR, div);
3009 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3010 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3011 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3012 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3013 stl_cd1400setreg(portp, RTPR, rtpr);
3014 mcor1 = stl_cd1400getreg(portp, MSVR1);
3015 if (mcor1 & MSVR1_DCD)
3016 portp->sigs |= TIOCM_CD;
3018 portp->sigs &= ~TIOCM_CD;
3019 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3020 BRDDISABLE(portp->brdnr);
3021 spin_unlock_irqrestore(&brd_lock, flags);
3024 /*****************************************************************************/
3027 * Set the state of the DTR and RTS signals.
3030 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3032 unsigned char msvr1, msvr2;
3033 unsigned long flags;
3035 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3045 spin_lock_irqsave(&brd_lock, flags);
3046 BRDENABLE(portp->brdnr, portp->pagenr);
3047 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3049 stl_cd1400setreg(portp, MSVR2, msvr2);
3051 stl_cd1400setreg(portp, MSVR1, msvr1);
3052 BRDDISABLE(portp->brdnr);
3053 spin_unlock_irqrestore(&brd_lock, flags);
3056 /*****************************************************************************/
3059 * Return the state of the signals.
3062 static int stl_cd1400getsignals(struct stlport *portp)
3064 unsigned char msvr1, msvr2;
3065 unsigned long flags;
3068 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3070 spin_lock_irqsave(&brd_lock, flags);
3071 BRDENABLE(portp->brdnr, portp->pagenr);
3072 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3073 msvr1 = stl_cd1400getreg(portp, MSVR1);
3074 msvr2 = stl_cd1400getreg(portp, MSVR2);
3075 BRDDISABLE(portp->brdnr);
3076 spin_unlock_irqrestore(&brd_lock, flags);
3079 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3080 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3081 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3082 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3084 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3085 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3092 /*****************************************************************************/
3095 * Enable/Disable the Transmitter and/or Receiver.
3098 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3101 unsigned long flags;
3103 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3108 ccr |= CCR_TXDISABLE;
3110 ccr |= CCR_TXENABLE;
3112 ccr |= CCR_RXDISABLE;
3114 ccr |= CCR_RXENABLE;
3116 spin_lock_irqsave(&brd_lock, flags);
3117 BRDENABLE(portp->brdnr, portp->pagenr);
3118 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3119 stl_cd1400ccrwait(portp);
3120 stl_cd1400setreg(portp, CCR, ccr);
3121 stl_cd1400ccrwait(portp);
3122 BRDDISABLE(portp->brdnr);
3123 spin_unlock_irqrestore(&brd_lock, flags);
3126 /*****************************************************************************/
3129 * Start/stop the Transmitter and/or Receiver.
3132 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3134 unsigned char sreron, sreroff;
3135 unsigned long flags;
3137 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3142 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3144 sreron |= SRER_TXDATA;
3146 sreron |= SRER_TXEMPTY;
3148 sreroff |= SRER_RXDATA;
3150 sreron |= SRER_RXDATA;
3152 spin_lock_irqsave(&brd_lock, flags);
3153 BRDENABLE(portp->brdnr, portp->pagenr);
3154 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3155 stl_cd1400setreg(portp, SRER,
3156 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3157 BRDDISABLE(portp->brdnr);
3159 set_bit(ASYI_TXBUSY, &portp->istate);
3160 spin_unlock_irqrestore(&brd_lock, flags);
3163 /*****************************************************************************/
3166 * Disable all interrupts from this port.
3169 static void stl_cd1400disableintrs(struct stlport *portp)
3171 unsigned long flags;
3173 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3175 spin_lock_irqsave(&brd_lock, flags);
3176 BRDENABLE(portp->brdnr, portp->pagenr);
3177 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3178 stl_cd1400setreg(portp, SRER, 0);
3179 BRDDISABLE(portp->brdnr);
3180 spin_unlock_irqrestore(&brd_lock, flags);
3183 /*****************************************************************************/
3185 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3187 unsigned long flags;
3189 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3191 spin_lock_irqsave(&brd_lock, flags);
3192 BRDENABLE(portp->brdnr, portp->pagenr);
3193 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3194 stl_cd1400setreg(portp, SRER,
3195 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3197 BRDDISABLE(portp->brdnr);
3198 portp->brklen = len;
3200 portp->stats.txbreaks++;
3201 spin_unlock_irqrestore(&brd_lock, flags);
3204 /*****************************************************************************/
3207 * Take flow control actions...
3210 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3212 struct tty_struct *tty;
3213 unsigned long flags;
3215 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3219 tty = tty_port_tty_get(&portp->port);
3223 spin_lock_irqsave(&brd_lock, flags);
3224 BRDENABLE(portp->brdnr, portp->pagenr);
3225 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3228 if (tty->termios->c_iflag & IXOFF) {
3229 stl_cd1400ccrwait(portp);
3230 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3231 portp->stats.rxxon++;
3232 stl_cd1400ccrwait(portp);
3235 * Question: should we return RTS to what it was before? It may
3236 * have been set by an ioctl... Suppose not, since if you have
3237 * hardware flow control set then it is pretty silly to go and
3238 * set the RTS line by hand.
3240 if (tty->termios->c_cflag & CRTSCTS) {
3241 stl_cd1400setreg(portp, MCOR1,
3242 (stl_cd1400getreg(portp, MCOR1) |
3243 FIFO_RTSTHRESHOLD));
3244 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3245 portp->stats.rxrtson++;
3248 if (tty->termios->c_iflag & IXOFF) {
3249 stl_cd1400ccrwait(portp);
3250 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3251 portp->stats.rxxoff++;
3252 stl_cd1400ccrwait(portp);
3254 if (tty->termios->c_cflag & CRTSCTS) {
3255 stl_cd1400setreg(portp, MCOR1,
3256 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3257 stl_cd1400setreg(portp, MSVR2, 0);
3258 portp->stats.rxrtsoff++;
3262 BRDDISABLE(portp->brdnr);
3263 spin_unlock_irqrestore(&brd_lock, flags);
3267 /*****************************************************************************/
3270 * Send a flow control character...
3273 static void stl_cd1400sendflow(struct stlport *portp, int state)
3275 struct tty_struct *tty;
3276 unsigned long flags;
3278 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3282 tty = tty_port_tty_get(&portp->port);
3286 spin_lock_irqsave(&brd_lock, flags);
3287 BRDENABLE(portp->brdnr, portp->pagenr);
3288 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3290 stl_cd1400ccrwait(portp);
3291 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3292 portp->stats.rxxon++;
3293 stl_cd1400ccrwait(portp);
3295 stl_cd1400ccrwait(portp);
3296 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3297 portp->stats.rxxoff++;
3298 stl_cd1400ccrwait(portp);
3300 BRDDISABLE(portp->brdnr);
3301 spin_unlock_irqrestore(&brd_lock, flags);
3305 /*****************************************************************************/
3307 static void stl_cd1400flush(struct stlport *portp)
3309 unsigned long flags;
3311 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3316 spin_lock_irqsave(&brd_lock, flags);
3317 BRDENABLE(portp->brdnr, portp->pagenr);
3318 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3319 stl_cd1400ccrwait(portp);
3320 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3321 stl_cd1400ccrwait(portp);
3322 portp->tx.tail = portp->tx.head;
3323 BRDDISABLE(portp->brdnr);
3324 spin_unlock_irqrestore(&brd_lock, flags);
3327 /*****************************************************************************/
3330 * Return the current state of data flow on this port. This is only
3331 * really interresting when determining if data has fully completed
3332 * transmission or not... This is easy for the cd1400, it accurately
3333 * maintains the busy port flag.
3336 static int stl_cd1400datastate(struct stlport *portp)
3338 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3343 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3346 /*****************************************************************************/
3349 * Interrupt service routine for cd1400 EasyIO boards.
3352 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3354 unsigned char svrtype;
3356 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3358 spin_lock(&brd_lock);
3360 svrtype = inb(iobase + EREG_DATA);
3361 if (panelp->nrports > 4) {
3362 outb((SVRR + 0x80), iobase);
3363 svrtype |= inb(iobase + EREG_DATA);
3366 if (svrtype & SVRR_RX)
3367 stl_cd1400rxisr(panelp, iobase);
3368 else if (svrtype & SVRR_TX)
3369 stl_cd1400txisr(panelp, iobase);
3370 else if (svrtype & SVRR_MDM)
3371 stl_cd1400mdmisr(panelp, iobase);
3373 spin_unlock(&brd_lock);
3376 /*****************************************************************************/
3379 * Interrupt service routine for cd1400 panels.
3382 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3384 unsigned char svrtype;
3386 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3389 svrtype = inb(iobase + EREG_DATA);
3390 outb((SVRR + 0x80), iobase);
3391 svrtype |= inb(iobase + EREG_DATA);
3392 if (svrtype & SVRR_RX)
3393 stl_cd1400rxisr(panelp, iobase);
3394 else if (svrtype & SVRR_TX)
3395 stl_cd1400txisr(panelp, iobase);
3396 else if (svrtype & SVRR_MDM)
3397 stl_cd1400mdmisr(panelp, iobase);
3401 /*****************************************************************************/
3404 * Unfortunately we need to handle breaks in the TX data stream, since
3405 * this is the only way to generate them on the cd1400.
3408 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3410 if (portp->brklen == 1) {
3411 outb((COR2 + portp->uartaddr), ioaddr);
3412 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3413 (ioaddr + EREG_DATA));
3414 outb((TDR + portp->uartaddr), ioaddr);
3415 outb(ETC_CMD, (ioaddr + EREG_DATA));
3416 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3417 outb((SRER + portp->uartaddr), ioaddr);
3418 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3419 (ioaddr + EREG_DATA));
3421 } else if (portp->brklen > 1) {
3422 outb((TDR + portp->uartaddr), ioaddr);
3423 outb(ETC_CMD, (ioaddr + EREG_DATA));
3424 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3428 outb((COR2 + portp->uartaddr), ioaddr);
3429 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3430 (ioaddr + EREG_DATA));
3436 /*****************************************************************************/
3439 * Transmit interrupt handler. This has gotta be fast! Handling TX
3440 * chars is pretty simple, stuff as many as possible from the TX buffer
3441 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3442 * are embedded as commands in the data stream. Oh no, had to use a goto!
3443 * This could be optimized more, will do when I get time...
3444 * In practice it is possible that interrupts are enabled but that the
3445 * port has been hung up. Need to handle not having any TX buffer here,
3446 * this is done by using the side effect that head and tail will also
3447 * be NULL if the buffer has been freed.
3450 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3452 struct stlport *portp;
3455 unsigned char ioack, srer;
3456 struct tty_struct *tty;
3458 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3460 ioack = inb(ioaddr + EREG_TXACK);
3461 if (((ioack & panelp->ackmask) != 0) ||
3462 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3463 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3466 portp = panelp->ports[(ioack >> 3)];
3469 * Unfortunately we need to handle breaks in the data stream, since
3470 * this is the only way to generate them on the cd1400. Do it now if
3471 * a break is to be sent.
3473 if (portp->brklen != 0)
3474 if (stl_cd1400breakisr(portp, ioaddr))
3477 head = portp->tx.head;
3478 tail = portp->tx.tail;
3479 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3480 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3481 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3482 set_bit(ASYI_TXLOW, &portp->istate);
3483 tty = tty_port_tty_get(&portp->port);
3491 outb((SRER + portp->uartaddr), ioaddr);
3492 srer = inb(ioaddr + EREG_DATA);
3493 if (srer & SRER_TXDATA) {
3494 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3496 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3497 clear_bit(ASYI_TXBUSY, &portp->istate);
3499 outb(srer, (ioaddr + EREG_DATA));
3501 len = min(len, CD1400_TXFIFOSIZE);
3502 portp->stats.txtotal += len;
3503 stlen = min_t(unsigned int, len,
3504 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3505 outb((TDR + portp->uartaddr), ioaddr);
3506 outsb((ioaddr + EREG_DATA), tail, stlen);
3509 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3510 tail = portp->tx.buf;
3512 outsb((ioaddr + EREG_DATA), tail, len);
3515 portp->tx.tail = tail;
3519 outb((EOSRR + portp->uartaddr), ioaddr);
3520 outb(0, (ioaddr + EREG_DATA));
3523 /*****************************************************************************/
3526 * Receive character interrupt handler. Determine if we have good chars
3527 * or bad chars and then process appropriately. Good chars are easy
3528 * just shove the lot into the RX buffer and set all status byte to 0.
3529 * If a bad RX char then process as required. This routine needs to be
3530 * fast! In practice it is possible that we get an interrupt on a port
3531 * that is closed. This can happen on hangups - since they completely
3532 * shutdown a port not in user context. Need to handle this case.
3535 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3537 struct stlport *portp;
3538 struct tty_struct *tty;
3539 unsigned int ioack, len, buflen;
3540 unsigned char status;
3543 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3545 ioack = inb(ioaddr + EREG_RXACK);
3546 if ((ioack & panelp->ackmask) != 0) {
3547 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3550 portp = panelp->ports[(ioack >> 3)];
3551 tty = tty_port_tty_get(&portp->port);
3553 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3554 outb((RDCR + portp->uartaddr), ioaddr);
3555 len = inb(ioaddr + EREG_DATA);
3556 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3557 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3558 outb((RDSR + portp->uartaddr), ioaddr);
3559 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3560 portp->stats.rxlost += len;
3561 portp->stats.rxtotal += len;
3563 len = min(len, buflen);
3566 outb((RDSR + portp->uartaddr), ioaddr);
3567 tty_prepare_flip_string(tty, &ptr, len);
3568 insb((ioaddr + EREG_DATA), ptr, len);
3569 tty_schedule_flip(tty);
3570 portp->stats.rxtotal += len;
3573 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3574 outb((RDSR + portp->uartaddr), ioaddr);
3575 status = inb(ioaddr + EREG_DATA);
3576 ch = inb(ioaddr + EREG_DATA);
3577 if (status & ST_PARITY)
3578 portp->stats.rxparity++;
3579 if (status & ST_FRAMING)
3580 portp->stats.rxframing++;
3581 if (status & ST_OVERRUN)
3582 portp->stats.rxoverrun++;
3583 if (status & ST_BREAK)
3584 portp->stats.rxbreaks++;
3585 if (status & ST_SCHARMASK) {
3586 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3587 portp->stats.txxon++;
3588 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3589 portp->stats.txxoff++;
3592 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3593 if (portp->rxmarkmsk & status) {
3594 if (status & ST_BREAK) {
3596 if (portp->port.flags & ASYNC_SAK) {
3598 BRDENABLE(portp->brdnr, portp->pagenr);
3600 } else if (status & ST_PARITY)
3601 status = TTY_PARITY;
3602 else if (status & ST_FRAMING)
3604 else if(status & ST_OVERRUN)
3605 status = TTY_OVERRUN;
3610 tty_insert_flip_char(tty, ch, status);
3611 tty_schedule_flip(tty);
3614 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3621 outb((EOSRR + portp->uartaddr), ioaddr);
3622 outb(0, (ioaddr + EREG_DATA));
3625 /*****************************************************************************/
3628 * Modem interrupt handler. The is called when the modem signal line
3629 * (DCD) has changed state. Leave most of the work to the off-level
3630 * processing routine.
3633 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3635 struct stlport *portp;
3639 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3641 ioack = inb(ioaddr + EREG_MDACK);
3642 if (((ioack & panelp->ackmask) != 0) ||
3643 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3644 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3647 portp = panelp->ports[(ioack >> 3)];
3649 outb((MISR + portp->uartaddr), ioaddr);
3650 misr = inb(ioaddr + EREG_DATA);
3651 if (misr & MISR_DCD) {
3652 stl_cd_change(portp);
3653 portp->stats.modem++;
3656 outb((EOSRR + portp->uartaddr), ioaddr);
3657 outb(0, (ioaddr + EREG_DATA));
3660 /*****************************************************************************/
3661 /* SC26198 HARDWARE FUNCTIONS */
3662 /*****************************************************************************/
3665 * These functions get/set/update the registers of the sc26198 UARTs.
3666 * Access to the sc26198 registers is via an address/data io port pair.
3667 * (Maybe should make this inline...)
3670 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3672 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3673 return inb(portp->ioaddr + XP_DATA);
3676 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3678 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3679 outb(value, (portp->ioaddr + XP_DATA));
3682 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3684 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3685 if (inb(portp->ioaddr + XP_DATA) != value) {
3686 outb(value, (portp->ioaddr + XP_DATA));
3692 /*****************************************************************************/
3695 * Functions to get and set the sc26198 global registers.
3698 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3700 outb(regnr, (portp->ioaddr + XP_ADDR));
3701 return inb(portp->ioaddr + XP_DATA);
3705 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3707 outb(regnr, (portp->ioaddr + XP_ADDR));
3708 outb(value, (portp->ioaddr + XP_DATA));
3712 /*****************************************************************************/
3715 * Inbitialize the UARTs in a panel. We don't care what sort of board
3716 * these ports are on - since the port io registers are almost
3717 * identical when dealing with ports.
3720 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3723 int nrchips, ioaddr;
3725 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3727 BRDENABLE(panelp->brdnr, panelp->pagenr);
3730 * Check that each chip is present and started up OK.
3733 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3734 if (brdp->brdtype == BRD_ECHPCI)
3735 outb(panelp->pagenr, brdp->ioctrl);
3737 for (i = 0; i < nrchips; i++) {
3738 ioaddr = panelp->iobase + (i * 4);
3739 outb(SCCR, (ioaddr + XP_ADDR));
3740 outb(CR_RESETALL, (ioaddr + XP_DATA));
3741 outb(TSTR, (ioaddr + XP_ADDR));
3742 if (inb(ioaddr + XP_DATA) != 0) {
3743 printk("STALLION: sc26198 not responding, "
3744 "brd=%d panel=%d chip=%d\n",
3745 panelp->brdnr, panelp->panelnr, i);
3748 chipmask |= (0x1 << i);
3749 outb(GCCR, (ioaddr + XP_ADDR));
3750 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3751 outb(WDTRCR, (ioaddr + XP_ADDR));
3752 outb(0xff, (ioaddr + XP_DATA));
3755 BRDDISABLE(panelp->brdnr);
3759 /*****************************************************************************/
3762 * Initialize hardware specific port registers.
3765 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3767 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3770 if ((brdp == NULL) || (panelp == NULL) ||
3774 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3775 portp->uartaddr = (portp->portnr & 0x07) << 4;
3776 portp->pagenr = panelp->pagenr;
3779 BRDENABLE(portp->brdnr, portp->pagenr);
3780 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3781 BRDDISABLE(portp->brdnr);
3784 /*****************************************************************************/
3787 * Set up the sc26198 registers for a port based on the termios port
3791 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3793 struct stlbrd *brdp;
3794 unsigned long flags;
3795 unsigned int baudrate;
3796 unsigned char mr0, mr1, mr2, clk;
3797 unsigned char imron, imroff, iopr, ipr;
3807 brdp = stl_brds[portp->brdnr];
3812 * Set up the RX char ignore mask with those RX error types we
3815 portp->rxignoremsk = 0;
3816 if (tiosp->c_iflag & IGNPAR)
3817 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3819 if (tiosp->c_iflag & IGNBRK)
3820 portp->rxignoremsk |= SR_RXBREAK;
3822 portp->rxmarkmsk = SR_RXOVERRUN;
3823 if (tiosp->c_iflag & (INPCK | PARMRK))
3824 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3825 if (tiosp->c_iflag & BRKINT)
3826 portp->rxmarkmsk |= SR_RXBREAK;
3829 * Go through the char size, parity and stop bits and set all the
3830 * option register appropriately.
3832 switch (tiosp->c_cflag & CSIZE) {
3847 if (tiosp->c_cflag & CSTOPB)
3852 if (tiosp->c_cflag & PARENB) {
3853 if (tiosp->c_cflag & PARODD)
3854 mr1 |= (MR1_PARENB | MR1_PARODD);
3856 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3860 mr1 |= MR1_ERRBLOCK;
3863 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3864 * space for hardware flow control and the like. This should be set to
3867 mr2 |= MR2_RXFIFOHALF;
3870 * Calculate the baud rate timers. For now we will just assume that
3871 * the input and output baud are the same. The sc26198 has a fixed
3872 * baud rate table, so only discrete baud rates possible.
3874 baudrate = tiosp->c_cflag & CBAUD;
3875 if (baudrate & CBAUDEX) {
3876 baudrate &= ~CBAUDEX;
3877 if ((baudrate < 1) || (baudrate > 4))
3878 tiosp->c_cflag &= ~CBAUDEX;
3882 baudrate = stl_baudrates[baudrate];
3883 if ((tiosp->c_cflag & CBAUD) == B38400) {
3884 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3886 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3888 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3890 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3892 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3893 baudrate = (portp->baud_base / portp->custom_divisor);
3895 if (baudrate > STL_SC26198MAXBAUD)
3896 baudrate = STL_SC26198MAXBAUD;
3899 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3900 if (baudrate <= sc26198_baudtable[clk])
3904 * Check what form of modem signaling is required and set it up.
3906 if (tiosp->c_cflag & CLOCAL) {
3907 portp->port.flags &= ~ASYNC_CHECK_CD;
3909 iopr |= IOPR_DCDCOS;
3911 portp->port.flags |= ASYNC_CHECK_CD;
3915 * Setup sc26198 enhanced modes if we can. In particular we want to
3916 * handle as much of the flow control as possible automatically. As
3917 * well as saving a few CPU cycles it will also greatly improve flow
3918 * control reliability.
3920 if (tiosp->c_iflag & IXON) {
3921 mr0 |= MR0_SWFTX | MR0_SWFT;
3922 imron |= IR_XONXOFF;
3924 imroff |= IR_XONXOFF;
3926 if (tiosp->c_iflag & IXOFF)
3929 if (tiosp->c_cflag & CRTSCTS) {
3935 * All sc26198 register values calculated so go through and set
3939 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3940 portp->portnr, portp->panelnr, portp->brdnr);
3941 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3942 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3943 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3944 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3945 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3947 spin_lock_irqsave(&brd_lock, flags);
3948 BRDENABLE(portp->brdnr, portp->pagenr);
3949 stl_sc26198setreg(portp, IMR, 0);
3950 stl_sc26198updatereg(portp, MR0, mr0);
3951 stl_sc26198updatereg(portp, MR1, mr1);
3952 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3953 stl_sc26198updatereg(portp, MR2, mr2);
3954 stl_sc26198updatereg(portp, IOPIOR,
3955 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3958 stl_sc26198setreg(portp, TXCSR, clk);
3959 stl_sc26198setreg(portp, RXCSR, clk);
3962 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3963 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3965 ipr = stl_sc26198getreg(portp, IPR);
3967 portp->sigs &= ~TIOCM_CD;
3969 portp->sigs |= TIOCM_CD;
3971 portp->imr = (portp->imr & ~imroff) | imron;
3972 stl_sc26198setreg(portp, IMR, portp->imr);
3973 BRDDISABLE(portp->brdnr);
3974 spin_unlock_irqrestore(&brd_lock, flags);
3977 /*****************************************************************************/
3980 * Set the state of the DTR and RTS signals.
3983 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
3985 unsigned char iopioron, iopioroff;
3986 unsigned long flags;
3988 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
3994 iopioroff |= IPR_DTR;
3996 iopioron |= IPR_DTR;
3998 iopioroff |= IPR_RTS;
4000 iopioron |= IPR_RTS;
4002 spin_lock_irqsave(&brd_lock, flags);
4003 BRDENABLE(portp->brdnr, portp->pagenr);
4004 stl_sc26198setreg(portp, IOPIOR,
4005 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4006 BRDDISABLE(portp->brdnr);
4007 spin_unlock_irqrestore(&brd_lock, flags);
4010 /*****************************************************************************/
4013 * Return the state of the signals.
4016 static int stl_sc26198getsignals(struct stlport *portp)
4019 unsigned long flags;
4022 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4024 spin_lock_irqsave(&brd_lock, flags);
4025 BRDENABLE(portp->brdnr, portp->pagenr);
4026 ipr = stl_sc26198getreg(portp, IPR);
4027 BRDDISABLE(portp->brdnr);
4028 spin_unlock_irqrestore(&brd_lock, flags);
4031 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4032 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4033 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4034 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4039 /*****************************************************************************/
4042 * Enable/Disable the Transmitter and/or Receiver.
4045 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4048 unsigned long flags;
4050 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4052 ccr = portp->crenable;
4054 ccr &= ~CR_TXENABLE;
4058 ccr &= ~CR_RXENABLE;
4062 spin_lock_irqsave(&brd_lock, flags);
4063 BRDENABLE(portp->brdnr, portp->pagenr);
4064 stl_sc26198setreg(portp, SCCR, ccr);
4065 BRDDISABLE(portp->brdnr);
4066 portp->crenable = ccr;
4067 spin_unlock_irqrestore(&brd_lock, flags);
4070 /*****************************************************************************/
4073 * Start/stop the Transmitter and/or Receiver.
4076 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4079 unsigned long flags;
4081 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4089 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4091 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4093 spin_lock_irqsave(&brd_lock, flags);
4094 BRDENABLE(portp->brdnr, portp->pagenr);
4095 stl_sc26198setreg(portp, IMR, imr);
4096 BRDDISABLE(portp->brdnr);
4099 set_bit(ASYI_TXBUSY, &portp->istate);
4100 spin_unlock_irqrestore(&brd_lock, flags);
4103 /*****************************************************************************/
4106 * Disable all interrupts from this port.
4109 static void stl_sc26198disableintrs(struct stlport *portp)
4111 unsigned long flags;
4113 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4115 spin_lock_irqsave(&brd_lock, flags);
4116 BRDENABLE(portp->brdnr, portp->pagenr);
4118 stl_sc26198setreg(portp, IMR, 0);
4119 BRDDISABLE(portp->brdnr);
4120 spin_unlock_irqrestore(&brd_lock, flags);
4123 /*****************************************************************************/
4125 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4127 unsigned long flags;
4129 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4131 spin_lock_irqsave(&brd_lock, flags);
4132 BRDENABLE(portp->brdnr, portp->pagenr);
4134 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4135 portp->stats.txbreaks++;
4137 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4139 BRDDISABLE(portp->brdnr);
4140 spin_unlock_irqrestore(&brd_lock, flags);
4143 /*****************************************************************************/
4146 * Take flow control actions...
4149 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4151 struct tty_struct *tty;
4152 unsigned long flags;
4155 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4159 tty = tty_port_tty_get(&portp->port);
4163 spin_lock_irqsave(&brd_lock, flags);
4164 BRDENABLE(portp->brdnr, portp->pagenr);
4167 if (tty->termios->c_iflag & IXOFF) {
4168 mr0 = stl_sc26198getreg(portp, MR0);
4169 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4170 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4172 portp->stats.rxxon++;
4173 stl_sc26198wait(portp);
4174 stl_sc26198setreg(portp, MR0, mr0);
4177 * Question: should we return RTS to what it was before? It may
4178 * have been set by an ioctl... Suppose not, since if you have
4179 * hardware flow control set then it is pretty silly to go and
4180 * set the RTS line by hand.
4182 if (tty->termios->c_cflag & CRTSCTS) {
4183 stl_sc26198setreg(portp, MR1,
4184 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4185 stl_sc26198setreg(portp, IOPIOR,
4186 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4187 portp->stats.rxrtson++;
4190 if (tty->termios->c_iflag & IXOFF) {
4191 mr0 = stl_sc26198getreg(portp, MR0);
4192 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4193 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4195 portp->stats.rxxoff++;
4196 stl_sc26198wait(portp);
4197 stl_sc26198setreg(portp, MR0, mr0);
4199 if (tty->termios->c_cflag & CRTSCTS) {
4200 stl_sc26198setreg(portp, MR1,
4201 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4202 stl_sc26198setreg(portp, IOPIOR,
4203 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4204 portp->stats.rxrtsoff++;
4208 BRDDISABLE(portp->brdnr);
4209 spin_unlock_irqrestore(&brd_lock, flags);
4213 /*****************************************************************************/
4216 * Send a flow control character.
4219 static void stl_sc26198sendflow(struct stlport *portp, int state)
4221 struct tty_struct *tty;
4222 unsigned long flags;
4225 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4229 tty = tty_port_tty_get(&portp->port);
4233 spin_lock_irqsave(&brd_lock, flags);
4234 BRDENABLE(portp->brdnr, portp->pagenr);
4236 mr0 = stl_sc26198getreg(portp, MR0);
4237 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4238 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4240 portp->stats.rxxon++;
4241 stl_sc26198wait(portp);
4242 stl_sc26198setreg(portp, MR0, mr0);
4244 mr0 = stl_sc26198getreg(portp, MR0);
4245 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4246 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4248 portp->stats.rxxoff++;
4249 stl_sc26198wait(portp);
4250 stl_sc26198setreg(portp, MR0, mr0);
4252 BRDDISABLE(portp->brdnr);
4253 spin_unlock_irqrestore(&brd_lock, flags);
4257 /*****************************************************************************/
4259 static void stl_sc26198flush(struct stlport *portp)
4261 unsigned long flags;
4263 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4268 spin_lock_irqsave(&brd_lock, flags);
4269 BRDENABLE(portp->brdnr, portp->pagenr);
4270 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4271 stl_sc26198setreg(portp, SCCR, portp->crenable);
4272 BRDDISABLE(portp->brdnr);
4273 portp->tx.tail = portp->tx.head;
4274 spin_unlock_irqrestore(&brd_lock, flags);
4277 /*****************************************************************************/
4280 * Return the current state of data flow on this port. This is only
4281 * really interresting when determining if data has fully completed
4282 * transmission or not... The sc26198 interrupt scheme cannot
4283 * determine when all data has actually drained, so we need to
4284 * check the port statusy register to be sure.
4287 static int stl_sc26198datastate(struct stlport *portp)
4289 unsigned long flags;
4292 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4296 if (test_bit(ASYI_TXBUSY, &portp->istate))
4299 spin_lock_irqsave(&brd_lock, flags);
4300 BRDENABLE(portp->brdnr, portp->pagenr);
4301 sr = stl_sc26198getreg(portp, SR);
4302 BRDDISABLE(portp->brdnr);
4303 spin_unlock_irqrestore(&brd_lock, flags);
4305 return (sr & SR_TXEMPTY) ? 0 : 1;
4308 /*****************************************************************************/
4311 * Delay for a small amount of time, to give the sc26198 a chance
4312 * to process a command...
4315 static void stl_sc26198wait(struct stlport *portp)
4319 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4324 for (i = 0; i < 20; i++)
4325 stl_sc26198getglobreg(portp, TSTR);
4328 /*****************************************************************************/
4331 * If we are TX flow controlled and in IXANY mode then we may
4332 * need to unflow control here. We gotta do this because of the
4333 * automatic flow control modes of the sc26198.
4336 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4340 mr0 = stl_sc26198getreg(portp, MR0);
4341 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4342 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4343 stl_sc26198wait(portp);
4344 stl_sc26198setreg(portp, MR0, mr0);
4345 clear_bit(ASYI_TXFLOWED, &portp->istate);
4348 /*****************************************************************************/
4351 * Interrupt service routine for sc26198 panels.
4354 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4356 struct stlport *portp;
4359 spin_lock(&brd_lock);
4362 * Work around bug in sc26198 chip... Cannot have A6 address
4363 * line of UART high, else iack will be returned as 0.
4365 outb(0, (iobase + 1));
4367 iack = inb(iobase + XP_IACK);
4368 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4370 if (iack & IVR_RXDATA)
4371 stl_sc26198rxisr(portp, iack);
4372 else if (iack & IVR_TXDATA)
4373 stl_sc26198txisr(portp);
4375 stl_sc26198otherisr(portp, iack);
4377 spin_unlock(&brd_lock);
4380 /*****************************************************************************/
4383 * Transmit interrupt handler. This has gotta be fast! Handling TX
4384 * chars is pretty simple, stuff as many as possible from the TX buffer
4385 * into the sc26198 FIFO.
4386 * In practice it is possible that interrupts are enabled but that the
4387 * port has been hung up. Need to handle not having any TX buffer here,
4388 * this is done by using the side effect that head and tail will also
4389 * be NULL if the buffer has been freed.
4392 static void stl_sc26198txisr(struct stlport *portp)
4394 struct tty_struct *tty;
4395 unsigned int ioaddr;
4400 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4402 ioaddr = portp->ioaddr;
4403 head = portp->tx.head;
4404 tail = portp->tx.tail;
4405 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4406 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4407 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4408 set_bit(ASYI_TXLOW, &portp->istate);
4409 tty = tty_port_tty_get(&portp->port);
4417 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4418 mr0 = inb(ioaddr + XP_DATA);
4419 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4420 portp->imr &= ~IR_TXRDY;
4421 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4422 outb(portp->imr, (ioaddr + XP_DATA));
4423 clear_bit(ASYI_TXBUSY, &portp->istate);
4425 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4426 outb(mr0, (ioaddr + XP_DATA));
4429 len = min(len, SC26198_TXFIFOSIZE);
4430 portp->stats.txtotal += len;
4431 stlen = min_t(unsigned int, len,
4432 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4433 outb(GTXFIFO, (ioaddr + XP_ADDR));
4434 outsb((ioaddr + XP_DATA), tail, stlen);
4437 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4438 tail = portp->tx.buf;
4440 outsb((ioaddr + XP_DATA), tail, len);
4443 portp->tx.tail = tail;
4447 /*****************************************************************************/
4450 * Receive character interrupt handler. Determine if we have good chars
4451 * or bad chars and then process appropriately. Good chars are easy
4452 * just shove the lot into the RX buffer and set all status byte to 0.
4453 * If a bad RX char then process as required. This routine needs to be
4454 * fast! In practice it is possible that we get an interrupt on a port
4455 * that is closed. This can happen on hangups - since they completely
4456 * shutdown a port not in user context. Need to handle this case.
4459 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4461 struct tty_struct *tty;
4462 unsigned int len, buflen, ioaddr;
4464 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4466 tty = tty_port_tty_get(&portp->port);
4467 ioaddr = portp->ioaddr;
4468 outb(GIBCR, (ioaddr + XP_ADDR));
4469 len = inb(ioaddr + XP_DATA) + 1;
4471 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4472 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4473 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4474 outb(GRXFIFO, (ioaddr + XP_ADDR));
4475 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4476 portp->stats.rxlost += len;
4477 portp->stats.rxtotal += len;
4479 len = min(len, buflen);
4482 outb(GRXFIFO, (ioaddr + XP_ADDR));
4483 tty_prepare_flip_string(tty, &ptr, len);
4484 insb((ioaddr + XP_DATA), ptr, len);
4485 tty_schedule_flip(tty);
4486 portp->stats.rxtotal += len;
4490 stl_sc26198rxbadchars(portp);
4494 * If we are TX flow controlled and in IXANY mode then we may need
4495 * to unflow control here. We gotta do this because of the automatic
4496 * flow control modes of the sc26198.
4498 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4499 if ((tty != NULL) &&
4500 (tty->termios != NULL) &&
4501 (tty->termios->c_iflag & IXANY)) {
4502 stl_sc26198txunflow(portp, tty);
4508 /*****************************************************************************/
4511 * Process an RX bad character.
4514 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4516 struct tty_struct *tty;
4517 unsigned int ioaddr;
4519 tty = tty_port_tty_get(&portp->port);
4520 ioaddr = portp->ioaddr;
4522 if (status & SR_RXPARITY)
4523 portp->stats.rxparity++;
4524 if (status & SR_RXFRAMING)
4525 portp->stats.rxframing++;
4526 if (status & SR_RXOVERRUN)
4527 portp->stats.rxoverrun++;
4528 if (status & SR_RXBREAK)
4529 portp->stats.rxbreaks++;
4531 if ((tty != NULL) &&
4532 ((portp->rxignoremsk & status) == 0)) {
4533 if (portp->rxmarkmsk & status) {
4534 if (status & SR_RXBREAK) {
4536 if (portp->port.flags & ASYNC_SAK) {
4538 BRDENABLE(portp->brdnr, portp->pagenr);
4540 } else if (status & SR_RXPARITY)
4541 status = TTY_PARITY;
4542 else if (status & SR_RXFRAMING)
4544 else if(status & SR_RXOVERRUN)
4545 status = TTY_OVERRUN;
4551 tty_insert_flip_char(tty, ch, status);
4552 tty_schedule_flip(tty);
4555 portp->stats.rxtotal++;
4560 /*****************************************************************************/
4563 * Process all characters in the RX FIFO of the UART. Check all char
4564 * status bytes as well, and process as required. We need to check
4565 * all bytes in the FIFO, in case some more enter the FIFO while we
4566 * are here. To get the exact character error type we need to switch
4567 * into CHAR error mode (that is why we need to make sure we empty
4571 static void stl_sc26198rxbadchars(struct stlport *portp)
4573 unsigned char status, mr1;
4577 * To get the precise error type for each character we must switch
4578 * back into CHAR error mode.
4580 mr1 = stl_sc26198getreg(portp, MR1);
4581 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4583 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4584 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4585 ch = stl_sc26198getreg(portp, RXFIFO);
4586 stl_sc26198rxbadch(portp, status, ch);
4590 * To get correct interrupt class we must switch back into BLOCK
4593 stl_sc26198setreg(portp, MR1, mr1);
4596 /*****************************************************************************/
4599 * Other interrupt handler. This includes modem signals, flow
4600 * control actions, etc. Most stuff is left to off-level interrupt
4604 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4606 unsigned char cir, ipr, xisr;
4608 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4610 cir = stl_sc26198getglobreg(portp, CIR);
4612 switch (cir & CIR_SUBTYPEMASK) {
4614 ipr = stl_sc26198getreg(portp, IPR);
4615 if (ipr & IPR_DCDCHANGE) {
4616 stl_cd_change(portp);
4617 portp->stats.modem++;
4620 case CIR_SUBXONXOFF:
4621 xisr = stl_sc26198getreg(portp, XISR);
4622 if (xisr & XISR_RXXONGOT) {
4623 set_bit(ASYI_TXFLOWED, &portp->istate);
4624 portp->stats.txxoff++;
4626 if (xisr & XISR_RXXOFFGOT) {
4627 clear_bit(ASYI_TXFLOWED, &portp->istate);
4628 portp->stats.txxon++;
4632 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4633 stl_sc26198rxbadchars(portp);
4640 static void stl_free_isabrds(void)
4642 struct stlbrd *brdp;
4645 for (i = 0; i < stl_nrbrds; i++) {
4646 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4649 free_irq(brdp->irq, brdp);
4651 stl_cleanup_panels(brdp);
4653 release_region(brdp->ioaddr1, brdp->iosize1);
4654 if (brdp->iosize2 > 0)
4655 release_region(brdp->ioaddr2, brdp->iosize2);
4663 * Loadable module initialization stuff.
4665 static int __init stallion_module_init(void)
4667 struct stlbrd *brdp;
4668 struct stlconf conf;
4672 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4674 spin_lock_init(&stallion_lock);
4675 spin_lock_init(&brd_lock);
4677 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4683 stl_serial->owner = THIS_MODULE;
4684 stl_serial->driver_name = stl_drvname;
4685 stl_serial->name = "ttyE";
4686 stl_serial->major = STL_SERIALMAJOR;
4687 stl_serial->minor_start = 0;
4688 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4689 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4690 stl_serial->init_termios = stl_deftermios;
4691 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4692 tty_set_operations(stl_serial, &stl_ops);
4694 retval = tty_register_driver(stl_serial);
4696 printk("STALLION: failed to register serial driver\n");
4701 * Find any dynamically supported boards. That is via module load
4704 for (i = stl_nrbrds; i < stl_nargs; i++) {
4705 memset(&conf, 0, sizeof(conf));
4706 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4708 if ((brdp = stl_allocbrd()) == NULL)
4711 brdp->brdtype = conf.brdtype;
4712 brdp->ioaddr1 = conf.ioaddr1;
4713 brdp->ioaddr2 = conf.ioaddr2;
4714 brdp->irq = conf.irq;
4715 brdp->irqtype = conf.irqtype;
4716 stl_brds[brdp->brdnr] = brdp;
4717 if (stl_brdinit(brdp)) {
4718 stl_brds[brdp->brdnr] = NULL;
4721 for (j = 0; j < brdp->nrports; j++)
4722 tty_register_device(stl_serial,
4723 brdp->brdnr * STL_MAXPORTS + j, NULL);
4728 /* this has to be _after_ isa finding because of locking */
4729 retval = pci_register_driver(&stl_pcidriver);
4730 if (retval && stl_nrbrds == 0) {
4731 printk(KERN_ERR "STALLION: can't register pci driver\n");
4736 * Set up a character driver for per board stuff. This is mainly used
4737 * to do stats ioctls on the ports.
4739 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4740 printk("STALLION: failed to register serial board device\n");
4742 stallion_class = class_create(THIS_MODULE, "staliomem");
4743 if (IS_ERR(stallion_class))
4744 printk("STALLION: failed to create class\n");
4745 for (i = 0; i < 4; i++)
4746 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4747 NULL, "staliomem%d", i);
4751 tty_unregister_driver(stl_serial);
4753 put_tty_driver(stl_serial);
4758 static void __exit stallion_module_exit(void)
4760 struct stlbrd *brdp;
4763 pr_debug("cleanup_module()\n");
4765 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4769 * Free up all allocated resources used by the ports. This includes
4770 * memory and interrupts. As part of this process we will also do
4771 * a hangup on every open port - to try to flush out any processes
4772 * hanging onto ports.
4774 for (i = 0; i < stl_nrbrds; i++) {
4775 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4777 for (j = 0; j < brdp->nrports; j++)
4778 tty_unregister_device(stl_serial,
4779 brdp->brdnr * STL_MAXPORTS + j);
4782 for (i = 0; i < 4; i++)
4783 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4784 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4785 class_destroy(stallion_class);
4787 pci_unregister_driver(&stl_pcidriver);
4791 tty_unregister_driver(stl_serial);
4792 put_tty_driver(stl_serial);
4795 module_init(stallion_module_init);
4796 module_exit(stallion_module_exit);
4798 MODULE_AUTHOR("Greg Ungerer");
4799 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4800 MODULE_LICENSE("GPL");