Merge branch 'master' into upstream
[linux-2.6] / drivers / macintosh / windfarm_pm91.c
1 /*
2  * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
3  *
4  * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
5  *                    <benh@kernel.crashing.org>
6  *
7  * Released under the term of the GNU GPL v2.
8  *
9  * The algorithm used is the PID control algorithm, used the same
10  * way the published Darwin code does, using the same values that
11  * are present in the Darwin 8.2 snapshot property lists (note however
12  * that none of the code has been re-used, it's a complete re-implementation
13  *
14  * The various control loops found in Darwin config file are:
15  *
16  * PowerMac9,1
17  * ===========
18  *
19  * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
20  * try to play with other control loops fans). Drive bay is rather basic PID
21  * with one sensor and one fan. Slots area is a bit different as the Darwin
22  * driver is supposed to be capable of working in a special "AGP" mode which
23  * involves the presence of an AGP sensor and an AGP fan (possibly on the
24  * AGP card itself). I can't deal with that special mode as I don't have
25  * access to those additional sensor/fans for now (though ultimately, it would
26  * be possible to add sensor objects for them) so I'm only implementing the
27  * basic PCI slot control loop
28  */
29
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/delay.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/wait.h>
38 #include <linux/kmod.h>
39 #include <linux/device.h>
40 #include <linux/platform_device.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/sections.h>
46 #include <asm/smu.h>
47
48 #include "windfarm.h"
49 #include "windfarm_pid.h"
50
51 #define VERSION "0.4"
52
53 #undef DEBUG
54
55 #ifdef DEBUG
56 #define DBG(args...)    printk(args)
57 #else
58 #define DBG(args...)    do { } while(0)
59 #endif
60
61 /* define this to force CPU overtemp to 74 degree, useful for testing
62  * the overtemp code
63  */
64 #undef HACKED_OVERTEMP
65
66 static struct device *wf_smu_dev;
67
68 /* Controls & sensors */
69 static struct wf_sensor *sensor_cpu_power;
70 static struct wf_sensor *sensor_cpu_temp;
71 static struct wf_sensor *sensor_hd_temp;
72 static struct wf_sensor *sensor_slots_power;
73 static struct wf_control *fan_cpu_main;
74 static struct wf_control *fan_cpu_second;
75 static struct wf_control *fan_cpu_third;
76 static struct wf_control *fan_hd;
77 static struct wf_control *fan_slots;
78 static struct wf_control *cpufreq_clamp;
79
80 /* Set to kick the control loop into life */
81 static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
82
83 /* Failure handling.. could be nicer */
84 #define FAILURE_FAN             0x01
85 #define FAILURE_SENSOR          0x02
86 #define FAILURE_OVERTEMP        0x04
87
88 static unsigned int wf_smu_failure_state;
89 static int wf_smu_readjust, wf_smu_skipping;
90
91 /*
92  * ****** CPU Fans Control Loop ******
93  *
94  */
95
96
97 #define WF_SMU_CPU_FANS_INTERVAL        1
98 #define WF_SMU_CPU_FANS_MAX_HISTORY     16
99
100 /* State data used by the cpu fans control loop
101  */
102 struct wf_smu_cpu_fans_state {
103         int                     ticks;
104         s32                     cpu_setpoint;
105         struct wf_cpu_pid_state pid;
106 };
107
108 static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
109
110
111
112 /*
113  * ****** Drive Fan Control Loop ******
114  *
115  */
116
117 struct wf_smu_drive_fans_state {
118         int                     ticks;
119         s32                     setpoint;
120         struct wf_pid_state     pid;
121 };
122
123 static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
124
125 /*
126  * ****** Slots Fan Control Loop ******
127  *
128  */
129
130 struct wf_smu_slots_fans_state {
131         int                     ticks;
132         s32                     setpoint;
133         struct wf_pid_state     pid;
134 };
135
136 static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
137
138 /*
139  * ***** Implementation *****
140  *
141  */
142
143
144 static void wf_smu_create_cpu_fans(void)
145 {
146         struct wf_cpu_pid_param pid_param;
147         struct smu_sdbp_header *hdr;
148         struct smu_sdbp_cpupiddata *piddata;
149         struct smu_sdbp_fvt *fvt;
150         s32 tmax, tdelta, maxpow, powadj;
151
152         /* First, locate the PID params in SMU SBD */
153         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
154         if (hdr == 0) {
155                 printk(KERN_WARNING "windfarm: CPU PID fan config not found "
156                        "max fan speed\n");
157                 goto fail;
158         }
159         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
160
161         /* Get the FVT params for operating point 0 (the only supported one
162          * for now) in order to get tmax
163          */
164         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
165         if (hdr) {
166                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
167                 tmax = ((s32)fvt->maxtemp) << 16;
168         } else
169                 tmax = 0x5e0000; /* 94 degree default */
170
171         /* Alloc & initialize state */
172         wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
173                                   GFP_KERNEL);
174         if (wf_smu_cpu_fans == NULL)
175                 goto fail;
176         wf_smu_cpu_fans->ticks = 1;
177
178         /* Fill PID params */
179         pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
180         pid_param.history_len = piddata->history_len;
181         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
182                 printk(KERN_WARNING "windfarm: History size overflow on "
183                        "CPU control loop (%d)\n", piddata->history_len);
184                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
185         }
186         pid_param.gd = piddata->gd;
187         pid_param.gp = piddata->gp;
188         pid_param.gr = piddata->gr / pid_param.history_len;
189
190         tdelta = ((s32)piddata->target_temp_delta) << 16;
191         maxpow = ((s32)piddata->max_power) << 16;
192         powadj = ((s32)piddata->power_adj) << 16;
193
194         pid_param.tmax = tmax;
195         pid_param.ttarget = tmax - tdelta;
196         pid_param.pmaxadj = maxpow - powadj;
197
198         pid_param.min = fan_cpu_main->ops->get_min(fan_cpu_main);
199         pid_param.max = fan_cpu_main->ops->get_max(fan_cpu_main);
200
201         wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
202
203         DBG("wf: CPU Fan control initialized.\n");
204         DBG("    ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
205             FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
206             pid_param.min, pid_param.max);
207
208         return;
209
210  fail:
211         printk(KERN_WARNING "windfarm: CPU fan config not found\n"
212                "for this machine model, max fan speed\n");
213
214         if (cpufreq_clamp)
215                 wf_control_set_max(cpufreq_clamp);
216         if (fan_cpu_main)
217                 wf_control_set_max(fan_cpu_main);
218 }
219
220 static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
221 {
222         s32 new_setpoint, temp, power;
223         int rc;
224
225         if (--st->ticks != 0) {
226                 if (wf_smu_readjust)
227                         goto readjust;
228                 return;
229         }
230         st->ticks = WF_SMU_CPU_FANS_INTERVAL;
231
232         rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
233         if (rc) {
234                 printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
235                        rc);
236                 wf_smu_failure_state |= FAILURE_SENSOR;
237                 return;
238         }
239
240         rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
241         if (rc) {
242                 printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
243                        rc);
244                 wf_smu_failure_state |= FAILURE_SENSOR;
245                 return;
246         }
247
248         DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
249             FIX32TOPRINT(temp), FIX32TOPRINT(power));
250
251 #ifdef HACKED_OVERTEMP
252         if (temp > 0x4a0000)
253                 wf_smu_failure_state |= FAILURE_OVERTEMP;
254 #else
255         if (temp > st->pid.param.tmax)
256                 wf_smu_failure_state |= FAILURE_OVERTEMP;
257 #endif
258         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
259
260         DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
261
262         if (st->cpu_setpoint == new_setpoint)
263                 return;
264         st->cpu_setpoint = new_setpoint;
265  readjust:
266         if (fan_cpu_main && wf_smu_failure_state == 0) {
267                 rc = fan_cpu_main->ops->set_value(fan_cpu_main,
268                                                   st->cpu_setpoint);
269                 if (rc) {
270                         printk(KERN_WARNING "windfarm: CPU main fan"
271                                " error %d\n", rc);
272                         wf_smu_failure_state |= FAILURE_FAN;
273                 }
274         }
275         if (fan_cpu_second && wf_smu_failure_state == 0) {
276                 rc = fan_cpu_second->ops->set_value(fan_cpu_second,
277                                                     st->cpu_setpoint);
278                 if (rc) {
279                         printk(KERN_WARNING "windfarm: CPU second fan"
280                                " error %d\n", rc);
281                         wf_smu_failure_state |= FAILURE_FAN;
282                 }
283         }
284         if (fan_cpu_third && wf_smu_failure_state == 0) {
285                 rc = fan_cpu_main->ops->set_value(fan_cpu_third,
286                                                   st->cpu_setpoint);
287                 if (rc) {
288                         printk(KERN_WARNING "windfarm: CPU third fan"
289                                " error %d\n", rc);
290                         wf_smu_failure_state |= FAILURE_FAN;
291                 }
292         }
293 }
294
295 static void wf_smu_create_drive_fans(void)
296 {
297         struct wf_pid_param param = {
298                 .interval       = 5,
299                 .history_len    = 2,
300                 .gd             = 0x01e00000,
301                 .gp             = 0x00500000,
302                 .gr             = 0x00000000,
303                 .itarget        = 0x00200000,
304         };
305
306         /* Alloc & initialize state */
307         wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
308                                         GFP_KERNEL);
309         if (wf_smu_drive_fans == NULL) {
310                 printk(KERN_WARNING "windfarm: Memory allocation error"
311                        " max fan speed\n");
312                 goto fail;
313         }
314         wf_smu_drive_fans->ticks = 1;
315
316         /* Fill PID params */
317         param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
318         param.min = fan_hd->ops->get_min(fan_hd);
319         param.max = fan_hd->ops->get_max(fan_hd);
320         wf_pid_init(&wf_smu_drive_fans->pid, &param);
321
322         DBG("wf: Drive Fan control initialized.\n");
323         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
324             FIX32TOPRINT(param.itarget), param.min, param.max);
325         return;
326
327  fail:
328         if (fan_hd)
329                 wf_control_set_max(fan_hd);
330 }
331
332 static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
333 {
334         s32 new_setpoint, temp;
335         int rc;
336
337         if (--st->ticks != 0) {
338                 if (wf_smu_readjust)
339                         goto readjust;
340                 return;
341         }
342         st->ticks = st->pid.param.interval;
343
344         rc = sensor_hd_temp->ops->get_value(sensor_hd_temp, &temp);
345         if (rc) {
346                 printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
347                        rc);
348                 wf_smu_failure_state |= FAILURE_SENSOR;
349                 return;
350         }
351
352         DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
353             FIX32TOPRINT(temp));
354
355         if (temp > (st->pid.param.itarget + 0x50000))
356                 wf_smu_failure_state |= FAILURE_OVERTEMP;
357
358         new_setpoint = wf_pid_run(&st->pid, temp);
359
360         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
361
362         if (st->setpoint == new_setpoint)
363                 return;
364         st->setpoint = new_setpoint;
365  readjust:
366         if (fan_hd && wf_smu_failure_state == 0) {
367                 rc = fan_hd->ops->set_value(fan_hd, st->setpoint);
368                 if (rc) {
369                         printk(KERN_WARNING "windfarm: HD fan error %d\n",
370                                rc);
371                         wf_smu_failure_state |= FAILURE_FAN;
372                 }
373         }
374 }
375
376 static void wf_smu_create_slots_fans(void)
377 {
378         struct wf_pid_param param = {
379                 .interval       = 1,
380                 .history_len    = 8,
381                 .gd             = 0x00000000,
382                 .gp             = 0x00000000,
383                 .gr             = 0x00020000,
384                 .itarget        = 0x00000000
385         };
386
387         /* Alloc & initialize state */
388         wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
389                                         GFP_KERNEL);
390         if (wf_smu_slots_fans == NULL) {
391                 printk(KERN_WARNING "windfarm: Memory allocation error"
392                        " max fan speed\n");
393                 goto fail;
394         }
395         wf_smu_slots_fans->ticks = 1;
396
397         /* Fill PID params */
398         param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
399         param.min = fan_slots->ops->get_min(fan_slots);
400         param.max = fan_slots->ops->get_max(fan_slots);
401         wf_pid_init(&wf_smu_slots_fans->pid, &param);
402
403         DBG("wf: Slots Fan control initialized.\n");
404         DBG("    itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
405             FIX32TOPRINT(param.itarget), param.min, param.max);
406         return;
407
408  fail:
409         if (fan_slots)
410                 wf_control_set_max(fan_slots);
411 }
412
413 static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
414 {
415         s32 new_setpoint, power;
416         int rc;
417
418         if (--st->ticks != 0) {
419                 if (wf_smu_readjust)
420                         goto readjust;
421                 return;
422         }
423         st->ticks = st->pid.param.interval;
424
425         rc = sensor_slots_power->ops->get_value(sensor_slots_power, &power);
426         if (rc) {
427                 printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
428                        rc);
429                 wf_smu_failure_state |= FAILURE_SENSOR;
430                 return;
431         }
432
433         DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
434             FIX32TOPRINT(power));
435
436 #if 0 /* Check what makes a good overtemp condition */
437         if (power > (st->pid.param.itarget + 0x50000))
438                 wf_smu_failure_state |= FAILURE_OVERTEMP;
439 #endif
440
441         new_setpoint = wf_pid_run(&st->pid, power);
442
443         DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
444
445         if (st->setpoint == new_setpoint)
446                 return;
447         st->setpoint = new_setpoint;
448  readjust:
449         if (fan_slots && wf_smu_failure_state == 0) {
450                 rc = fan_slots->ops->set_value(fan_slots, st->setpoint);
451                 if (rc) {
452                         printk(KERN_WARNING "windfarm: Slots fan error %d\n",
453                                rc);
454                         wf_smu_failure_state |= FAILURE_FAN;
455                 }
456         }
457 }
458
459
460 /*
461  * ****** Setup / Init / Misc ... ******
462  *
463  */
464
465 static void wf_smu_tick(void)
466 {
467         unsigned int last_failure = wf_smu_failure_state;
468         unsigned int new_failure;
469
470         if (!wf_smu_started) {
471                 DBG("wf: creating control loops !\n");
472                 wf_smu_create_drive_fans();
473                 wf_smu_create_slots_fans();
474                 wf_smu_create_cpu_fans();
475                 wf_smu_started = 1;
476         }
477
478         /* Skipping ticks */
479         if (wf_smu_skipping && --wf_smu_skipping)
480                 return;
481
482         wf_smu_failure_state = 0;
483         if (wf_smu_drive_fans)
484                 wf_smu_drive_fans_tick(wf_smu_drive_fans);
485         if (wf_smu_slots_fans)
486                 wf_smu_slots_fans_tick(wf_smu_slots_fans);
487         if (wf_smu_cpu_fans)
488                 wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
489
490         wf_smu_readjust = 0;
491         new_failure = wf_smu_failure_state & ~last_failure;
492
493         /* If entering failure mode, clamp cpufreq and ramp all
494          * fans to full speed.
495          */
496         if (wf_smu_failure_state && !last_failure) {
497                 if (cpufreq_clamp)
498                         wf_control_set_max(cpufreq_clamp);
499                 if (fan_cpu_main)
500                         wf_control_set_max(fan_cpu_main);
501                 if (fan_cpu_second)
502                         wf_control_set_max(fan_cpu_second);
503                 if (fan_cpu_third)
504                         wf_control_set_max(fan_cpu_third);
505                 if (fan_hd)
506                         wf_control_set_max(fan_hd);
507                 if (fan_slots)
508                         wf_control_set_max(fan_slots);
509         }
510
511         /* If leaving failure mode, unclamp cpufreq and readjust
512          * all fans on next iteration
513          */
514         if (!wf_smu_failure_state && last_failure) {
515                 if (cpufreq_clamp)
516                         wf_control_set_min(cpufreq_clamp);
517                 wf_smu_readjust = 1;
518         }
519
520         /* Overtemp condition detected, notify and start skipping a couple
521          * ticks to let the temperature go down
522          */
523         if (new_failure & FAILURE_OVERTEMP) {
524                 wf_set_overtemp();
525                 wf_smu_skipping = 2;
526         }
527
528         /* We only clear the overtemp condition if overtemp is cleared
529          * _and_ no other failure is present. Since a sensor error will
530          * clear the overtemp condition (can't measure temperature) at
531          * the control loop levels, but we don't want to keep it clear
532          * here in this case
533          */
534         if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
535                 wf_clear_overtemp();
536 }
537
538
539 static void wf_smu_new_control(struct wf_control *ct)
540 {
541         if (wf_smu_all_controls_ok)
542                 return;
543
544         if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
545                 if (wf_get_control(ct) == 0)
546                         fan_cpu_main = ct;
547         }
548
549         if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
550                 if (wf_get_control(ct) == 0)
551                         fan_cpu_second = ct;
552         }
553
554         if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
555                 if (wf_get_control(ct) == 0)
556                         fan_cpu_third = ct;
557         }
558
559         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
560                 if (wf_get_control(ct) == 0)
561                         cpufreq_clamp = ct;
562         }
563
564         if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
565                 if (wf_get_control(ct) == 0)
566                         fan_hd = ct;
567         }
568
569         if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
570                 if (wf_get_control(ct) == 0)
571                         fan_slots = ct;
572         }
573
574         if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
575             fan_slots && cpufreq_clamp)
576                 wf_smu_all_controls_ok = 1;
577 }
578
579 static void wf_smu_new_sensor(struct wf_sensor *sr)
580 {
581         if (wf_smu_all_sensors_ok)
582                 return;
583
584         if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
585                 if (wf_get_sensor(sr) == 0)
586                         sensor_cpu_power = sr;
587         }
588
589         if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
590                 if (wf_get_sensor(sr) == 0)
591                         sensor_cpu_temp = sr;
592         }
593
594         if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
595                 if (wf_get_sensor(sr) == 0)
596                         sensor_hd_temp = sr;
597         }
598
599         if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
600                 if (wf_get_sensor(sr) == 0)
601                         sensor_slots_power = sr;
602         }
603
604         if (sensor_cpu_power && sensor_cpu_temp &&
605             sensor_hd_temp && sensor_slots_power)
606                 wf_smu_all_sensors_ok = 1;
607 }
608
609
610 static int wf_smu_notify(struct notifier_block *self,
611                                unsigned long event, void *data)
612 {
613         switch(event) {
614         case WF_EVENT_NEW_CONTROL:
615                 DBG("wf: new control %s detected\n",
616                     ((struct wf_control *)data)->name);
617                 wf_smu_new_control(data);
618                 wf_smu_readjust = 1;
619                 break;
620         case WF_EVENT_NEW_SENSOR:
621                 DBG("wf: new sensor %s detected\n",
622                     ((struct wf_sensor *)data)->name);
623                 wf_smu_new_sensor(data);
624                 break;
625         case WF_EVENT_TICK:
626                 if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
627                         wf_smu_tick();
628         }
629
630         return 0;
631 }
632
633 static struct notifier_block wf_smu_events = {
634         .notifier_call  = wf_smu_notify,
635 };
636
637 static int wf_init_pm(void)
638 {
639         printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
640
641         return 0;
642 }
643
644 static int wf_smu_probe(struct device *ddev)
645 {
646         wf_smu_dev = ddev;
647
648         wf_register_client(&wf_smu_events);
649
650         return 0;
651 }
652
653 static int wf_smu_remove(struct device *ddev)
654 {
655         wf_unregister_client(&wf_smu_events);
656
657         /* XXX We don't have yet a guarantee that our callback isn't
658          * in progress when returning from wf_unregister_client, so
659          * we add an arbitrary delay. I'll have to fix that in the core
660          */
661         msleep(1000);
662
663         /* Release all sensors */
664         /* One more crappy race: I don't think we have any guarantee here
665          * that the attribute callback won't race with the sensor beeing
666          * disposed of, and I'm not 100% certain what best way to deal
667          * with that except by adding locks all over... I'll do that
668          * eventually but heh, who ever rmmod this module anyway ?
669          */
670         if (sensor_cpu_power)
671                 wf_put_sensor(sensor_cpu_power);
672         if (sensor_cpu_temp)
673                 wf_put_sensor(sensor_cpu_temp);
674         if (sensor_hd_temp)
675                 wf_put_sensor(sensor_hd_temp);
676         if (sensor_slots_power)
677                 wf_put_sensor(sensor_slots_power);
678
679         /* Release all controls */
680         if (fan_cpu_main)
681                 wf_put_control(fan_cpu_main);
682         if (fan_cpu_second)
683                 wf_put_control(fan_cpu_second);
684         if (fan_cpu_third)
685                 wf_put_control(fan_cpu_third);
686         if (fan_hd)
687                 wf_put_control(fan_hd);
688         if (fan_slots)
689                 wf_put_control(fan_slots);
690         if (cpufreq_clamp)
691                 wf_put_control(cpufreq_clamp);
692
693         /* Destroy control loops state structures */
694         if (wf_smu_slots_fans)
695                 kfree(wf_smu_cpu_fans);
696         if (wf_smu_drive_fans)
697                 kfree(wf_smu_cpu_fans);
698         if (wf_smu_cpu_fans)
699                 kfree(wf_smu_cpu_fans);
700
701         wf_smu_dev = NULL;
702
703         return 0;
704 }
705
706 static struct device_driver wf_smu_driver = {
707         .name = "windfarm",
708         .bus = &platform_bus_type,
709         .probe = wf_smu_probe,
710         .remove = wf_smu_remove,
711 };
712
713
714 static int __init wf_smu_init(void)
715 {
716         int rc = -ENODEV;
717
718         if (machine_is_compatible("PowerMac9,1"))
719                 rc = wf_init_pm();
720
721         if (rc == 0) {
722 #ifdef MODULE
723                 request_module("windfarm_smu_controls");
724                 request_module("windfarm_smu_sensors");
725                 request_module("windfarm_lm75_sensor");
726
727 #endif /* MODULE */
728                 driver_register(&wf_smu_driver);
729         }
730
731         return rc;
732 }
733
734 static void __exit wf_smu_exit(void)
735 {
736
737         driver_unregister(&wf_smu_driver);
738 }
739
740
741 module_init(wf_smu_init);
742 module_exit(wf_smu_exit);
743
744 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
745 MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
746 MODULE_LICENSE("GPL");
747