Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS                                               \
37         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS                                               \
41         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
43                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
44                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48  * - enable syscall per default because its emulated by KVM
49  * - enable LME and LMA per default on 64 bit KVM
50  */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61                                     struct kvm_cpuid_entry2 __user *entries);
62
63 struct kvm_x86_ops *kvm_x86_ops;
64
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66         { "pf_fixed", VCPU_STAT(pf_fixed) },
67         { "pf_guest", VCPU_STAT(pf_guest) },
68         { "tlb_flush", VCPU_STAT(tlb_flush) },
69         { "invlpg", VCPU_STAT(invlpg) },
70         { "exits", VCPU_STAT(exits) },
71         { "io_exits", VCPU_STAT(io_exits) },
72         { "mmio_exits", VCPU_STAT(mmio_exits) },
73         { "signal_exits", VCPU_STAT(signal_exits) },
74         { "irq_window", VCPU_STAT(irq_window_exits) },
75         { "nmi_window", VCPU_STAT(nmi_window_exits) },
76         { "halt_exits", VCPU_STAT(halt_exits) },
77         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
78         { "hypercalls", VCPU_STAT(hypercalls) },
79         { "request_irq", VCPU_STAT(request_irq_exits) },
80         { "irq_exits", VCPU_STAT(irq_exits) },
81         { "host_state_reload", VCPU_STAT(host_state_reload) },
82         { "efer_reload", VCPU_STAT(efer_reload) },
83         { "fpu_reload", VCPU_STAT(fpu_reload) },
84         { "insn_emulation", VCPU_STAT(insn_emulation) },
85         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
88         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90         { "mmu_flooded", VM_STAT(mmu_flooded) },
91         { "mmu_recycled", VM_STAT(mmu_recycled) },
92         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94         { "largepages", VM_STAT(lpages) },
95         { NULL }
96 };
97
98
99 unsigned long segment_base(u16 selector)
100 {
101         struct descriptor_table gdt;
102         struct desc_struct *d;
103         unsigned long table_base;
104         unsigned long v;
105
106         if (selector == 0)
107                 return 0;
108
109         asm("sgdt %0" : "=m"(gdt));
110         table_base = gdt.base;
111
112         if (selector & 4) {           /* from ldt */
113                 u16 ldt_selector;
114
115                 asm("sldt %0" : "=g"(ldt_selector));
116                 table_base = segment_base(ldt_selector);
117         }
118         d = (struct desc_struct *)(table_base + (selector & ~7));
119         v = d->base0 | ((unsigned long)d->base1 << 16) |
120                 ((unsigned long)d->base2 << 24);
121 #ifdef CONFIG_X86_64
122         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 #endif
125         return v;
126 }
127 EXPORT_SYMBOL_GPL(segment_base);
128
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 {
131         if (irqchip_in_kernel(vcpu->kvm))
132                 return vcpu->arch.apic_base;
133         else
134                 return vcpu->arch.apic_base;
135 }
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 {
140         /* TODO: reserve bits check */
141         if (irqchip_in_kernel(vcpu->kvm))
142                 kvm_lapic_set_base(vcpu, data);
143         else
144                 vcpu->arch.apic_base = data;
145 }
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 {
150         WARN_ON(vcpu->arch.exception.pending);
151         vcpu->arch.exception.pending = true;
152         vcpu->arch.exception.has_error_code = false;
153         vcpu->arch.exception.nr = nr;
154 }
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
158                            u32 error_code)
159 {
160         ++vcpu->stat.pf_guest;
161         if (vcpu->arch.exception.pending) {
162                 if (vcpu->arch.exception.nr == PF_VECTOR) {
163                         printk(KERN_DEBUG "kvm: inject_page_fault:"
164                                         " double fault 0x%lx\n", addr);
165                         vcpu->arch.exception.nr = DF_VECTOR;
166                         vcpu->arch.exception.error_code = 0;
167                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
168                         /* triple fault -> shutdown */
169                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
170                 }
171                 return;
172         }
173         vcpu->arch.cr2 = addr;
174         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 }
176
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
178 {
179         vcpu->arch.nmi_pending = 1;
180 }
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
182
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
184 {
185         WARN_ON(vcpu->arch.exception.pending);
186         vcpu->arch.exception.pending = true;
187         vcpu->arch.exception.has_error_code = true;
188         vcpu->arch.exception.nr = nr;
189         vcpu->arch.exception.error_code = error_code;
190 }
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
192
193 static void __queue_exception(struct kvm_vcpu *vcpu)
194 {
195         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196                                      vcpu->arch.exception.has_error_code,
197                                      vcpu->arch.exception.error_code);
198 }
199
200 /*
201  * Load the pae pdptrs.  Return true is they are all valid.
202  */
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
204 {
205         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
207         int i;
208         int ret;
209         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210
211         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212                                   offset * sizeof(u64), sizeof(pdpte));
213         if (ret < 0) {
214                 ret = 0;
215                 goto out;
216         }
217         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
219                         ret = 0;
220                         goto out;
221                 }
222         }
223         ret = 1;
224
225         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 out:
227
228         return ret;
229 }
230 EXPORT_SYMBOL_GPL(load_pdptrs);
231
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
233 {
234         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235         bool changed = true;
236         int r;
237
238         if (is_long_mode(vcpu) || !is_pae(vcpu))
239                 return false;
240
241         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242         if (r < 0)
243                 goto out;
244         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 out:
246
247         return changed;
248 }
249
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 {
252         if (cr0 & CR0_RESERVED_BITS) {
253                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254                        cr0, vcpu->arch.cr0);
255                 kvm_inject_gp(vcpu, 0);
256                 return;
257         }
258
259         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261                 kvm_inject_gp(vcpu, 0);
262                 return;
263         }
264
265         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267                        "and a clear PE flag\n");
268                 kvm_inject_gp(vcpu, 0);
269                 return;
270         }
271
272         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
273 #ifdef CONFIG_X86_64
274                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
275                         int cs_db, cs_l;
276
277                         if (!is_pae(vcpu)) {
278                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279                                        "in long mode while PAE is disabled\n");
280                                 kvm_inject_gp(vcpu, 0);
281                                 return;
282                         }
283                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
284                         if (cs_l) {
285                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
286                                        "in long mode while CS.L == 1\n");
287                                 kvm_inject_gp(vcpu, 0);
288                                 return;
289
290                         }
291                 } else
292 #endif
293                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
295                                "reserved bits\n");
296                         kvm_inject_gp(vcpu, 0);
297                         return;
298                 }
299
300         }
301
302         kvm_x86_ops->set_cr0(vcpu, cr0);
303         vcpu->arch.cr0 = cr0;
304
305         kvm_mmu_reset_context(vcpu);
306         return;
307 }
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
309
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311 {
312         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313         KVMTRACE_1D(LMSW, vcpu,
314                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
315                     handler);
316 }
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
318
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 {
321         if (cr4 & CR4_RESERVED_BITS) {
322                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323                 kvm_inject_gp(vcpu, 0);
324                 return;
325         }
326
327         if (is_long_mode(vcpu)) {
328                 if (!(cr4 & X86_CR4_PAE)) {
329                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
330                                "in long mode\n");
331                         kvm_inject_gp(vcpu, 0);
332                         return;
333                 }
334         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337                 kvm_inject_gp(vcpu, 0);
338                 return;
339         }
340
341         if (cr4 & X86_CR4_VMXE) {
342                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343                 kvm_inject_gp(vcpu, 0);
344                 return;
345         }
346         kvm_x86_ops->set_cr4(vcpu, cr4);
347         vcpu->arch.cr4 = cr4;
348         kvm_mmu_reset_context(vcpu);
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
351
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353 {
354         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355                 kvm_mmu_flush_tlb(vcpu);
356                 return;
357         }
358
359         if (is_long_mode(vcpu)) {
360                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362                         kvm_inject_gp(vcpu, 0);
363                         return;
364                 }
365         } else {
366                 if (is_pae(vcpu)) {
367                         if (cr3 & CR3_PAE_RESERVED_BITS) {
368                                 printk(KERN_DEBUG
369                                        "set_cr3: #GP, reserved bits\n");
370                                 kvm_inject_gp(vcpu, 0);
371                                 return;
372                         }
373                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
375                                        "reserved bits\n");
376                                 kvm_inject_gp(vcpu, 0);
377                                 return;
378                         }
379                 }
380                 /*
381                  * We don't check reserved bits in nonpae mode, because
382                  * this isn't enforced, and VMware depends on this.
383                  */
384         }
385
386         /*
387          * Does the new cr3 value map to physical memory? (Note, we
388          * catch an invalid cr3 even in real-mode, because it would
389          * cause trouble later on when we turn on paging anyway.)
390          *
391          * A real CPU would silently accept an invalid cr3 and would
392          * attempt to use it - with largely undefined (and often hard
393          * to debug) behavior on the guest side.
394          */
395         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396                 kvm_inject_gp(vcpu, 0);
397         else {
398                 vcpu->arch.cr3 = cr3;
399                 vcpu->arch.mmu.new_cr3(vcpu);
400         }
401 }
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
403
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 {
406         if (cr8 & CR8_RESERVED_BITS) {
407                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408                 kvm_inject_gp(vcpu, 0);
409                 return;
410         }
411         if (irqchip_in_kernel(vcpu->kvm))
412                 kvm_lapic_set_tpr(vcpu, cr8);
413         else
414                 vcpu->arch.cr8 = cr8;
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
417
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 {
420         if (irqchip_in_kernel(vcpu->kvm))
421                 return kvm_lapic_get_cr8(vcpu);
422         else
423                 return vcpu->arch.cr8;
424 }
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
426
427 /*
428  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
430  *
431  * This list is modified at module load time to reflect the
432  * capabilities of the host cpu.
433  */
434 static u32 msrs_to_save[] = {
435         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
436         MSR_K6_STAR,
437 #ifdef CONFIG_X86_64
438         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
439 #endif
440         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441         MSR_IA32_PERF_STATUS,
442 };
443
444 static unsigned num_msrs_to_save;
445
446 static u32 emulated_msrs[] = {
447         MSR_IA32_MISC_ENABLE,
448 };
449
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
451 {
452         if (efer & efer_reserved_bits) {
453                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
454                        efer);
455                 kvm_inject_gp(vcpu, 0);
456                 return;
457         }
458
459         if (is_paging(vcpu)
460             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462                 kvm_inject_gp(vcpu, 0);
463                 return;
464         }
465
466         kvm_x86_ops->set_efer(vcpu, efer);
467
468         efer &= ~EFER_LMA;
469         efer |= vcpu->arch.shadow_efer & EFER_LMA;
470
471         vcpu->arch.shadow_efer = efer;
472 }
473
474 void kvm_enable_efer_bits(u64 mask)
475 {
476        efer_reserved_bits &= ~mask;
477 }
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
479
480
481 /*
482  * Writes msr value into into the appropriate "register".
483  * Returns 0 on success, non-0 otherwise.
484  * Assumes vcpu_load() was already called.
485  */
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
487 {
488         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
489 }
490
491 /*
492  * Adapt set_msr() to msr_io()'s calling convention
493  */
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
495 {
496         return kvm_set_msr(vcpu, index, *data);
497 }
498
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
500 {
501         static int version;
502         struct pvclock_wall_clock wc;
503         struct timespec now, sys, boot;
504
505         if (!wall_clock)
506                 return;
507
508         version++;
509
510         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511
512         /*
513          * The guest calculates current wall clock time by adding
514          * system time (updated by kvm_write_guest_time below) to the
515          * wall clock specified here.  guest system time equals host
516          * system time for us, thus we must fill in host boot time here.
517          */
518         now = current_kernel_time();
519         ktime_get_ts(&sys);
520         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
521
522         wc.sec = boot.tv_sec;
523         wc.nsec = boot.tv_nsec;
524         wc.version = version;
525
526         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
527
528         version++;
529         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
530 }
531
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
533 {
534         uint32_t quotient, remainder;
535
536         /* Don't try to replace with do_div(), this one calculates
537          * "(dividend << 32) / divisor" */
538         __asm__ ( "divl %4"
539                   : "=a" (quotient), "=d" (remainder)
540                   : "0" (0), "1" (dividend), "r" (divisor) );
541         return quotient;
542 }
543
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
545 {
546         uint64_t nsecs = 1000000000LL;
547         int32_t  shift = 0;
548         uint64_t tps64;
549         uint32_t tps32;
550
551         tps64 = tsc_khz * 1000LL;
552         while (tps64 > nsecs*2) {
553                 tps64 >>= 1;
554                 shift--;
555         }
556
557         tps32 = (uint32_t)tps64;
558         while (tps32 <= (uint32_t)nsecs) {
559                 tps32 <<= 1;
560                 shift++;
561         }
562
563         hv_clock->tsc_shift = shift;
564         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
565
566         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567                  __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568                  hv_clock->tsc_to_system_mul);
569 }
570
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
572 {
573         struct timespec ts;
574         unsigned long flags;
575         struct kvm_vcpu_arch *vcpu = &v->arch;
576         void *shared_kaddr;
577
578         if ((!vcpu->time_page))
579                 return;
580
581         if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582                 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583                 vcpu->hv_clock_tsc_khz = tsc_khz;
584         }
585
586         /* Keep irq disabled to prevent changes to the clock */
587         local_irq_save(flags);
588         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589                           &vcpu->hv_clock.tsc_timestamp);
590         ktime_get_ts(&ts);
591         local_irq_restore(flags);
592
593         /* With all the info we got, fill in the values */
594
595         vcpu->hv_clock.system_time = ts.tv_nsec +
596                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
597         /*
598          * The interface expects us to write an even number signaling that the
599          * update is finished. Since the guest won't see the intermediate
600          * state, we just increase by 2 at the end.
601          */
602         vcpu->hv_clock.version += 2;
603
604         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
605
606         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607                sizeof(vcpu->hv_clock));
608
609         kunmap_atomic(shared_kaddr, KM_USER0);
610
611         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
612 }
613
614 static bool msr_mtrr_valid(unsigned msr)
615 {
616         switch (msr) {
617         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618         case MSR_MTRRfix64K_00000:
619         case MSR_MTRRfix16K_80000:
620         case MSR_MTRRfix16K_A0000:
621         case MSR_MTRRfix4K_C0000:
622         case MSR_MTRRfix4K_C8000:
623         case MSR_MTRRfix4K_D0000:
624         case MSR_MTRRfix4K_D8000:
625         case MSR_MTRRfix4K_E0000:
626         case MSR_MTRRfix4K_E8000:
627         case MSR_MTRRfix4K_F0000:
628         case MSR_MTRRfix4K_F8000:
629         case MSR_MTRRdefType:
630         case MSR_IA32_CR_PAT:
631                 return true;
632         case 0x2f8:
633                 return true;
634         }
635         return false;
636 }
637
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
639 {
640         if (!msr_mtrr_valid(msr))
641                 return 1;
642
643         vcpu->arch.mtrr[msr - 0x200] = data;
644         return 0;
645 }
646
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
648 {
649         switch (msr) {
650         case MSR_EFER:
651                 set_efer(vcpu, data);
652                 break;
653         case MSR_IA32_MC0_STATUS:
654                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655                        __func__, data);
656                 break;
657         case MSR_IA32_MCG_STATUS:
658                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659                         __func__, data);
660                 break;
661         case MSR_IA32_MCG_CTL:
662                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663                         __func__, data);
664                 break;
665         case MSR_IA32_UCODE_REV:
666         case MSR_IA32_UCODE_WRITE:
667                 break;
668         case 0x200 ... 0x2ff:
669                 return set_msr_mtrr(vcpu, msr, data);
670         case MSR_IA32_APICBASE:
671                 kvm_set_apic_base(vcpu, data);
672                 break;
673         case MSR_IA32_MISC_ENABLE:
674                 vcpu->arch.ia32_misc_enable_msr = data;
675                 break;
676         case MSR_KVM_WALL_CLOCK:
677                 vcpu->kvm->arch.wall_clock = data;
678                 kvm_write_wall_clock(vcpu->kvm, data);
679                 break;
680         case MSR_KVM_SYSTEM_TIME: {
681                 if (vcpu->arch.time_page) {
682                         kvm_release_page_dirty(vcpu->arch.time_page);
683                         vcpu->arch.time_page = NULL;
684                 }
685
686                 vcpu->arch.time = data;
687
688                 /* we verify if the enable bit is set... */
689                 if (!(data & 1))
690                         break;
691
692                 /* ...but clean it before doing the actual write */
693                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
694
695                 down_read(&current->mm->mmap_sem);
696                 vcpu->arch.time_page =
697                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698                 up_read(&current->mm->mmap_sem);
699
700                 if (is_error_page(vcpu->arch.time_page)) {
701                         kvm_release_page_clean(vcpu->arch.time_page);
702                         vcpu->arch.time_page = NULL;
703                 }
704
705                 kvm_write_guest_time(vcpu);
706                 break;
707         }
708         default:
709                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710                 return 1;
711         }
712         return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
715
716
717 /*
718  * Reads an msr value (of 'msr_index') into 'pdata'.
719  * Returns 0 on success, non-0 otherwise.
720  * Assumes vcpu_load() was already called.
721  */
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
723 {
724         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
725 }
726
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
728 {
729         if (!msr_mtrr_valid(msr))
730                 return 1;
731
732         *pdata = vcpu->arch.mtrr[msr - 0x200];
733         return 0;
734 }
735
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
737 {
738         u64 data;
739
740         switch (msr) {
741         case 0xc0010010: /* SYSCFG */
742         case 0xc0010015: /* HWCR */
743         case MSR_IA32_PLATFORM_ID:
744         case MSR_IA32_P5_MC_ADDR:
745         case MSR_IA32_P5_MC_TYPE:
746         case MSR_IA32_MC0_CTL:
747         case MSR_IA32_MCG_STATUS:
748         case MSR_IA32_MCG_CAP:
749         case MSR_IA32_MCG_CTL:
750         case MSR_IA32_MC0_MISC:
751         case MSR_IA32_MC0_MISC+4:
752         case MSR_IA32_MC0_MISC+8:
753         case MSR_IA32_MC0_MISC+12:
754         case MSR_IA32_MC0_MISC+16:
755         case MSR_IA32_UCODE_REV:
756         case MSR_IA32_EBL_CR_POWERON:
757                 data = 0;
758                 break;
759         case MSR_MTRRcap:
760                 data = 0x500 | KVM_NR_VAR_MTRR;
761                 break;
762         case 0x200 ... 0x2ff:
763                 return get_msr_mtrr(vcpu, msr, pdata);
764         case 0xcd: /* fsb frequency */
765                 data = 3;
766                 break;
767         case MSR_IA32_APICBASE:
768                 data = kvm_get_apic_base(vcpu);
769                 break;
770         case MSR_IA32_MISC_ENABLE:
771                 data = vcpu->arch.ia32_misc_enable_msr;
772                 break;
773         case MSR_IA32_PERF_STATUS:
774                 /* TSC increment by tick */
775                 data = 1000ULL;
776                 /* CPU multiplier */
777                 data |= (((uint64_t)4ULL) << 40);
778                 break;
779         case MSR_EFER:
780                 data = vcpu->arch.shadow_efer;
781                 break;
782         case MSR_KVM_WALL_CLOCK:
783                 data = vcpu->kvm->arch.wall_clock;
784                 break;
785         case MSR_KVM_SYSTEM_TIME:
786                 data = vcpu->arch.time;
787                 break;
788         default:
789                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
790                 return 1;
791         }
792         *pdata = data;
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
796
797 /*
798  * Read or write a bunch of msrs. All parameters are kernel addresses.
799  *
800  * @return number of msrs set successfully.
801  */
802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
803                     struct kvm_msr_entry *entries,
804                     int (*do_msr)(struct kvm_vcpu *vcpu,
805                                   unsigned index, u64 *data))
806 {
807         int i;
808
809         vcpu_load(vcpu);
810
811         down_read(&vcpu->kvm->slots_lock);
812         for (i = 0; i < msrs->nmsrs; ++i)
813                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
814                         break;
815         up_read(&vcpu->kvm->slots_lock);
816
817         vcpu_put(vcpu);
818
819         return i;
820 }
821
822 /*
823  * Read or write a bunch of msrs. Parameters are user addresses.
824  *
825  * @return number of msrs set successfully.
826  */
827 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
828                   int (*do_msr)(struct kvm_vcpu *vcpu,
829                                 unsigned index, u64 *data),
830                   int writeback)
831 {
832         struct kvm_msrs msrs;
833         struct kvm_msr_entry *entries;
834         int r, n;
835         unsigned size;
836
837         r = -EFAULT;
838         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
839                 goto out;
840
841         r = -E2BIG;
842         if (msrs.nmsrs >= MAX_IO_MSRS)
843                 goto out;
844
845         r = -ENOMEM;
846         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
847         entries = vmalloc(size);
848         if (!entries)
849                 goto out;
850
851         r = -EFAULT;
852         if (copy_from_user(entries, user_msrs->entries, size))
853                 goto out_free;
854
855         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
856         if (r < 0)
857                 goto out_free;
858
859         r = -EFAULT;
860         if (writeback && copy_to_user(user_msrs->entries, entries, size))
861                 goto out_free;
862
863         r = n;
864
865 out_free:
866         vfree(entries);
867 out:
868         return r;
869 }
870
871 int kvm_dev_ioctl_check_extension(long ext)
872 {
873         int r;
874
875         switch (ext) {
876         case KVM_CAP_IRQCHIP:
877         case KVM_CAP_HLT:
878         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
879         case KVM_CAP_USER_MEMORY:
880         case KVM_CAP_SET_TSS_ADDR:
881         case KVM_CAP_EXT_CPUID:
882         case KVM_CAP_CLOCKSOURCE:
883         case KVM_CAP_PIT:
884         case KVM_CAP_NOP_IO_DELAY:
885         case KVM_CAP_MP_STATE:
886                 r = 1;
887                 break;
888         case KVM_CAP_COALESCED_MMIO:
889                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
890                 break;
891         case KVM_CAP_VAPIC:
892                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
893                 break;
894         case KVM_CAP_NR_VCPUS:
895                 r = KVM_MAX_VCPUS;
896                 break;
897         case KVM_CAP_NR_MEMSLOTS:
898                 r = KVM_MEMORY_SLOTS;
899                 break;
900         case KVM_CAP_PV_MMU:
901                 r = !tdp_enabled;
902                 break;
903         default:
904                 r = 0;
905                 break;
906         }
907         return r;
908
909 }
910
911 long kvm_arch_dev_ioctl(struct file *filp,
912                         unsigned int ioctl, unsigned long arg)
913 {
914         void __user *argp = (void __user *)arg;
915         long r;
916
917         switch (ioctl) {
918         case KVM_GET_MSR_INDEX_LIST: {
919                 struct kvm_msr_list __user *user_msr_list = argp;
920                 struct kvm_msr_list msr_list;
921                 unsigned n;
922
923                 r = -EFAULT;
924                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
925                         goto out;
926                 n = msr_list.nmsrs;
927                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
928                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
929                         goto out;
930                 r = -E2BIG;
931                 if (n < num_msrs_to_save)
932                         goto out;
933                 r = -EFAULT;
934                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
935                                  num_msrs_to_save * sizeof(u32)))
936                         goto out;
937                 if (copy_to_user(user_msr_list->indices
938                                  + num_msrs_to_save * sizeof(u32),
939                                  &emulated_msrs,
940                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
941                         goto out;
942                 r = 0;
943                 break;
944         }
945         case KVM_GET_SUPPORTED_CPUID: {
946                 struct kvm_cpuid2 __user *cpuid_arg = argp;
947                 struct kvm_cpuid2 cpuid;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
951                         goto out;
952                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
953                         cpuid_arg->entries);
954                 if (r)
955                         goto out;
956
957                 r = -EFAULT;
958                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
959                         goto out;
960                 r = 0;
961                 break;
962         }
963         default:
964                 r = -EINVAL;
965         }
966 out:
967         return r;
968 }
969
970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
971 {
972         kvm_x86_ops->vcpu_load(vcpu, cpu);
973         kvm_write_guest_time(vcpu);
974 }
975
976 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
977 {
978         kvm_x86_ops->vcpu_put(vcpu);
979         kvm_put_guest_fpu(vcpu);
980 }
981
982 static int is_efer_nx(void)
983 {
984         u64 efer;
985
986         rdmsrl(MSR_EFER, efer);
987         return efer & EFER_NX;
988 }
989
990 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
991 {
992         int i;
993         struct kvm_cpuid_entry2 *e, *entry;
994
995         entry = NULL;
996         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
997                 e = &vcpu->arch.cpuid_entries[i];
998                 if (e->function == 0x80000001) {
999                         entry = e;
1000                         break;
1001                 }
1002         }
1003         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1004                 entry->edx &= ~(1 << 20);
1005                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1006         }
1007 }
1008
1009 /* when an old userspace process fills a new kernel module */
1010 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1011                                     struct kvm_cpuid *cpuid,
1012                                     struct kvm_cpuid_entry __user *entries)
1013 {
1014         int r, i;
1015         struct kvm_cpuid_entry *cpuid_entries;
1016
1017         r = -E2BIG;
1018         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1019                 goto out;
1020         r = -ENOMEM;
1021         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1022         if (!cpuid_entries)
1023                 goto out;
1024         r = -EFAULT;
1025         if (copy_from_user(cpuid_entries, entries,
1026                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1027                 goto out_free;
1028         for (i = 0; i < cpuid->nent; i++) {
1029                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1030                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1031                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1032                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1033                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1034                 vcpu->arch.cpuid_entries[i].index = 0;
1035                 vcpu->arch.cpuid_entries[i].flags = 0;
1036                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1037                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1038                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1039         }
1040         vcpu->arch.cpuid_nent = cpuid->nent;
1041         cpuid_fix_nx_cap(vcpu);
1042         r = 0;
1043
1044 out_free:
1045         vfree(cpuid_entries);
1046 out:
1047         return r;
1048 }
1049
1050 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1051                                     struct kvm_cpuid2 *cpuid,
1052                                     struct kvm_cpuid_entry2 __user *entries)
1053 {
1054         int r;
1055
1056         r = -E2BIG;
1057         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1058                 goto out;
1059         r = -EFAULT;
1060         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1061                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1062                 goto out;
1063         vcpu->arch.cpuid_nent = cpuid->nent;
1064         return 0;
1065
1066 out:
1067         return r;
1068 }
1069
1070 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1071                                     struct kvm_cpuid2 *cpuid,
1072                                     struct kvm_cpuid_entry2 __user *entries)
1073 {
1074         int r;
1075
1076         r = -E2BIG;
1077         if (cpuid->nent < vcpu->arch.cpuid_nent)
1078                 goto out;
1079         r = -EFAULT;
1080         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1081                            vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1082                 goto out;
1083         return 0;
1084
1085 out:
1086         cpuid->nent = vcpu->arch.cpuid_nent;
1087         return r;
1088 }
1089
1090 static inline u32 bit(int bitno)
1091 {
1092         return 1 << (bitno & 31);
1093 }
1094
1095 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1096                           u32 index)
1097 {
1098         entry->function = function;
1099         entry->index = index;
1100         cpuid_count(entry->function, entry->index,
1101                 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1102         entry->flags = 0;
1103 }
1104
1105 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1106                          u32 index, int *nent, int maxnent)
1107 {
1108         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1109                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1110                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1111                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1112                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1113                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1114                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1115                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1116                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1117                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1118         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1119                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1120                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1121                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1122                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1123                 bit(X86_FEATURE_PGE) |
1124                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1125                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1126                 bit(X86_FEATURE_SYSCALL) |
1127                 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1128 #ifdef CONFIG_X86_64
1129                 bit(X86_FEATURE_LM) |
1130 #endif
1131                 bit(X86_FEATURE_MMXEXT) |
1132                 bit(X86_FEATURE_3DNOWEXT) |
1133                 bit(X86_FEATURE_3DNOW);
1134         const u32 kvm_supported_word3_x86_features =
1135                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1136         const u32 kvm_supported_word6_x86_features =
1137                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1138
1139         /* all func 2 cpuid_count() should be called on the same cpu */
1140         get_cpu();
1141         do_cpuid_1_ent(entry, function, index);
1142         ++*nent;
1143
1144         switch (function) {
1145         case 0:
1146                 entry->eax = min(entry->eax, (u32)0xb);
1147                 break;
1148         case 1:
1149                 entry->edx &= kvm_supported_word0_x86_features;
1150                 entry->ecx &= kvm_supported_word3_x86_features;
1151                 break;
1152         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1153          * may return different values. This forces us to get_cpu() before
1154          * issuing the first command, and also to emulate this annoying behavior
1155          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1156         case 2: {
1157                 int t, times = entry->eax & 0xff;
1158
1159                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1160                 for (t = 1; t < times && *nent < maxnent; ++t) {
1161                         do_cpuid_1_ent(&entry[t], function, 0);
1162                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1163                         ++*nent;
1164                 }
1165                 break;
1166         }
1167         /* function 4 and 0xb have additional index. */
1168         case 4: {
1169                 int i, cache_type;
1170
1171                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1172                 /* read more entries until cache_type is zero */
1173                 for (i = 1; *nent < maxnent; ++i) {
1174                         cache_type = entry[i - 1].eax & 0x1f;
1175                         if (!cache_type)
1176                                 break;
1177                         do_cpuid_1_ent(&entry[i], function, i);
1178                         entry[i].flags |=
1179                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1180                         ++*nent;
1181                 }
1182                 break;
1183         }
1184         case 0xb: {
1185                 int i, level_type;
1186
1187                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1188                 /* read more entries until level_type is zero */
1189                 for (i = 1; *nent < maxnent; ++i) {
1190                         level_type = entry[i - 1].ecx & 0xff;
1191                         if (!level_type)
1192                                 break;
1193                         do_cpuid_1_ent(&entry[i], function, i);
1194                         entry[i].flags |=
1195                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1196                         ++*nent;
1197                 }
1198                 break;
1199         }
1200         case 0x80000000:
1201                 entry->eax = min(entry->eax, 0x8000001a);
1202                 break;
1203         case 0x80000001:
1204                 entry->edx &= kvm_supported_word1_x86_features;
1205                 entry->ecx &= kvm_supported_word6_x86_features;
1206                 break;
1207         }
1208         put_cpu();
1209 }
1210
1211 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1212                                     struct kvm_cpuid_entry2 __user *entries)
1213 {
1214         struct kvm_cpuid_entry2 *cpuid_entries;
1215         int limit, nent = 0, r = -E2BIG;
1216         u32 func;
1217
1218         if (cpuid->nent < 1)
1219                 goto out;
1220         r = -ENOMEM;
1221         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1222         if (!cpuid_entries)
1223                 goto out;
1224
1225         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1226         limit = cpuid_entries[0].eax;
1227         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1228                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1229                                 &nent, cpuid->nent);
1230         r = -E2BIG;
1231         if (nent >= cpuid->nent)
1232                 goto out_free;
1233
1234         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1235         limit = cpuid_entries[nent - 1].eax;
1236         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1237                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1238                                &nent, cpuid->nent);
1239         r = -EFAULT;
1240         if (copy_to_user(entries, cpuid_entries,
1241                         nent * sizeof(struct kvm_cpuid_entry2)))
1242                 goto out_free;
1243         cpuid->nent = nent;
1244         r = 0;
1245
1246 out_free:
1247         vfree(cpuid_entries);
1248 out:
1249         return r;
1250 }
1251
1252 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1253                                     struct kvm_lapic_state *s)
1254 {
1255         vcpu_load(vcpu);
1256         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1257         vcpu_put(vcpu);
1258
1259         return 0;
1260 }
1261
1262 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1263                                     struct kvm_lapic_state *s)
1264 {
1265         vcpu_load(vcpu);
1266         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1267         kvm_apic_post_state_restore(vcpu);
1268         vcpu_put(vcpu);
1269
1270         return 0;
1271 }
1272
1273 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1274                                     struct kvm_interrupt *irq)
1275 {
1276         if (irq->irq < 0 || irq->irq >= 256)
1277                 return -EINVAL;
1278         if (irqchip_in_kernel(vcpu->kvm))
1279                 return -ENXIO;
1280         vcpu_load(vcpu);
1281
1282         set_bit(irq->irq, vcpu->arch.irq_pending);
1283         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1284
1285         vcpu_put(vcpu);
1286
1287         return 0;
1288 }
1289
1290 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1291                                            struct kvm_tpr_access_ctl *tac)
1292 {
1293         if (tac->flags)
1294                 return -EINVAL;
1295         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1296         return 0;
1297 }
1298
1299 long kvm_arch_vcpu_ioctl(struct file *filp,
1300                          unsigned int ioctl, unsigned long arg)
1301 {
1302         struct kvm_vcpu *vcpu = filp->private_data;
1303         void __user *argp = (void __user *)arg;
1304         int r;
1305
1306         switch (ioctl) {
1307         case KVM_GET_LAPIC: {
1308                 struct kvm_lapic_state lapic;
1309
1310                 memset(&lapic, 0, sizeof lapic);
1311                 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1312                 if (r)
1313                         goto out;
1314                 r = -EFAULT;
1315                 if (copy_to_user(argp, &lapic, sizeof lapic))
1316                         goto out;
1317                 r = 0;
1318                 break;
1319         }
1320         case KVM_SET_LAPIC: {
1321                 struct kvm_lapic_state lapic;
1322
1323                 r = -EFAULT;
1324                 if (copy_from_user(&lapic, argp, sizeof lapic))
1325                         goto out;
1326                 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1327                 if (r)
1328                         goto out;
1329                 r = 0;
1330                 break;
1331         }
1332         case KVM_INTERRUPT: {
1333                 struct kvm_interrupt irq;
1334
1335                 r = -EFAULT;
1336                 if (copy_from_user(&irq, argp, sizeof irq))
1337                         goto out;
1338                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1339                 if (r)
1340                         goto out;
1341                 r = 0;
1342                 break;
1343         }
1344         case KVM_SET_CPUID: {
1345                 struct kvm_cpuid __user *cpuid_arg = argp;
1346                 struct kvm_cpuid cpuid;
1347
1348                 r = -EFAULT;
1349                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1350                         goto out;
1351                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1352                 if (r)
1353                         goto out;
1354                 break;
1355         }
1356         case KVM_SET_CPUID2: {
1357                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1358                 struct kvm_cpuid2 cpuid;
1359
1360                 r = -EFAULT;
1361                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1362                         goto out;
1363                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1364                                 cpuid_arg->entries);
1365                 if (r)
1366                         goto out;
1367                 break;
1368         }
1369         case KVM_GET_CPUID2: {
1370                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1371                 struct kvm_cpuid2 cpuid;
1372
1373                 r = -EFAULT;
1374                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1375                         goto out;
1376                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1377                                 cpuid_arg->entries);
1378                 if (r)
1379                         goto out;
1380                 r = -EFAULT;
1381                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1382                         goto out;
1383                 r = 0;
1384                 break;
1385         }
1386         case KVM_GET_MSRS:
1387                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1388                 break;
1389         case KVM_SET_MSRS:
1390                 r = msr_io(vcpu, argp, do_set_msr, 0);
1391                 break;
1392         case KVM_TPR_ACCESS_REPORTING: {
1393                 struct kvm_tpr_access_ctl tac;
1394
1395                 r = -EFAULT;
1396                 if (copy_from_user(&tac, argp, sizeof tac))
1397                         goto out;
1398                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1399                 if (r)
1400                         goto out;
1401                 r = -EFAULT;
1402                 if (copy_to_user(argp, &tac, sizeof tac))
1403                         goto out;
1404                 r = 0;
1405                 break;
1406         };
1407         case KVM_SET_VAPIC_ADDR: {
1408                 struct kvm_vapic_addr va;
1409
1410                 r = -EINVAL;
1411                 if (!irqchip_in_kernel(vcpu->kvm))
1412                         goto out;
1413                 r = -EFAULT;
1414                 if (copy_from_user(&va, argp, sizeof va))
1415                         goto out;
1416                 r = 0;
1417                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1418                 break;
1419         }
1420         default:
1421                 r = -EINVAL;
1422         }
1423 out:
1424         return r;
1425 }
1426
1427 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1428 {
1429         int ret;
1430
1431         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1432                 return -1;
1433         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1434         return ret;
1435 }
1436
1437 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1438                                           u32 kvm_nr_mmu_pages)
1439 {
1440         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1441                 return -EINVAL;
1442
1443         down_write(&kvm->slots_lock);
1444
1445         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1446         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1447
1448         up_write(&kvm->slots_lock);
1449         return 0;
1450 }
1451
1452 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1453 {
1454         return kvm->arch.n_alloc_mmu_pages;
1455 }
1456
1457 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1458 {
1459         int i;
1460         struct kvm_mem_alias *alias;
1461
1462         for (i = 0; i < kvm->arch.naliases; ++i) {
1463                 alias = &kvm->arch.aliases[i];
1464                 if (gfn >= alias->base_gfn
1465                     && gfn < alias->base_gfn + alias->npages)
1466                         return alias->target_gfn + gfn - alias->base_gfn;
1467         }
1468         return gfn;
1469 }
1470
1471 /*
1472  * Set a new alias region.  Aliases map a portion of physical memory into
1473  * another portion.  This is useful for memory windows, for example the PC
1474  * VGA region.
1475  */
1476 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1477                                          struct kvm_memory_alias *alias)
1478 {
1479         int r, n;
1480         struct kvm_mem_alias *p;
1481
1482         r = -EINVAL;
1483         /* General sanity checks */
1484         if (alias->memory_size & (PAGE_SIZE - 1))
1485                 goto out;
1486         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1487                 goto out;
1488         if (alias->slot >= KVM_ALIAS_SLOTS)
1489                 goto out;
1490         if (alias->guest_phys_addr + alias->memory_size
1491             < alias->guest_phys_addr)
1492                 goto out;
1493         if (alias->target_phys_addr + alias->memory_size
1494             < alias->target_phys_addr)
1495                 goto out;
1496
1497         down_write(&kvm->slots_lock);
1498
1499         p = &kvm->arch.aliases[alias->slot];
1500         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1501         p->npages = alias->memory_size >> PAGE_SHIFT;
1502         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1503
1504         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1505                 if (kvm->arch.aliases[n - 1].npages)
1506                         break;
1507         kvm->arch.naliases = n;
1508
1509         kvm_mmu_zap_all(kvm);
1510
1511         up_write(&kvm->slots_lock);
1512
1513         return 0;
1514
1515 out:
1516         return r;
1517 }
1518
1519 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1520 {
1521         int r;
1522
1523         r = 0;
1524         switch (chip->chip_id) {
1525         case KVM_IRQCHIP_PIC_MASTER:
1526                 memcpy(&chip->chip.pic,
1527                         &pic_irqchip(kvm)->pics[0],
1528                         sizeof(struct kvm_pic_state));
1529                 break;
1530         case KVM_IRQCHIP_PIC_SLAVE:
1531                 memcpy(&chip->chip.pic,
1532                         &pic_irqchip(kvm)->pics[1],
1533                         sizeof(struct kvm_pic_state));
1534                 break;
1535         case KVM_IRQCHIP_IOAPIC:
1536                 memcpy(&chip->chip.ioapic,
1537                         ioapic_irqchip(kvm),
1538                         sizeof(struct kvm_ioapic_state));
1539                 break;
1540         default:
1541                 r = -EINVAL;
1542                 break;
1543         }
1544         return r;
1545 }
1546
1547 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1548 {
1549         int r;
1550
1551         r = 0;
1552         switch (chip->chip_id) {
1553         case KVM_IRQCHIP_PIC_MASTER:
1554                 memcpy(&pic_irqchip(kvm)->pics[0],
1555                         &chip->chip.pic,
1556                         sizeof(struct kvm_pic_state));
1557                 break;
1558         case KVM_IRQCHIP_PIC_SLAVE:
1559                 memcpy(&pic_irqchip(kvm)->pics[1],
1560                         &chip->chip.pic,
1561                         sizeof(struct kvm_pic_state));
1562                 break;
1563         case KVM_IRQCHIP_IOAPIC:
1564                 memcpy(ioapic_irqchip(kvm),
1565                         &chip->chip.ioapic,
1566                         sizeof(struct kvm_ioapic_state));
1567                 break;
1568         default:
1569                 r = -EINVAL;
1570                 break;
1571         }
1572         kvm_pic_update_irq(pic_irqchip(kvm));
1573         return r;
1574 }
1575
1576 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1577 {
1578         int r = 0;
1579
1580         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1581         return r;
1582 }
1583
1584 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1585 {
1586         int r = 0;
1587
1588         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1589         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1590         return r;
1591 }
1592
1593 /*
1594  * Get (and clear) the dirty memory log for a memory slot.
1595  */
1596 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1597                                       struct kvm_dirty_log *log)
1598 {
1599         int r;
1600         int n;
1601         struct kvm_memory_slot *memslot;
1602         int is_dirty = 0;
1603
1604         down_write(&kvm->slots_lock);
1605
1606         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1607         if (r)
1608                 goto out;
1609
1610         /* If nothing is dirty, don't bother messing with page tables. */
1611         if (is_dirty) {
1612                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1613                 kvm_flush_remote_tlbs(kvm);
1614                 memslot = &kvm->memslots[log->slot];
1615                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1616                 memset(memslot->dirty_bitmap, 0, n);
1617         }
1618         r = 0;
1619 out:
1620         up_write(&kvm->slots_lock);
1621         return r;
1622 }
1623
1624 long kvm_arch_vm_ioctl(struct file *filp,
1625                        unsigned int ioctl, unsigned long arg)
1626 {
1627         struct kvm *kvm = filp->private_data;
1628         void __user *argp = (void __user *)arg;
1629         int r = -EINVAL;
1630
1631         switch (ioctl) {
1632         case KVM_SET_TSS_ADDR:
1633                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1634                 if (r < 0)
1635                         goto out;
1636                 break;
1637         case KVM_SET_MEMORY_REGION: {
1638                 struct kvm_memory_region kvm_mem;
1639                 struct kvm_userspace_memory_region kvm_userspace_mem;
1640
1641                 r = -EFAULT;
1642                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1643                         goto out;
1644                 kvm_userspace_mem.slot = kvm_mem.slot;
1645                 kvm_userspace_mem.flags = kvm_mem.flags;
1646                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1647                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1648                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1649                 if (r)
1650                         goto out;
1651                 break;
1652         }
1653         case KVM_SET_NR_MMU_PAGES:
1654                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1655                 if (r)
1656                         goto out;
1657                 break;
1658         case KVM_GET_NR_MMU_PAGES:
1659                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1660                 break;
1661         case KVM_SET_MEMORY_ALIAS: {
1662                 struct kvm_memory_alias alias;
1663
1664                 r = -EFAULT;
1665                 if (copy_from_user(&alias, argp, sizeof alias))
1666                         goto out;
1667                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1668                 if (r)
1669                         goto out;
1670                 break;
1671         }
1672         case KVM_CREATE_IRQCHIP:
1673                 r = -ENOMEM;
1674                 kvm->arch.vpic = kvm_create_pic(kvm);
1675                 if (kvm->arch.vpic) {
1676                         r = kvm_ioapic_init(kvm);
1677                         if (r) {
1678                                 kfree(kvm->arch.vpic);
1679                                 kvm->arch.vpic = NULL;
1680                                 goto out;
1681                         }
1682                 } else
1683                         goto out;
1684                 break;
1685         case KVM_CREATE_PIT:
1686                 r = -ENOMEM;
1687                 kvm->arch.vpit = kvm_create_pit(kvm);
1688                 if (kvm->arch.vpit)
1689                         r = 0;
1690                 break;
1691         case KVM_IRQ_LINE: {
1692                 struct kvm_irq_level irq_event;
1693
1694                 r = -EFAULT;
1695                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1696                         goto out;
1697                 if (irqchip_in_kernel(kvm)) {
1698                         mutex_lock(&kvm->lock);
1699                         if (irq_event.irq < 16)
1700                                 kvm_pic_set_irq(pic_irqchip(kvm),
1701                                         irq_event.irq,
1702                                         irq_event.level);
1703                         kvm_ioapic_set_irq(kvm->arch.vioapic,
1704                                         irq_event.irq,
1705                                         irq_event.level);
1706                         mutex_unlock(&kvm->lock);
1707                         r = 0;
1708                 }
1709                 break;
1710         }
1711         case KVM_GET_IRQCHIP: {
1712                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1713                 struct kvm_irqchip chip;
1714
1715                 r = -EFAULT;
1716                 if (copy_from_user(&chip, argp, sizeof chip))
1717                         goto out;
1718                 r = -ENXIO;
1719                 if (!irqchip_in_kernel(kvm))
1720                         goto out;
1721                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1722                 if (r)
1723                         goto out;
1724                 r = -EFAULT;
1725                 if (copy_to_user(argp, &chip, sizeof chip))
1726                         goto out;
1727                 r = 0;
1728                 break;
1729         }
1730         case KVM_SET_IRQCHIP: {
1731                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1732                 struct kvm_irqchip chip;
1733
1734                 r = -EFAULT;
1735                 if (copy_from_user(&chip, argp, sizeof chip))
1736                         goto out;
1737                 r = -ENXIO;
1738                 if (!irqchip_in_kernel(kvm))
1739                         goto out;
1740                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1741                 if (r)
1742                         goto out;
1743                 r = 0;
1744                 break;
1745         }
1746         case KVM_GET_PIT: {
1747                 struct kvm_pit_state ps;
1748                 r = -EFAULT;
1749                 if (copy_from_user(&ps, argp, sizeof ps))
1750                         goto out;
1751                 r = -ENXIO;
1752                 if (!kvm->arch.vpit)
1753                         goto out;
1754                 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1755                 if (r)
1756                         goto out;
1757                 r = -EFAULT;
1758                 if (copy_to_user(argp, &ps, sizeof ps))
1759                         goto out;
1760                 r = 0;
1761                 break;
1762         }
1763         case KVM_SET_PIT: {
1764                 struct kvm_pit_state ps;
1765                 r = -EFAULT;
1766                 if (copy_from_user(&ps, argp, sizeof ps))
1767                         goto out;
1768                 r = -ENXIO;
1769                 if (!kvm->arch.vpit)
1770                         goto out;
1771                 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1772                 if (r)
1773                         goto out;
1774                 r = 0;
1775                 break;
1776         }
1777         default:
1778                 ;
1779         }
1780 out:
1781         return r;
1782 }
1783
1784 static void kvm_init_msr_list(void)
1785 {
1786         u32 dummy[2];
1787         unsigned i, j;
1788
1789         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1790                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1791                         continue;
1792                 if (j < i)
1793                         msrs_to_save[j] = msrs_to_save[i];
1794                 j++;
1795         }
1796         num_msrs_to_save = j;
1797 }
1798
1799 /*
1800  * Only apic need an MMIO device hook, so shortcut now..
1801  */
1802 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1803                                                 gpa_t addr, int len,
1804                                                 int is_write)
1805 {
1806         struct kvm_io_device *dev;
1807
1808         if (vcpu->arch.apic) {
1809                 dev = &vcpu->arch.apic->dev;
1810                 if (dev->in_range(dev, addr, len, is_write))
1811                         return dev;
1812         }
1813         return NULL;
1814 }
1815
1816
1817 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1818                                                 gpa_t addr, int len,
1819                                                 int is_write)
1820 {
1821         struct kvm_io_device *dev;
1822
1823         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1824         if (dev == NULL)
1825                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1826                                           is_write);
1827         return dev;
1828 }
1829
1830 int emulator_read_std(unsigned long addr,
1831                              void *val,
1832                              unsigned int bytes,
1833                              struct kvm_vcpu *vcpu)
1834 {
1835         void *data = val;
1836         int r = X86EMUL_CONTINUE;
1837
1838         while (bytes) {
1839                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1840                 unsigned offset = addr & (PAGE_SIZE-1);
1841                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1842                 int ret;
1843
1844                 if (gpa == UNMAPPED_GVA) {
1845                         r = X86EMUL_PROPAGATE_FAULT;
1846                         goto out;
1847                 }
1848                 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1849                 if (ret < 0) {
1850                         r = X86EMUL_UNHANDLEABLE;
1851                         goto out;
1852                 }
1853
1854                 bytes -= tocopy;
1855                 data += tocopy;
1856                 addr += tocopy;
1857         }
1858 out:
1859         return r;
1860 }
1861 EXPORT_SYMBOL_GPL(emulator_read_std);
1862
1863 static int emulator_read_emulated(unsigned long addr,
1864                                   void *val,
1865                                   unsigned int bytes,
1866                                   struct kvm_vcpu *vcpu)
1867 {
1868         struct kvm_io_device *mmio_dev;
1869         gpa_t                 gpa;
1870
1871         if (vcpu->mmio_read_completed) {
1872                 memcpy(val, vcpu->mmio_data, bytes);
1873                 vcpu->mmio_read_completed = 0;
1874                 return X86EMUL_CONTINUE;
1875         }
1876
1877         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1878
1879         /* For APIC access vmexit */
1880         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1881                 goto mmio;
1882
1883         if (emulator_read_std(addr, val, bytes, vcpu)
1884                         == X86EMUL_CONTINUE)
1885                 return X86EMUL_CONTINUE;
1886         if (gpa == UNMAPPED_GVA)
1887                 return X86EMUL_PROPAGATE_FAULT;
1888
1889 mmio:
1890         /*
1891          * Is this MMIO handled locally?
1892          */
1893         mutex_lock(&vcpu->kvm->lock);
1894         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1895         if (mmio_dev) {
1896                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1897                 mutex_unlock(&vcpu->kvm->lock);
1898                 return X86EMUL_CONTINUE;
1899         }
1900         mutex_unlock(&vcpu->kvm->lock);
1901
1902         vcpu->mmio_needed = 1;
1903         vcpu->mmio_phys_addr = gpa;
1904         vcpu->mmio_size = bytes;
1905         vcpu->mmio_is_write = 0;
1906
1907         return X86EMUL_UNHANDLEABLE;
1908 }
1909
1910 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1911                           const void *val, int bytes)
1912 {
1913         int ret;
1914
1915         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1916         if (ret < 0)
1917                 return 0;
1918         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1919         return 1;
1920 }
1921
1922 static int emulator_write_emulated_onepage(unsigned long addr,
1923                                            const void *val,
1924                                            unsigned int bytes,
1925                                            struct kvm_vcpu *vcpu)
1926 {
1927         struct kvm_io_device *mmio_dev;
1928         gpa_t                 gpa;
1929
1930         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1931
1932         if (gpa == UNMAPPED_GVA) {
1933                 kvm_inject_page_fault(vcpu, addr, 2);
1934                 return X86EMUL_PROPAGATE_FAULT;
1935         }
1936
1937         /* For APIC access vmexit */
1938         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1939                 goto mmio;
1940
1941         if (emulator_write_phys(vcpu, gpa, val, bytes))
1942                 return X86EMUL_CONTINUE;
1943
1944 mmio:
1945         /*
1946          * Is this MMIO handled locally?
1947          */
1948         mutex_lock(&vcpu->kvm->lock);
1949         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1950         if (mmio_dev) {
1951                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1952                 mutex_unlock(&vcpu->kvm->lock);
1953                 return X86EMUL_CONTINUE;
1954         }
1955         mutex_unlock(&vcpu->kvm->lock);
1956
1957         vcpu->mmio_needed = 1;
1958         vcpu->mmio_phys_addr = gpa;
1959         vcpu->mmio_size = bytes;
1960         vcpu->mmio_is_write = 1;
1961         memcpy(vcpu->mmio_data, val, bytes);
1962
1963         return X86EMUL_CONTINUE;
1964 }
1965
1966 int emulator_write_emulated(unsigned long addr,
1967                                    const void *val,
1968                                    unsigned int bytes,
1969                                    struct kvm_vcpu *vcpu)
1970 {
1971         /* Crossing a page boundary? */
1972         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1973                 int rc, now;
1974
1975                 now = -addr & ~PAGE_MASK;
1976                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1977                 if (rc != X86EMUL_CONTINUE)
1978                         return rc;
1979                 addr += now;
1980                 val += now;
1981                 bytes -= now;
1982         }
1983         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1984 }
1985 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1986
1987 static int emulator_cmpxchg_emulated(unsigned long addr,
1988                                      const void *old,
1989                                      const void *new,
1990                                      unsigned int bytes,
1991                                      struct kvm_vcpu *vcpu)
1992 {
1993         static int reported;
1994
1995         if (!reported) {
1996                 reported = 1;
1997                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1998         }
1999 #ifndef CONFIG_X86_64
2000         /* guests cmpxchg8b have to be emulated atomically */
2001         if (bytes == 8) {
2002                 gpa_t gpa;
2003                 struct page *page;
2004                 char *kaddr;
2005                 u64 val;
2006
2007                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2008
2009                 if (gpa == UNMAPPED_GVA ||
2010                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2011                         goto emul_write;
2012
2013                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2014                         goto emul_write;
2015
2016                 val = *(u64 *)new;
2017
2018                 down_read(&current->mm->mmap_sem);
2019                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2020                 up_read(&current->mm->mmap_sem);
2021
2022                 kaddr = kmap_atomic(page, KM_USER0);
2023                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2024                 kunmap_atomic(kaddr, KM_USER0);
2025                 kvm_release_page_dirty(page);
2026         }
2027 emul_write:
2028 #endif
2029
2030         return emulator_write_emulated(addr, new, bytes, vcpu);
2031 }
2032
2033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2034 {
2035         return kvm_x86_ops->get_segment_base(vcpu, seg);
2036 }
2037
2038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2039 {
2040         return X86EMUL_CONTINUE;
2041 }
2042
2043 int emulate_clts(struct kvm_vcpu *vcpu)
2044 {
2045         KVMTRACE_0D(CLTS, vcpu, handler);
2046         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2047         return X86EMUL_CONTINUE;
2048 }
2049
2050 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2051 {
2052         struct kvm_vcpu *vcpu = ctxt->vcpu;
2053
2054         switch (dr) {
2055         case 0 ... 3:
2056                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2057                 return X86EMUL_CONTINUE;
2058         default:
2059                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2060                 return X86EMUL_UNHANDLEABLE;
2061         }
2062 }
2063
2064 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2065 {
2066         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2067         int exception;
2068
2069         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2070         if (exception) {
2071                 /* FIXME: better handling */
2072                 return X86EMUL_UNHANDLEABLE;
2073         }
2074         return X86EMUL_CONTINUE;
2075 }
2076
2077 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2078 {
2079         u8 opcodes[4];
2080         unsigned long rip = vcpu->arch.rip;
2081         unsigned long rip_linear;
2082
2083         if (!printk_ratelimit())
2084                 return;
2085
2086         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2087
2088         emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2089
2090         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2091                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2094
2095 static struct x86_emulate_ops emulate_ops = {
2096         .read_std            = emulator_read_std,
2097         .read_emulated       = emulator_read_emulated,
2098         .write_emulated      = emulator_write_emulated,
2099         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2100 };
2101
2102 int emulate_instruction(struct kvm_vcpu *vcpu,
2103                         struct kvm_run *run,
2104                         unsigned long cr2,
2105                         u16 error_code,
2106                         int emulation_type)
2107 {
2108         int r;
2109         struct decode_cache *c;
2110
2111         vcpu->arch.mmio_fault_cr2 = cr2;
2112         kvm_x86_ops->cache_regs(vcpu);
2113
2114         vcpu->mmio_is_write = 0;
2115         vcpu->arch.pio.string = 0;
2116
2117         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2118                 int cs_db, cs_l;
2119                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2120
2121                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2122                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2123                 vcpu->arch.emulate_ctxt.mode =
2124                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2125                         ? X86EMUL_MODE_REAL : cs_l
2126                         ? X86EMUL_MODE_PROT64 : cs_db
2127                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2128
2129                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2130
2131                 /* Reject the instructions other than VMCALL/VMMCALL when
2132                  * try to emulate invalid opcode */
2133                 c = &vcpu->arch.emulate_ctxt.decode;
2134                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2135                     (!(c->twobyte && c->b == 0x01 &&
2136                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2137                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2138                         return EMULATE_FAIL;
2139
2140                 ++vcpu->stat.insn_emulation;
2141                 if (r)  {
2142                         ++vcpu->stat.insn_emulation_fail;
2143                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2144                                 return EMULATE_DONE;
2145                         return EMULATE_FAIL;
2146                 }
2147         }
2148
2149         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2150
2151         if (vcpu->arch.pio.string)
2152                 return EMULATE_DO_MMIO;
2153
2154         if ((r || vcpu->mmio_is_write) && run) {
2155                 run->exit_reason = KVM_EXIT_MMIO;
2156                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2157                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2158                 run->mmio.len = vcpu->mmio_size;
2159                 run->mmio.is_write = vcpu->mmio_is_write;
2160         }
2161
2162         if (r) {
2163                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2164                         return EMULATE_DONE;
2165                 if (!vcpu->mmio_needed) {
2166                         kvm_report_emulation_failure(vcpu, "mmio");
2167                         return EMULATE_FAIL;
2168                 }
2169                 return EMULATE_DO_MMIO;
2170         }
2171
2172         kvm_x86_ops->decache_regs(vcpu);
2173         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2174
2175         if (vcpu->mmio_is_write) {
2176                 vcpu->mmio_needed = 0;
2177                 return EMULATE_DO_MMIO;
2178         }
2179
2180         return EMULATE_DONE;
2181 }
2182 EXPORT_SYMBOL_GPL(emulate_instruction);
2183
2184 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2185 {
2186         int i;
2187
2188         for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2189                 if (vcpu->arch.pio.guest_pages[i]) {
2190                         kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2191                         vcpu->arch.pio.guest_pages[i] = NULL;
2192                 }
2193 }
2194
2195 static int pio_copy_data(struct kvm_vcpu *vcpu)
2196 {
2197         void *p = vcpu->arch.pio_data;
2198         void *q;
2199         unsigned bytes;
2200         int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2201
2202         q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2203                  PAGE_KERNEL);
2204         if (!q) {
2205                 free_pio_guest_pages(vcpu);
2206                 return -ENOMEM;
2207         }
2208         q += vcpu->arch.pio.guest_page_offset;
2209         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2210         if (vcpu->arch.pio.in)
2211                 memcpy(q, p, bytes);
2212         else
2213                 memcpy(p, q, bytes);
2214         q -= vcpu->arch.pio.guest_page_offset;
2215         vunmap(q);
2216         free_pio_guest_pages(vcpu);
2217         return 0;
2218 }
2219
2220 int complete_pio(struct kvm_vcpu *vcpu)
2221 {
2222         struct kvm_pio_request *io = &vcpu->arch.pio;
2223         long delta;
2224         int r;
2225
2226         kvm_x86_ops->cache_regs(vcpu);
2227
2228         if (!io->string) {
2229                 if (io->in)
2230                         memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2231                                io->size);
2232         } else {
2233                 if (io->in) {
2234                         r = pio_copy_data(vcpu);
2235                         if (r) {
2236                                 kvm_x86_ops->cache_regs(vcpu);
2237                                 return r;
2238                         }
2239                 }
2240
2241                 delta = 1;
2242                 if (io->rep) {
2243                         delta *= io->cur_count;
2244                         /*
2245                          * The size of the register should really depend on
2246                          * current address size.
2247                          */
2248                         vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2249                 }
2250                 if (io->down)
2251                         delta = -delta;
2252                 delta *= io->size;
2253                 if (io->in)
2254                         vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2255                 else
2256                         vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2257         }
2258
2259         kvm_x86_ops->decache_regs(vcpu);
2260
2261         io->count -= io->cur_count;
2262         io->cur_count = 0;
2263
2264         return 0;
2265 }
2266
2267 static void kernel_pio(struct kvm_io_device *pio_dev,
2268                        struct kvm_vcpu *vcpu,
2269                        void *pd)
2270 {
2271         /* TODO: String I/O for in kernel device */
2272
2273         mutex_lock(&vcpu->kvm->lock);
2274         if (vcpu->arch.pio.in)
2275                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2276                                   vcpu->arch.pio.size,
2277                                   pd);
2278         else
2279                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2280                                    vcpu->arch.pio.size,
2281                                    pd);
2282         mutex_unlock(&vcpu->kvm->lock);
2283 }
2284
2285 static void pio_string_write(struct kvm_io_device *pio_dev,
2286                              struct kvm_vcpu *vcpu)
2287 {
2288         struct kvm_pio_request *io = &vcpu->arch.pio;
2289         void *pd = vcpu->arch.pio_data;
2290         int i;
2291
2292         mutex_lock(&vcpu->kvm->lock);
2293         for (i = 0; i < io->cur_count; i++) {
2294                 kvm_iodevice_write(pio_dev, io->port,
2295                                    io->size,
2296                                    pd);
2297                 pd += io->size;
2298         }
2299         mutex_unlock(&vcpu->kvm->lock);
2300 }
2301
2302 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2303                                                gpa_t addr, int len,
2304                                                int is_write)
2305 {
2306         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2307 }
2308
2309 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2310                   int size, unsigned port)
2311 {
2312         struct kvm_io_device *pio_dev;
2313
2314         vcpu->run->exit_reason = KVM_EXIT_IO;
2315         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2316         vcpu->run->io.size = vcpu->arch.pio.size = size;
2317         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2318         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2319         vcpu->run->io.port = vcpu->arch.pio.port = port;
2320         vcpu->arch.pio.in = in;
2321         vcpu->arch.pio.string = 0;
2322         vcpu->arch.pio.down = 0;
2323         vcpu->arch.pio.guest_page_offset = 0;
2324         vcpu->arch.pio.rep = 0;
2325
2326         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2327                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2328                             handler);
2329         else
2330                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2331                             handler);
2332
2333         kvm_x86_ops->cache_regs(vcpu);
2334         memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2335
2336         kvm_x86_ops->skip_emulated_instruction(vcpu);
2337
2338         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2339         if (pio_dev) {
2340                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2341                 complete_pio(vcpu);
2342                 return 1;
2343         }
2344         return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2347
2348 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2349                   int size, unsigned long count, int down,
2350                   gva_t address, int rep, unsigned port)
2351 {
2352         unsigned now, in_page;
2353         int i, ret = 0;
2354         int nr_pages = 1;
2355         struct page *page;
2356         struct kvm_io_device *pio_dev;
2357
2358         vcpu->run->exit_reason = KVM_EXIT_IO;
2359         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2360         vcpu->run->io.size = vcpu->arch.pio.size = size;
2361         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2362         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2363         vcpu->run->io.port = vcpu->arch.pio.port = port;
2364         vcpu->arch.pio.in = in;
2365         vcpu->arch.pio.string = 1;
2366         vcpu->arch.pio.down = down;
2367         vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2368         vcpu->arch.pio.rep = rep;
2369
2370         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2371                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2372                             handler);
2373         else
2374                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2375                             handler);
2376
2377         if (!count) {
2378                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2379                 return 1;
2380         }
2381
2382         if (!down)
2383                 in_page = PAGE_SIZE - offset_in_page(address);
2384         else
2385                 in_page = offset_in_page(address) + size;
2386         now = min(count, (unsigned long)in_page / size);
2387         if (!now) {
2388                 /*
2389                  * String I/O straddles page boundary.  Pin two guest pages
2390                  * so that we satisfy atomicity constraints.  Do just one
2391                  * transaction to avoid complexity.
2392                  */
2393                 nr_pages = 2;
2394                 now = 1;
2395         }
2396         if (down) {
2397                 /*
2398                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2399                  */
2400                 pr_unimpl(vcpu, "guest string pio down\n");
2401                 kvm_inject_gp(vcpu, 0);
2402                 return 1;
2403         }
2404         vcpu->run->io.count = now;
2405         vcpu->arch.pio.cur_count = now;
2406
2407         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2408                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2409
2410         for (i = 0; i < nr_pages; ++i) {
2411                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2412                 vcpu->arch.pio.guest_pages[i] = page;
2413                 if (!page) {
2414                         kvm_inject_gp(vcpu, 0);
2415                         free_pio_guest_pages(vcpu);
2416                         return 1;
2417                 }
2418         }
2419
2420         pio_dev = vcpu_find_pio_dev(vcpu, port,
2421                                     vcpu->arch.pio.cur_count,
2422                                     !vcpu->arch.pio.in);
2423         if (!vcpu->arch.pio.in) {
2424                 /* string PIO write */
2425                 ret = pio_copy_data(vcpu);
2426                 if (ret >= 0 && pio_dev) {
2427                         pio_string_write(pio_dev, vcpu);
2428                         complete_pio(vcpu);
2429                         if (vcpu->arch.pio.count == 0)
2430                                 ret = 1;
2431                 }
2432         } else if (pio_dev)
2433                 pr_unimpl(vcpu, "no string pio read support yet, "
2434                        "port %x size %d count %ld\n",
2435                         port, size, count);
2436
2437         return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2440
2441 int kvm_arch_init(void *opaque)
2442 {
2443         int r;
2444         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2445
2446         if (kvm_x86_ops) {
2447                 printk(KERN_ERR "kvm: already loaded the other module\n");
2448                 r = -EEXIST;
2449                 goto out;
2450         }
2451
2452         if (!ops->cpu_has_kvm_support()) {
2453                 printk(KERN_ERR "kvm: no hardware support\n");
2454                 r = -EOPNOTSUPP;
2455                 goto out;
2456         }
2457         if (ops->disabled_by_bios()) {
2458                 printk(KERN_ERR "kvm: disabled by bios\n");
2459                 r = -EOPNOTSUPP;
2460                 goto out;
2461         }
2462
2463         r = kvm_mmu_module_init();
2464         if (r)
2465                 goto out;
2466
2467         kvm_init_msr_list();
2468
2469         kvm_x86_ops = ops;
2470         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2471         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2472         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2473                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
2474         return 0;
2475
2476 out:
2477         return r;
2478 }
2479
2480 void kvm_arch_exit(void)
2481 {
2482         kvm_x86_ops = NULL;
2483         kvm_mmu_module_exit();
2484 }
2485
2486 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2487 {
2488         ++vcpu->stat.halt_exits;
2489         KVMTRACE_0D(HLT, vcpu, handler);
2490         if (irqchip_in_kernel(vcpu->kvm)) {
2491                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2492                 up_read(&vcpu->kvm->slots_lock);
2493                 kvm_vcpu_block(vcpu);
2494                 down_read(&vcpu->kvm->slots_lock);
2495                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2496                         return -EINTR;
2497                 return 1;
2498         } else {
2499                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2500                 return 0;
2501         }
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2504
2505 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2506                            unsigned long a1)
2507 {
2508         if (is_long_mode(vcpu))
2509                 return a0;
2510         else
2511                 return a0 | ((gpa_t)a1 << 32);
2512 }
2513
2514 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2515 {
2516         unsigned long nr, a0, a1, a2, a3, ret;
2517         int r = 1;
2518
2519         kvm_x86_ops->cache_regs(vcpu);
2520
2521         nr = vcpu->arch.regs[VCPU_REGS_RAX];
2522         a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2523         a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2524         a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2525         a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2526
2527         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2528
2529         if (!is_long_mode(vcpu)) {
2530                 nr &= 0xFFFFFFFF;
2531                 a0 &= 0xFFFFFFFF;
2532                 a1 &= 0xFFFFFFFF;
2533                 a2 &= 0xFFFFFFFF;
2534                 a3 &= 0xFFFFFFFF;
2535         }
2536
2537         switch (nr) {
2538         case KVM_HC_VAPIC_POLL_IRQ:
2539                 ret = 0;
2540                 break;
2541         case KVM_HC_MMU_OP:
2542                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2543                 break;
2544         default:
2545                 ret = -KVM_ENOSYS;
2546                 break;
2547         }
2548         vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2549         kvm_x86_ops->decache_regs(vcpu);
2550         ++vcpu->stat.hypercalls;
2551         return r;
2552 }
2553 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2554
2555 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2556 {
2557         char instruction[3];
2558         int ret = 0;
2559
2560
2561         /*
2562          * Blow out the MMU to ensure that no other VCPU has an active mapping
2563          * to ensure that the updated hypercall appears atomically across all
2564          * VCPUs.
2565          */
2566         kvm_mmu_zap_all(vcpu->kvm);
2567
2568         kvm_x86_ops->cache_regs(vcpu);
2569         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2570         if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2571             != X86EMUL_CONTINUE)
2572                 ret = -EFAULT;
2573
2574         return ret;
2575 }
2576
2577 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2578 {
2579         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2580 }
2581
2582 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2583 {
2584         struct descriptor_table dt = { limit, base };
2585
2586         kvm_x86_ops->set_gdt(vcpu, &dt);
2587 }
2588
2589 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2590 {
2591         struct descriptor_table dt = { limit, base };
2592
2593         kvm_x86_ops->set_idt(vcpu, &dt);
2594 }
2595
2596 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2597                    unsigned long *rflags)
2598 {
2599         kvm_lmsw(vcpu, msw);
2600         *rflags = kvm_x86_ops->get_rflags(vcpu);
2601 }
2602
2603 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2604 {
2605         unsigned long value;
2606
2607         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2608         switch (cr) {
2609         case 0:
2610                 value = vcpu->arch.cr0;
2611                 break;
2612         case 2:
2613                 value = vcpu->arch.cr2;
2614                 break;
2615         case 3:
2616                 value = vcpu->arch.cr3;
2617                 break;
2618         case 4:
2619                 value = vcpu->arch.cr4;
2620                 break;
2621         case 8:
2622                 value = kvm_get_cr8(vcpu);
2623                 break;
2624         default:
2625                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2626                 return 0;
2627         }
2628         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2629                     (u32)((u64)value >> 32), handler);
2630
2631         return value;
2632 }
2633
2634 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2635                      unsigned long *rflags)
2636 {
2637         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2638                     (u32)((u64)val >> 32), handler);
2639
2640         switch (cr) {
2641         case 0:
2642                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2643                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2644                 break;
2645         case 2:
2646                 vcpu->arch.cr2 = val;
2647                 break;
2648         case 3:
2649                 kvm_set_cr3(vcpu, val);
2650                 break;
2651         case 4:
2652                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2653                 break;
2654         case 8:
2655                 kvm_set_cr8(vcpu, val & 0xfUL);
2656                 break;
2657         default:
2658                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2659         }
2660 }
2661
2662 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2663 {
2664         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2665         int j, nent = vcpu->arch.cpuid_nent;
2666
2667         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2668         /* when no next entry is found, the current entry[i] is reselected */
2669         for (j = i + 1; j == i; j = (j + 1) % nent) {
2670                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2671                 if (ej->function == e->function) {
2672                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2673                         return j;
2674                 }
2675         }
2676         return 0; /* silence gcc, even though control never reaches here */
2677 }
2678
2679 /* find an entry with matching function, matching index (if needed), and that
2680  * should be read next (if it's stateful) */
2681 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2682         u32 function, u32 index)
2683 {
2684         if (e->function != function)
2685                 return 0;
2686         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2687                 return 0;
2688         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2689                 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2690                 return 0;
2691         return 1;
2692 }
2693
2694 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2695 {
2696         int i;
2697         u32 function, index;
2698         struct kvm_cpuid_entry2 *e, *best;
2699
2700         kvm_x86_ops->cache_regs(vcpu);
2701         function = vcpu->arch.regs[VCPU_REGS_RAX];
2702         index = vcpu->arch.regs[VCPU_REGS_RCX];
2703         vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2704         vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2705         vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2706         vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2707         best = NULL;
2708         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2709                 e = &vcpu->arch.cpuid_entries[i];
2710                 if (is_matching_cpuid_entry(e, function, index)) {
2711                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2712                                 move_to_next_stateful_cpuid_entry(vcpu, i);
2713                         best = e;
2714                         break;
2715                 }
2716                 /*
2717                  * Both basic or both extended?
2718                  */
2719                 if (((e->function ^ function) & 0x80000000) == 0)
2720                         if (!best || e->function > best->function)
2721                                 best = e;
2722         }
2723         if (best) {
2724                 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2725                 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2726                 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2727                 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2728         }
2729         kvm_x86_ops->decache_regs(vcpu);
2730         kvm_x86_ops->skip_emulated_instruction(vcpu);
2731         KVMTRACE_5D(CPUID, vcpu, function,
2732                     (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2733                     (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2734                     (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2735                     (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2738
2739 /*
2740  * Check if userspace requested an interrupt window, and that the
2741  * interrupt window is open.
2742  *
2743  * No need to exit to userspace if we already have an interrupt queued.
2744  */
2745 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2746                                           struct kvm_run *kvm_run)
2747 {
2748         return (!vcpu->arch.irq_summary &&
2749                 kvm_run->request_interrupt_window &&
2750                 vcpu->arch.interrupt_window_open &&
2751                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2752 }
2753
2754 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2755                               struct kvm_run *kvm_run)
2756 {
2757         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2758         kvm_run->cr8 = kvm_get_cr8(vcpu);
2759         kvm_run->apic_base = kvm_get_apic_base(vcpu);
2760         if (irqchip_in_kernel(vcpu->kvm))
2761                 kvm_run->ready_for_interrupt_injection = 1;
2762         else
2763                 kvm_run->ready_for_interrupt_injection =
2764                                         (vcpu->arch.interrupt_window_open &&
2765                                          vcpu->arch.irq_summary == 0);
2766 }
2767
2768 static void vapic_enter(struct kvm_vcpu *vcpu)
2769 {
2770         struct kvm_lapic *apic = vcpu->arch.apic;
2771         struct page *page;
2772
2773         if (!apic || !apic->vapic_addr)
2774                 return;
2775
2776         down_read(&current->mm->mmap_sem);
2777         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2778         up_read(&current->mm->mmap_sem);
2779
2780         vcpu->arch.apic->vapic_page = page;
2781 }
2782
2783 static void vapic_exit(struct kvm_vcpu *vcpu)
2784 {
2785         struct kvm_lapic *apic = vcpu->arch.apic;
2786
2787         if (!apic || !apic->vapic_addr)
2788                 return;
2789
2790         down_read(&vcpu->kvm->slots_lock);
2791         kvm_release_page_dirty(apic->vapic_page);
2792         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2793         up_read(&vcpu->kvm->slots_lock);
2794 }
2795
2796 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2797 {
2798         int r;
2799
2800         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2801                 pr_debug("vcpu %d received sipi with vector # %x\n",
2802                        vcpu->vcpu_id, vcpu->arch.sipi_vector);
2803                 kvm_lapic_reset(vcpu);
2804                 r = kvm_x86_ops->vcpu_reset(vcpu);
2805                 if (r)
2806                         return r;
2807                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2808         }
2809
2810         down_read(&vcpu->kvm->slots_lock);
2811         vapic_enter(vcpu);
2812
2813 preempted:
2814         if (vcpu->guest_debug.enabled)
2815                 kvm_x86_ops->guest_debug_pre(vcpu);
2816
2817 again:
2818         if (vcpu->requests)
2819                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2820                         kvm_mmu_unload(vcpu);
2821
2822         r = kvm_mmu_reload(vcpu);
2823         if (unlikely(r))
2824                 goto out;
2825
2826         if (vcpu->requests) {
2827                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2828                         __kvm_migrate_timers(vcpu);
2829                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2830                         kvm_x86_ops->tlb_flush(vcpu);
2831                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2832                                        &vcpu->requests)) {
2833                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2834                         r = 0;
2835                         goto out;
2836                 }
2837                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2838                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2839                         r = 0;
2840                         goto out;
2841                 }
2842         }
2843
2844         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2845         kvm_inject_pending_timer_irqs(vcpu);
2846
2847         preempt_disable();
2848
2849         kvm_x86_ops->prepare_guest_switch(vcpu);
2850         kvm_load_guest_fpu(vcpu);
2851
2852         local_irq_disable();
2853
2854         if (vcpu->requests || need_resched()) {
2855                 local_irq_enable();
2856                 preempt_enable();
2857                 r = 1;
2858                 goto out;
2859         }
2860
2861         if (signal_pending(current)) {
2862                 local_irq_enable();
2863                 preempt_enable();
2864                 r = -EINTR;
2865                 kvm_run->exit_reason = KVM_EXIT_INTR;
2866                 ++vcpu->stat.signal_exits;
2867                 goto out;
2868         }
2869
2870         vcpu->guest_mode = 1;
2871         /*
2872          * Make sure that guest_mode assignment won't happen after
2873          * testing the pending IRQ vector bitmap.
2874          */
2875         smp_wmb();
2876
2877         if (vcpu->arch.exception.pending)
2878                 __queue_exception(vcpu);
2879         else if (irqchip_in_kernel(vcpu->kvm))
2880                 kvm_x86_ops->inject_pending_irq(vcpu);
2881         else
2882                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2883
2884         kvm_lapic_sync_to_vapic(vcpu);
2885
2886         up_read(&vcpu->kvm->slots_lock);
2887
2888         kvm_guest_enter();
2889
2890
2891         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2892         kvm_x86_ops->run(vcpu, kvm_run);
2893
2894         vcpu->guest_mode = 0;
2895         local_irq_enable();
2896
2897         ++vcpu->stat.exits;
2898
2899         /*
2900          * We must have an instruction between local_irq_enable() and
2901          * kvm_guest_exit(), so the timer interrupt isn't delayed by
2902          * the interrupt shadow.  The stat.exits increment will do nicely.
2903          * But we need to prevent reordering, hence this barrier():
2904          */
2905         barrier();
2906
2907         kvm_guest_exit();
2908
2909         preempt_enable();
2910
2911         down_read(&vcpu->kvm->slots_lock);
2912
2913         /*
2914          * Profile KVM exit RIPs:
2915          */
2916         if (unlikely(prof_on == KVM_PROFILING)) {
2917                 kvm_x86_ops->cache_regs(vcpu);
2918                 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2919         }
2920
2921         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2922                 vcpu->arch.exception.pending = false;
2923
2924         kvm_lapic_sync_from_vapic(vcpu);
2925
2926         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2927
2928         if (r > 0) {
2929                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2930                         r = -EINTR;
2931                         kvm_run->exit_reason = KVM_EXIT_INTR;
2932                         ++vcpu->stat.request_irq_exits;
2933                         goto out;
2934                 }
2935                 if (!need_resched())
2936                         goto again;
2937         }
2938
2939 out:
2940         up_read(&vcpu->kvm->slots_lock);
2941         if (r > 0) {
2942                 kvm_resched(vcpu);
2943                 down_read(&vcpu->kvm->slots_lock);
2944                 goto preempted;
2945         }
2946
2947         post_kvm_run_save(vcpu, kvm_run);
2948
2949         vapic_exit(vcpu);
2950
2951         return r;
2952 }
2953
2954 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2955 {
2956         int r;
2957         sigset_t sigsaved;
2958
2959         vcpu_load(vcpu);
2960
2961         if (vcpu->sigset_active)
2962                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2963
2964         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2965                 kvm_vcpu_block(vcpu);
2966                 r = -EAGAIN;
2967                 goto out;
2968         }
2969
2970         /* re-sync apic's tpr */
2971         if (!irqchip_in_kernel(vcpu->kvm))
2972                 kvm_set_cr8(vcpu, kvm_run->cr8);
2973
2974         if (vcpu->arch.pio.cur_count) {
2975                 r = complete_pio(vcpu);
2976                 if (r)
2977                         goto out;
2978         }
2979 #if CONFIG_HAS_IOMEM
2980         if (vcpu->mmio_needed) {
2981                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2982                 vcpu->mmio_read_completed = 1;
2983                 vcpu->mmio_needed = 0;
2984
2985                 down_read(&vcpu->kvm->slots_lock);
2986                 r = emulate_instruction(vcpu, kvm_run,
2987                                         vcpu->arch.mmio_fault_cr2, 0,
2988                                         EMULTYPE_NO_DECODE);
2989                 up_read(&vcpu->kvm->slots_lock);
2990                 if (r == EMULATE_DO_MMIO) {
2991                         /*
2992                          * Read-modify-write.  Back to userspace.
2993                          */
2994                         r = 0;
2995                         goto out;
2996                 }
2997         }
2998 #endif
2999         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3000                 kvm_x86_ops->cache_regs(vcpu);
3001                 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3002                 kvm_x86_ops->decache_regs(vcpu);
3003         }
3004
3005         r = __vcpu_run(vcpu, kvm_run);
3006
3007 out:
3008         if (vcpu->sigset_active)
3009                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3010
3011         vcpu_put(vcpu);
3012         return r;
3013 }
3014
3015 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3016 {
3017         vcpu_load(vcpu);
3018
3019         kvm_x86_ops->cache_regs(vcpu);
3020
3021         regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3022         regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3023         regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3024         regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3025         regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3026         regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3027         regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3028         regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3029 #ifdef CONFIG_X86_64
3030         regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3031         regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3032         regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3033         regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3034         regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3035         regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3036         regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3037         regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3038 #endif
3039
3040         regs->rip = vcpu->arch.rip;
3041         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3042
3043         /*
3044          * Don't leak debug flags in case they were set for guest debugging
3045          */
3046         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3047                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3048
3049         vcpu_put(vcpu);
3050
3051         return 0;
3052 }
3053
3054 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3055 {
3056         vcpu_load(vcpu);
3057
3058         vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3059         vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3060         vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3061         vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3062         vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3063         vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3064         vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3065         vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3066 #ifdef CONFIG_X86_64
3067         vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3068         vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3069         vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3070         vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3071         vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3072         vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3073         vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3074         vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3075 #endif
3076
3077         vcpu->arch.rip = regs->rip;
3078         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3079
3080         kvm_x86_ops->decache_regs(vcpu);
3081
3082         vcpu->arch.exception.pending = false;
3083
3084         vcpu_put(vcpu);
3085
3086         return 0;
3087 }
3088
3089 void kvm_get_segment(struct kvm_vcpu *vcpu,
3090                      struct kvm_segment *var, int seg)
3091 {
3092         kvm_x86_ops->get_segment(vcpu, var, seg);
3093 }
3094
3095 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3096 {
3097         struct kvm_segment cs;
3098
3099         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3100         *db = cs.db;
3101         *l = cs.l;
3102 }
3103 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3104
3105 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3106                                   struct kvm_sregs *sregs)
3107 {
3108         struct descriptor_table dt;
3109         int pending_vec;
3110
3111         vcpu_load(vcpu);
3112
3113         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3114         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3115         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3116         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3117         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3118         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3119
3120         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3121         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3122
3123         kvm_x86_ops->get_idt(vcpu, &dt);
3124         sregs->idt.limit = dt.limit;
3125         sregs->idt.base = dt.base;
3126         kvm_x86_ops->get_gdt(vcpu, &dt);
3127         sregs->gdt.limit = dt.limit;
3128         sregs->gdt.base = dt.base;
3129
3130         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3131         sregs->cr0 = vcpu->arch.cr0;
3132         sregs->cr2 = vcpu->arch.cr2;
3133         sregs->cr3 = vcpu->arch.cr3;
3134         sregs->cr4 = vcpu->arch.cr4;
3135         sregs->cr8 = kvm_get_cr8(vcpu);
3136         sregs->efer = vcpu->arch.shadow_efer;
3137         sregs->apic_base = kvm_get_apic_base(vcpu);
3138
3139         if (irqchip_in_kernel(vcpu->kvm)) {
3140                 memset(sregs->interrupt_bitmap, 0,
3141                        sizeof sregs->interrupt_bitmap);
3142                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3143                 if (pending_vec >= 0)
3144                         set_bit(pending_vec,
3145                                 (unsigned long *)sregs->interrupt_bitmap);
3146         } else
3147                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3148                        sizeof sregs->interrupt_bitmap);
3149
3150         vcpu_put(vcpu);
3151
3152         return 0;
3153 }
3154
3155 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3156                                     struct kvm_mp_state *mp_state)
3157 {
3158         vcpu_load(vcpu);
3159         mp_state->mp_state = vcpu->arch.mp_state;
3160         vcpu_put(vcpu);
3161         return 0;
3162 }
3163
3164 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3165                                     struct kvm_mp_state *mp_state)
3166 {
3167         vcpu_load(vcpu);
3168         vcpu->arch.mp_state = mp_state->mp_state;
3169         vcpu_put(vcpu);
3170         return 0;
3171 }
3172
3173 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3174                         struct kvm_segment *var, int seg)
3175 {
3176         kvm_x86_ops->set_segment(vcpu, var, seg);
3177 }
3178
3179 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3180                                    struct kvm_segment *kvm_desct)
3181 {
3182         kvm_desct->base = seg_desc->base0;
3183         kvm_desct->base |= seg_desc->base1 << 16;
3184         kvm_desct->base |= seg_desc->base2 << 24;
3185         kvm_desct->limit = seg_desc->limit0;
3186         kvm_desct->limit |= seg_desc->limit << 16;
3187         kvm_desct->selector = selector;
3188         kvm_desct->type = seg_desc->type;
3189         kvm_desct->present = seg_desc->p;
3190         kvm_desct->dpl = seg_desc->dpl;
3191         kvm_desct->db = seg_desc->d;
3192         kvm_desct->s = seg_desc->s;
3193         kvm_desct->l = seg_desc->l;
3194         kvm_desct->g = seg_desc->g;
3195         kvm_desct->avl = seg_desc->avl;
3196         if (!selector)
3197                 kvm_desct->unusable = 1;
3198         else
3199                 kvm_desct->unusable = 0;
3200         kvm_desct->padding = 0;
3201 }
3202
3203 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3204                                            u16 selector,
3205                                            struct descriptor_table *dtable)
3206 {
3207         if (selector & 1 << 2) {
3208                 struct kvm_segment kvm_seg;
3209
3210                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3211
3212                 if (kvm_seg.unusable)
3213                         dtable->limit = 0;
3214                 else
3215                         dtable->limit = kvm_seg.limit;
3216                 dtable->base = kvm_seg.base;
3217         }
3218         else
3219                 kvm_x86_ops->get_gdt(vcpu, dtable);
3220 }
3221
3222 /* allowed just for 8 bytes segments */
3223 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3224                                          struct desc_struct *seg_desc)
3225 {
3226         struct descriptor_table dtable;
3227         u16 index = selector >> 3;
3228
3229         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3230
3231         if (dtable.limit < index * 8 + 7) {
3232                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3233                 return 1;
3234         }
3235         return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3236 }
3237
3238 /* allowed just for 8 bytes segments */
3239 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3240                                          struct desc_struct *seg_desc)
3241 {
3242         struct descriptor_table dtable;
3243         u16 index = selector >> 3;
3244
3245         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3246
3247         if (dtable.limit < index * 8 + 7)
3248                 return 1;
3249         return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3250 }
3251
3252 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3253                              struct desc_struct *seg_desc)
3254 {
3255         u32 base_addr;
3256
3257         base_addr = seg_desc->base0;
3258         base_addr |= (seg_desc->base1 << 16);
3259         base_addr |= (seg_desc->base2 << 24);
3260
3261         return base_addr;
3262 }
3263
3264 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3265                               struct desc_struct *seg_desc,
3266                               struct tss_segment_32 *tss)
3267 {
3268         u32 base_addr;
3269
3270         base_addr = get_tss_base_addr(vcpu, seg_desc);
3271
3272         return kvm_read_guest(vcpu->kvm, base_addr, tss,
3273                               sizeof(struct tss_segment_32));
3274 }
3275
3276 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3277                               struct desc_struct *seg_desc,
3278                               struct tss_segment_32 *tss)
3279 {
3280         u32 base_addr;
3281
3282         base_addr = get_tss_base_addr(vcpu, seg_desc);
3283
3284         return kvm_write_guest(vcpu->kvm, base_addr, tss,
3285                                sizeof(struct tss_segment_32));
3286 }
3287
3288 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3289                               struct desc_struct *seg_desc,
3290                               struct tss_segment_16 *tss)
3291 {
3292         u32 base_addr;
3293
3294         base_addr = get_tss_base_addr(vcpu, seg_desc);
3295
3296         return kvm_read_guest(vcpu->kvm, base_addr, tss,
3297                               sizeof(struct tss_segment_16));
3298 }
3299
3300 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3301                               struct desc_struct *seg_desc,
3302                               struct tss_segment_16 *tss)
3303 {
3304         u32 base_addr;
3305
3306         base_addr = get_tss_base_addr(vcpu, seg_desc);
3307
3308         return kvm_write_guest(vcpu->kvm, base_addr, tss,
3309                                sizeof(struct tss_segment_16));
3310 }
3311
3312 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3313 {
3314         struct kvm_segment kvm_seg;
3315
3316         kvm_get_segment(vcpu, &kvm_seg, seg);
3317         return kvm_seg.selector;
3318 }
3319
3320 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3321                                                 u16 selector,
3322                                                 struct kvm_segment *kvm_seg)
3323 {
3324         struct desc_struct seg_desc;
3325
3326         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3327                 return 1;
3328         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3329         return 0;
3330 }
3331
3332 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3333                                 int type_bits, int seg)
3334 {
3335         struct kvm_segment kvm_seg;
3336
3337         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3338                 return 1;
3339         kvm_seg.type |= type_bits;
3340
3341         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3342             seg != VCPU_SREG_LDTR)
3343                 if (!kvm_seg.s)
3344                         kvm_seg.unusable = 1;
3345
3346         kvm_set_segment(vcpu, &kvm_seg, seg);
3347         return 0;
3348 }
3349
3350 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3351                                 struct tss_segment_32 *tss)
3352 {
3353         tss->cr3 = vcpu->arch.cr3;
3354         tss->eip = vcpu->arch.rip;
3355         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3356         tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3357         tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3358         tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3359         tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3360         tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3361         tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3362         tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3363         tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3364
3365         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3366         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3367         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3368         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3369         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3370         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3371         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3372         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3373 }
3374
3375 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3376                                   struct tss_segment_32 *tss)
3377 {
3378         kvm_set_cr3(vcpu, tss->cr3);
3379
3380         vcpu->arch.rip = tss->eip;
3381         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3382
3383         vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3384         vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3385         vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3386         vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3387         vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3388         vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3389         vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3390         vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3391
3392         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3393                 return 1;
3394
3395         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3396                 return 1;
3397
3398         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3399                 return 1;
3400
3401         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3402                 return 1;
3403
3404         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3405                 return 1;
3406
3407         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3408                 return 1;
3409
3410         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3411                 return 1;
3412         return 0;
3413 }
3414
3415 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3416                                 struct tss_segment_16 *tss)
3417 {
3418         tss->ip = vcpu->arch.rip;
3419         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3420         tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3421         tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3422         tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3423         tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3424         tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3425         tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3426         tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3427         tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3428
3429         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3430         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3431         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3432         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3433         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3434         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3435 }
3436
3437 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3438                                  struct tss_segment_16 *tss)
3439 {
3440         vcpu->arch.rip = tss->ip;
3441         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3442         vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3443         vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3444         vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3445         vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3446         vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3447         vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3448         vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3449         vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3450
3451         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3452                 return 1;
3453
3454         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3455                 return 1;
3456
3457         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3458                 return 1;
3459
3460         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3461                 return 1;
3462
3463         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3464                 return 1;
3465         return 0;
3466 }
3467
3468 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3469                        struct desc_struct *cseg_desc,
3470                        struct desc_struct *nseg_desc)
3471 {
3472         struct tss_segment_16 tss_segment_16;
3473         int ret = 0;
3474
3475         if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
3476                 goto out;
3477
3478         save_state_to_tss16(vcpu, &tss_segment_16);
3479         save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
3480
3481         if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
3482                 goto out;
3483         if (load_state_from_tss16(vcpu, &tss_segment_16))
3484                 goto out;
3485
3486         ret = 1;
3487 out:
3488         return ret;
3489 }
3490
3491 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3492                        struct desc_struct *cseg_desc,
3493                        struct desc_struct *nseg_desc)
3494 {
3495         struct tss_segment_32 tss_segment_32;
3496         int ret = 0;
3497
3498         if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
3499                 goto out;
3500
3501         save_state_to_tss32(vcpu, &tss_segment_32);
3502         save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
3503
3504         if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
3505                 goto out;
3506         if (load_state_from_tss32(vcpu, &tss_segment_32))
3507                 goto out;
3508
3509         ret = 1;
3510 out:
3511         return ret;
3512 }
3513
3514 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3515 {
3516         struct kvm_segment tr_seg;
3517         struct desc_struct cseg_desc;
3518         struct desc_struct nseg_desc;
3519         int ret = 0;
3520
3521         kvm_get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3522
3523         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3524                 goto out;
3525
3526         if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
3527                 goto out;
3528
3529
3530         if (reason != TASK_SWITCH_IRET) {
3531                 int cpl;
3532
3533                 cpl = kvm_x86_ops->get_cpl(vcpu);
3534                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3535                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3536                         return 1;
3537                 }
3538         }
3539
3540         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3541                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3542                 return 1;
3543         }
3544
3545         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3546                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3547                 save_guest_segment_descriptor(vcpu, tr_seg.selector,
3548                                               &cseg_desc);
3549         }
3550
3551         if (reason == TASK_SWITCH_IRET) {
3552                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3553                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3554         }
3555
3556         kvm_x86_ops->skip_emulated_instruction(vcpu);
3557         kvm_x86_ops->cache_regs(vcpu);
3558
3559         if (nseg_desc.type & 8)
3560                 ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
3561                                          &nseg_desc);
3562         else
3563                 ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
3564                                          &nseg_desc);
3565
3566         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3567                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3568                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3569         }
3570
3571         if (reason != TASK_SWITCH_IRET) {
3572                 nseg_desc.type |= (1 << 1);
3573                 save_guest_segment_descriptor(vcpu, tss_selector,
3574                                               &nseg_desc);
3575         }
3576
3577         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3578         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3579         tr_seg.type = 11;
3580         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3581 out:
3582         kvm_x86_ops->decache_regs(vcpu);
3583         return ret;
3584 }
3585 EXPORT_SYMBOL_GPL(kvm_task_switch);
3586
3587 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3588                                   struct kvm_sregs *sregs)
3589 {
3590         int mmu_reset_needed = 0;
3591         int i, pending_vec, max_bits;
3592         struct descriptor_table dt;
3593
3594         vcpu_load(vcpu);
3595
3596         dt.limit = sregs->idt.limit;
3597         dt.base = sregs->idt.base;
3598         kvm_x86_ops->set_idt(vcpu, &dt);
3599         dt.limit = sregs->gdt.limit;
3600         dt.base = sregs->gdt.base;
3601         kvm_x86_ops->set_gdt(vcpu, &dt);
3602
3603         vcpu->arch.cr2 = sregs->cr2;
3604         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3605         vcpu->arch.cr3 = sregs->cr3;
3606
3607         kvm_set_cr8(vcpu, sregs->cr8);
3608
3609         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3610         kvm_x86_ops->set_efer(vcpu, sregs->efer);
3611         kvm_set_apic_base(vcpu, sregs->apic_base);
3612
3613         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3614
3615         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3616         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3617         vcpu->arch.cr0 = sregs->cr0;
3618
3619         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3620         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3621         if (!is_long_mode(vcpu) && is_pae(vcpu))
3622                 load_pdptrs(vcpu, vcpu->arch.cr3);
3623
3624         if (mmu_reset_needed)
3625                 kvm_mmu_reset_context(vcpu);
3626
3627         if (!irqchip_in_kernel(vcpu->kvm)) {
3628                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3629                        sizeof vcpu->arch.irq_pending);
3630                 vcpu->arch.irq_summary = 0;
3631                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3632                         if (vcpu->arch.irq_pending[i])
3633                                 __set_bit(i, &vcpu->arch.irq_summary);
3634         } else {
3635                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3636                 pending_vec = find_first_bit(
3637                         (const unsigned long *)sregs->interrupt_bitmap,
3638                         max_bits);
3639                 /* Only pending external irq is handled here */
3640                 if (pending_vec < max_bits) {
3641                         kvm_x86_ops->set_irq(vcpu, pending_vec);
3642                         pr_debug("Set back pending irq %d\n",
3643                                  pending_vec);
3644                 }
3645         }
3646
3647         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3648         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3649         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3650         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3651         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3652         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3653
3654         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3655         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3656
3657         vcpu_put(vcpu);
3658
3659         return 0;
3660 }
3661
3662 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3663                                     struct kvm_debug_guest *dbg)
3664 {
3665         int r;
3666
3667         vcpu_load(vcpu);
3668
3669         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3670
3671         vcpu_put(vcpu);
3672
3673         return r;
3674 }
3675
3676 /*
3677  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3678  * we have asm/x86/processor.h
3679  */
3680 struct fxsave {
3681         u16     cwd;
3682         u16     swd;
3683         u16     twd;
3684         u16     fop;
3685         u64     rip;
3686         u64     rdp;
3687         u32     mxcsr;
3688         u32     mxcsr_mask;
3689         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
3690 #ifdef CONFIG_X86_64
3691         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
3692 #else
3693         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
3694 #endif
3695 };
3696
3697 /*
3698  * Translate a guest virtual address to a guest physical address.
3699  */
3700 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3701                                     struct kvm_translation *tr)
3702 {
3703         unsigned long vaddr = tr->linear_address;
3704         gpa_t gpa;
3705
3706         vcpu_load(vcpu);
3707         down_read(&vcpu->kvm->slots_lock);
3708         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3709         up_read(&vcpu->kvm->slots_lock);
3710         tr->physical_address = gpa;
3711         tr->valid = gpa != UNMAPPED_GVA;
3712         tr->writeable = 1;
3713         tr->usermode = 0;
3714         vcpu_put(vcpu);
3715
3716         return 0;
3717 }
3718
3719 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3720 {
3721         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3722
3723         vcpu_load(vcpu);
3724
3725         memcpy(fpu->fpr, fxsave->st_space, 128);
3726         fpu->fcw = fxsave->cwd;
3727         fpu->fsw = fxsave->swd;
3728         fpu->ftwx = fxsave->twd;
3729         fpu->last_opcode = fxsave->fop;
3730         fpu->last_ip = fxsave->rip;
3731         fpu->last_dp = fxsave->rdp;
3732         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3733
3734         vcpu_put(vcpu);
3735
3736         return 0;
3737 }
3738
3739 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3740 {
3741         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3742
3743         vcpu_load(vcpu);
3744
3745         memcpy(fxsave->st_space, fpu->fpr, 128);
3746         fxsave->cwd = fpu->fcw;
3747         fxsave->swd = fpu->fsw;
3748         fxsave->twd = fpu->ftwx;
3749         fxsave->fop = fpu->last_opcode;
3750         fxsave->rip = fpu->last_ip;
3751         fxsave->rdp = fpu->last_dp;
3752         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3753
3754         vcpu_put(vcpu);
3755
3756         return 0;
3757 }
3758
3759 void fx_init(struct kvm_vcpu *vcpu)
3760 {
3761         unsigned after_mxcsr_mask;
3762
3763         /*
3764          * Touch the fpu the first time in non atomic context as if
3765          * this is the first fpu instruction the exception handler
3766          * will fire before the instruction returns and it'll have to
3767          * allocate ram with GFP_KERNEL.
3768          */
3769         if (!used_math())
3770                 kvm_fx_save(&vcpu->arch.host_fx_image);
3771
3772         /* Initialize guest FPU by resetting ours and saving into guest's */
3773         preempt_disable();
3774         kvm_fx_save(&vcpu->arch.host_fx_image);
3775         kvm_fx_finit();
3776         kvm_fx_save(&vcpu->arch.guest_fx_image);
3777         kvm_fx_restore(&vcpu->arch.host_fx_image);
3778         preempt_enable();
3779
3780         vcpu->arch.cr0 |= X86_CR0_ET;
3781         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3782         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3783         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3784                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3785 }
3786 EXPORT_SYMBOL_GPL(fx_init);
3787
3788 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3789 {
3790         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3791                 return;
3792
3793         vcpu->guest_fpu_loaded = 1;
3794         kvm_fx_save(&vcpu->arch.host_fx_image);
3795         kvm_fx_restore(&vcpu->arch.guest_fx_image);
3796 }
3797 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3798
3799 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3800 {
3801         if (!vcpu->guest_fpu_loaded)
3802                 return;
3803
3804         vcpu->guest_fpu_loaded = 0;
3805         kvm_fx_save(&vcpu->arch.guest_fx_image);
3806         kvm_fx_restore(&vcpu->arch.host_fx_image);
3807         ++vcpu->stat.fpu_reload;
3808 }
3809 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3810
3811 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3812 {
3813         kvm_x86_ops->vcpu_free(vcpu);
3814 }
3815
3816 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3817                                                 unsigned int id)
3818 {
3819         return kvm_x86_ops->vcpu_create(kvm, id);
3820 }
3821
3822 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3823 {
3824         int r;
3825
3826         /* We do fxsave: this must be aligned. */
3827         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3828
3829         vcpu_load(vcpu);
3830         r = kvm_arch_vcpu_reset(vcpu);
3831         if (r == 0)
3832                 r = kvm_mmu_setup(vcpu);
3833         vcpu_put(vcpu);
3834         if (r < 0)
3835                 goto free_vcpu;
3836
3837         return 0;
3838 free_vcpu:
3839         kvm_x86_ops->vcpu_free(vcpu);
3840         return r;
3841 }
3842
3843 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3844 {
3845         vcpu_load(vcpu);
3846         kvm_mmu_unload(vcpu);
3847         vcpu_put(vcpu);
3848
3849         kvm_x86_ops->vcpu_free(vcpu);
3850 }
3851
3852 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3853 {
3854         return kvm_x86_ops->vcpu_reset(vcpu);
3855 }
3856
3857 void kvm_arch_hardware_enable(void *garbage)
3858 {
3859         kvm_x86_ops->hardware_enable(garbage);
3860 }
3861
3862 void kvm_arch_hardware_disable(void *garbage)
3863 {
3864         kvm_x86_ops->hardware_disable(garbage);
3865 }
3866
3867 int kvm_arch_hardware_setup(void)
3868 {
3869         return kvm_x86_ops->hardware_setup();
3870 }
3871
3872 void kvm_arch_hardware_unsetup(void)
3873 {
3874         kvm_x86_ops->hardware_unsetup();
3875 }
3876
3877 void kvm_arch_check_processor_compat(void *rtn)
3878 {
3879         kvm_x86_ops->check_processor_compatibility(rtn);
3880 }
3881
3882 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3883 {
3884         struct page *page;
3885         struct kvm *kvm;
3886         int r;
3887
3888         BUG_ON(vcpu->kvm == NULL);
3889         kvm = vcpu->kvm;
3890
3891         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3892         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3893                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3894         else
3895                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3896
3897         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3898         if (!page) {
3899                 r = -ENOMEM;
3900                 goto fail;
3901         }
3902         vcpu->arch.pio_data = page_address(page);
3903
3904         r = kvm_mmu_create(vcpu);
3905         if (r < 0)
3906                 goto fail_free_pio_data;
3907
3908         if (irqchip_in_kernel(kvm)) {
3909                 r = kvm_create_lapic(vcpu);
3910                 if (r < 0)
3911                         goto fail_mmu_destroy;
3912         }
3913
3914         return 0;
3915
3916 fail_mmu_destroy:
3917         kvm_mmu_destroy(vcpu);
3918 fail_free_pio_data:
3919         free_page((unsigned long)vcpu->arch.pio_data);
3920 fail:
3921         return r;
3922 }
3923
3924 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3925 {
3926         kvm_free_lapic(vcpu);
3927         down_read(&vcpu->kvm->slots_lock);
3928         kvm_mmu_destroy(vcpu);
3929         up_read(&vcpu->kvm->slots_lock);
3930         free_page((unsigned long)vcpu->arch.pio_data);
3931 }
3932
3933 struct  kvm *kvm_arch_create_vm(void)
3934 {
3935         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3936
3937         if (!kvm)
3938                 return ERR_PTR(-ENOMEM);
3939
3940         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3941
3942         return kvm;
3943 }
3944
3945 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3946 {
3947         vcpu_load(vcpu);
3948         kvm_mmu_unload(vcpu);
3949         vcpu_put(vcpu);
3950 }
3951
3952 static void kvm_free_vcpus(struct kvm *kvm)
3953 {
3954         unsigned int i;
3955
3956         /*
3957          * Unpin any mmu pages first.
3958          */
3959         for (i = 0; i < KVM_MAX_VCPUS; ++i)
3960                 if (kvm->vcpus[i])
3961                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3962         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3963                 if (kvm->vcpus[i]) {
3964                         kvm_arch_vcpu_free(kvm->vcpus[i]);
3965                         kvm->vcpus[i] = NULL;
3966                 }
3967         }
3968
3969 }
3970
3971 void kvm_arch_destroy_vm(struct kvm *kvm)
3972 {
3973         kvm_free_pit(kvm);
3974         kfree(kvm->arch.vpic);
3975         kfree(kvm->arch.vioapic);
3976         kvm_free_vcpus(kvm);
3977         kvm_free_physmem(kvm);
3978         if (kvm->arch.apic_access_page)
3979                 put_page(kvm->arch.apic_access_page);
3980         if (kvm->arch.ept_identity_pagetable)
3981                 put_page(kvm->arch.ept_identity_pagetable);
3982         kfree(kvm);
3983 }
3984
3985 int kvm_arch_set_memory_region(struct kvm *kvm,
3986                                 struct kvm_userspace_memory_region *mem,
3987                                 struct kvm_memory_slot old,
3988                                 int user_alloc)
3989 {
3990         int npages = mem->memory_size >> PAGE_SHIFT;
3991         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3992
3993         /*To keep backward compatibility with older userspace,
3994          *x86 needs to hanlde !user_alloc case.
3995          */
3996         if (!user_alloc) {
3997                 if (npages && !old.rmap) {
3998                         down_write(&current->mm->mmap_sem);
3999                         memslot->userspace_addr = do_mmap(NULL, 0,
4000                                                      npages * PAGE_SIZE,
4001                                                      PROT_READ | PROT_WRITE,
4002                                                      MAP_SHARED | MAP_ANONYMOUS,
4003                                                      0);
4004                         up_write(&current->mm->mmap_sem);
4005
4006                         if (IS_ERR((void *)memslot->userspace_addr))
4007                                 return PTR_ERR((void *)memslot->userspace_addr);
4008                 } else {
4009                         if (!old.user_alloc && old.rmap) {
4010                                 int ret;
4011
4012                                 down_write(&current->mm->mmap_sem);
4013                                 ret = do_munmap(current->mm, old.userspace_addr,
4014                                                 old.npages * PAGE_SIZE);
4015                                 up_write(&current->mm->mmap_sem);
4016                                 if (ret < 0)
4017                                         printk(KERN_WARNING
4018                                        "kvm_vm_ioctl_set_memory_region: "
4019                                        "failed to munmap memory\n");
4020                         }
4021                 }
4022         }
4023
4024         if (!kvm->arch.n_requested_mmu_pages) {
4025                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4026                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4027         }
4028
4029         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4030         kvm_flush_remote_tlbs(kvm);
4031
4032         return 0;
4033 }
4034
4035 void kvm_arch_flush_shadow(struct kvm *kvm)
4036 {
4037         kvm_mmu_zap_all(kvm);
4038 }
4039
4040 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4041 {
4042         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4043                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4044 }
4045
4046 static void vcpu_kick_intr(void *info)
4047 {
4048 #ifdef DEBUG
4049         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4050         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4051 #endif
4052 }
4053
4054 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4055 {
4056         int ipi_pcpu = vcpu->cpu;
4057         int cpu = get_cpu();
4058
4059         if (waitqueue_active(&vcpu->wq)) {
4060                 wake_up_interruptible(&vcpu->wq);
4061                 ++vcpu->stat.halt_wakeup;
4062         }
4063         /*
4064          * We may be called synchronously with irqs disabled in guest mode,
4065          * So need not to call smp_call_function_single() in that case.
4066          */
4067         if (vcpu->guest_mode && vcpu->cpu != cpu)
4068                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4069         put_cpu();
4070 }