2 * transport_class.c - implementation of generic transport classes
3 * using attribute_containers
5 * Copyright (c) 2005 - James Bottomley <James.Bottomley@steeleye.com>
7 * This file is licensed under GPLv2
9 * The basic idea here is to allow any "device controller" (which
10 * would most often be a Host Bus Adapter to use the services of one
11 * or more tranport classes for performing transport specific
12 * services. Transport specific services are things that the generic
13 * command layer doesn't want to know about (speed settings, line
14 * condidtioning, etc), but which the user might be interested in.
15 * Thus, the HBA's use the routines exported by the transport classes
16 * to perform these functions. The transport classes export certain
17 * values to the user via sysfs using attribute containers.
19 * Note: because not every HBA will care about every transport
20 * attribute, there's a many to one relationship that goes like this:
22 * transport class<-----attribute container<----class device
24 * Usually the attribute container is per-HBA, but the design doesn't
25 * mandate that. Although most of the services will be specific to
26 * the actual external storage connection used by the HBA, the generic
27 * transport class is framed entirely in terms of generic devices to
28 * allow it to be used by any physical HBA in the system.
30 #include <linux/attribute_container.h>
31 #include <linux/transport_class.h>
34 * transport_class_register - register an initial transport class
36 * @tclass: a pointer to the transport class structure to be initialised
38 * The transport class contains an embedded class which is used to
39 * identify it. The caller should initialise this structure with
40 * zeros and then generic class must have been initialised with the
41 * actual transport class unique name. There's a macro
42 * DECLARE_TRANSPORT_CLASS() to do this (declared classes still must
45 * Returns 0 on success or error on failure.
47 int transport_class_register(struct transport_class *tclass)
49 return class_register(&tclass->class);
51 EXPORT_SYMBOL_GPL(transport_class_register);
54 * transport_class_unregister - unregister a previously registered class
56 * @tclass: The transport class to unregister
58 * Must be called prior to deallocating the memory for the transport
61 void transport_class_unregister(struct transport_class *tclass)
63 class_unregister(&tclass->class);
65 EXPORT_SYMBOL_GPL(transport_class_unregister);
67 static int anon_transport_dummy_function(struct transport_container *tc,
69 struct class_device *cdev)
76 * anon_transport_class_register - register an anonymous class
78 * @atc: The anon transport class to register
80 * The anonymous transport class contains both a transport class and a
81 * container. The idea of an anonymous class is that it never
82 * actually has any device attributes associated with it (and thus
83 * saves on container storage). So it can only be used for triggering
84 * events. Use prezero and then use DECLARE_ANON_TRANSPORT_CLASS() to
85 * initialise the anon transport class storage.
87 int anon_transport_class_register(struct anon_transport_class *atc)
90 atc->container.class = &atc->tclass.class;
91 attribute_container_set_no_classdevs(&atc->container);
92 error = attribute_container_register(&atc->container);
95 atc->tclass.setup = anon_transport_dummy_function;
96 atc->tclass.remove = anon_transport_dummy_function;
99 EXPORT_SYMBOL_GPL(anon_transport_class_register);
102 * anon_transport_class_unregister - unregister an anon class
104 * @atc: Pointer to the anon transport class to unregister
106 * Must be called prior to deallocating the memory for the anon
109 void anon_transport_class_unregister(struct anon_transport_class *atc)
111 attribute_container_unregister(&atc->container);
113 EXPORT_SYMBOL_GPL(anon_transport_class_unregister);
115 static int transport_setup_classdev(struct attribute_container *cont,
117 struct class_device *classdev)
119 struct transport_class *tclass = class_to_transport_class(cont->class);
120 struct transport_container *tcont = attribute_container_to_transport_container(cont);
123 tclass->setup(tcont, dev, classdev);
129 * transport_setup_device - declare a new dev for transport class association but don't make it visible yet.
130 * @dev: the generic device representing the entity being added
132 * Usually, dev represents some component in the HBA system (either
133 * the HBA itself or a device remote across the HBA bus). This
134 * routine is simply a trigger point to see if any set of transport
135 * classes wishes to associate with the added device. This allocates
136 * storage for the class device and initialises it, but does not yet
137 * add it to the system or add attributes to it (you do this with
138 * transport_add_device). If you have no need for a separate setup
139 * and add operations, use transport_register_device (see
140 * transport_class.h).
143 void transport_setup_device(struct device *dev)
145 attribute_container_add_device(dev, transport_setup_classdev);
147 EXPORT_SYMBOL_GPL(transport_setup_device);
149 static int transport_add_class_device(struct attribute_container *cont,
151 struct class_device *classdev)
153 int error = attribute_container_add_class_device(classdev);
154 struct transport_container *tcont =
155 attribute_container_to_transport_container(cont);
157 if (!error && tcont->statistics)
158 error = sysfs_create_group(&classdev->kobj, tcont->statistics);
165 * transport_add_device - declare a new dev for transport class association
167 * @dev: the generic device representing the entity being added
169 * Usually, dev represents some component in the HBA system (either
170 * the HBA itself or a device remote across the HBA bus). This
171 * routine is simply a trigger point used to add the device to the
172 * system and register attributes for it.
175 void transport_add_device(struct device *dev)
177 attribute_container_device_trigger(dev, transport_add_class_device);
179 EXPORT_SYMBOL_GPL(transport_add_device);
181 static int transport_configure(struct attribute_container *cont,
183 struct class_device *cdev)
185 struct transport_class *tclass = class_to_transport_class(cont->class);
186 struct transport_container *tcont = attribute_container_to_transport_container(cont);
188 if (tclass->configure)
189 tclass->configure(tcont, dev, cdev);
195 * transport_configure_device - configure an already set up device
197 * @dev: generic device representing device to be configured
199 * The idea of configure is simply to provide a point within the setup
200 * process to allow the transport class to extract information from a
201 * device after it has been setup. This is used in SCSI because we
202 * have to have a setup device to begin using the HBA, but after we
203 * send the initial inquiry, we use configure to extract the device
204 * parameters. The device need not have been added to be configured.
206 void transport_configure_device(struct device *dev)
208 attribute_container_device_trigger(dev, transport_configure);
210 EXPORT_SYMBOL_GPL(transport_configure_device);
212 static int transport_remove_classdev(struct attribute_container *cont,
214 struct class_device *classdev)
216 struct transport_container *tcont =
217 attribute_container_to_transport_container(cont);
218 struct transport_class *tclass = class_to_transport_class(cont->class);
221 tclass->remove(tcont, dev, classdev);
223 if (tclass->remove != anon_transport_dummy_function) {
224 if (tcont->statistics)
225 sysfs_remove_group(&classdev->kobj, tcont->statistics);
226 attribute_container_class_device_del(classdev);
234 * transport_remove_device - remove the visibility of a device
236 * @dev: generic device to remove
238 * This call removes the visibility of the device (to the user from
239 * sysfs), but does not destroy it. To eliminate a device entirely
240 * you must also call transport_destroy_device. If you don't need to
241 * do remove and destroy as separate operations, use
242 * transport_unregister_device() (see transport_class.h) which will
243 * perform both calls for you.
245 void transport_remove_device(struct device *dev)
247 attribute_container_device_trigger(dev, transport_remove_classdev);
249 EXPORT_SYMBOL_GPL(transport_remove_device);
251 static void transport_destroy_classdev(struct attribute_container *cont,
253 struct class_device *classdev)
255 struct transport_class *tclass = class_to_transport_class(cont->class);
257 if (tclass->remove != anon_transport_dummy_function)
258 class_device_put(classdev);
263 * transport_destroy_device - destroy a removed device
265 * @dev: device to eliminate from the transport class.
267 * This call triggers the elimination of storage associated with the
268 * transport classdev. Note: all it really does is relinquish a
269 * reference to the classdev. The memory will not be freed until the
270 * last reference goes to zero. Note also that the classdev retains a
271 * reference count on dev, so dev too will remain for as long as the
272 * transport class device remains around.
274 void transport_destroy_device(struct device *dev)
276 attribute_container_remove_device(dev, transport_destroy_classdev);
278 EXPORT_SYMBOL_GPL(transport_destroy_device);