[PATCH] remove ext[34]_inc_count and _dec_count
[linux-2.6] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43
44 #include <linux/swapops.h>
45
46 #include "internal.h"
47
48 struct scan_control {
49         /* Incremented by the number of inactive pages that were scanned */
50         unsigned long nr_scanned;
51
52         /* This context's GFP mask */
53         gfp_t gfp_mask;
54
55         int may_writepage;
56
57         /* Can pages be swapped as part of reclaim? */
58         int may_swap;
59
60         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62          * In this context, it doesn't matter that we scan the
63          * whole list at once. */
64         int swap_cluster_max;
65
66         int swappiness;
67
68         int all_unreclaimable;
69 };
70
71 /*
72  * The list of shrinker callbacks used by to apply pressure to
73  * ageable caches.
74  */
75 struct shrinker {
76         shrinker_t              shrinker;
77         struct list_head        list;
78         int                     seeks;  /* seeks to recreate an obj */
79         long                    nr;     /* objs pending delete */
80 };
81
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
83
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field)                    \
86         do {                                                            \
87                 if ((_page)->lru.prev != _base) {                       \
88                         struct page *prev;                              \
89                                                                         \
90                         prev = lru_to_page(&(_page->lru));              \
91                         prefetch(&prev->_field);                        \
92                 }                                                       \
93         } while (0)
94 #else
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96 #endif
97
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
100         do {                                                            \
101                 if ((_page)->lru.prev != _base) {                       \
102                         struct page *prev;                              \
103                                                                         \
104                         prev = lru_to_page(&(_page->lru));              \
105                         prefetchw(&prev->_field);                       \
106                 }                                                       \
107         } while (0)
108 #else
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111
112 /*
113  * From 0 .. 100.  Higher means more swappy.
114  */
115 int vm_swappiness = 60;
116 long vm_total_pages;    /* The total number of pages which the VM controls */
117
118 static LIST_HEAD(shrinker_list);
119 static DECLARE_RWSEM(shrinker_rwsem);
120
121 /*
122  * Add a shrinker callback to be called from the vm
123  */
124 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
125 {
126         struct shrinker *shrinker;
127
128         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
129         if (shrinker) {
130                 shrinker->shrinker = theshrinker;
131                 shrinker->seeks = seeks;
132                 shrinker->nr = 0;
133                 down_write(&shrinker_rwsem);
134                 list_add_tail(&shrinker->list, &shrinker_list);
135                 up_write(&shrinker_rwsem);
136         }
137         return shrinker;
138 }
139 EXPORT_SYMBOL(set_shrinker);
140
141 /*
142  * Remove one
143  */
144 void remove_shrinker(struct shrinker *shrinker)
145 {
146         down_write(&shrinker_rwsem);
147         list_del(&shrinker->list);
148         up_write(&shrinker_rwsem);
149         kfree(shrinker);
150 }
151 EXPORT_SYMBOL(remove_shrinker);
152
153 #define SHRINK_BATCH 128
154 /*
155  * Call the shrink functions to age shrinkable caches
156  *
157  * Here we assume it costs one seek to replace a lru page and that it also
158  * takes a seek to recreate a cache object.  With this in mind we age equal
159  * percentages of the lru and ageable caches.  This should balance the seeks
160  * generated by these structures.
161  *
162  * If the vm encounted mapped pages on the LRU it increase the pressure on
163  * slab to avoid swapping.
164  *
165  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166  *
167  * `lru_pages' represents the number of on-LRU pages in all the zones which
168  * are eligible for the caller's allocation attempt.  It is used for balancing
169  * slab reclaim versus page reclaim.
170  *
171  * Returns the number of slab objects which we shrunk.
172  */
173 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174                         unsigned long lru_pages)
175 {
176         struct shrinker *shrinker;
177         unsigned long ret = 0;
178
179         if (scanned == 0)
180                 scanned = SWAP_CLUSTER_MAX;
181
182         if (!down_read_trylock(&shrinker_rwsem))
183                 return 1;       /* Assume we'll be able to shrink next time */
184
185         list_for_each_entry(shrinker, &shrinker_list, list) {
186                 unsigned long long delta;
187                 unsigned long total_scan;
188                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
189
190                 delta = (4 * scanned) / shrinker->seeks;
191                 delta *= max_pass;
192                 do_div(delta, lru_pages + 1);
193                 shrinker->nr += delta;
194                 if (shrinker->nr < 0) {
195                         printk(KERN_ERR "%s: nr=%ld\n",
196                                         __FUNCTION__, shrinker->nr);
197                         shrinker->nr = max_pass;
198                 }
199
200                 /*
201                  * Avoid risking looping forever due to too large nr value:
202                  * never try to free more than twice the estimate number of
203                  * freeable entries.
204                  */
205                 if (shrinker->nr > max_pass * 2)
206                         shrinker->nr = max_pass * 2;
207
208                 total_scan = shrinker->nr;
209                 shrinker->nr = 0;
210
211                 while (total_scan >= SHRINK_BATCH) {
212                         long this_scan = SHRINK_BATCH;
213                         int shrink_ret;
214                         int nr_before;
215
216                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
217                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
218                         if (shrink_ret == -1)
219                                 break;
220                         if (shrink_ret < nr_before)
221                                 ret += nr_before - shrink_ret;
222                         count_vm_events(SLABS_SCANNED, this_scan);
223                         total_scan -= this_scan;
224
225                         cond_resched();
226                 }
227
228                 shrinker->nr += total_scan;
229         }
230         up_read(&shrinker_rwsem);
231         return ret;
232 }
233
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page *page)
236 {
237         struct address_space *mapping;
238
239         /* Page is in somebody's page tables. */
240         if (page_mapped(page))
241                 return 1;
242
243         /* Be more reluctant to reclaim swapcache than pagecache */
244         if (PageSwapCache(page))
245                 return 1;
246
247         mapping = page_mapping(page);
248         if (!mapping)
249                 return 0;
250
251         /* File is mmap'd by somebody? */
252         return mapping_mapped(mapping);
253 }
254
255 static inline int is_page_cache_freeable(struct page *page)
256 {
257         return page_count(page) - !!PagePrivate(page) == 2;
258 }
259
260 static int may_write_to_queue(struct backing_dev_info *bdi)
261 {
262         if (current->flags & PF_SWAPWRITE)
263                 return 1;
264         if (!bdi_write_congested(bdi))
265                 return 1;
266         if (bdi == current->backing_dev_info)
267                 return 1;
268         return 0;
269 }
270
271 /*
272  * We detected a synchronous write error writing a page out.  Probably
273  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
274  * fsync(), msync() or close().
275  *
276  * The tricky part is that after writepage we cannot touch the mapping: nothing
277  * prevents it from being freed up.  But we have a ref on the page and once
278  * that page is locked, the mapping is pinned.
279  *
280  * We're allowed to run sleeping lock_page() here because we know the caller has
281  * __GFP_FS.
282  */
283 static void handle_write_error(struct address_space *mapping,
284                                 struct page *page, int error)
285 {
286         lock_page(page);
287         if (page_mapping(page) == mapping) {
288                 if (error == -ENOSPC)
289                         set_bit(AS_ENOSPC, &mapping->flags);
290                 else
291                         set_bit(AS_EIO, &mapping->flags);
292         }
293         unlock_page(page);
294 }
295
296 /* possible outcome of pageout() */
297 typedef enum {
298         /* failed to write page out, page is locked */
299         PAGE_KEEP,
300         /* move page to the active list, page is locked */
301         PAGE_ACTIVATE,
302         /* page has been sent to the disk successfully, page is unlocked */
303         PAGE_SUCCESS,
304         /* page is clean and locked */
305         PAGE_CLEAN,
306 } pageout_t;
307
308 /*
309  * pageout is called by shrink_page_list() for each dirty page.
310  * Calls ->writepage().
311  */
312 static pageout_t pageout(struct page *page, struct address_space *mapping)
313 {
314         /*
315          * If the page is dirty, only perform writeback if that write
316          * will be non-blocking.  To prevent this allocation from being
317          * stalled by pagecache activity.  But note that there may be
318          * stalls if we need to run get_block().  We could test
319          * PagePrivate for that.
320          *
321          * If this process is currently in generic_file_write() against
322          * this page's queue, we can perform writeback even if that
323          * will block.
324          *
325          * If the page is swapcache, write it back even if that would
326          * block, for some throttling. This happens by accident, because
327          * swap_backing_dev_info is bust: it doesn't reflect the
328          * congestion state of the swapdevs.  Easy to fix, if needed.
329          * See swapfile.c:page_queue_congested().
330          */
331         if (!is_page_cache_freeable(page))
332                 return PAGE_KEEP;
333         if (!mapping) {
334                 /*
335                  * Some data journaling orphaned pages can have
336                  * page->mapping == NULL while being dirty with clean buffers.
337                  */
338                 if (PagePrivate(page)) {
339                         if (try_to_free_buffers(page)) {
340                                 ClearPageDirty(page);
341                                 printk("%s: orphaned page\n", __FUNCTION__);
342                                 return PAGE_CLEAN;
343                         }
344                 }
345                 return PAGE_KEEP;
346         }
347         if (mapping->a_ops->writepage == NULL)
348                 return PAGE_ACTIVATE;
349         if (!may_write_to_queue(mapping->backing_dev_info))
350                 return PAGE_KEEP;
351
352         if (clear_page_dirty_for_io(page)) {
353                 int res;
354                 struct writeback_control wbc = {
355                         .sync_mode = WB_SYNC_NONE,
356                         .nr_to_write = SWAP_CLUSTER_MAX,
357                         .range_start = 0,
358                         .range_end = LLONG_MAX,
359                         .nonblocking = 1,
360                         .for_reclaim = 1,
361                 };
362
363                 SetPageReclaim(page);
364                 res = mapping->a_ops->writepage(page, &wbc);
365                 if (res < 0)
366                         handle_write_error(mapping, page, res);
367                 if (res == AOP_WRITEPAGE_ACTIVATE) {
368                         ClearPageReclaim(page);
369                         return PAGE_ACTIVATE;
370                 }
371                 if (!PageWriteback(page)) {
372                         /* synchronous write or broken a_ops? */
373                         ClearPageReclaim(page);
374                 }
375                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
376                 return PAGE_SUCCESS;
377         }
378
379         return PAGE_CLEAN;
380 }
381
382 /*
383  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
384  * someone else has a ref on the page, abort and return 0.  If it was
385  * successfully detached, return 1.  Assumes the caller has a single ref on
386  * this page.
387  */
388 int remove_mapping(struct address_space *mapping, struct page *page)
389 {
390         BUG_ON(!PageLocked(page));
391         BUG_ON(mapping != page_mapping(page));
392
393         write_lock_irq(&mapping->tree_lock);
394         /*
395          * The non racy check for a busy page.
396          *
397          * Must be careful with the order of the tests. When someone has
398          * a ref to the page, it may be possible that they dirty it then
399          * drop the reference. So if PageDirty is tested before page_count
400          * here, then the following race may occur:
401          *
402          * get_user_pages(&page);
403          * [user mapping goes away]
404          * write_to(page);
405          *                              !PageDirty(page)    [good]
406          * SetPageDirty(page);
407          * put_page(page);
408          *                              !page_count(page)   [good, discard it]
409          *
410          * [oops, our write_to data is lost]
411          *
412          * Reversing the order of the tests ensures such a situation cannot
413          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414          * load is not satisfied before that of page->_count.
415          *
416          * Note that if SetPageDirty is always performed via set_page_dirty,
417          * and thus under tree_lock, then this ordering is not required.
418          */
419         if (unlikely(page_count(page) != 2))
420                 goto cannot_free;
421         smp_rmb();
422         if (unlikely(PageDirty(page)))
423                 goto cannot_free;
424
425         if (PageSwapCache(page)) {
426                 swp_entry_t swap = { .val = page_private(page) };
427                 __delete_from_swap_cache(page);
428                 write_unlock_irq(&mapping->tree_lock);
429                 swap_free(swap);
430                 __put_page(page);       /* The pagecache ref */
431                 return 1;
432         }
433
434         __remove_from_page_cache(page);
435         write_unlock_irq(&mapping->tree_lock);
436         __put_page(page);
437         return 1;
438
439 cannot_free:
440         write_unlock_irq(&mapping->tree_lock);
441         return 0;
442 }
443
444 /*
445  * shrink_page_list() returns the number of reclaimed pages
446  */
447 static unsigned long shrink_page_list(struct list_head *page_list,
448                                         struct scan_control *sc)
449 {
450         LIST_HEAD(ret_pages);
451         struct pagevec freed_pvec;
452         int pgactivate = 0;
453         unsigned long nr_reclaimed = 0;
454
455         cond_resched();
456
457         pagevec_init(&freed_pvec, 1);
458         while (!list_empty(page_list)) {
459                 struct address_space *mapping;
460                 struct page *page;
461                 int may_enter_fs;
462                 int referenced;
463
464                 cond_resched();
465
466                 page = lru_to_page(page_list);
467                 list_del(&page->lru);
468
469                 if (TestSetPageLocked(page))
470                         goto keep;
471
472                 VM_BUG_ON(PageActive(page));
473
474                 sc->nr_scanned++;
475
476                 if (!sc->may_swap && page_mapped(page))
477                         goto keep_locked;
478
479                 /* Double the slab pressure for mapped and swapcache pages */
480                 if (page_mapped(page) || PageSwapCache(page))
481                         sc->nr_scanned++;
482
483                 if (PageWriteback(page))
484                         goto keep_locked;
485
486                 referenced = page_referenced(page, 1);
487                 /* In active use or really unfreeable?  Activate it. */
488                 if (referenced && page_mapping_inuse(page))
489                         goto activate_locked;
490
491 #ifdef CONFIG_SWAP
492                 /*
493                  * Anonymous process memory has backing store?
494                  * Try to allocate it some swap space here.
495                  */
496                 if (PageAnon(page) && !PageSwapCache(page))
497                         if (!add_to_swap(page, GFP_ATOMIC))
498                                 goto activate_locked;
499 #endif /* CONFIG_SWAP */
500
501                 mapping = page_mapping(page);
502                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
503                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
504
505                 /*
506                  * The page is mapped into the page tables of one or more
507                  * processes. Try to unmap it here.
508                  */
509                 if (page_mapped(page) && mapping) {
510                         switch (try_to_unmap(page, 0)) {
511                         case SWAP_FAIL:
512                                 goto activate_locked;
513                         case SWAP_AGAIN:
514                                 goto keep_locked;
515                         case SWAP_SUCCESS:
516                                 ; /* try to free the page below */
517                         }
518                 }
519
520                 if (PageDirty(page)) {
521                         if (referenced)
522                                 goto keep_locked;
523                         if (!may_enter_fs)
524                                 goto keep_locked;
525                         if (!sc->may_writepage)
526                                 goto keep_locked;
527
528                         /* Page is dirty, try to write it out here */
529                         switch(pageout(page, mapping)) {
530                         case PAGE_KEEP:
531                                 goto keep_locked;
532                         case PAGE_ACTIVATE:
533                                 goto activate_locked;
534                         case PAGE_SUCCESS:
535                                 if (PageWriteback(page) || PageDirty(page))
536                                         goto keep;
537                                 /*
538                                  * A synchronous write - probably a ramdisk.  Go
539                                  * ahead and try to reclaim the page.
540                                  */
541                                 if (TestSetPageLocked(page))
542                                         goto keep;
543                                 if (PageDirty(page) || PageWriteback(page))
544                                         goto keep_locked;
545                                 mapping = page_mapping(page);
546                         case PAGE_CLEAN:
547                                 ; /* try to free the page below */
548                         }
549                 }
550
551                 /*
552                  * If the page has buffers, try to free the buffer mappings
553                  * associated with this page. If we succeed we try to free
554                  * the page as well.
555                  *
556                  * We do this even if the page is PageDirty().
557                  * try_to_release_page() does not perform I/O, but it is
558                  * possible for a page to have PageDirty set, but it is actually
559                  * clean (all its buffers are clean).  This happens if the
560                  * buffers were written out directly, with submit_bh(). ext3
561                  * will do this, as well as the blockdev mapping. 
562                  * try_to_release_page() will discover that cleanness and will
563                  * drop the buffers and mark the page clean - it can be freed.
564                  *
565                  * Rarely, pages can have buffers and no ->mapping.  These are
566                  * the pages which were not successfully invalidated in
567                  * truncate_complete_page().  We try to drop those buffers here
568                  * and if that worked, and the page is no longer mapped into
569                  * process address space (page_count == 1) it can be freed.
570                  * Otherwise, leave the page on the LRU so it is swappable.
571                  */
572                 if (PagePrivate(page)) {
573                         if (!try_to_release_page(page, sc->gfp_mask))
574                                 goto activate_locked;
575                         if (!mapping && page_count(page) == 1)
576                                 goto free_it;
577                 }
578
579                 if (!mapping || !remove_mapping(mapping, page))
580                         goto keep_locked;
581
582 free_it:
583                 unlock_page(page);
584                 nr_reclaimed++;
585                 if (!pagevec_add(&freed_pvec, page))
586                         __pagevec_release_nonlru(&freed_pvec);
587                 continue;
588
589 activate_locked:
590                 SetPageActive(page);
591                 pgactivate++;
592 keep_locked:
593                 unlock_page(page);
594 keep:
595                 list_add(&page->lru, &ret_pages);
596                 VM_BUG_ON(PageLRU(page));
597         }
598         list_splice(&ret_pages, page_list);
599         if (pagevec_count(&freed_pvec))
600                 __pagevec_release_nonlru(&freed_pvec);
601         count_vm_events(PGACTIVATE, pgactivate);
602         return nr_reclaimed;
603 }
604
605 /*
606  * zone->lru_lock is heavily contended.  Some of the functions that
607  * shrink the lists perform better by taking out a batch of pages
608  * and working on them outside the LRU lock.
609  *
610  * For pagecache intensive workloads, this function is the hottest
611  * spot in the kernel (apart from copy_*_user functions).
612  *
613  * Appropriate locks must be held before calling this function.
614  *
615  * @nr_to_scan: The number of pages to look through on the list.
616  * @src:        The LRU list to pull pages off.
617  * @dst:        The temp list to put pages on to.
618  * @scanned:    The number of pages that were scanned.
619  *
620  * returns how many pages were moved onto *@dst.
621  */
622 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
623                 struct list_head *src, struct list_head *dst,
624                 unsigned long *scanned)
625 {
626         unsigned long nr_taken = 0;
627         struct page *page;
628         unsigned long scan;
629
630         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
631                 struct list_head *target;
632                 page = lru_to_page(src);
633                 prefetchw_prev_lru_page(page, src, flags);
634
635                 VM_BUG_ON(!PageLRU(page));
636
637                 list_del(&page->lru);
638                 target = src;
639                 if (likely(get_page_unless_zero(page))) {
640                         /*
641                          * Be careful not to clear PageLRU until after we're
642                          * sure the page is not being freed elsewhere -- the
643                          * page release code relies on it.
644                          */
645                         ClearPageLRU(page);
646                         target = dst;
647                         nr_taken++;
648                 } /* else it is being freed elsewhere */
649
650                 list_add(&page->lru, target);
651         }
652
653         *scanned = scan;
654         return nr_taken;
655 }
656
657 /*
658  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
659  * of reclaimed pages
660  */
661 static unsigned long shrink_inactive_list(unsigned long max_scan,
662                                 struct zone *zone, struct scan_control *sc)
663 {
664         LIST_HEAD(page_list);
665         struct pagevec pvec;
666         unsigned long nr_scanned = 0;
667         unsigned long nr_reclaimed = 0;
668
669         pagevec_init(&pvec, 1);
670
671         lru_add_drain();
672         spin_lock_irq(&zone->lru_lock);
673         do {
674                 struct page *page;
675                 unsigned long nr_taken;
676                 unsigned long nr_scan;
677                 unsigned long nr_freed;
678
679                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
680                                              &zone->inactive_list,
681                                              &page_list, &nr_scan);
682                 __mod_zone_page_state(zone, NR_INACTIVE, -nr_taken);
683                 zone->pages_scanned += nr_scan;
684                 spin_unlock_irq(&zone->lru_lock);
685
686                 nr_scanned += nr_scan;
687                 nr_freed = shrink_page_list(&page_list, sc);
688                 nr_reclaimed += nr_freed;
689                 local_irq_disable();
690                 if (current_is_kswapd()) {
691                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
692                         __count_vm_events(KSWAPD_STEAL, nr_freed);
693                 } else
694                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
695                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
696
697                 if (nr_taken == 0)
698                         goto done;
699
700                 spin_lock(&zone->lru_lock);
701                 /*
702                  * Put back any unfreeable pages.
703                  */
704                 while (!list_empty(&page_list)) {
705                         page = lru_to_page(&page_list);
706                         VM_BUG_ON(PageLRU(page));
707                         SetPageLRU(page);
708                         list_del(&page->lru);
709                         if (PageActive(page))
710                                 add_page_to_active_list(zone, page);
711                         else
712                                 add_page_to_inactive_list(zone, page);
713                         if (!pagevec_add(&pvec, page)) {
714                                 spin_unlock_irq(&zone->lru_lock);
715                                 __pagevec_release(&pvec);
716                                 spin_lock_irq(&zone->lru_lock);
717                         }
718                 }
719         } while (nr_scanned < max_scan);
720         spin_unlock(&zone->lru_lock);
721 done:
722         local_irq_enable();
723         pagevec_release(&pvec);
724         return nr_reclaimed;
725 }
726
727 /*
728  * We are about to scan this zone at a certain priority level.  If that priority
729  * level is smaller (ie: more urgent) than the previous priority, then note
730  * that priority level within the zone.  This is done so that when the next
731  * process comes in to scan this zone, it will immediately start out at this
732  * priority level rather than having to build up its own scanning priority.
733  * Here, this priority affects only the reclaim-mapped threshold.
734  */
735 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
736 {
737         if (priority < zone->prev_priority)
738                 zone->prev_priority = priority;
739 }
740
741 static inline int zone_is_near_oom(struct zone *zone)
742 {
743         return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
744                                 + zone_page_state(zone, NR_INACTIVE))*3;
745 }
746
747 /*
748  * This moves pages from the active list to the inactive list.
749  *
750  * We move them the other way if the page is referenced by one or more
751  * processes, from rmap.
752  *
753  * If the pages are mostly unmapped, the processing is fast and it is
754  * appropriate to hold zone->lru_lock across the whole operation.  But if
755  * the pages are mapped, the processing is slow (page_referenced()) so we
756  * should drop zone->lru_lock around each page.  It's impossible to balance
757  * this, so instead we remove the pages from the LRU while processing them.
758  * It is safe to rely on PG_active against the non-LRU pages in here because
759  * nobody will play with that bit on a non-LRU page.
760  *
761  * The downside is that we have to touch page->_count against each page.
762  * But we had to alter page->flags anyway.
763  */
764 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
765                                 struct scan_control *sc, int priority)
766 {
767         unsigned long pgmoved;
768         int pgdeactivate = 0;
769         unsigned long pgscanned;
770         LIST_HEAD(l_hold);      /* The pages which were snipped off */
771         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
772         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
773         struct page *page;
774         struct pagevec pvec;
775         int reclaim_mapped = 0;
776
777         if (sc->may_swap) {
778                 long mapped_ratio;
779                 long distress;
780                 long swap_tendency;
781
782                 if (zone_is_near_oom(zone))
783                         goto force_reclaim_mapped;
784
785                 /*
786                  * `distress' is a measure of how much trouble we're having
787                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
788                  */
789                 distress = 100 >> min(zone->prev_priority, priority);
790
791                 /*
792                  * The point of this algorithm is to decide when to start
793                  * reclaiming mapped memory instead of just pagecache.  Work out
794                  * how much memory
795                  * is mapped.
796                  */
797                 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
798                                 global_page_state(NR_ANON_PAGES)) * 100) /
799                                         vm_total_pages;
800
801                 /*
802                  * Now decide how much we really want to unmap some pages.  The
803                  * mapped ratio is downgraded - just because there's a lot of
804                  * mapped memory doesn't necessarily mean that page reclaim
805                  * isn't succeeding.
806                  *
807                  * The distress ratio is important - we don't want to start
808                  * going oom.
809                  *
810                  * A 100% value of vm_swappiness overrides this algorithm
811                  * altogether.
812                  */
813                 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
814
815                 /*
816                  * Now use this metric to decide whether to start moving mapped
817                  * memory onto the inactive list.
818                  */
819                 if (swap_tendency >= 100)
820 force_reclaim_mapped:
821                         reclaim_mapped = 1;
822         }
823
824         lru_add_drain();
825         spin_lock_irq(&zone->lru_lock);
826         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
827                                     &l_hold, &pgscanned);
828         zone->pages_scanned += pgscanned;
829         __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
830         spin_unlock_irq(&zone->lru_lock);
831
832         while (!list_empty(&l_hold)) {
833                 cond_resched();
834                 page = lru_to_page(&l_hold);
835                 list_del(&page->lru);
836                 if (page_mapped(page)) {
837                         if (!reclaim_mapped ||
838                             (total_swap_pages == 0 && PageAnon(page)) ||
839                             page_referenced(page, 0)) {
840                                 list_add(&page->lru, &l_active);
841                                 continue;
842                         }
843                 }
844                 list_add(&page->lru, &l_inactive);
845         }
846
847         pagevec_init(&pvec, 1);
848         pgmoved = 0;
849         spin_lock_irq(&zone->lru_lock);
850         while (!list_empty(&l_inactive)) {
851                 page = lru_to_page(&l_inactive);
852                 prefetchw_prev_lru_page(page, &l_inactive, flags);
853                 VM_BUG_ON(PageLRU(page));
854                 SetPageLRU(page);
855                 VM_BUG_ON(!PageActive(page));
856                 ClearPageActive(page);
857
858                 list_move(&page->lru, &zone->inactive_list);
859                 pgmoved++;
860                 if (!pagevec_add(&pvec, page)) {
861                         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
862                         spin_unlock_irq(&zone->lru_lock);
863                         pgdeactivate += pgmoved;
864                         pgmoved = 0;
865                         if (buffer_heads_over_limit)
866                                 pagevec_strip(&pvec);
867                         __pagevec_release(&pvec);
868                         spin_lock_irq(&zone->lru_lock);
869                 }
870         }
871         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
872         pgdeactivate += pgmoved;
873         if (buffer_heads_over_limit) {
874                 spin_unlock_irq(&zone->lru_lock);
875                 pagevec_strip(&pvec);
876                 spin_lock_irq(&zone->lru_lock);
877         }
878
879         pgmoved = 0;
880         while (!list_empty(&l_active)) {
881                 page = lru_to_page(&l_active);
882                 prefetchw_prev_lru_page(page, &l_active, flags);
883                 VM_BUG_ON(PageLRU(page));
884                 SetPageLRU(page);
885                 VM_BUG_ON(!PageActive(page));
886                 list_move(&page->lru, &zone->active_list);
887                 pgmoved++;
888                 if (!pagevec_add(&pvec, page)) {
889                         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
890                         pgmoved = 0;
891                         spin_unlock_irq(&zone->lru_lock);
892                         __pagevec_release(&pvec);
893                         spin_lock_irq(&zone->lru_lock);
894                 }
895         }
896         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
897
898         __count_zone_vm_events(PGREFILL, zone, pgscanned);
899         __count_vm_events(PGDEACTIVATE, pgdeactivate);
900         spin_unlock_irq(&zone->lru_lock);
901
902         pagevec_release(&pvec);
903 }
904
905 /*
906  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
907  */
908 static unsigned long shrink_zone(int priority, struct zone *zone,
909                                 struct scan_control *sc)
910 {
911         unsigned long nr_active;
912         unsigned long nr_inactive;
913         unsigned long nr_to_scan;
914         unsigned long nr_reclaimed = 0;
915
916         atomic_inc(&zone->reclaim_in_progress);
917
918         /*
919          * Add one to `nr_to_scan' just to make sure that the kernel will
920          * slowly sift through the active list.
921          */
922         zone->nr_scan_active +=
923                 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
924         nr_active = zone->nr_scan_active;
925         if (nr_active >= sc->swap_cluster_max)
926                 zone->nr_scan_active = 0;
927         else
928                 nr_active = 0;
929
930         zone->nr_scan_inactive +=
931                 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
932         nr_inactive = zone->nr_scan_inactive;
933         if (nr_inactive >= sc->swap_cluster_max)
934                 zone->nr_scan_inactive = 0;
935         else
936                 nr_inactive = 0;
937
938         while (nr_active || nr_inactive) {
939                 if (nr_active) {
940                         nr_to_scan = min(nr_active,
941                                         (unsigned long)sc->swap_cluster_max);
942                         nr_active -= nr_to_scan;
943                         shrink_active_list(nr_to_scan, zone, sc, priority);
944                 }
945
946                 if (nr_inactive) {
947                         nr_to_scan = min(nr_inactive,
948                                         (unsigned long)sc->swap_cluster_max);
949                         nr_inactive -= nr_to_scan;
950                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
951                                                                 sc);
952                 }
953         }
954
955         throttle_vm_writeout();
956
957         atomic_dec(&zone->reclaim_in_progress);
958         return nr_reclaimed;
959 }
960
961 /*
962  * This is the direct reclaim path, for page-allocating processes.  We only
963  * try to reclaim pages from zones which will satisfy the caller's allocation
964  * request.
965  *
966  * We reclaim from a zone even if that zone is over pages_high.  Because:
967  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
968  *    allocation or
969  * b) The zones may be over pages_high but they must go *over* pages_high to
970  *    satisfy the `incremental min' zone defense algorithm.
971  *
972  * Returns the number of reclaimed pages.
973  *
974  * If a zone is deemed to be full of pinned pages then just give it a light
975  * scan then give up on it.
976  */
977 static unsigned long shrink_zones(int priority, struct zone **zones,
978                                         struct scan_control *sc)
979 {
980         unsigned long nr_reclaimed = 0;
981         int i;
982
983         sc->all_unreclaimable = 1;
984         for (i = 0; zones[i] != NULL; i++) {
985                 struct zone *zone = zones[i];
986
987                 if (!populated_zone(zone))
988                         continue;
989
990                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
991                         continue;
992
993                 note_zone_scanning_priority(zone, priority);
994
995                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
996                         continue;       /* Let kswapd poll it */
997
998                 sc->all_unreclaimable = 0;
999
1000                 nr_reclaimed += shrink_zone(priority, zone, sc);
1001         }
1002         return nr_reclaimed;
1003 }
1004  
1005 /*
1006  * This is the main entry point to direct page reclaim.
1007  *
1008  * If a full scan of the inactive list fails to free enough memory then we
1009  * are "out of memory" and something needs to be killed.
1010  *
1011  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1012  * high - the zone may be full of dirty or under-writeback pages, which this
1013  * caller can't do much about.  We kick pdflush and take explicit naps in the
1014  * hope that some of these pages can be written.  But if the allocating task
1015  * holds filesystem locks which prevent writeout this might not work, and the
1016  * allocation attempt will fail.
1017  */
1018 unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1019 {
1020         int priority;
1021         int ret = 0;
1022         unsigned long total_scanned = 0;
1023         unsigned long nr_reclaimed = 0;
1024         struct reclaim_state *reclaim_state = current->reclaim_state;
1025         unsigned long lru_pages = 0;
1026         int i;
1027         struct scan_control sc = {
1028                 .gfp_mask = gfp_mask,
1029                 .may_writepage = !laptop_mode,
1030                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1031                 .may_swap = 1,
1032                 .swappiness = vm_swappiness,
1033         };
1034
1035         count_vm_event(ALLOCSTALL);
1036
1037         for (i = 0; zones[i] != NULL; i++) {
1038                 struct zone *zone = zones[i];
1039
1040                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1041                         continue;
1042
1043                 lru_pages += zone_page_state(zone, NR_ACTIVE)
1044                                 + zone_page_state(zone, NR_INACTIVE);
1045         }
1046
1047         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1048                 sc.nr_scanned = 0;
1049                 if (!priority)
1050                         disable_swap_token();
1051                 nr_reclaimed += shrink_zones(priority, zones, &sc);
1052                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1053                 if (reclaim_state) {
1054                         nr_reclaimed += reclaim_state->reclaimed_slab;
1055                         reclaim_state->reclaimed_slab = 0;
1056                 }
1057                 total_scanned += sc.nr_scanned;
1058                 if (nr_reclaimed >= sc.swap_cluster_max) {
1059                         ret = 1;
1060                         goto out;
1061                 }
1062
1063                 /*
1064                  * Try to write back as many pages as we just scanned.  This
1065                  * tends to cause slow streaming writers to write data to the
1066                  * disk smoothly, at the dirtying rate, which is nice.   But
1067                  * that's undesirable in laptop mode, where we *want* lumpy
1068                  * writeout.  So in laptop mode, write out the whole world.
1069                  */
1070                 if (total_scanned > sc.swap_cluster_max +
1071                                         sc.swap_cluster_max / 2) {
1072                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1073                         sc.may_writepage = 1;
1074                 }
1075
1076                 /* Take a nap, wait for some writeback to complete */
1077                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1078                         congestion_wait(WRITE, HZ/10);
1079         }
1080         /* top priority shrink_caches still had more to do? don't OOM, then */
1081         if (!sc.all_unreclaimable)
1082                 ret = 1;
1083 out:
1084         /*
1085          * Now that we've scanned all the zones at this priority level, note
1086          * that level within the zone so that the next thread which performs
1087          * scanning of this zone will immediately start out at this priority
1088          * level.  This affects only the decision whether or not to bring
1089          * mapped pages onto the inactive list.
1090          */
1091         if (priority < 0)
1092                 priority = 0;
1093         for (i = 0; zones[i] != 0; i++) {
1094                 struct zone *zone = zones[i];
1095
1096                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1097                         continue;
1098
1099                 zone->prev_priority = priority;
1100         }
1101         return ret;
1102 }
1103
1104 /*
1105  * For kswapd, balance_pgdat() will work across all this node's zones until
1106  * they are all at pages_high.
1107  *
1108  * Returns the number of pages which were actually freed.
1109  *
1110  * There is special handling here for zones which are full of pinned pages.
1111  * This can happen if the pages are all mlocked, or if they are all used by
1112  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1113  * What we do is to detect the case where all pages in the zone have been
1114  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1115  * dead and from now on, only perform a short scan.  Basically we're polling
1116  * the zone for when the problem goes away.
1117  *
1118  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1119  * zones which have free_pages > pages_high, but once a zone is found to have
1120  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1121  * of the number of free pages in the lower zones.  This interoperates with
1122  * the page allocator fallback scheme to ensure that aging of pages is balanced
1123  * across the zones.
1124  */
1125 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1126 {
1127         int all_zones_ok;
1128         int priority;
1129         int i;
1130         unsigned long total_scanned;
1131         unsigned long nr_reclaimed;
1132         struct reclaim_state *reclaim_state = current->reclaim_state;
1133         struct scan_control sc = {
1134                 .gfp_mask = GFP_KERNEL,
1135                 .may_swap = 1,
1136                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1137                 .swappiness = vm_swappiness,
1138         };
1139         /*
1140          * temp_priority is used to remember the scanning priority at which
1141          * this zone was successfully refilled to free_pages == pages_high.
1142          */
1143         int temp_priority[MAX_NR_ZONES];
1144
1145 loop_again:
1146         total_scanned = 0;
1147         nr_reclaimed = 0;
1148         sc.may_writepage = !laptop_mode;
1149         count_vm_event(PAGEOUTRUN);
1150
1151         for (i = 0; i < pgdat->nr_zones; i++)
1152                 temp_priority[i] = DEF_PRIORITY;
1153
1154         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1155                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1156                 unsigned long lru_pages = 0;
1157
1158                 /* The swap token gets in the way of swapout... */
1159                 if (!priority)
1160                         disable_swap_token();
1161
1162                 all_zones_ok = 1;
1163
1164                 /*
1165                  * Scan in the highmem->dma direction for the highest
1166                  * zone which needs scanning
1167                  */
1168                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1169                         struct zone *zone = pgdat->node_zones + i;
1170
1171                         if (!populated_zone(zone))
1172                                 continue;
1173
1174                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1175                                 continue;
1176
1177                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1178                                                0, 0)) {
1179                                 end_zone = i;
1180                                 break;
1181                         }
1182                 }
1183                 if (i < 0)
1184                         goto out;
1185
1186                 for (i = 0; i <= end_zone; i++) {
1187                         struct zone *zone = pgdat->node_zones + i;
1188
1189                         lru_pages += zone_page_state(zone, NR_ACTIVE)
1190                                         + zone_page_state(zone, NR_INACTIVE);
1191                 }
1192
1193                 /*
1194                  * Now scan the zone in the dma->highmem direction, stopping
1195                  * at the last zone which needs scanning.
1196                  *
1197                  * We do this because the page allocator works in the opposite
1198                  * direction.  This prevents the page allocator from allocating
1199                  * pages behind kswapd's direction of progress, which would
1200                  * cause too much scanning of the lower zones.
1201                  */
1202                 for (i = 0; i <= end_zone; i++) {
1203                         struct zone *zone = pgdat->node_zones + i;
1204                         int nr_slab;
1205
1206                         if (!populated_zone(zone))
1207                                 continue;
1208
1209                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1210                                 continue;
1211
1212                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1213                                                end_zone, 0))
1214                                 all_zones_ok = 0;
1215                         temp_priority[i] = priority;
1216                         sc.nr_scanned = 0;
1217                         note_zone_scanning_priority(zone, priority);
1218                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1219                         reclaim_state->reclaimed_slab = 0;
1220                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1221                                                 lru_pages);
1222                         nr_reclaimed += reclaim_state->reclaimed_slab;
1223                         total_scanned += sc.nr_scanned;
1224                         if (zone->all_unreclaimable)
1225                                 continue;
1226                         if (nr_slab == 0 && zone->pages_scanned >=
1227                                 (zone_page_state(zone, NR_ACTIVE)
1228                                 + zone_page_state(zone, NR_INACTIVE)) * 6)
1229                                         zone->all_unreclaimable = 1;
1230                         /*
1231                          * If we've done a decent amount of scanning and
1232                          * the reclaim ratio is low, start doing writepage
1233                          * even in laptop mode
1234                          */
1235                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1236                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1237                                 sc.may_writepage = 1;
1238                 }
1239                 if (all_zones_ok)
1240                         break;          /* kswapd: all done */
1241                 /*
1242                  * OK, kswapd is getting into trouble.  Take a nap, then take
1243                  * another pass across the zones.
1244                  */
1245                 if (total_scanned && priority < DEF_PRIORITY - 2)
1246                         congestion_wait(WRITE, HZ/10);
1247
1248                 /*
1249                  * We do this so kswapd doesn't build up large priorities for
1250                  * example when it is freeing in parallel with allocators. It
1251                  * matches the direct reclaim path behaviour in terms of impact
1252                  * on zone->*_priority.
1253                  */
1254                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1255                         break;
1256         }
1257 out:
1258         /*
1259          * Note within each zone the priority level at which this zone was
1260          * brought into a happy state.  So that the next thread which scans this
1261          * zone will start out at that priority level.
1262          */
1263         for (i = 0; i < pgdat->nr_zones; i++) {
1264                 struct zone *zone = pgdat->node_zones + i;
1265
1266                 zone->prev_priority = temp_priority[i];
1267         }
1268         if (!all_zones_ok) {
1269                 cond_resched();
1270
1271                 try_to_freeze();
1272
1273                 goto loop_again;
1274         }
1275
1276         return nr_reclaimed;
1277 }
1278
1279 /*
1280  * The background pageout daemon, started as a kernel thread
1281  * from the init process. 
1282  *
1283  * This basically trickles out pages so that we have _some_
1284  * free memory available even if there is no other activity
1285  * that frees anything up. This is needed for things like routing
1286  * etc, where we otherwise might have all activity going on in
1287  * asynchronous contexts that cannot page things out.
1288  *
1289  * If there are applications that are active memory-allocators
1290  * (most normal use), this basically shouldn't matter.
1291  */
1292 static int kswapd(void *p)
1293 {
1294         unsigned long order;
1295         pg_data_t *pgdat = (pg_data_t*)p;
1296         struct task_struct *tsk = current;
1297         DEFINE_WAIT(wait);
1298         struct reclaim_state reclaim_state = {
1299                 .reclaimed_slab = 0,
1300         };
1301         cpumask_t cpumask;
1302
1303         cpumask = node_to_cpumask(pgdat->node_id);
1304         if (!cpus_empty(cpumask))
1305                 set_cpus_allowed(tsk, cpumask);
1306         current->reclaim_state = &reclaim_state;
1307
1308         /*
1309          * Tell the memory management that we're a "memory allocator",
1310          * and that if we need more memory we should get access to it
1311          * regardless (see "__alloc_pages()"). "kswapd" should
1312          * never get caught in the normal page freeing logic.
1313          *
1314          * (Kswapd normally doesn't need memory anyway, but sometimes
1315          * you need a small amount of memory in order to be able to
1316          * page out something else, and this flag essentially protects
1317          * us from recursively trying to free more memory as we're
1318          * trying to free the first piece of memory in the first place).
1319          */
1320         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1321
1322         order = 0;
1323         for ( ; ; ) {
1324                 unsigned long new_order;
1325
1326                 try_to_freeze();
1327
1328                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1329                 new_order = pgdat->kswapd_max_order;
1330                 pgdat->kswapd_max_order = 0;
1331                 if (order < new_order) {
1332                         /*
1333                          * Don't sleep if someone wants a larger 'order'
1334                          * allocation
1335                          */
1336                         order = new_order;
1337                 } else {
1338                         schedule();
1339                         order = pgdat->kswapd_max_order;
1340                 }
1341                 finish_wait(&pgdat->kswapd_wait, &wait);
1342
1343                 balance_pgdat(pgdat, order);
1344         }
1345         return 0;
1346 }
1347
1348 /*
1349  * A zone is low on free memory, so wake its kswapd task to service it.
1350  */
1351 void wakeup_kswapd(struct zone *zone, int order)
1352 {
1353         pg_data_t *pgdat;
1354
1355         if (!populated_zone(zone))
1356                 return;
1357
1358         pgdat = zone->zone_pgdat;
1359         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1360                 return;
1361         if (pgdat->kswapd_max_order < order)
1362                 pgdat->kswapd_max_order = order;
1363         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1364                 return;
1365         if (!waitqueue_active(&pgdat->kswapd_wait))
1366                 return;
1367         wake_up_interruptible(&pgdat->kswapd_wait);
1368 }
1369
1370 #ifdef CONFIG_PM
1371 /*
1372  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1373  * from LRU lists system-wide, for given pass and priority, and returns the
1374  * number of reclaimed pages
1375  *
1376  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1377  */
1378 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1379                                       int pass, struct scan_control *sc)
1380 {
1381         struct zone *zone;
1382         unsigned long nr_to_scan, ret = 0;
1383
1384         for_each_zone(zone) {
1385
1386                 if (!populated_zone(zone))
1387                         continue;
1388
1389                 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1390                         continue;
1391
1392                 /* For pass = 0 we don't shrink the active list */
1393                 if (pass > 0) {
1394                         zone->nr_scan_active +=
1395                                 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1396                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1397                                 zone->nr_scan_active = 0;
1398                                 nr_to_scan = min(nr_pages,
1399                                         zone_page_state(zone, NR_ACTIVE));
1400                                 shrink_active_list(nr_to_scan, zone, sc, prio);
1401                         }
1402                 }
1403
1404                 zone->nr_scan_inactive +=
1405                         (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1406                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1407                         zone->nr_scan_inactive = 0;
1408                         nr_to_scan = min(nr_pages,
1409                                 zone_page_state(zone, NR_INACTIVE));
1410                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1411                         if (ret >= nr_pages)
1412                                 return ret;
1413                 }
1414         }
1415
1416         return ret;
1417 }
1418
1419 static unsigned long count_lru_pages(void)
1420 {
1421         return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1422 }
1423
1424 /*
1425  * Try to free `nr_pages' of memory, system-wide, and return the number of
1426  * freed pages.
1427  *
1428  * Rather than trying to age LRUs the aim is to preserve the overall
1429  * LRU order by reclaiming preferentially
1430  * inactive > active > active referenced > active mapped
1431  */
1432 unsigned long shrink_all_memory(unsigned long nr_pages)
1433 {
1434         unsigned long lru_pages, nr_slab;
1435         unsigned long ret = 0;
1436         int pass;
1437         struct reclaim_state reclaim_state;
1438         struct scan_control sc = {
1439                 .gfp_mask = GFP_KERNEL,
1440                 .may_swap = 0,
1441                 .swap_cluster_max = nr_pages,
1442                 .may_writepage = 1,
1443                 .swappiness = vm_swappiness,
1444         };
1445
1446         current->reclaim_state = &reclaim_state;
1447
1448         lru_pages = count_lru_pages();
1449         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1450         /* If slab caches are huge, it's better to hit them first */
1451         while (nr_slab >= lru_pages) {
1452                 reclaim_state.reclaimed_slab = 0;
1453                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1454                 if (!reclaim_state.reclaimed_slab)
1455                         break;
1456
1457                 ret += reclaim_state.reclaimed_slab;
1458                 if (ret >= nr_pages)
1459                         goto out;
1460
1461                 nr_slab -= reclaim_state.reclaimed_slab;
1462         }
1463
1464         /*
1465          * We try to shrink LRUs in 5 passes:
1466          * 0 = Reclaim from inactive_list only
1467          * 1 = Reclaim from active list but don't reclaim mapped
1468          * 2 = 2nd pass of type 1
1469          * 3 = Reclaim mapped (normal reclaim)
1470          * 4 = 2nd pass of type 3
1471          */
1472         for (pass = 0; pass < 5; pass++) {
1473                 int prio;
1474
1475                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1476                 if (pass > 2) {
1477                         sc.may_swap = 1;
1478                         sc.swappiness = 100;
1479                 }
1480
1481                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1482                         unsigned long nr_to_scan = nr_pages - ret;
1483
1484                         sc.nr_scanned = 0;
1485                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1486                         if (ret >= nr_pages)
1487                                 goto out;
1488
1489                         reclaim_state.reclaimed_slab = 0;
1490                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
1491                                         count_lru_pages());
1492                         ret += reclaim_state.reclaimed_slab;
1493                         if (ret >= nr_pages)
1494                                 goto out;
1495
1496                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1497                                 congestion_wait(WRITE, HZ / 10);
1498                 }
1499         }
1500
1501         /*
1502          * If ret = 0, we could not shrink LRUs, but there may be something
1503          * in slab caches
1504          */
1505         if (!ret) {
1506                 do {
1507                         reclaim_state.reclaimed_slab = 0;
1508                         shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1509                         ret += reclaim_state.reclaimed_slab;
1510                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1511         }
1512
1513 out:
1514         current->reclaim_state = NULL;
1515
1516         return ret;
1517 }
1518 #endif
1519
1520 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1521    not required for correctness.  So if the last cpu in a node goes
1522    away, we get changed to run anywhere: as the first one comes back,
1523    restore their cpu bindings. */
1524 static int __devinit cpu_callback(struct notifier_block *nfb,
1525                                   unsigned long action, void *hcpu)
1526 {
1527         pg_data_t *pgdat;
1528         cpumask_t mask;
1529
1530         if (action == CPU_ONLINE) {
1531                 for_each_online_pgdat(pgdat) {
1532                         mask = node_to_cpumask(pgdat->node_id);
1533                         if (any_online_cpu(mask) != NR_CPUS)
1534                                 /* One of our CPUs online: restore mask */
1535                                 set_cpus_allowed(pgdat->kswapd, mask);
1536                 }
1537         }
1538         return NOTIFY_OK;
1539 }
1540
1541 /*
1542  * This kswapd start function will be called by init and node-hot-add.
1543  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1544  */
1545 int kswapd_run(int nid)
1546 {
1547         pg_data_t *pgdat = NODE_DATA(nid);
1548         int ret = 0;
1549
1550         if (pgdat->kswapd)
1551                 return 0;
1552
1553         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1554         if (IS_ERR(pgdat->kswapd)) {
1555                 /* failure at boot is fatal */
1556                 BUG_ON(system_state == SYSTEM_BOOTING);
1557                 printk("Failed to start kswapd on node %d\n",nid);
1558                 ret = -1;
1559         }
1560         return ret;
1561 }
1562
1563 static int __init kswapd_init(void)
1564 {
1565         int nid;
1566
1567         swap_setup();
1568         for_each_online_node(nid)
1569                 kswapd_run(nid);
1570         hotcpu_notifier(cpu_callback, 0);
1571         return 0;
1572 }
1573
1574 module_init(kswapd_init)
1575
1576 #ifdef CONFIG_NUMA
1577 /*
1578  * Zone reclaim mode
1579  *
1580  * If non-zero call zone_reclaim when the number of free pages falls below
1581  * the watermarks.
1582  */
1583 int zone_reclaim_mode __read_mostly;
1584
1585 #define RECLAIM_OFF 0
1586 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1587 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1588 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1589
1590 /*
1591  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1592  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1593  * a zone.
1594  */
1595 #define ZONE_RECLAIM_PRIORITY 4
1596
1597 /*
1598  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1599  * occur.
1600  */
1601 int sysctl_min_unmapped_ratio = 1;
1602
1603 /*
1604  * If the number of slab pages in a zone grows beyond this percentage then
1605  * slab reclaim needs to occur.
1606  */
1607 int sysctl_min_slab_ratio = 5;
1608
1609 /*
1610  * Try to free up some pages from this zone through reclaim.
1611  */
1612 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1613 {
1614         /* Minimum pages needed in order to stay on node */
1615         const unsigned long nr_pages = 1 << order;
1616         struct task_struct *p = current;
1617         struct reclaim_state reclaim_state;
1618         int priority;
1619         unsigned long nr_reclaimed = 0;
1620         struct scan_control sc = {
1621                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1622                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1623                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1624                                         SWAP_CLUSTER_MAX),
1625                 .gfp_mask = gfp_mask,
1626                 .swappiness = vm_swappiness,
1627         };
1628         unsigned long slab_reclaimable;
1629
1630         disable_swap_token();
1631         cond_resched();
1632         /*
1633          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1634          * and we also need to be able to write out pages for RECLAIM_WRITE
1635          * and RECLAIM_SWAP.
1636          */
1637         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1638         reclaim_state.reclaimed_slab = 0;
1639         p->reclaim_state = &reclaim_state;
1640
1641         if (zone_page_state(zone, NR_FILE_PAGES) -
1642                 zone_page_state(zone, NR_FILE_MAPPED) >
1643                 zone->min_unmapped_pages) {
1644                 /*
1645                  * Free memory by calling shrink zone with increasing
1646                  * priorities until we have enough memory freed.
1647                  */
1648                 priority = ZONE_RECLAIM_PRIORITY;
1649                 do {
1650                         note_zone_scanning_priority(zone, priority);
1651                         nr_reclaimed += shrink_zone(priority, zone, &sc);
1652                         priority--;
1653                 } while (priority >= 0 && nr_reclaimed < nr_pages);
1654         }
1655
1656         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1657         if (slab_reclaimable > zone->min_slab_pages) {
1658                 /*
1659                  * shrink_slab() does not currently allow us to determine how
1660                  * many pages were freed in this zone. So we take the current
1661                  * number of slab pages and shake the slab until it is reduced
1662                  * by the same nr_pages that we used for reclaiming unmapped
1663                  * pages.
1664                  *
1665                  * Note that shrink_slab will free memory on all zones and may
1666                  * take a long time.
1667                  */
1668                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1669                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1670                                 slab_reclaimable - nr_pages)
1671                         ;
1672
1673                 /*
1674                  * Update nr_reclaimed by the number of slab pages we
1675                  * reclaimed from this zone.
1676                  */
1677                 nr_reclaimed += slab_reclaimable -
1678                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1679         }
1680
1681         p->reclaim_state = NULL;
1682         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1683         return nr_reclaimed >= nr_pages;
1684 }
1685
1686 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1687 {
1688         cpumask_t mask;
1689         int node_id;
1690
1691         /*
1692          * Zone reclaim reclaims unmapped file backed pages and
1693          * slab pages if we are over the defined limits.
1694          *
1695          * A small portion of unmapped file backed pages is needed for
1696          * file I/O otherwise pages read by file I/O will be immediately
1697          * thrown out if the zone is overallocated. So we do not reclaim
1698          * if less than a specified percentage of the zone is used by
1699          * unmapped file backed pages.
1700          */
1701         if (zone_page_state(zone, NR_FILE_PAGES) -
1702             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1703             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1704                         <= zone->min_slab_pages)
1705                 return 0;
1706
1707         /*
1708          * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1709          * not have reclaimable pages and if we should not delay the allocation
1710          * then do not scan.
1711          */
1712         if (!(gfp_mask & __GFP_WAIT) ||
1713                 zone->all_unreclaimable ||
1714                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1715                 (current->flags & PF_MEMALLOC))
1716                         return 0;
1717
1718         /*
1719          * Only run zone reclaim on the local zone or on zones that do not
1720          * have associated processors. This will favor the local processor
1721          * over remote processors and spread off node memory allocations
1722          * as wide as possible.
1723          */
1724         node_id = zone_to_nid(zone);
1725         mask = node_to_cpumask(node_id);
1726         if (!cpus_empty(mask) && node_id != numa_node_id())
1727                 return 0;
1728         return __zone_reclaim(zone, gfp_mask, order);
1729 }
1730 #endif