make sysctl/kernel/core_pattern and fs/exec.c agree on maximum core filename size
[linux-2.6] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24
25 /* list of open channels, for cpu hotplug */
26 static DEFINE_MUTEX(relay_channels_mutex);
27 static LIST_HEAD(relay_channels);
28
29 /*
30  * close() vm_op implementation for relay file mapping.
31  */
32 static void relay_file_mmap_close(struct vm_area_struct *vma)
33 {
34         struct rchan_buf *buf = vma->vm_private_data;
35         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
36 }
37
38 /*
39  * nopage() vm_op implementation for relay file mapping.
40  */
41 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
42                                      unsigned long address,
43                                      int *type)
44 {
45         struct page *page;
46         struct rchan_buf *buf = vma->vm_private_data;
47         unsigned long offset = address - vma->vm_start;
48
49         if (address > vma->vm_end)
50                 return NOPAGE_SIGBUS; /* Disallow mremap */
51         if (!buf)
52                 return NOPAGE_OOM;
53
54         page = vmalloc_to_page(buf->start + offset);
55         if (!page)
56                 return NOPAGE_OOM;
57         get_page(page);
58
59         if (type)
60                 *type = VM_FAULT_MINOR;
61
62         return page;
63 }
64
65 /*
66  * vm_ops for relay file mappings.
67  */
68 static struct vm_operations_struct relay_file_mmap_ops = {
69         .nopage = relay_buf_nopage,
70         .close = relay_file_mmap_close,
71 };
72
73 /**
74  *      relay_mmap_buf: - mmap channel buffer to process address space
75  *      @buf: relay channel buffer
76  *      @vma: vm_area_struct describing memory to be mapped
77  *
78  *      Returns 0 if ok, negative on error
79  *
80  *      Caller should already have grabbed mmap_sem.
81  */
82 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
83 {
84         unsigned long length = vma->vm_end - vma->vm_start;
85         struct file *filp = vma->vm_file;
86
87         if (!buf)
88                 return -EBADF;
89
90         if (length != (unsigned long)buf->chan->alloc_size)
91                 return -EINVAL;
92
93         vma->vm_ops = &relay_file_mmap_ops;
94         vma->vm_private_data = buf;
95         buf->chan->cb->buf_mapped(buf, filp);
96
97         return 0;
98 }
99
100 /**
101  *      relay_alloc_buf - allocate a channel buffer
102  *      @buf: the buffer struct
103  *      @size: total size of the buffer
104  *
105  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106  *      passed in size will get page aligned, if it isn't already.
107  */
108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
109 {
110         void *mem;
111         unsigned int i, j, n_pages;
112
113         *size = PAGE_ALIGN(*size);
114         n_pages = *size >> PAGE_SHIFT;
115
116         buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
117         if (!buf->page_array)
118                 return NULL;
119
120         for (i = 0; i < n_pages; i++) {
121                 buf->page_array[i] = alloc_page(GFP_KERNEL);
122                 if (unlikely(!buf->page_array[i]))
123                         goto depopulate;
124         }
125         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
126         if (!mem)
127                 goto depopulate;
128
129         memset(mem, 0, *size);
130         buf->page_count = n_pages;
131         return mem;
132
133 depopulate:
134         for (j = 0; j < i; j++)
135                 __free_page(buf->page_array[j]);
136         kfree(buf->page_array);
137         return NULL;
138 }
139
140 /**
141  *      relay_create_buf - allocate and initialize a channel buffer
142  *      @chan: the relay channel
143  *
144  *      Returns channel buffer if successful, %NULL otherwise.
145  */
146 struct rchan_buf *relay_create_buf(struct rchan *chan)
147 {
148         struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
149         if (!buf)
150                 return NULL;
151
152         buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
153         if (!buf->padding)
154                 goto free_buf;
155
156         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
157         if (!buf->start)
158                 goto free_buf;
159
160         buf->chan = chan;
161         kref_get(&buf->chan->kref);
162         return buf;
163
164 free_buf:
165         kfree(buf->padding);
166         kfree(buf);
167         return NULL;
168 }
169
170 /**
171  *      relay_destroy_channel - free the channel struct
172  *      @kref: target kernel reference that contains the relay channel
173  *
174  *      Should only be called from kref_put().
175  */
176 void relay_destroy_channel(struct kref *kref)
177 {
178         struct rchan *chan = container_of(kref, struct rchan, kref);
179         kfree(chan);
180 }
181
182 /**
183  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
184  *      @buf: the buffer struct
185  */
186 void relay_destroy_buf(struct rchan_buf *buf)
187 {
188         struct rchan *chan = buf->chan;
189         unsigned int i;
190
191         if (likely(buf->start)) {
192                 vunmap(buf->start);
193                 for (i = 0; i < buf->page_count; i++)
194                         __free_page(buf->page_array[i]);
195                 kfree(buf->page_array);
196         }
197         chan->buf[buf->cpu] = NULL;
198         kfree(buf->padding);
199         kfree(buf);
200         kref_put(&chan->kref, relay_destroy_channel);
201 }
202
203 /**
204  *      relay_remove_buf - remove a channel buffer
205  *      @kref: target kernel reference that contains the relay buffer
206  *
207  *      Removes the file from the fileystem, which also frees the
208  *      rchan_buf_struct and the channel buffer.  Should only be called from
209  *      kref_put().
210  */
211 void relay_remove_buf(struct kref *kref)
212 {
213         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
214         buf->chan->cb->remove_buf_file(buf->dentry);
215         relay_destroy_buf(buf);
216 }
217
218 /**
219  *      relay_buf_empty - boolean, is the channel buffer empty?
220  *      @buf: channel buffer
221  *
222  *      Returns 1 if the buffer is empty, 0 otherwise.
223  */
224 int relay_buf_empty(struct rchan_buf *buf)
225 {
226         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
227 }
228 EXPORT_SYMBOL_GPL(relay_buf_empty);
229
230 /**
231  *      relay_buf_full - boolean, is the channel buffer full?
232  *      @buf: channel buffer
233  *
234  *      Returns 1 if the buffer is full, 0 otherwise.
235  */
236 int relay_buf_full(struct rchan_buf *buf)
237 {
238         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
239         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
240 }
241 EXPORT_SYMBOL_GPL(relay_buf_full);
242
243 /*
244  * High-level relay kernel API and associated functions.
245  */
246
247 /*
248  * rchan_callback implementations defining default channel behavior.  Used
249  * in place of corresponding NULL values in client callback struct.
250  */
251
252 /*
253  * subbuf_start() default callback.  Does nothing.
254  */
255 static int subbuf_start_default_callback (struct rchan_buf *buf,
256                                           void *subbuf,
257                                           void *prev_subbuf,
258                                           size_t prev_padding)
259 {
260         if (relay_buf_full(buf))
261                 return 0;
262
263         return 1;
264 }
265
266 /*
267  * buf_mapped() default callback.  Does nothing.
268  */
269 static void buf_mapped_default_callback(struct rchan_buf *buf,
270                                         struct file *filp)
271 {
272 }
273
274 /*
275  * buf_unmapped() default callback.  Does nothing.
276  */
277 static void buf_unmapped_default_callback(struct rchan_buf *buf,
278                                           struct file *filp)
279 {
280 }
281
282 /*
283  * create_buf_file_create() default callback.  Does nothing.
284  */
285 static struct dentry *create_buf_file_default_callback(const char *filename,
286                                                        struct dentry *parent,
287                                                        int mode,
288                                                        struct rchan_buf *buf,
289                                                        int *is_global)
290 {
291         return NULL;
292 }
293
294 /*
295  * remove_buf_file() default callback.  Does nothing.
296  */
297 static int remove_buf_file_default_callback(struct dentry *dentry)
298 {
299         return -EINVAL;
300 }
301
302 /* relay channel default callbacks */
303 static struct rchan_callbacks default_channel_callbacks = {
304         .subbuf_start = subbuf_start_default_callback,
305         .buf_mapped = buf_mapped_default_callback,
306         .buf_unmapped = buf_unmapped_default_callback,
307         .create_buf_file = create_buf_file_default_callback,
308         .remove_buf_file = remove_buf_file_default_callback,
309 };
310
311 /**
312  *      wakeup_readers - wake up readers waiting on a channel
313  *      @data: contains the channel buffer
314  *
315  *      This is the timer function used to defer reader waking.
316  */
317 static void wakeup_readers(unsigned long data)
318 {
319         struct rchan_buf *buf = (struct rchan_buf *)data;
320         wake_up_interruptible(&buf->read_wait);
321 }
322
323 /**
324  *      __relay_reset - reset a channel buffer
325  *      @buf: the channel buffer
326  *      @init: 1 if this is a first-time initialization
327  *
328  *      See relay_reset() for description of effect.
329  */
330 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
331 {
332         size_t i;
333
334         if (init) {
335                 init_waitqueue_head(&buf->read_wait);
336                 kref_init(&buf->kref);
337                 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
338         } else
339                 del_timer_sync(&buf->timer);
340
341         buf->subbufs_produced = 0;
342         buf->subbufs_consumed = 0;
343         buf->bytes_consumed = 0;
344         buf->finalized = 0;
345         buf->data = buf->start;
346         buf->offset = 0;
347
348         for (i = 0; i < buf->chan->n_subbufs; i++)
349                 buf->padding[i] = 0;
350
351         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
352 }
353
354 /**
355  *      relay_reset - reset the channel
356  *      @chan: the channel
357  *
358  *      This has the effect of erasing all data from all channel buffers
359  *      and restarting the channel in its initial state.  The buffers
360  *      are not freed, so any mappings are still in effect.
361  *
362  *      NOTE. Care should be taken that the channel isn't actually
363  *      being used by anything when this call is made.
364  */
365 void relay_reset(struct rchan *chan)
366 {
367         unsigned int i;
368
369         if (!chan)
370                 return;
371
372         if (chan->is_global && chan->buf[0]) {
373                 __relay_reset(chan->buf[0], 0);
374                 return;
375         }
376
377         mutex_lock(&relay_channels_mutex);
378         for_each_online_cpu(i)
379                 if (chan->buf[i])
380                         __relay_reset(chan->buf[i], 0);
381         mutex_unlock(&relay_channels_mutex);
382 }
383 EXPORT_SYMBOL_GPL(relay_reset);
384
385 /*
386  *      relay_open_buf - create a new relay channel buffer
387  *
388  *      used by relay_open() and CPU hotplug.
389  */
390 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
391 {
392         struct rchan_buf *buf = NULL;
393         struct dentry *dentry;
394         char *tmpname;
395
396         if (chan->is_global)
397                 return chan->buf[0];
398
399         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
400         if (!tmpname)
401                 goto end;
402         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
403
404         buf = relay_create_buf(chan);
405         if (!buf)
406                 goto free_name;
407
408         buf->cpu = cpu;
409         __relay_reset(buf, 1);
410
411         /* Create file in fs */
412         dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
413                                            buf, &chan->is_global);
414         if (!dentry)
415                 goto free_buf;
416
417         buf->dentry = dentry;
418
419         if(chan->is_global) {
420                 chan->buf[0] = buf;
421                 buf->cpu = 0;
422         }
423
424         goto free_name;
425
426 free_buf:
427         relay_destroy_buf(buf);
428 free_name:
429         kfree(tmpname);
430 end:
431         return buf;
432 }
433
434 /**
435  *      relay_close_buf - close a channel buffer
436  *      @buf: channel buffer
437  *
438  *      Marks the buffer finalized and restores the default callbacks.
439  *      The channel buffer and channel buffer data structure are then freed
440  *      automatically when the last reference is given up.
441  */
442 static void relay_close_buf(struct rchan_buf *buf)
443 {
444         buf->finalized = 1;
445         del_timer_sync(&buf->timer);
446         kref_put(&buf->kref, relay_remove_buf);
447 }
448
449 static void setup_callbacks(struct rchan *chan,
450                                    struct rchan_callbacks *cb)
451 {
452         if (!cb) {
453                 chan->cb = &default_channel_callbacks;
454                 return;
455         }
456
457         if (!cb->subbuf_start)
458                 cb->subbuf_start = subbuf_start_default_callback;
459         if (!cb->buf_mapped)
460                 cb->buf_mapped = buf_mapped_default_callback;
461         if (!cb->buf_unmapped)
462                 cb->buf_unmapped = buf_unmapped_default_callback;
463         if (!cb->create_buf_file)
464                 cb->create_buf_file = create_buf_file_default_callback;
465         if (!cb->remove_buf_file)
466                 cb->remove_buf_file = remove_buf_file_default_callback;
467         chan->cb = cb;
468 }
469
470 /**
471  *      relay_hotcpu_callback - CPU hotplug callback
472  *      @nb: notifier block
473  *      @action: hotplug action to take
474  *      @hcpu: CPU number
475  *
476  *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
477  */
478 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
479                                 unsigned long action,
480                                 void *hcpu)
481 {
482         unsigned int hotcpu = (unsigned long)hcpu;
483         struct rchan *chan;
484
485         switch(action) {
486         case CPU_UP_PREPARE:
487         case CPU_UP_PREPARE_FROZEN:
488                 mutex_lock(&relay_channels_mutex);
489                 list_for_each_entry(chan, &relay_channels, list) {
490                         if (chan->buf[hotcpu])
491                                 continue;
492                         chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
493                         if(!chan->buf[hotcpu]) {
494                                 printk(KERN_ERR
495                                         "relay_hotcpu_callback: cpu %d buffer "
496                                         "creation failed\n", hotcpu);
497                                 mutex_unlock(&relay_channels_mutex);
498                                 return NOTIFY_BAD;
499                         }
500                 }
501                 mutex_unlock(&relay_channels_mutex);
502                 break;
503         case CPU_DEAD:
504         case CPU_DEAD_FROZEN:
505                 /* No need to flush the cpu : will be flushed upon
506                  * final relay_flush() call. */
507                 break;
508         }
509         return NOTIFY_OK;
510 }
511
512 /**
513  *      relay_open - create a new relay channel
514  *      @base_filename: base name of files to create
515  *      @parent: dentry of parent directory, %NULL for root directory
516  *      @subbuf_size: size of sub-buffers
517  *      @n_subbufs: number of sub-buffers
518  *      @cb: client callback functions
519  *      @private_data: user-defined data
520  *
521  *      Returns channel pointer if successful, %NULL otherwise.
522  *
523  *      Creates a channel buffer for each cpu using the sizes and
524  *      attributes specified.  The created channel buffer files
525  *      will be named base_filename0...base_filenameN-1.  File
526  *      permissions will be %S_IRUSR.
527  */
528 struct rchan *relay_open(const char *base_filename,
529                          struct dentry *parent,
530                          size_t subbuf_size,
531                          size_t n_subbufs,
532                          struct rchan_callbacks *cb,
533                          void *private_data)
534 {
535         unsigned int i;
536         struct rchan *chan;
537         if (!base_filename)
538                 return NULL;
539
540         if (!(subbuf_size && n_subbufs))
541                 return NULL;
542
543         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
544         if (!chan)
545                 return NULL;
546
547         chan->version = RELAYFS_CHANNEL_VERSION;
548         chan->n_subbufs = n_subbufs;
549         chan->subbuf_size = subbuf_size;
550         chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
551         chan->parent = parent;
552         chan->private_data = private_data;
553         strlcpy(chan->base_filename, base_filename, NAME_MAX);
554         setup_callbacks(chan, cb);
555         kref_init(&chan->kref);
556
557         mutex_lock(&relay_channels_mutex);
558         for_each_online_cpu(i) {
559                 chan->buf[i] = relay_open_buf(chan, i);
560                 if (!chan->buf[i])
561                         goto free_bufs;
562         }
563         list_add(&chan->list, &relay_channels);
564         mutex_unlock(&relay_channels_mutex);
565
566         return chan;
567
568 free_bufs:
569         for_each_online_cpu(i) {
570                 if (!chan->buf[i])
571                         break;
572                 relay_close_buf(chan->buf[i]);
573         }
574
575         kref_put(&chan->kref, relay_destroy_channel);
576         mutex_unlock(&relay_channels_mutex);
577         return NULL;
578 }
579 EXPORT_SYMBOL_GPL(relay_open);
580
581 /**
582  *      relay_switch_subbuf - switch to a new sub-buffer
583  *      @buf: channel buffer
584  *      @length: size of current event
585  *
586  *      Returns either the length passed in or 0 if full.
587  *
588  *      Performs sub-buffer-switch tasks such as invoking callbacks,
589  *      updating padding counts, waking up readers, etc.
590  */
591 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
592 {
593         void *old, *new;
594         size_t old_subbuf, new_subbuf;
595
596         if (unlikely(length > buf->chan->subbuf_size))
597                 goto toobig;
598
599         if (buf->offset != buf->chan->subbuf_size + 1) {
600                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
601                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
602                 buf->padding[old_subbuf] = buf->prev_padding;
603                 buf->subbufs_produced++;
604                 buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
605                         buf->padding[old_subbuf];
606                 smp_mb();
607                 if (waitqueue_active(&buf->read_wait))
608                         /*
609                          * Calling wake_up_interruptible() from here
610                          * will deadlock if we happen to be logging
611                          * from the scheduler (trying to re-grab
612                          * rq->lock), so defer it.
613                          */
614                         __mod_timer(&buf->timer, jiffies + 1);
615         }
616
617         old = buf->data;
618         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
619         new = buf->start + new_subbuf * buf->chan->subbuf_size;
620         buf->offset = 0;
621         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
622                 buf->offset = buf->chan->subbuf_size + 1;
623                 return 0;
624         }
625         buf->data = new;
626         buf->padding[new_subbuf] = 0;
627
628         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
629                 goto toobig;
630
631         return length;
632
633 toobig:
634         buf->chan->last_toobig = length;
635         return 0;
636 }
637 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
638
639 /**
640  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
641  *      @chan: the channel
642  *      @cpu: the cpu associated with the channel buffer to update
643  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
644  *
645  *      Adds to the channel buffer's consumed sub-buffer count.
646  *      subbufs_consumed should be the number of sub-buffers newly consumed,
647  *      not the total consumed.
648  *
649  *      NOTE. Kernel clients don't need to call this function if the channel
650  *      mode is 'overwrite'.
651  */
652 void relay_subbufs_consumed(struct rchan *chan,
653                             unsigned int cpu,
654                             size_t subbufs_consumed)
655 {
656         struct rchan_buf *buf;
657
658         if (!chan)
659                 return;
660
661         if (cpu >= NR_CPUS || !chan->buf[cpu])
662                 return;
663
664         buf = chan->buf[cpu];
665         buf->subbufs_consumed += subbufs_consumed;
666         if (buf->subbufs_consumed > buf->subbufs_produced)
667                 buf->subbufs_consumed = buf->subbufs_produced;
668 }
669 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
670
671 /**
672  *      relay_close - close the channel
673  *      @chan: the channel
674  *
675  *      Closes all channel buffers and frees the channel.
676  */
677 void relay_close(struct rchan *chan)
678 {
679         unsigned int i;
680
681         if (!chan)
682                 return;
683
684         mutex_lock(&relay_channels_mutex);
685         if (chan->is_global && chan->buf[0])
686                 relay_close_buf(chan->buf[0]);
687         else
688                 for_each_possible_cpu(i)
689                         if (chan->buf[i])
690                                 relay_close_buf(chan->buf[i]);
691
692         if (chan->last_toobig)
693                 printk(KERN_WARNING "relay: one or more items not logged "
694                        "[item size (%Zd) > sub-buffer size (%Zd)]\n",
695                        chan->last_toobig, chan->subbuf_size);
696
697         list_del(&chan->list);
698         kref_put(&chan->kref, relay_destroy_channel);
699         mutex_unlock(&relay_channels_mutex);
700 }
701 EXPORT_SYMBOL_GPL(relay_close);
702
703 /**
704  *      relay_flush - close the channel
705  *      @chan: the channel
706  *
707  *      Flushes all channel buffers, i.e. forces buffer switch.
708  */
709 void relay_flush(struct rchan *chan)
710 {
711         unsigned int i;
712
713         if (!chan)
714                 return;
715
716         if (chan->is_global && chan->buf[0]) {
717                 relay_switch_subbuf(chan->buf[0], 0);
718                 return;
719         }
720
721         mutex_lock(&relay_channels_mutex);
722         for_each_possible_cpu(i)
723                 if (chan->buf[i])
724                         relay_switch_subbuf(chan->buf[i], 0);
725         mutex_unlock(&relay_channels_mutex);
726 }
727 EXPORT_SYMBOL_GPL(relay_flush);
728
729 /**
730  *      relay_file_open - open file op for relay files
731  *      @inode: the inode
732  *      @filp: the file
733  *
734  *      Increments the channel buffer refcount.
735  */
736 static int relay_file_open(struct inode *inode, struct file *filp)
737 {
738         struct rchan_buf *buf = inode->i_private;
739         kref_get(&buf->kref);
740         filp->private_data = buf;
741
742         return 0;
743 }
744
745 /**
746  *      relay_file_mmap - mmap file op for relay files
747  *      @filp: the file
748  *      @vma: the vma describing what to map
749  *
750  *      Calls upon relay_mmap_buf() to map the file into user space.
751  */
752 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
753 {
754         struct rchan_buf *buf = filp->private_data;
755         return relay_mmap_buf(buf, vma);
756 }
757
758 /**
759  *      relay_file_poll - poll file op for relay files
760  *      @filp: the file
761  *      @wait: poll table
762  *
763  *      Poll implemention.
764  */
765 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
766 {
767         unsigned int mask = 0;
768         struct rchan_buf *buf = filp->private_data;
769
770         if (buf->finalized)
771                 return POLLERR;
772
773         if (filp->f_mode & FMODE_READ) {
774                 poll_wait(filp, &buf->read_wait, wait);
775                 if (!relay_buf_empty(buf))
776                         mask |= POLLIN | POLLRDNORM;
777         }
778
779         return mask;
780 }
781
782 /**
783  *      relay_file_release - release file op for relay files
784  *      @inode: the inode
785  *      @filp: the file
786  *
787  *      Decrements the channel refcount, as the filesystem is
788  *      no longer using it.
789  */
790 static int relay_file_release(struct inode *inode, struct file *filp)
791 {
792         struct rchan_buf *buf = filp->private_data;
793         kref_put(&buf->kref, relay_remove_buf);
794
795         return 0;
796 }
797
798 /*
799  *      relay_file_read_consume - update the consumed count for the buffer
800  */
801 static void relay_file_read_consume(struct rchan_buf *buf,
802                                     size_t read_pos,
803                                     size_t bytes_consumed)
804 {
805         size_t subbuf_size = buf->chan->subbuf_size;
806         size_t n_subbufs = buf->chan->n_subbufs;
807         size_t read_subbuf;
808
809         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
810                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
811                 buf->bytes_consumed = 0;
812         }
813
814         buf->bytes_consumed += bytes_consumed;
815         read_subbuf = read_pos / buf->chan->subbuf_size;
816         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
817                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
818                     (buf->offset == subbuf_size))
819                         return;
820                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
821                 buf->bytes_consumed = 0;
822         }
823 }
824
825 /*
826  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
827  */
828 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
829 {
830         size_t subbuf_size = buf->chan->subbuf_size;
831         size_t n_subbufs = buf->chan->n_subbufs;
832         size_t produced = buf->subbufs_produced;
833         size_t consumed = buf->subbufs_consumed;
834
835         relay_file_read_consume(buf, read_pos, 0);
836
837         if (unlikely(buf->offset > subbuf_size)) {
838                 if (produced == consumed)
839                         return 0;
840                 return 1;
841         }
842
843         if (unlikely(produced - consumed >= n_subbufs)) {
844                 consumed = (produced / n_subbufs) * n_subbufs;
845                 buf->subbufs_consumed = consumed;
846         }
847         
848         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
849         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
850
851         if (consumed > produced)
852                 produced += n_subbufs * subbuf_size;
853         
854         if (consumed == produced)
855                 return 0;
856
857         return 1;
858 }
859
860 /**
861  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
862  *      @read_pos: file read position
863  *      @buf: relay channel buffer
864  */
865 static size_t relay_file_read_subbuf_avail(size_t read_pos,
866                                            struct rchan_buf *buf)
867 {
868         size_t padding, avail = 0;
869         size_t read_subbuf, read_offset, write_subbuf, write_offset;
870         size_t subbuf_size = buf->chan->subbuf_size;
871
872         write_subbuf = (buf->data - buf->start) / subbuf_size;
873         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
874         read_subbuf = read_pos / subbuf_size;
875         read_offset = read_pos % subbuf_size;
876         padding = buf->padding[read_subbuf];
877
878         if (read_subbuf == write_subbuf) {
879                 if (read_offset + padding < write_offset)
880                         avail = write_offset - (read_offset + padding);
881         } else
882                 avail = (subbuf_size - padding) - read_offset;
883
884         return avail;
885 }
886
887 /**
888  *      relay_file_read_start_pos - find the first available byte to read
889  *      @read_pos: file read position
890  *      @buf: relay channel buffer
891  *
892  *      If the @read_pos is in the middle of padding, return the
893  *      position of the first actually available byte, otherwise
894  *      return the original value.
895  */
896 static size_t relay_file_read_start_pos(size_t read_pos,
897                                         struct rchan_buf *buf)
898 {
899         size_t read_subbuf, padding, padding_start, padding_end;
900         size_t subbuf_size = buf->chan->subbuf_size;
901         size_t n_subbufs = buf->chan->n_subbufs;
902
903         read_subbuf = read_pos / subbuf_size;
904         padding = buf->padding[read_subbuf];
905         padding_start = (read_subbuf + 1) * subbuf_size - padding;
906         padding_end = (read_subbuf + 1) * subbuf_size;
907         if (read_pos >= padding_start && read_pos < padding_end) {
908                 read_subbuf = (read_subbuf + 1) % n_subbufs;
909                 read_pos = read_subbuf * subbuf_size;
910         }
911
912         return read_pos;
913 }
914
915 /**
916  *      relay_file_read_end_pos - return the new read position
917  *      @read_pos: file read position
918  *      @buf: relay channel buffer
919  *      @count: number of bytes to be read
920  */
921 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
922                                       size_t read_pos,
923                                       size_t count)
924 {
925         size_t read_subbuf, padding, end_pos;
926         size_t subbuf_size = buf->chan->subbuf_size;
927         size_t n_subbufs = buf->chan->n_subbufs;
928
929         read_subbuf = read_pos / subbuf_size;
930         padding = buf->padding[read_subbuf];
931         if (read_pos % subbuf_size + count + padding == subbuf_size)
932                 end_pos = (read_subbuf + 1) * subbuf_size;
933         else
934                 end_pos = read_pos + count;
935         if (end_pos >= subbuf_size * n_subbufs)
936                 end_pos = 0;
937
938         return end_pos;
939 }
940
941 /*
942  *      subbuf_read_actor - read up to one subbuf's worth of data
943  */
944 static int subbuf_read_actor(size_t read_start,
945                              struct rchan_buf *buf,
946                              size_t avail,
947                              read_descriptor_t *desc,
948                              read_actor_t actor)
949 {
950         void *from;
951         int ret = 0;
952
953         from = buf->start + read_start;
954         ret = avail;
955         if (copy_to_user(desc->arg.buf, from, avail)) {
956                 desc->error = -EFAULT;
957                 ret = 0;
958         }
959         desc->arg.data += ret;
960         desc->written += ret;
961         desc->count -= ret;
962
963         return ret;
964 }
965
966 /*
967  *      subbuf_send_actor - send up to one subbuf's worth of data
968  */
969 static int subbuf_send_actor(size_t read_start,
970                              struct rchan_buf *buf,
971                              size_t avail,
972                              read_descriptor_t *desc,
973                              read_actor_t actor)
974 {
975         unsigned long pidx, poff;
976         unsigned int subbuf_pages;
977         int ret = 0;
978
979         subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
980         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
981         poff = read_start & ~PAGE_MASK;
982         while (avail) {
983                 struct page *p = buf->page_array[pidx];
984                 unsigned int len;
985
986                 len = PAGE_SIZE - poff;
987                 if (len > avail)
988                         len = avail;
989
990                 len = actor(desc, p, poff, len);
991                 if (desc->error)
992                         break;
993
994                 avail -= len;
995                 ret += len;
996                 poff = 0;
997                 pidx = (pidx + 1) % subbuf_pages;
998         }
999
1000         return ret;
1001 }
1002
1003 typedef int (*subbuf_actor_t) (size_t read_start,
1004                                struct rchan_buf *buf,
1005                                size_t avail,
1006                                read_descriptor_t *desc,
1007                                read_actor_t actor);
1008
1009 /*
1010  *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1011  */
1012 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1013                                         subbuf_actor_t subbuf_actor,
1014                                         read_actor_t actor,
1015                                         read_descriptor_t *desc)
1016 {
1017         struct rchan_buf *buf = filp->private_data;
1018         size_t read_start, avail;
1019         int ret;
1020
1021         if (!desc->count)
1022                 return 0;
1023
1024         mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1025         do {
1026                 if (!relay_file_read_avail(buf, *ppos))
1027                         break;
1028
1029                 read_start = relay_file_read_start_pos(*ppos, buf);
1030                 avail = relay_file_read_subbuf_avail(read_start, buf);
1031                 if (!avail)
1032                         break;
1033
1034                 avail = min(desc->count, avail);
1035                 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1036                 if (desc->error < 0)
1037                         break;
1038
1039                 if (ret) {
1040                         relay_file_read_consume(buf, read_start, ret);
1041                         *ppos = relay_file_read_end_pos(buf, read_start, ret);
1042                 }
1043         } while (desc->count && ret);
1044         mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1045
1046         return desc->written;
1047 }
1048
1049 static ssize_t relay_file_read(struct file *filp,
1050                                char __user *buffer,
1051                                size_t count,
1052                                loff_t *ppos)
1053 {
1054         read_descriptor_t desc;
1055         desc.written = 0;
1056         desc.count = count;
1057         desc.arg.buf = buffer;
1058         desc.error = 0;
1059         return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1060                                        NULL, &desc);
1061 }
1062
1063 static ssize_t relay_file_sendfile(struct file *filp,
1064                                    loff_t *ppos,
1065                                    size_t count,
1066                                    read_actor_t actor,
1067                                    void *target)
1068 {
1069         read_descriptor_t desc;
1070         desc.written = 0;
1071         desc.count = count;
1072         desc.arg.data = target;
1073         desc.error = 0;
1074         return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
1075                                        actor, &desc);
1076 }
1077
1078 const struct file_operations relay_file_operations = {
1079         .open           = relay_file_open,
1080         .poll           = relay_file_poll,
1081         .mmap           = relay_file_mmap,
1082         .read           = relay_file_read,
1083         .llseek         = no_llseek,
1084         .release        = relay_file_release,
1085         .sendfile       = relay_file_sendfile,
1086 };
1087 EXPORT_SYMBOL_GPL(relay_file_operations);
1088
1089 static __init int relay_init(void)
1090 {
1091
1092         hotcpu_notifier(relay_hotcpu_callback, 0);
1093         return 0;
1094 }
1095
1096 module_init(relay_init);