ALSA: ca0106 - Add missing card->private_data initialization
[linux-2.6] / Documentation / ftrace.txt
1                 ftrace - Function Tracer
2                 ========================
3
4 Copyright 2008 Red Hat Inc.
5    Author:   Steven Rostedt <srostedt@redhat.com>
6   License:   The GNU Free Documentation License, Version 1.2
7                (dual licensed under the GPL v2)
8 Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
9              John Kacur, and David Teigland.
10
11 Written for: 2.6.28-rc2
12
13 Introduction
14 ------------
15
16 Ftrace is an internal tracer designed to help out developers and
17 designers of systems to find what is going on inside the kernel.
18 It can be used for debugging or analyzing latencies and performance
19 issues that take place outside of user-space.
20
21 Although ftrace is the function tracer, it also includes an
22 infrastructure that allows for other types of tracing. Some of the
23 tracers that are currently in ftrace include a tracer to trace
24 context switches, the time it takes for a high priority task to
25 run after it was woken up, the time interrupts are disabled, and
26 more (ftrace allows for tracer plugins, which means that the list of
27 tracers can always grow).
28
29
30 The File System
31 ---------------
32
33 Ftrace uses the debugfs file system to hold the control files as well
34 as the files to display output.
35
36 To mount the debugfs system:
37
38   # mkdir /debug
39   # mount -t debugfs nodev /debug
40
41 (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
42  this document will use /debug)
43
44 That's it! (assuming that you have ftrace configured into your kernel)
45
46 After mounting the debugfs, you can see a directory called
47 "tracing".  This directory contains the control and output files
48 of ftrace. Here is a list of some of the key files:
49
50
51  Note: all time values are in microseconds.
52
53   current_tracer: This is used to set or display the current tracer
54                 that is configured.
55
56   available_tracers: This holds the different types of tracers that
57                 have been compiled into the kernel. The tracers
58                 listed here can be configured by echoing their name
59                 into current_tracer.
60
61   tracing_enabled: This sets or displays whether the current_tracer
62                 is activated and tracing or not. Echo 0 into this
63                 file to disable the tracer or 1 to enable it.
64
65   trace: This file holds the output of the trace in a human readable
66                 format (described below).
67
68   latency_trace: This file shows the same trace but the information
69                 is organized more to display possible latencies
70                 in the system (described below).
71
72   trace_pipe: The output is the same as the "trace" file but this
73                 file is meant to be streamed with live tracing.
74                 Reads from this file will block until new data
75                 is retrieved. Unlike the "trace" and "latency_trace"
76                 files, this file is a consumer. This means reading
77                 from this file causes sequential reads to display
78                 more current data. Once data is read from this
79                 file, it is consumed, and will not be read
80                 again with a sequential read. The "trace" and
81                 "latency_trace" files are static, and if the
82                 tracer is not adding more data, they will display
83                 the same information every time they are read.
84
85   iter_ctrl: This file lets the user control the amount of data
86                 that is displayed in one of the above output
87                 files.
88
89   trace_max_latency: Some of the tracers record the max latency.
90                 For example, the time interrupts are disabled.
91                 This time is saved in this file. The max trace
92                 will also be stored, and displayed by either
93                 "trace" or "latency_trace".  A new max trace will
94                 only be recorded if the latency is greater than
95                 the value in this file. (in microseconds)
96
97   trace_entries: This sets or displays the number of bytes each CPU
98                 buffer can hold. The tracer buffers are the same size
99                 for each CPU. The displayed number is the size of the
100                  CPU buffer and not total size of all buffers. The
101                 trace buffers are allocated in pages (blocks of memory
102                 that the kernel uses for allocation, usually 4 KB in size).
103                 If the last page allocated has room for more bytes
104                 than requested, the rest of the page will be used,
105                 making the actual allocation bigger than requested.
106                 (Note, the size may not be a multiple of the page size due
107                 to buffer managment overhead.)
108
109                 This can only be updated when the current_tracer
110                 is set to "nop".
111
112   tracing_cpumask: This is a mask that lets the user only trace
113                 on specified CPUS. The format is a hex string
114                 representing the CPUS.
115
116   set_ftrace_filter: When dynamic ftrace is configured in (see the
117                 section below "dynamic ftrace"), the code is dynamically
118                 modified (code text rewrite) to disable calling of the
119                 function profiler (mcount). This lets tracing be configured
120                 in with practically no overhead in performance.  This also
121                 has a side effect of enabling or disabling specific functions
122                 to be traced. Echoing names of functions into this file
123                 will limit the trace to only those functions.
124
125   set_ftrace_notrace: This has an effect opposite to that of
126                 set_ftrace_filter. Any function that is added here will not
127                 be traced. If a function exists in both set_ftrace_filter
128                 and set_ftrace_notrace, the function will _not_ be traced.
129
130   available_filter_functions: This lists the functions that ftrace
131                 has processed and can trace. These are the function
132                 names that you can pass to "set_ftrace_filter" or
133                 "set_ftrace_notrace". (See the section "dynamic ftrace"
134                 below for more details.)
135
136
137 The Tracers
138 -----------
139
140 Here is the list of current tracers that may be configured.
141
142   function - function tracer that uses mcount to trace all functions.
143
144   sched_switch - traces the context switches between tasks.
145
146   irqsoff - traces the areas that disable interrupts and saves
147                 the trace with the longest max latency.
148                 See tracing_max_latency.  When a new max is recorded,
149                 it replaces the old trace. It is best to view this
150                 trace via the latency_trace file.
151
152   preemptoff - Similar to irqsoff but traces and records the amount of
153                 time for which preemption is disabled.
154
155   preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
156                  records the largest time for which irqs and/or preemption
157                  is disabled.
158
159   wakeup - Traces and records the max latency that it takes for
160                 the highest priority task to get scheduled after
161                 it has been woken up.
162
163   nop - This is not a tracer. To remove all tracers from tracing
164                 simply echo "nop" into current_tracer.
165
166
167 Examples of using the tracer
168 ----------------------------
169
170 Here are typical examples of using the tracers when controlling them only
171 with the debugfs interface (without using any user-land utilities).
172
173 Output format:
174 --------------
175
176 Here is an example of the output format of the file "trace"
177
178                              --------
179 # tracer: function
180 #
181 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
182 #              | |      |          |         |
183             bash-4251  [01] 10152.583854: path_put <-path_walk
184             bash-4251  [01] 10152.583855: dput <-path_put
185             bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
186                              --------
187
188 A header is printed with the tracer name that is represented by the trace.
189 In this case the tracer is "function". Then a header showing the format. Task
190 name "bash", the task PID "4251", the CPU that it was running on
191 "01", the timestamp in <secs>.<usecs> format, the function name that was
192 traced "path_put" and the parent function that called this function
193 "path_walk". The timestamp is the time at which the function was
194 entered.
195
196 The sched_switch tracer also includes tracing of task wakeups and
197 context switches.
198
199      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +  2916:115:S
200      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +    10:115:S
201      ksoftirqd/1-7     [01]  1453.070013:      7:115:R ==>    10:115:R
202         events/1-10    [01]  1453.070013:     10:115:S ==>  2916:115:R
203      kondemand/1-2916  [01]  1453.070013:   2916:115:S ==>     7:115:R
204      ksoftirqd/1-7     [01]  1453.070013:      7:115:S ==>     0:140:R
205
206 Wake ups are represented by a "+" and the context switches are shown as
207 "==>".  The format is:
208
209  Context switches:
210
211        Previous task              Next Task
212
213   <pid>:<prio>:<state>  ==>  <pid>:<prio>:<state>
214
215  Wake ups:
216
217        Current task               Task waking up
218
219   <pid>:<prio>:<state>    +  <pid>:<prio>:<state>
220
221 The prio is the internal kernel priority, which is the inverse of the
222 priority that is usually displayed by user-space tools. Zero represents
223 the highest priority (99). Prio 100 starts the "nice" priorities with
224 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
225 reserved for the idle task which is the lowest priority thread (pid 0).
226
227
228 Latency trace format
229 --------------------
230
231 For traces that display latency times, the latency_trace file gives
232 somewhat more information to see why a latency happened. Here is a typical
233 trace.
234
235 # tracer: irqsoff
236 #
237 irqsoff latency trace v1.1.5 on 2.6.26-rc8
238 --------------------------------------------------------------------
239  latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
240     -----------------
241     | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
242     -----------------
243  => started at: apic_timer_interrupt
244  => ended at:   do_softirq
245
246 #                _------=> CPU#
247 #               / _-----=> irqs-off
248 #              | / _----=> need-resched
249 #              || / _---=> hardirq/softirq
250 #              ||| / _--=> preempt-depth
251 #              |||| /
252 #              |||||     delay
253 #  cmd     pid ||||| time  |   caller
254 #     \   /    |||||   \   |   /
255   <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
256   <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
257   <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
258
259
260
261 This shows that the current tracer is "irqsoff" tracing the time for which
262 interrupts were disabled. It gives the trace version and the version
263 of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
264 the max latency in microsecs (97 us). The number of trace entries displayed
265 and the total number recorded (both are three: #3/3). The type of
266 preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
267 and are reserved for later use. #P is the number of online CPUS (#P:2).
268
269 The task is the process that was running when the latency occurred.
270 (swapper pid: 0).
271
272 The start and stop (the functions in which the interrupts were disabled and
273 enabled respectively) that caused the latencies:
274
275   apic_timer_interrupt is where the interrupts were disabled.
276   do_softirq is where they were enabled again.
277
278 The next lines after the header are the trace itself. The header
279 explains which is which.
280
281   cmd: The name of the process in the trace.
282
283   pid: The PID of that process.
284
285   CPU#: The CPU which the process was running on.
286
287   irqs-off: 'd' interrupts are disabled. '.' otherwise.
288             Note: If the architecture does not support a way to
289                   read the irq flags variable, an 'X' will always
290                   be printed here.
291
292   need-resched: 'N' task need_resched is set, '.' otherwise.
293
294   hardirq/softirq:
295         'H' - hard irq occurred inside a softirq.
296         'h' - hard irq is running
297         's' - soft irq is running
298         '.' - normal context.
299
300   preempt-depth: The level of preempt_disabled
301
302 The above is mostly meaningful for kernel developers.
303
304   time: This differs from the trace file output. The trace file output
305         includes an absolute timestamp. The timestamp used by the
306         latency_trace file is relative to the start of the trace.
307
308   delay: This is just to help catch your eye a bit better. And
309         needs to be fixed to be only relative to the same CPU.
310         The marks are determined by the difference between this
311         current trace and the next trace.
312          '!' - greater than preempt_mark_thresh (default 100)
313          '+' - greater than 1 microsecond
314          ' ' - less than or equal to 1 microsecond.
315
316   The rest is the same as the 'trace' file.
317
318
319 iter_ctrl
320 ---------
321
322 The iter_ctrl file is used to control what gets printed in the trace
323 output. To see what is available, simply cat the file:
324
325   cat /debug/tracing/iter_ctrl
326   print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
327  noblock nostacktrace nosched-tree
328
329 To disable one of the options, echo in the option prepended with "no".
330
331   echo noprint-parent > /debug/tracing/iter_ctrl
332
333 To enable an option, leave off the "no".
334
335   echo sym-offset > /debug/tracing/iter_ctrl
336
337 Here are the available options:
338
339   print-parent - On function traces, display the calling function
340                 as well as the function being traced.
341
342   print-parent:
343    bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul
344
345   noprint-parent:
346    bash-4000  [01]  1477.606694: simple_strtoul
347
348
349   sym-offset - Display not only the function name, but also the offset
350                 in the function. For example, instead of seeing just
351                 "ktime_get", you will see "ktime_get+0xb/0x20".
352
353   sym-offset:
354    bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
355
356   sym-addr - this will also display the function address as well as
357                 the function name.
358
359   sym-addr:
360    bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
361
362   verbose - This deals with the latency_trace file.
363
364     bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
365     (+0.000ms): simple_strtoul (strict_strtoul)
366
367   raw - This will display raw numbers. This option is best for use with
368         user applications that can translate the raw numbers better than
369         having it done in the kernel.
370
371   hex - Similar to raw, but the numbers will be in a hexadecimal format.
372
373   bin - This will print out the formats in raw binary.
374
375   block - TBD (needs update)
376
377   stacktrace - This is one of the options that changes the trace itself.
378                 When a trace is recorded, so is the stack of functions.
379                 This allows for back traces of trace sites.
380
381   sched-tree - TBD (any users??)
382
383
384 sched_switch
385 ------------
386
387 This tracer simply records schedule switches. Here is an example
388 of how to use it.
389
390  # echo sched_switch > /debug/tracing/current_tracer
391  # echo 1 > /debug/tracing/tracing_enabled
392  # sleep 1
393  # echo 0 > /debug/tracing/tracing_enabled
394  # cat /debug/tracing/trace
395
396 # tracer: sched_switch
397 #
398 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
399 #              | |      |          |         |
400             bash-3997  [01]   240.132281:   3997:120:R   +  4055:120:R
401             bash-3997  [01]   240.132284:   3997:120:R ==>  4055:120:R
402            sleep-4055  [01]   240.132371:   4055:120:S ==>  3997:120:R
403             bash-3997  [01]   240.132454:   3997:120:R   +  4055:120:S
404             bash-3997  [01]   240.132457:   3997:120:R ==>  4055:120:R
405            sleep-4055  [01]   240.132460:   4055:120:D ==>  3997:120:R
406             bash-3997  [01]   240.132463:   3997:120:R   +  4055:120:D
407             bash-3997  [01]   240.132465:   3997:120:R ==>  4055:120:R
408           <idle>-0     [00]   240.132589:      0:140:R   +     4:115:S
409           <idle>-0     [00]   240.132591:      0:140:R ==>     4:115:R
410      ksoftirqd/0-4     [00]   240.132595:      4:115:S ==>     0:140:R
411           <idle>-0     [00]   240.132598:      0:140:R   +     4:115:S
412           <idle>-0     [00]   240.132599:      0:140:R ==>     4:115:R
413      ksoftirqd/0-4     [00]   240.132603:      4:115:S ==>     0:140:R
414            sleep-4055  [01]   240.133058:   4055:120:S ==>  3997:120:R
415  [...]
416
417
418 As we have discussed previously about this format, the header shows
419 the name of the trace and points to the options. The "FUNCTION"
420 is a misnomer since here it represents the wake ups and context
421 switches.
422
423 The sched_switch file only lists the wake ups (represented with '+')
424 and context switches ('==>') with the previous task or current task
425 first followed by the next task or task waking up. The format for both
426 of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
427 is the inverse of the actual priority with zero (0) being the highest
428 priority and the nice values starting at 100 (nice -20). Below is
429 a quick chart to map the kernel priority to user land priorities.
430
431   Kernel priority: 0 to 99    ==> user RT priority 99 to 0
432   Kernel priority: 100 to 139 ==> user nice -20 to 19
433   Kernel priority: 140        ==> idle task priority
434
435 The task states are:
436
437  R - running : wants to run, may not actually be running
438  S - sleep   : process is waiting to be woken up (handles signals)
439  D - disk sleep (uninterruptible sleep) : process must be woken up
440                                         (ignores signals)
441  T - stopped : process suspended
442  t - traced  : process is being traced (with something like gdb)
443  Z - zombie  : process waiting to be cleaned up
444  X - unknown
445
446
447 ftrace_enabled
448 --------------
449
450 The following tracers (listed below) give different output depending
451 on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
452 one can either use the sysctl function or set it via the proc
453 file system interface.
454
455   sysctl kernel.ftrace_enabled=1
456
457  or
458
459   echo 1 > /proc/sys/kernel/ftrace_enabled
460
461 To disable ftrace_enabled simply replace the '1' with '0' in
462 the above commands.
463
464 When ftrace_enabled is set the tracers will also record the functions
465 that are within the trace. The descriptions of the tracers
466 will also show an example with ftrace enabled.
467
468
469 irqsoff
470 -------
471
472 When interrupts are disabled, the CPU can not react to any other
473 external event (besides NMIs and SMIs). This prevents the timer
474 interrupt from triggering or the mouse interrupt from letting the
475 kernel know of a new mouse event. The result is a latency with the
476 reaction time.
477
478 The irqsoff tracer tracks the time for which interrupts are disabled.
479 When a new maximum latency is hit, the tracer saves the trace leading up
480 to that latency point so that every time a new maximum is reached, the old
481 saved trace is discarded and the new trace is saved.
482
483 To reset the maximum, echo 0 into tracing_max_latency. Here is an
484 example:
485
486  # echo irqsoff > /debug/tracing/current_tracer
487  # echo 0 > /debug/tracing/tracing_max_latency
488  # echo 1 > /debug/tracing/tracing_enabled
489  # ls -ltr
490  [...]
491  # echo 0 > /debug/tracing/tracing_enabled
492  # cat /debug/tracing/latency_trace
493 # tracer: irqsoff
494 #
495 irqsoff latency trace v1.1.5 on 2.6.26
496 --------------------------------------------------------------------
497  latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
498     -----------------
499     | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
500     -----------------
501  => started at: sys_setpgid
502  => ended at:   sys_setpgid
503
504 #                _------=> CPU#
505 #               / _-----=> irqs-off
506 #              | / _----=> need-resched
507 #              || / _---=> hardirq/softirq
508 #              ||| / _--=> preempt-depth
509 #              |||| /
510 #              |||||     delay
511 #  cmd     pid ||||| time  |   caller
512 #     \   /    |||||   \   |   /
513     bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
514     bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
515     bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
516
517
518 Here we see that that we had a latency of 12 microsecs (which is
519 very good). The _write_lock_irq in sys_setpgid disabled interrupts.
520 The difference between the 12 and the displayed timestamp 14us occurred
521 because the clock was incremented between the time of recording the max
522 latency and the time of recording the function that had that latency.
523
524 Note the above example had ftrace_enabled not set. If we set the
525 ftrace_enabled, we get a much larger output:
526
527 # tracer: irqsoff
528 #
529 irqsoff latency trace v1.1.5 on 2.6.26-rc8
530 --------------------------------------------------------------------
531  latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
532     -----------------
533     | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
534     -----------------
535  => started at: __alloc_pages_internal
536  => ended at:   __alloc_pages_internal
537
538 #                _------=> CPU#
539 #               / _-----=> irqs-off
540 #              | / _----=> need-resched
541 #              || / _---=> hardirq/softirq
542 #              ||| / _--=> preempt-depth
543 #              |||| /
544 #              |||||     delay
545 #  cmd     pid ||||| time  |   caller
546 #     \   /    |||||   \   |   /
547       ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
548       ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
549       ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
550       ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
551       ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
552       ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
553       ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
554       ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
555       ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
556       ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
557       ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
558       ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
559 [...]
560       ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
561       ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
562       ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
563       ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
564       ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
565       ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
566       ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
567       ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
568       ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
569
570
571
572 Here we traced a 50 microsecond latency. But we also see all the
573 functions that were called during that time. Note that by enabling
574 function tracing, we incur an added overhead. This overhead may
575 extend the latency times. But nevertheless, this trace has provided
576 some very helpful debugging information.
577
578
579 preemptoff
580 ----------
581
582 When preemption is disabled, we may be able to receive interrupts but
583 the task cannot be preempted and a higher priority task must wait
584 for preemption to be enabled again before it can preempt a lower
585 priority task.
586
587 The preemptoff tracer traces the places that disable preemption.
588 Like the irqsoff tracer, it records the maximum latency for which preemption
589 was disabled. The control of preemptoff tracer is much like the irqsoff
590 tracer.
591
592  # echo preemptoff > /debug/tracing/current_tracer
593  # echo 0 > /debug/tracing/tracing_max_latency
594  # echo 1 > /debug/tracing/tracing_enabled
595  # ls -ltr
596  [...]
597  # echo 0 > /debug/tracing/tracing_enabled
598  # cat /debug/tracing/latency_trace
599 # tracer: preemptoff
600 #
601 preemptoff latency trace v1.1.5 on 2.6.26-rc8
602 --------------------------------------------------------------------
603  latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
604     -----------------
605     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
606     -----------------
607  => started at: do_IRQ
608  => ended at:   __do_softirq
609
610 #                _------=> CPU#
611 #               / _-----=> irqs-off
612 #              | / _----=> need-resched
613 #              || / _---=> hardirq/softirq
614 #              ||| / _--=> preempt-depth
615 #              |||| /
616 #              |||||     delay
617 #  cmd     pid ||||| time  |   caller
618 #     \   /    |||||   \   |   /
619     sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
620     sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
621     sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
622
623
624 This has some more changes. Preemption was disabled when an interrupt
625 came in (notice the 'h'), and was enabled while doing a softirq.
626 (notice the 's'). But we also see that interrupts have been disabled
627 when entering the preempt off section and leaving it (the 'd').
628 We do not know if interrupts were enabled in the mean time.
629
630 # tracer: preemptoff
631 #
632 preemptoff latency trace v1.1.5 on 2.6.26-rc8
633 --------------------------------------------------------------------
634  latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
635     -----------------
636     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
637     -----------------
638  => started at: remove_wait_queue
639  => ended at:   __do_softirq
640
641 #                _------=> CPU#
642 #               / _-----=> irqs-off
643 #              | / _----=> need-resched
644 #              || / _---=> hardirq/softirq
645 #              ||| / _--=> preempt-depth
646 #              |||| /
647 #              |||||     delay
648 #  cmd     pid ||||| time  |   caller
649 #     \   /    |||||   \   |   /
650     sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
651     sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
652     sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
653     sshd-4261  0d..1    2us : irq_enter (do_IRQ)
654     sshd-4261  0d..1    2us : idle_cpu (irq_enter)
655     sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
656     sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
657     sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
658 [...]
659     sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
660     sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
661     sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
662     sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
663     sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
664     sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
665     sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
666     sshd-4261  0d..2   15us : do_softirq (irq_exit)
667     sshd-4261  0d...   15us : __do_softirq (do_softirq)
668     sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
669     sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
670     sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
671     sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
672     sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
673 [...]
674     sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
675     sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
676     sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
677     sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
678     sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
679     sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
680     sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
681     sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
682 [...]
683     sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
684     sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)
685
686
687 The above is an example of the preemptoff trace with ftrace_enabled
688 set. Here we see that interrupts were disabled the entire time.
689 The irq_enter code lets us know that we entered an interrupt 'h'.
690 Before that, the functions being traced still show that it is not
691 in an interrupt, but we can see from the functions themselves that
692 this is not the case.
693
694 Notice that __do_softirq when called does not have a preempt_count.
695 It may seem that we missed a preempt enabling. What really happened
696 is that the preempt count is held on the thread's stack and we
697 switched to the softirq stack (4K stacks in effect). The code
698 does not copy the preempt count, but because interrupts are disabled,
699 we do not need to worry about it. Having a tracer like this is good
700 for letting people know what really happens inside the kernel.
701
702
703 preemptirqsoff
704 --------------
705
706 Knowing the locations that have interrupts disabled or preemption
707 disabled for the longest times is helpful. But sometimes we would
708 like to know when either preemption and/or interrupts are disabled.
709
710 Consider the following code:
711
712     local_irq_disable();
713     call_function_with_irqs_off();
714     preempt_disable();
715     call_function_with_irqs_and_preemption_off();
716     local_irq_enable();
717     call_function_with_preemption_off();
718     preempt_enable();
719
720 The irqsoff tracer will record the total length of
721 call_function_with_irqs_off() and
722 call_function_with_irqs_and_preemption_off().
723
724 The preemptoff tracer will record the total length of
725 call_function_with_irqs_and_preemption_off() and
726 call_function_with_preemption_off().
727
728 But neither will trace the time that interrupts and/or preemption
729 is disabled. This total time is the time that we can not schedule.
730 To record this time, use the preemptirqsoff tracer.
731
732 Again, using this trace is much like the irqsoff and preemptoff tracers.
733
734  # echo preemptirqsoff > /debug/tracing/current_tracer
735  # echo 0 > /debug/tracing/tracing_max_latency
736  # echo 1 > /debug/tracing/tracing_enabled
737  # ls -ltr
738  [...]
739  # echo 0 > /debug/tracing/tracing_enabled
740  # cat /debug/tracing/latency_trace
741 # tracer: preemptirqsoff
742 #
743 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
744 --------------------------------------------------------------------
745  latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
746     -----------------
747     | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
748     -----------------
749  => started at: apic_timer_interrupt
750  => ended at:   __do_softirq
751
752 #                _------=> CPU#
753 #               / _-----=> irqs-off
754 #              | / _----=> need-resched
755 #              || / _---=> hardirq/softirq
756 #              ||| / _--=> preempt-depth
757 #              |||| /
758 #              |||||     delay
759 #  cmd     pid ||||| time  |   caller
760 #     \   /    |||||   \   |   /
761       ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
762       ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
763       ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
764
765
766
767 The trace_hardirqs_off_thunk is called from assembly on x86 when
768 interrupts are disabled in the assembly code. Without the function
769 tracing, we do not know if interrupts were enabled within the preemption
770 points. We do see that it started with preemption enabled.
771
772 Here is a trace with ftrace_enabled set:
773
774
775 # tracer: preemptirqsoff
776 #
777 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
778 --------------------------------------------------------------------
779  latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
780     -----------------
781     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
782     -----------------
783  => started at: write_chan
784  => ended at:   __do_softirq
785
786 #                _------=> CPU#
787 #               / _-----=> irqs-off
788 #              | / _----=> need-resched
789 #              || / _---=> hardirq/softirq
790 #              ||| / _--=> preempt-depth
791 #              |||| /
792 #              |||||     delay
793 #  cmd     pid ||||| time  |   caller
794 #     \   /    |||||   \   |   /
795       ls-4473  0.N..    0us : preempt_schedule (write_chan)
796       ls-4473  0dN.1    1us : _spin_lock (schedule)
797       ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
798       ls-4473  0d..2    2us : put_prev_task_fair (schedule)
799 [...]
800       ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
801       ls-4473  0d..2   13us : __switch_to (schedule)
802     sshd-4261  0d..2   14us : finish_task_switch (schedule)
803     sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
804     sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
805     sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
806     sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
807     sshd-4261  0d..2   17us : irq_enter (do_IRQ)
808     sshd-4261  0d..2   17us : idle_cpu (irq_enter)
809     sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
810     sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
811     sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
812     sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
813     sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
814     sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
815     sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
816 [...]
817     sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
818     sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
819     sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
820     sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
821     sshd-4261  0d..3   30us : do_softirq (irq_exit)
822     sshd-4261  0d...   30us : __do_softirq (do_softirq)
823     sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
824     sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
825     sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
826 [...]
827     sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
828     sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
829     sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
830     sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
831     sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
832     sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
833     sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
834     sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
835     sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
836 [...]
837     sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
838     sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
839     sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
840     sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
841     sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
842     sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
843     sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
844     sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
845     sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
846     sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
847     sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
848 [...]
849     sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
850     sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
851     sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
852     sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
853     sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
854     sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
855     sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)
856
857
858 This is a very interesting trace. It started with the preemption of
859 the ls task. We see that the task had the "need_resched" bit set
860 via the 'N' in the trace.  Interrupts were disabled before the spin_lock
861 at the beginning of the trace. We see that a schedule took place to run
862 sshd.  When the interrupts were enabled, we took an interrupt.
863 On return from the interrupt handler, the softirq ran. We took another
864 interrupt while running the softirq as we see from the capital 'H'.
865
866
867 wakeup
868 ------
869
870 In a Real-Time environment it is very important to know the wakeup
871 time it takes for the highest priority task that is woken up to the
872 time that it executes. This is also known as "schedule latency".
873 I stress the point that this is about RT tasks. It is also important
874 to know the scheduling latency of non-RT tasks, but the average
875 schedule latency is better for non-RT tasks. Tools like
876 LatencyTop are more appropriate for such measurements.
877
878 Real-Time environments are interested in the worst case latency.
879 That is the longest latency it takes for something to happen, and
880 not the average. We can have a very fast scheduler that may only
881 have a large latency once in a while, but that would not work well
882 with Real-Time tasks.  The wakeup tracer was designed to record
883 the worst case wakeups of RT tasks. Non-RT tasks are not recorded
884 because the tracer only records one worst case and tracing non-RT
885 tasks that are unpredictable will overwrite the worst case latency
886 of RT tasks.
887
888 Since this tracer only deals with RT tasks, we will run this slightly
889 differently than we did with the previous tracers. Instead of performing
890 an 'ls', we will run 'sleep 1' under 'chrt' which changes the
891 priority of the task.
892
893  # echo wakeup > /debug/tracing/current_tracer
894  # echo 0 > /debug/tracing/tracing_max_latency
895  # echo 1 > /debug/tracing/tracing_enabled
896  # chrt -f 5 sleep 1
897  # echo 0 > /debug/tracing/tracing_enabled
898  # cat /debug/tracing/latency_trace
899 # tracer: wakeup
900 #
901 wakeup latency trace v1.1.5 on 2.6.26-rc8
902 --------------------------------------------------------------------
903  latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
904     -----------------
905     | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
906     -----------------
907
908 #                _------=> CPU#
909 #               / _-----=> irqs-off
910 #              | / _----=> need-resched
911 #              || / _---=> hardirq/softirq
912 #              ||| / _--=> preempt-depth
913 #              |||| /
914 #              |||||     delay
915 #  cmd     pid ||||| time  |   caller
916 #     \   /    |||||   \   |   /
917   <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
918   <idle>-0     1d..4    4us : schedule (cpu_idle)
919
920
921
922 Running this on an idle system, we see that it only took 4 microseconds
923 to perform the task switch.  Note, since the trace marker in the
924 schedule is before the actual "switch", we stop the tracing when
925 the recorded task is about to schedule in. This may change if
926 we add a new marker at the end of the scheduler.
927
928 Notice that the recorded task is 'sleep' with the PID of 4901 and it
929 has an rt_prio of 5. This priority is user-space priority and not
930 the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
931 for SCHED_RR.
932
933 Doing the same with chrt -r 5 and ftrace_enabled set.
934
935 # tracer: wakeup
936 #
937 wakeup latency trace v1.1.5 on 2.6.26-rc8
938 --------------------------------------------------------------------
939  latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
940     -----------------
941     | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
942     -----------------
943
944 #                _------=> CPU#
945 #               / _-----=> irqs-off
946 #              | / _----=> need-resched
947 #              || / _---=> hardirq/softirq
948 #              ||| / _--=> preempt-depth
949 #              |||| /
950 #              |||||     delay
951 #  cmd     pid ||||| time  |   caller
952 #     \   /    |||||   \   |   /
953 ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
954 ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
955 ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
956 ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
957 ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
958 ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
959 ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
960 ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
961 [...]
962 ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
963 ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
964 ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
965 ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
966 [...]
967 ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
968 ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
969 ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
970 ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
971 ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
972 ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
973 ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
974 ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
975 ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
976 ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
977 ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
978 ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
979 ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
980 ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
981 [...]
982 ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
983 ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
984 ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
985 ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
986 ksoftirq-7     1d..4   50us : schedule (__cond_resched)
987
988 The interrupt went off while running ksoftirqd. This task runs at
989 SCHED_OTHER. Why did not we see the 'N' set early? This may be
990 a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
991 configured, the interrupt and softirq run with their own stack.
992 Some information is held on the top of the task's stack (need_resched
993 and preempt_count are both stored there). The setting of the NEED_RESCHED
994 bit is done directly to the task's stack, but the reading of the
995 NEED_RESCHED is done by looking at the current stack, which in this case
996 is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
997 has been set. We do not see the 'N' until we switch back to the task's
998 assigned stack.
999
1000 function
1001 --------
1002
1003 This tracer is the function tracer. Enabling the function tracer
1004 can be done from the debug file system. Make sure the ftrace_enabled is
1005 set; otherwise this tracer is a nop.
1006
1007  # sysctl kernel.ftrace_enabled=1
1008  # echo function > /debug/tracing/current_tracer
1009  # echo 1 > /debug/tracing/tracing_enabled
1010  # usleep 1
1011  # echo 0 > /debug/tracing/tracing_enabled
1012  # cat /debug/tracing/trace
1013 # tracer: function
1014 #
1015 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1016 #              | |      |          |         |
1017             bash-4003  [00]   123.638713: finish_task_switch <-schedule
1018             bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
1019             bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
1020             bash-4003  [00]   123.638715: hrtick_set <-schedule
1021             bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
1022             bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
1023             bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
1024             bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
1025             bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
1026             bash-4003  [00]   123.638718: sub_preempt_count <-schedule
1027             bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
1028             bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
1029             bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
1030             bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
1031             bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
1032 [...]
1033
1034
1035 Note: function tracer uses ring buffers to store the above entries.
1036 The newest data may overwrite the oldest data. Sometimes using echo to
1037 stop the trace is not sufficient because the tracing could have overwritten
1038 the data that you wanted to record. For this reason, it is sometimes better to
1039 disable tracing directly from a program. This allows you to stop the
1040 tracing at the point that you hit the part that you are interested in.
1041 To disable the tracing directly from a C program, something like following
1042 code snippet can be used:
1043
1044 int trace_fd;
1045 [...]
1046 int main(int argc, char *argv[]) {
1047         [...]
1048         trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
1049         [...]
1050         if (condition_hit()) {
1051                 write(trace_fd, "0", 1);
1052         }
1053         [...]
1054 }
1055
1056 Note: Here we hard coded the path name. The debugfs mount is not
1057 guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
1058 For simple one time traces, the above is sufficent. For anything else,
1059 a search through /proc/mounts may be needed to find where the debugfs
1060 file-system is mounted.
1061
1062 dynamic ftrace
1063 --------------
1064
1065 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
1066 virtually no overhead when function tracing is disabled. The way
1067 this works is the mcount function call (placed at the start of
1068 every kernel function, produced by the -pg switch in gcc), starts
1069 of pointing to a simple return. (Enabling FTRACE will include the
1070 -pg switch in the compiling of the kernel.)
1071
1072 At compile time every C file object is run through the
1073 recordmcount.pl script (located in the scripts directory). This
1074 script will process the C object using objdump to find all the
1075 locations in the .text section that call mcount. (Note, only
1076 the .text section is processed, since processing other sections
1077 like .init.text may cause races due to those sections being freed).
1078
1079 A new section called "__mcount_loc" is created that holds references
1080 to all the mcount call sites in the .text section. This section is
1081 compiled back into the original object. The final linker will add
1082 all these references into a single table.
1083
1084 On boot up, before SMP is initialized, the dynamic ftrace code
1085 scans this table and updates all the locations into nops. It also
1086 records the locations, which are added to the available_filter_functions
1087 list.  Modules are processed as they are loaded and before they are
1088 executed.  When a module is unloaded, it also removes its functions from
1089 the ftrace function list. This is automatic in the module unload
1090 code, and the module author does not need to worry about it.
1091
1092 When tracing is enabled, kstop_machine is called to prevent races
1093 with the CPUS executing code being modified (which can cause the
1094 CPU to do undesireable things), and the nops are patched back
1095 to calls. But this time, they do not call mcount (which is just
1096 a function stub). They now call into the ftrace infrastructure.
1097
1098 One special side-effect to the recording of the functions being
1099 traced is that we can now selectively choose which functions we
1100 wish to trace and which ones we want the mcount calls to remain as
1101 nops.
1102
1103 Two files are used, one for enabling and one for disabling the tracing
1104 of specified functions. They are:
1105
1106   set_ftrace_filter
1107
1108 and
1109
1110   set_ftrace_notrace
1111
1112 A list of available functions that you can add to these files is listed
1113 in:
1114
1115    available_filter_functions
1116
1117  # cat /debug/tracing/available_filter_functions
1118 put_prev_task_idle
1119 kmem_cache_create
1120 pick_next_task_rt
1121 get_online_cpus
1122 pick_next_task_fair
1123 mutex_lock
1124 [...]
1125
1126 If I am only interested in sys_nanosleep and hrtimer_interrupt:
1127
1128  # echo sys_nanosleep hrtimer_interrupt \
1129                 > /debug/tracing/set_ftrace_filter
1130  # echo ftrace > /debug/tracing/current_tracer
1131  # echo 1 > /debug/tracing/tracing_enabled
1132  # usleep 1
1133  # echo 0 > /debug/tracing/tracing_enabled
1134  # cat /debug/tracing/trace
1135 # tracer: ftrace
1136 #
1137 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1138 #              | |      |          |         |
1139           usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
1140           usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
1141           <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
1142
1143 To see which functions are being traced, you can cat the file:
1144
1145  # cat /debug/tracing/set_ftrace_filter
1146 hrtimer_interrupt
1147 sys_nanosleep
1148
1149
1150 Perhaps this is not enough. The filters also allow simple wild cards.
1151 Only the following are currently available
1152
1153   <match>*  - will match functions that begin with <match>
1154   *<match>  - will match functions that end with <match>
1155   *<match>* - will match functions that have <match> in it
1156
1157 These are the only wild cards which are supported.
1158
1159   <match>*<match> will not work.
1160
1161  # echo hrtimer_* > /debug/tracing/set_ftrace_filter
1162
1163 Produces:
1164
1165 # tracer: ftrace
1166 #
1167 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1168 #              | |      |          |         |
1169             bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
1170             bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
1171             bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
1172             bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
1173           <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
1174           <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
1175           <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
1176           <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
1177           <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
1178
1179
1180 Notice that we lost the sys_nanosleep.
1181
1182  # cat /debug/tracing/set_ftrace_filter
1183 hrtimer_run_queues
1184 hrtimer_run_pending
1185 hrtimer_init
1186 hrtimer_cancel
1187 hrtimer_try_to_cancel
1188 hrtimer_forward
1189 hrtimer_start
1190 hrtimer_reprogram
1191 hrtimer_force_reprogram
1192 hrtimer_get_next_event
1193 hrtimer_interrupt
1194 hrtimer_nanosleep
1195 hrtimer_wakeup
1196 hrtimer_get_remaining
1197 hrtimer_get_res
1198 hrtimer_init_sleeper
1199
1200
1201 This is because the '>' and '>>' act just like they do in bash.
1202 To rewrite the filters, use '>'
1203 To append to the filters, use '>>'
1204
1205 To clear out a filter so that all functions will be recorded again:
1206
1207  # echo > /debug/tracing/set_ftrace_filter
1208  # cat /debug/tracing/set_ftrace_filter
1209  #
1210
1211 Again, now we want to append.
1212
1213  # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
1214  # cat /debug/tracing/set_ftrace_filter
1215 sys_nanosleep
1216  # echo hrtimer_* >> /debug/tracing/set_ftrace_filter
1217  # cat /debug/tracing/set_ftrace_filter
1218 hrtimer_run_queues
1219 hrtimer_run_pending
1220 hrtimer_init
1221 hrtimer_cancel
1222 hrtimer_try_to_cancel
1223 hrtimer_forward
1224 hrtimer_start
1225 hrtimer_reprogram
1226 hrtimer_force_reprogram
1227 hrtimer_get_next_event
1228 hrtimer_interrupt
1229 sys_nanosleep
1230 hrtimer_nanosleep
1231 hrtimer_wakeup
1232 hrtimer_get_remaining
1233 hrtimer_get_res
1234 hrtimer_init_sleeper
1235
1236
1237 The set_ftrace_notrace prevents those functions from being traced.
1238
1239  # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
1240
1241 Produces:
1242
1243 # tracer: ftrace
1244 #
1245 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1246 #              | |      |          |         |
1247             bash-4043  [01]   115.281644: finish_task_switch <-schedule
1248             bash-4043  [01]   115.281645: hrtick_set <-schedule
1249             bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
1250             bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
1251             bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
1252             bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
1253             bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
1254             bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
1255             bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process
1256
1257 We can see that there's no more lock or preempt tracing.
1258
1259 trace_pipe
1260 ----------
1261
1262 The trace_pipe outputs the same content as the trace file, but the effect
1263 on the tracing is different. Every read from trace_pipe is consumed.
1264 This means that subsequent reads will be different. The trace
1265 is live.
1266
1267  # echo function > /debug/tracing/current_tracer
1268  # cat /debug/tracing/trace_pipe > /tmp/trace.out &
1269 [1] 4153
1270  # echo 1 > /debug/tracing/tracing_enabled
1271  # usleep 1
1272  # echo 0 > /debug/tracing/tracing_enabled
1273  # cat /debug/tracing/trace
1274 # tracer: function
1275 #
1276 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1277 #              | |      |          |         |
1278
1279  #
1280  # cat /tmp/trace.out
1281             bash-4043  [00] 41.267106: finish_task_switch <-schedule
1282             bash-4043  [00] 41.267106: hrtick_set <-schedule
1283             bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
1284             bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
1285             bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
1286             bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
1287             bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
1288             bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
1289             bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
1290             bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
1291
1292
1293 Note, reading the trace_pipe file will block until more input is added.
1294 By changing the tracer, trace_pipe will issue an EOF. We needed
1295 to set the function tracer _before_ we "cat" the trace_pipe file.
1296
1297
1298 trace entries
1299 -------------
1300
1301 Having too much or not enough data can be troublesome in diagnosing
1302 an issue in the kernel. The file trace_entries is used to modify
1303 the size of the internal trace buffers. The number listed
1304 is the number of entries that can be recorded per CPU. To know
1305 the full size, multiply the number of possible CPUS with the
1306 number of entries.
1307
1308  # cat /debug/tracing/trace_entries
1309 65620
1310
1311 Note, to modify this, you must have tracing completely disabled. To do that,
1312 echo "nop" into the current_tracer. If the current_tracer is not set
1313 to "nop", an EINVAL error will be returned.
1314
1315  # echo nop > /debug/tracing/current_tracer
1316  # echo 100000 > /debug/tracing/trace_entries
1317  # cat /debug/tracing/trace_entries
1318 100045
1319
1320
1321 Notice that we echoed in 100,000 but the size is 100,045. The entries
1322 are held in individual pages. It allocates the number of pages it takes
1323 to fulfill the request. If more entries may fit on the last page
1324 then they will be added.
1325
1326  # echo 1 > /debug/tracing/trace_entries
1327  # cat /debug/tracing/trace_entries
1328 85
1329
1330 This shows us that 85 entries can fit in a single page.
1331
1332 The number of pages which will be allocated is limited to a percentage
1333 of available memory. Allocating too much will produce an error.
1334
1335  # echo 1000000000000 > /debug/tracing/trace_entries
1336 -bash: echo: write error: Cannot allocate memory
1337  # cat /debug/tracing/trace_entries
1338 85
1339