Merge branch 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6] / drivers / serial / jsm / jsm_neo.c
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Wendy Xiong   <wendyx@us.ibm.com>
24  *
25  ***********************************************************************/
26 #include <linux/delay.h>        /* For udelay */
27 #include <linux/serial_reg.h>   /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31
32 #include "jsm.h"                /* Driver main header file */
33
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
35
36 /*
37  * This function allows calls to ensure that all outstanding
38  * PCI writes have been completed, by doing a PCI read against
39  * a non-destructive, read-only location on the Neo card.
40  *
41  * In this case, we are reading the DVID (Read-only Device Identification)
42  * value of the Neo card.
43  */
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
45 {
46       readb(bd->re_map_membase + 0x8D);
47 }
48
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
50 {
51         u8 ier, efr;
52         ier = readb(&ch->ch_neo_uart->ier);
53         efr = readb(&ch->ch_neo_uart->efr);
54
55         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
56
57         /* Turn on auto CTS flow control */
58         ier |= (UART_17158_IER_CTSDSR);
59         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
60
61         /* Turn off auto Xon flow control */
62         efr &= ~(UART_17158_EFR_IXON);
63
64         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
65         writeb(0, &ch->ch_neo_uart->efr);
66
67         /* Turn on UART enhanced bits */
68         writeb(efr, &ch->ch_neo_uart->efr);
69
70         /* Turn on table D, with 8 char hi/low watermarks */
71         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
72
73         /* Feed the UART our trigger levels */
74         writeb(8, &ch->ch_neo_uart->tfifo);
75         ch->ch_t_tlevel = 8;
76
77         writeb(ier, &ch->ch_neo_uart->ier);
78 }
79
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
81 {
82         u8 ier, efr;
83         ier = readb(&ch->ch_neo_uart->ier);
84         efr = readb(&ch->ch_neo_uart->efr);
85
86         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
87
88         /* Turn on auto RTS flow control */
89         ier |= (UART_17158_IER_RTSDTR);
90         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
91
92         /* Turn off auto Xoff flow control */
93         ier &= ~(UART_17158_IER_XOFF);
94         efr &= ~(UART_17158_EFR_IXOFF);
95
96         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
97         writeb(0, &ch->ch_neo_uart->efr);
98
99         /* Turn on UART enhanced bits */
100         writeb(efr, &ch->ch_neo_uart->efr);
101
102         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103         ch->ch_r_watermark = 4;
104
105         writeb(56, &ch->ch_neo_uart->rfifo);
106         ch->ch_r_tlevel = 56;
107
108         writeb(ier, &ch->ch_neo_uart->ier);
109
110         /*
111          * From the Neo UART spec sheet:
112          * The auto RTS/DTR function must be started by asserting
113          * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114          * it is enabled.
115          */
116         ch->ch_mostat |= (UART_MCR_RTS);
117 }
118
119
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
121 {
122         u8 ier, efr;
123         ier = readb(&ch->ch_neo_uart->ier);
124         efr = readb(&ch->ch_neo_uart->efr);
125
126         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
127
128         /* Turn off auto CTS flow control */
129         ier &= ~(UART_17158_IER_CTSDSR);
130         efr &= ~(UART_17158_EFR_CTSDSR);
131
132         /* Turn on auto Xon flow control */
133         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
134
135         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
136         writeb(0, &ch->ch_neo_uart->efr);
137
138         /* Turn on UART enhanced bits */
139         writeb(efr, &ch->ch_neo_uart->efr);
140
141         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142         ch->ch_r_watermark = 4;
143
144         writeb(32, &ch->ch_neo_uart->rfifo);
145         ch->ch_r_tlevel = 32;
146
147         /* Tell UART what start/stop chars it should be looking for */
148         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149         writeb(0, &ch->ch_neo_uart->xonchar2);
150
151         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152         writeb(0, &ch->ch_neo_uart->xoffchar2);
153
154         writeb(ier, &ch->ch_neo_uart->ier);
155 }
156
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
158 {
159         u8 ier, efr;
160         ier = readb(&ch->ch_neo_uart->ier);
161         efr = readb(&ch->ch_neo_uart->efr);
162
163         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
164
165         /* Turn off auto RTS flow control */
166         ier &= ~(UART_17158_IER_RTSDTR);
167         efr &= ~(UART_17158_EFR_RTSDTR);
168
169         /* Turn on auto Xoff flow control */
170         ier |= (UART_17158_IER_XOFF);
171         efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
172
173         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
174         writeb(0, &ch->ch_neo_uart->efr);
175
176         /* Turn on UART enhanced bits */
177         writeb(efr, &ch->ch_neo_uart->efr);
178
179         /* Turn on table D, with 8 char hi/low watermarks */
180         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
181
182         writeb(8, &ch->ch_neo_uart->tfifo);
183         ch->ch_t_tlevel = 8;
184
185         /* Tell UART what start/stop chars it should be looking for */
186         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187         writeb(0, &ch->ch_neo_uart->xonchar2);
188
189         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190         writeb(0, &ch->ch_neo_uart->xoffchar2);
191
192         writeb(ier, &ch->ch_neo_uart->ier);
193 }
194
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
196 {
197         u8 ier, efr;
198         ier = readb(&ch->ch_neo_uart->ier);
199         efr = readb(&ch->ch_neo_uart->efr);
200
201         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
202
203         /* Turn off auto RTS flow control */
204         ier &= ~(UART_17158_IER_RTSDTR);
205         efr &= ~(UART_17158_EFR_RTSDTR);
206
207         /* Turn off auto Xoff flow control */
208         ier &= ~(UART_17158_IER_XOFF);
209         if (ch->ch_c_iflag & IXON)
210                 efr &= ~(UART_17158_EFR_IXOFF);
211         else
212                 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
213
214         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
215         writeb(0, &ch->ch_neo_uart->efr);
216
217         /* Turn on UART enhanced bits */
218         writeb(efr, &ch->ch_neo_uart->efr);
219
220         /* Turn on table D, with 8 char hi/low watermarks */
221         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
222
223         ch->ch_r_watermark = 0;
224
225         writeb(16, &ch->ch_neo_uart->tfifo);
226         ch->ch_t_tlevel = 16;
227
228         writeb(16, &ch->ch_neo_uart->rfifo);
229         ch->ch_r_tlevel = 16;
230
231         writeb(ier, &ch->ch_neo_uart->ier);
232 }
233
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
235 {
236         u8 ier, efr;
237         ier = readb(&ch->ch_neo_uart->ier);
238         efr = readb(&ch->ch_neo_uart->efr);
239
240         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
241
242         /* Turn off auto CTS flow control */
243         ier &= ~(UART_17158_IER_CTSDSR);
244         efr &= ~(UART_17158_EFR_CTSDSR);
245
246         /* Turn off auto Xon flow control */
247         if (ch->ch_c_iflag & IXOFF)
248                 efr &= ~(UART_17158_EFR_IXON);
249         else
250                 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
251
252         /* Why? Becuz Exar's spec says we have to zero it out before setting it */
253         writeb(0, &ch->ch_neo_uart->efr);
254
255         /* Turn on UART enhanced bits */
256         writeb(efr, &ch->ch_neo_uart->efr);
257
258         /* Turn on table D, with 8 char hi/low watermarks */
259         writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
260
261         ch->ch_r_watermark = 0;
262
263         writeb(16, &ch->ch_neo_uart->tfifo);
264         ch->ch_t_tlevel = 16;
265
266         writeb(16, &ch->ch_neo_uart->rfifo);
267         ch->ch_r_tlevel = 16;
268
269         writeb(ier, &ch->ch_neo_uart->ier);
270 }
271
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
273 {
274
275         /* if hardware flow control is set, then skip this whole thing */
276         if (ch->ch_c_cflag & CRTSCTS)
277                 return;
278
279         jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
280
281         /* Tell UART what start/stop chars it should be looking for */
282         writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283         writeb(0, &ch->ch_neo_uart->xonchar2);
284
285         writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286         writeb(0, &ch->ch_neo_uart->xoffchar2);
287 }
288
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
290 {
291         int qleft = 0;
292         u8 linestatus = 0;
293         u8 error_mask = 0;
294         int n = 0;
295         int total = 0;
296         u16 head;
297         u16 tail;
298
299         if (!ch)
300                 return;
301
302         /* cache head and tail of queue */
303         head = ch->ch_r_head & RQUEUEMASK;
304         tail = ch->ch_r_tail & RQUEUEMASK;
305
306         /* Get our cached LSR */
307         linestatus = ch->ch_cached_lsr;
308         ch->ch_cached_lsr = 0;
309
310         /* Store how much space we have left in the queue */
311         if ((qleft = tail - head - 1) < 0)
312                 qleft += RQUEUEMASK + 1;
313
314         /*
315          * If the UART is not in FIFO mode, force the FIFO copy to
316          * NOT be run, by setting total to 0.
317          *
318          * On the other hand, if the UART IS in FIFO mode, then ask
319          * the UART to give us an approximation of data it has RX'ed.
320          */
321         if (!(ch->ch_flags & CH_FIFO_ENABLED))
322                 total = 0;
323         else {
324                 total = readb(&ch->ch_neo_uart->rfifo);
325
326                 /*
327                  * EXAR chip bug - RX FIFO COUNT - Fudge factor.
328                  *
329                  * This resolves a problem/bug with the Exar chip that sometimes
330                  * returns a bogus value in the rfifo register.
331                  * The count can be any where from 0-3 bytes "off".
332                  * Bizarre, but true.
333                  */
334                 total -= 3;
335         }
336
337         /*
338          * Finally, bound the copy to make sure we don't overflow
339          * our own queue...
340          * The byte by byte copy loop below this loop this will
341          * deal with the queue overflow possibility.
342          */
343         total = min(total, qleft);
344
345         while (total > 0) {
346                 /*
347                  * Grab the linestatus register, we need to check
348                  * to see if there are any errors in the FIFO.
349                  */
350                 linestatus = readb(&ch->ch_neo_uart->lsr);
351
352                 /*
353                  * Break out if there is a FIFO error somewhere.
354                  * This will allow us to go byte by byte down below,
355                  * finding the exact location of the error.
356                  */
357                 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358                         break;
359
360                 /* Make sure we don't go over the end of our queue */
361                 n = min(((u32) total), (RQUEUESIZE - (u32) head));
362
363                 /*
364                  * Cut down n even further if needed, this is to fix
365                  * a problem with memcpy_fromio() with the Neo on the
366                  * IBM pSeries platform.
367                  * 15 bytes max appears to be the magic number.
368                  */
369                 n = min((u32) n, (u32) 12);
370
371                 /*
372                  * Since we are grabbing the linestatus register, which
373                  * will reset some bits after our read, we need to ensure
374                  * we don't miss our TX FIFO emptys.
375                  */
376                 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
378
379                 linestatus = 0;
380
381                 /* Copy data from uart to the queue */
382                 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
383                 /*
384                  * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
385                  * that all the data currently in the FIFO is free of
386                  * breaks and parity/frame/orun errors.
387                  */
388                 memset(ch->ch_equeue + head, 0, n);
389
390                 /* Add to and flip head if needed */
391                 head = (head + n) & RQUEUEMASK;
392                 total -= n;
393                 qleft -= n;
394                 ch->ch_rxcount += n;
395         }
396
397         /*
398          * Create a mask to determine whether we should
399          * insert the character (if any) into our queue.
400          */
401         if (ch->ch_c_iflag & IGNBRK)
402                 error_mask |= UART_LSR_BI;
403
404         /*
405          * Now cleanup any leftover bytes still in the UART.
406          * Also deal with any possible queue overflow here as well.
407          */
408         while (1) {
409
410                 /*
411                  * Its possible we have a linestatus from the loop above
412                  * this, so we "OR" on any extra bits.
413                  */
414                 linestatus |= readb(&ch->ch_neo_uart->lsr);
415
416                 /*
417                  * If the chip tells us there is no more data pending to
418                  * be read, we can then leave.
419                  * But before we do, cache the linestatus, just in case.
420                  */
421                 if (!(linestatus & UART_LSR_DR)) {
422                         ch->ch_cached_lsr = linestatus;
423                         break;
424                 }
425
426                 /* No need to store this bit */
427                 linestatus &= ~UART_LSR_DR;
428
429                 /*
430                  * Since we are grabbing the linestatus register, which
431                  * will reset some bits after our read, we need to ensure
432                  * we don't miss our TX FIFO emptys.
433                  */
434                 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435                         linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
437                 }
438
439                 /*
440                  * Discard character if we are ignoring the error mask.
441                  */
442                 if (linestatus & error_mask) {
443                         u8 discard;
444                         linestatus = 0;
445                         memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446                         continue;
447                 }
448
449                 /*
450                  * If our queue is full, we have no choice but to drop some data.
451                  * The assumption is that HWFLOW or SWFLOW should have stopped
452                  * things way way before we got to this point.
453                  *
454                  * I decided that I wanted to ditch the oldest data first,
455                  * I hope thats okay with everyone? Yes? Good.
456                  */
457                 while (qleft < 1) {
458                         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459                                 "Queue full, dropping DATA:%x LSR:%x\n",
460                                 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
461
462                         ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463                         ch->ch_err_overrun++;
464                         qleft++;
465                 }
466
467                 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468                 ch->ch_equeue[head] = (u8) linestatus;
469
470                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471                                 "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
472
473                 /* Ditch any remaining linestatus value. */
474                 linestatus = 0;
475
476                 /* Add to and flip head if needed */
477                 head = (head + 1) & RQUEUEMASK;
478
479                 qleft--;
480                 ch->ch_rxcount++;
481         }
482
483         /*
484          * Write new final heads to channel structure.
485          */
486         ch->ch_r_head = head & RQUEUEMASK;
487         ch->ch_e_head = head & EQUEUEMASK;
488         jsm_input(ch);
489 }
490
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
492 {
493         u16 head;
494         u16 tail;
495         int n;
496         int s;
497         int qlen;
498         u32 len_written = 0;
499
500         if (!ch)
501                 return;
502
503         /* No data to write to the UART */
504         if (ch->ch_w_tail == ch->ch_w_head)
505                 return;
506
507         /* If port is "stopped", don't send any data to the UART */
508         if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
509                 return;
510         /*
511          * If FIFOs are disabled. Send data directly to txrx register
512          */
513         if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
514                 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
515
516                 ch->ch_cached_lsr |= lsrbits;
517                 if (ch->ch_cached_lsr & UART_LSR_THRE) {
518                         ch->ch_cached_lsr &= ~(UART_LSR_THRE);
519
520                         writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
521                         jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
522                                         "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
523                         ch->ch_w_tail++;
524                         ch->ch_w_tail &= WQUEUEMASK;
525                         ch->ch_txcount++;
526                 }
527                 return;
528         }
529
530         /*
531          * We have to do it this way, because of the EXAR TXFIFO count bug.
532          */
533         if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
534                 return;
535
536         len_written = 0;
537         n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
538
539         /* cache head and tail of queue */
540         head = ch->ch_w_head & WQUEUEMASK;
541         tail = ch->ch_w_tail & WQUEUEMASK;
542         qlen = (head - tail) & WQUEUEMASK;
543
544         /* Find minimum of the FIFO space, versus queue length */
545         n = min(n, qlen);
546
547         while (n > 0) {
548
549                 s = ((head >= tail) ? head : WQUEUESIZE) - tail;
550                 s = min(s, n);
551
552                 if (s <= 0)
553                         break;
554
555                 memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
556                 /* Add and flip queue if needed */
557                 tail = (tail + s) & WQUEUEMASK;
558                 n -= s;
559                 ch->ch_txcount += s;
560                 len_written += s;
561         }
562
563         /* Update the final tail */
564         ch->ch_w_tail = tail & WQUEUEMASK;
565
566         if (len_written >= ch->ch_t_tlevel)
567                 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
568
569         if (!jsm_tty_write(&ch->uart_port))
570                 uart_write_wakeup(&ch->uart_port);
571 }
572
573 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
574 {
575         u8 msignals = signals;
576
577         jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
578                         "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
579
580         if (!ch)
581                 return;
582
583         /* Scrub off lower bits. They signify delta's, which I don't care about */
584         /* Keep DDCD and DDSR though */
585         msignals &= 0xf8;
586
587         if (msignals & UART_MSR_DDCD)
588                 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
589         if (msignals & UART_MSR_DDSR)
590                 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
591         if (msignals & UART_MSR_DCD)
592                 ch->ch_mistat |= UART_MSR_DCD;
593         else
594                 ch->ch_mistat &= ~UART_MSR_DCD;
595
596         if (msignals & UART_MSR_DSR)
597                 ch->ch_mistat |= UART_MSR_DSR;
598         else
599                 ch->ch_mistat &= ~UART_MSR_DSR;
600
601         if (msignals & UART_MSR_RI)
602                 ch->ch_mistat |= UART_MSR_RI;
603         else
604                 ch->ch_mistat &= ~UART_MSR_RI;
605
606         if (msignals & UART_MSR_CTS)
607                 ch->ch_mistat |= UART_MSR_CTS;
608         else
609                 ch->ch_mistat &= ~UART_MSR_CTS;
610
611         jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
612                         "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
613                 ch->ch_portnum,
614                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
615                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
616                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
617                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
618                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
619                 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
620 }
621
622 /* Make the UART raise any of the output signals we want up */
623 static void neo_assert_modem_signals(struct jsm_channel *ch)
624 {
625         u8 out;
626
627         if (!ch)
628                 return;
629
630         out = ch->ch_mostat;
631
632         writeb(out, &ch->ch_neo_uart->mcr);
633
634         /* flush write operation */
635         neo_pci_posting_flush(ch->ch_bd);
636 }
637
638 /*
639  * Flush the WRITE FIFO on the Neo.
640  *
641  * NOTE: Channel lock MUST be held before calling this function!
642  */
643 static void neo_flush_uart_write(struct jsm_channel *ch)
644 {
645         u8 tmp = 0;
646         int i = 0;
647
648         if (!ch)
649                 return;
650
651         writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
652
653         for (i = 0; i < 10; i++) {
654
655                 /* Check to see if the UART feels it completely flushed the FIFO. */
656                 tmp = readb(&ch->ch_neo_uart->isr_fcr);
657                 if (tmp & 4) {
658                         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
659                                         "Still flushing TX UART... i: %d\n", i);
660                         udelay(10);
661                 }
662                 else
663                         break;
664         }
665
666         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
667 }
668
669
670 /*
671  * Flush the READ FIFO on the Neo.
672  *
673  * NOTE: Channel lock MUST be held before calling this function!
674  */
675 static void neo_flush_uart_read(struct jsm_channel *ch)
676 {
677         u8 tmp = 0;
678         int i = 0;
679
680         if (!ch)
681                 return;
682
683         writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
684
685         for (i = 0; i < 10; i++) {
686
687                 /* Check to see if the UART feels it completely flushed the FIFO. */
688                 tmp = readb(&ch->ch_neo_uart->isr_fcr);
689                 if (tmp & 2) {
690                         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
691                                         "Still flushing RX UART... i: %d\n", i);
692                         udelay(10);
693                 }
694                 else
695                         break;
696         }
697 }
698
699 /*
700  * No locks are assumed to be held when calling this function.
701  */
702 static void neo_clear_break(struct jsm_channel *ch, int force)
703 {
704         unsigned long lock_flags;
705
706         spin_lock_irqsave(&ch->ch_lock, lock_flags);
707
708         /* Turn break off, and unset some variables */
709         if (ch->ch_flags & CH_BREAK_SENDING) {
710                 u8 temp = readb(&ch->ch_neo_uart->lcr);
711                 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
712
713                 ch->ch_flags &= ~(CH_BREAK_SENDING);
714                 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
715                                 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
716
717                 /* flush write operation */
718                 neo_pci_posting_flush(ch->ch_bd);
719         }
720         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
721 }
722
723 /*
724  * Parse the ISR register.
725  */
726 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
727 {
728         struct jsm_channel *ch;
729         u8 isr;
730         u8 cause;
731         unsigned long lock_flags;
732
733         if (!brd)
734                 return;
735
736         if (port > brd->maxports)
737                 return;
738
739         ch = brd->channels[port];
740         if (!ch)
741                 return;
742
743         /* Here we try to figure out what caused the interrupt to happen */
744         while (1) {
745
746                 isr = readb(&ch->ch_neo_uart->isr_fcr);
747
748                 /* Bail if no pending interrupt */
749                 if (isr & UART_IIR_NO_INT)
750                         break;
751
752                 /*
753                  * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
754                  */
755                 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
756
757                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
758                                 "%s:%d isr: %x\n", __FILE__, __LINE__, isr);
759
760                 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
761                         /* Read data from uart -> queue */
762                         neo_copy_data_from_uart_to_queue(ch);
763
764                         /* Call our tty layer to enforce queue flow control if needed. */
765                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
766                         jsm_check_queue_flow_control(ch);
767                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
768                 }
769
770                 if (isr & UART_IIR_THRI) {
771                         /* Transfer data (if any) from Write Queue -> UART. */
772                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
773                         ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
774                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
775                         neo_copy_data_from_queue_to_uart(ch);
776                 }
777
778                 if (isr & UART_17158_IIR_XONXOFF) {
779                         cause = readb(&ch->ch_neo_uart->xoffchar1);
780
781                         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
782                                         "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
783
784                         /*
785                          * Since the UART detected either an XON or
786                          * XOFF match, we need to figure out which
787                          * one it was, so we can suspend or resume data flow.
788                          */
789                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
790                         if (cause == UART_17158_XON_DETECT) {
791                                 /* Is output stopped right now, if so, resume it */
792                                 if (brd->channels[port]->ch_flags & CH_STOP) {
793                                         ch->ch_flags &= ~(CH_STOP);
794                                 }
795                                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
796                                                 "Port %d. XON detected in incoming data\n", port);
797                         }
798                         else if (cause == UART_17158_XOFF_DETECT) {
799                                 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
800                                         ch->ch_flags |= CH_STOP;
801                                         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
802                                                         "Setting CH_STOP\n");
803                                 }
804                                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
805                                                 "Port: %d. XOFF detected in incoming data\n", port);
806                         }
807                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
808                 }
809
810                 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
811                         /*
812                          * If we get here, this means the hardware is doing auto flow control.
813                          * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
814                          */
815                         cause = readb(&ch->ch_neo_uart->mcr);
816
817                         /* Which pin is doing auto flow? RTS or DTR? */
818                         spin_lock_irqsave(&ch->ch_lock, lock_flags);
819                         if ((cause & 0x4) == 0) {
820                                 if (cause & UART_MCR_RTS)
821                                         ch->ch_mostat |= UART_MCR_RTS;
822                                 else
823                                         ch->ch_mostat &= ~(UART_MCR_RTS);
824                         } else {
825                                 if (cause & UART_MCR_DTR)
826                                         ch->ch_mostat |= UART_MCR_DTR;
827                                 else
828                                         ch->ch_mostat &= ~(UART_MCR_DTR);
829                         }
830                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
831                 }
832
833                 /* Parse any modem signal changes */
834                 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
835                                 "MOD_STAT: sending to parse_modem_sigs\n");
836                 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
837         }
838 }
839
840 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
841 {
842         struct jsm_channel *ch;
843         int linestatus;
844         unsigned long lock_flags;
845
846         if (!brd)
847                 return;
848
849         if (port > brd->maxports)
850                 return;
851
852         ch = brd->channels[port];
853         if (!ch)
854                 return;
855
856         linestatus = readb(&ch->ch_neo_uart->lsr);
857
858         jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
859                         "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
860
861         ch->ch_cached_lsr |= linestatus;
862
863         if (ch->ch_cached_lsr & UART_LSR_DR) {
864                 /* Read data from uart -> queue */
865                 neo_copy_data_from_uart_to_queue(ch);
866                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
867                 jsm_check_queue_flow_control(ch);
868                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
869         }
870
871         /*
872          * This is a special flag. It indicates that at least 1
873          * RX error (parity, framing, or break) has happened.
874          * Mark this in our struct, which will tell me that I have
875          *to do the special RX+LSR read for this FIFO load.
876          */
877         if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
878                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
879                         "%s:%d Port: %d Got an RX error, need to parse LSR\n",
880                         __FILE__, __LINE__, port);
881
882         /*
883          * The next 3 tests should *NOT* happen, as the above test
884          * should encapsulate all 3... At least, thats what Exar says.
885          */
886
887         if (linestatus & UART_LSR_PE) {
888                 ch->ch_err_parity++;
889                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
890                         "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
891         }
892
893         if (linestatus & UART_LSR_FE) {
894                 ch->ch_err_frame++;
895                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
896                         "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
897         }
898
899         if (linestatus & UART_LSR_BI) {
900                 ch->ch_err_break++;
901                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
902                         "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
903         }
904
905         if (linestatus & UART_LSR_OE) {
906                 /*
907                  * Rx Oruns. Exar says that an orun will NOT corrupt
908                  * the FIFO. It will just replace the holding register
909                  * with this new data byte. So basically just ignore this.
910                  * Probably we should eventually have an orun stat in our driver...
911                  */
912                 ch->ch_err_overrun++;
913                 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
914                         "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
915         }
916
917         if (linestatus & UART_LSR_THRE) {
918                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
919                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
920                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
921
922                 /* Transfer data (if any) from Write Queue -> UART. */
923                 neo_copy_data_from_queue_to_uart(ch);
924         }
925         else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
926                 spin_lock_irqsave(&ch->ch_lock, lock_flags);
927                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
928                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
929
930                 /* Transfer data (if any) from Write Queue -> UART. */
931                 neo_copy_data_from_queue_to_uart(ch);
932         }
933 }
934
935 /*
936  * neo_param()
937  * Send any/all changes to the line to the UART.
938  */
939 static void neo_param(struct jsm_channel *ch)
940 {
941         u8 lcr = 0;
942         u8 uart_lcr = 0;
943         u8 ier = 0;
944         u32 baud = 9600;
945         int quot = 0;
946         struct jsm_board *bd;
947
948         bd = ch->ch_bd;
949         if (!bd)
950                 return;
951
952         /*
953          * If baud rate is zero, flush queues, and set mval to drop DTR.
954          */
955         if ((ch->ch_c_cflag & (CBAUD)) == 0) {
956                 ch->ch_r_head = ch->ch_r_tail = 0;
957                 ch->ch_e_head = ch->ch_e_tail = 0;
958                 ch->ch_w_head = ch->ch_w_tail = 0;
959
960                 neo_flush_uart_write(ch);
961                 neo_flush_uart_read(ch);
962
963                 ch->ch_flags |= (CH_BAUD0);
964                 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
965                 neo_assert_modem_signals(ch);
966                 ch->ch_old_baud = 0;
967                 return;
968
969         } else if (ch->ch_custom_speed) {
970                         baud = ch->ch_custom_speed;
971                         if (ch->ch_flags & CH_BAUD0)
972                                 ch->ch_flags &= ~(CH_BAUD0);
973         } else {
974                 int i;
975                 unsigned int cflag;
976                 static struct {
977                         unsigned int rate;
978                         unsigned int cflag;
979                 } baud_rates[] = {
980                         { 921600, B921600 },
981                         { 460800, B460800 },
982                         { 230400, B230400 },
983                         { 115200, B115200 },
984                         {  57600, B57600  },
985                         {  38400, B38400  },
986                         {  19200, B19200  },
987                         {   9600, B9600   },
988                         {   4800, B4800   },
989                         {   2400, B2400   },
990                         {   1200, B1200   },
991                         {    600, B600    },
992                         {    300, B300    },
993                         {    200, B200    },
994                         {    150, B150    },
995                         {    134, B134    },
996                         {    110, B110    },
997                         {     75, B75     },
998                         {     50, B50     },
999                 };
1000
1001                 cflag = C_BAUD(ch->uart_port.info->port.tty);
1002                 baud = 9600;
1003                 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
1004                         if (baud_rates[i].cflag == cflag) {
1005                                 baud = baud_rates[i].rate;
1006                                 break;
1007                         }
1008                 }
1009
1010                 if (ch->ch_flags & CH_BAUD0)
1011                         ch->ch_flags &= ~(CH_BAUD0);
1012         }
1013
1014         if (ch->ch_c_cflag & PARENB)
1015                 lcr |= UART_LCR_PARITY;
1016
1017         if (!(ch->ch_c_cflag & PARODD))
1018                 lcr |= UART_LCR_EPAR;
1019
1020         /*
1021          * Not all platforms support mark/space parity,
1022          * so this will hide behind an ifdef.
1023          */
1024 #ifdef CMSPAR
1025         if (ch->ch_c_cflag & CMSPAR)
1026                 lcr |= UART_LCR_SPAR;
1027 #endif
1028
1029         if (ch->ch_c_cflag & CSTOPB)
1030                 lcr |= UART_LCR_STOP;
1031
1032         switch (ch->ch_c_cflag & CSIZE) {
1033                 case CS5:
1034                         lcr |= UART_LCR_WLEN5;
1035                         break;
1036                 case CS6:
1037                         lcr |= UART_LCR_WLEN6;
1038                         break;
1039                 case CS7:
1040                         lcr |= UART_LCR_WLEN7;
1041                         break;
1042                 case CS8:
1043                 default:
1044                         lcr |= UART_LCR_WLEN8;
1045                 break;
1046         }
1047
1048         ier = readb(&ch->ch_neo_uart->ier);
1049         uart_lcr = readb(&ch->ch_neo_uart->lcr);
1050
1051         if (baud == 0)
1052                 baud = 9600;
1053
1054         quot = ch->ch_bd->bd_dividend / baud;
1055
1056         if (quot != 0) {
1057                 ch->ch_old_baud = baud;
1058                 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1059                 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1060                 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1061                 writeb(lcr, &ch->ch_neo_uart->lcr);
1062         }
1063
1064         if (uart_lcr != lcr)
1065                 writeb(lcr, &ch->ch_neo_uart->lcr);
1066
1067         if (ch->ch_c_cflag & CREAD)
1068                 ier |= (UART_IER_RDI | UART_IER_RLSI);
1069
1070         ier |= (UART_IER_THRI | UART_IER_MSI);
1071
1072         writeb(ier, &ch->ch_neo_uart->ier);
1073
1074         /* Set new start/stop chars */
1075         neo_set_new_start_stop_chars(ch);
1076
1077         if (ch->ch_c_cflag & CRTSCTS)
1078                 neo_set_cts_flow_control(ch);
1079         else if (ch->ch_c_iflag & IXON) {
1080                 /* If start/stop is set to disable, then we should disable flow control */
1081                 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1082                         neo_set_no_output_flow_control(ch);
1083                 else
1084                         neo_set_ixon_flow_control(ch);
1085         }
1086         else
1087                 neo_set_no_output_flow_control(ch);
1088
1089         if (ch->ch_c_cflag & CRTSCTS)
1090                 neo_set_rts_flow_control(ch);
1091         else if (ch->ch_c_iflag & IXOFF) {
1092                 /* If start/stop is set to disable, then we should disable flow control */
1093                 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1094                         neo_set_no_input_flow_control(ch);
1095                 else
1096                         neo_set_ixoff_flow_control(ch);
1097         }
1098         else
1099                 neo_set_no_input_flow_control(ch);
1100         /*
1101          * Adjust the RX FIFO Trigger level if baud is less than 9600.
1102          * Not exactly elegant, but this is needed because of the Exar chip's
1103          * delay on firing off the RX FIFO interrupt on slower baud rates.
1104          */
1105         if (baud < 9600) {
1106                 writeb(1, &ch->ch_neo_uart->rfifo);
1107                 ch->ch_r_tlevel = 1;
1108         }
1109
1110         neo_assert_modem_signals(ch);
1111
1112         /* Get current status of the modem signals now */
1113         neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1114         return;
1115 }
1116
1117 /*
1118  * jsm_neo_intr()
1119  *
1120  * Neo specific interrupt handler.
1121  */
1122 static irqreturn_t neo_intr(int irq, void *voidbrd)
1123 {
1124         struct jsm_board *brd = voidbrd;
1125         struct jsm_channel *ch;
1126         int port = 0;
1127         int type = 0;
1128         int current_port;
1129         u32 tmp;
1130         u32 uart_poll;
1131         unsigned long lock_flags;
1132         unsigned long lock_flags2;
1133         int outofloop_count = 0;
1134
1135         brd->intr_count++;
1136
1137         /* Lock out the slow poller from running on this board. */
1138         spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1139
1140         /*
1141          * Read in "extended" IRQ information from the 32bit Neo register.
1142          * Bits 0-7: What port triggered the interrupt.
1143          * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1144          */
1145         uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1146
1147         jsm_printk(INTR, INFO, &brd->pci_dev,
1148                 "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1149
1150         if (!uart_poll) {
1151                 jsm_printk(INTR, INFO, &brd->pci_dev,
1152                         "Kernel interrupted to me, but no pending interrupts...\n");
1153                 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1154                 return IRQ_NONE;
1155         }
1156
1157         /* At this point, we have at least SOMETHING to service, dig further... */
1158
1159         current_port = 0;
1160
1161         /* Loop on each port */
1162         while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1163
1164                 tmp = uart_poll;
1165                 outofloop_count++;
1166
1167                 /* Check current port to see if it has interrupt pending */
1168                 if ((tmp & jsm_offset_table[current_port]) != 0) {
1169                         port = current_port;
1170                         type = tmp >> (8 + (port * 3));
1171                         type &= 0x7;
1172                 } else {
1173                         current_port++;
1174                         continue;
1175                 }
1176
1177                 jsm_printk(INTR, INFO, &brd->pci_dev,
1178                 "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1179
1180                 /* Remove this port + type from uart_poll */
1181                 uart_poll &= ~(jsm_offset_table[port]);
1182
1183                 if (!type) {
1184                         /* If no type, just ignore it, and move onto next port */
1185                         jsm_printk(INTR, ERR, &brd->pci_dev,
1186                                 "Interrupt with no type! port: %d\n", port);
1187                         continue;
1188                 }
1189
1190                 /* Switch on type of interrupt we have */
1191                 switch (type) {
1192
1193                 case UART_17158_RXRDY_TIMEOUT:
1194                         /*
1195                          * RXRDY Time-out is cleared by reading data in the
1196                         * RX FIFO until it falls below the trigger level.
1197                          */
1198
1199                         /* Verify the port is in range. */
1200                         if (port > brd->nasync)
1201                                 continue;
1202
1203                         ch = brd->channels[port];
1204                         neo_copy_data_from_uart_to_queue(ch);
1205
1206                         /* Call our tty layer to enforce queue flow control if needed. */
1207                         spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1208                         jsm_check_queue_flow_control(ch);
1209                         spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1210
1211                         continue;
1212
1213                 case UART_17158_RX_LINE_STATUS:
1214                         /*
1215                          * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1216                          */
1217                         neo_parse_lsr(brd, port);
1218                         continue;
1219
1220                 case UART_17158_TXRDY:
1221                         /*
1222                          * TXRDY interrupt clears after reading ISR register for the UART channel.
1223                          */
1224
1225                         /*
1226                          * Yes, this is odd...
1227                          * Why would I check EVERY possibility of type of
1228                          * interrupt, when we know its TXRDY???
1229                          * Becuz for some reason, even tho we got triggered for TXRDY,
1230                          * it seems to be occassionally wrong. Instead of TX, which
1231                          * it should be, I was getting things like RXDY too. Weird.
1232                          */
1233                         neo_parse_isr(brd, port);
1234                         continue;
1235
1236                 case UART_17158_MSR:
1237                         /*
1238                          * MSR or flow control was seen.
1239                          */
1240                         neo_parse_isr(brd, port);
1241                         continue;
1242
1243                 default:
1244                         /*
1245                          * The UART triggered us with a bogus interrupt type.
1246                          * It appears the Exar chip, when REALLY bogged down, will throw
1247                          * these once and awhile.
1248                          * Its harmless, just ignore it and move on.
1249                          */
1250                         jsm_printk(INTR, ERR, &brd->pci_dev,
1251                                 "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1252                         continue;
1253                 }
1254         }
1255
1256         spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1257
1258         jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1259         return IRQ_HANDLED;
1260 }
1261
1262 /*
1263  * Neo specific way of turning off the receiver.
1264  * Used as a way to enforce queue flow control when in
1265  * hardware flow control mode.
1266  */
1267 static void neo_disable_receiver(struct jsm_channel *ch)
1268 {
1269         u8 tmp = readb(&ch->ch_neo_uart->ier);
1270         tmp &= ~(UART_IER_RDI);
1271         writeb(tmp, &ch->ch_neo_uart->ier);
1272
1273         /* flush write operation */
1274         neo_pci_posting_flush(ch->ch_bd);
1275 }
1276
1277
1278 /*
1279  * Neo specific way of turning on the receiver.
1280  * Used as a way to un-enforce queue flow control when in
1281  * hardware flow control mode.
1282  */
1283 static void neo_enable_receiver(struct jsm_channel *ch)
1284 {
1285         u8 tmp = readb(&ch->ch_neo_uart->ier);
1286         tmp |= (UART_IER_RDI);
1287         writeb(tmp, &ch->ch_neo_uart->ier);
1288
1289         /* flush write operation */
1290         neo_pci_posting_flush(ch->ch_bd);
1291 }
1292
1293 static void neo_send_start_character(struct jsm_channel *ch)
1294 {
1295         if (!ch)
1296                 return;
1297
1298         if (ch->ch_startc != __DISABLED_CHAR) {
1299                 ch->ch_xon_sends++;
1300                 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1301
1302                 /* flush write operation */
1303                 neo_pci_posting_flush(ch->ch_bd);
1304         }
1305 }
1306
1307 static void neo_send_stop_character(struct jsm_channel *ch)
1308 {
1309         if (!ch)
1310                 return;
1311
1312         if (ch->ch_stopc != __DISABLED_CHAR) {
1313                 ch->ch_xoff_sends++;
1314                 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1315
1316                 /* flush write operation */
1317                 neo_pci_posting_flush(ch->ch_bd);
1318         }
1319 }
1320
1321 /*
1322  * neo_uart_init
1323  */
1324 static void neo_uart_init(struct jsm_channel *ch)
1325 {
1326         writeb(0, &ch->ch_neo_uart->ier);
1327         writeb(0, &ch->ch_neo_uart->efr);
1328         writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1329
1330         /* Clear out UART and FIFO */
1331         readb(&ch->ch_neo_uart->txrx);
1332         writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1333         readb(&ch->ch_neo_uart->lsr);
1334         readb(&ch->ch_neo_uart->msr);
1335
1336         ch->ch_flags |= CH_FIFO_ENABLED;
1337
1338         /* Assert any signals we want up */
1339         writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1340 }
1341
1342 /*
1343  * Make the UART completely turn off.
1344  */
1345 static void neo_uart_off(struct jsm_channel *ch)
1346 {
1347         /* Turn off UART enhanced bits */
1348         writeb(0, &ch->ch_neo_uart->efr);
1349
1350         /* Stop all interrupts from occurring. */
1351         writeb(0, &ch->ch_neo_uart->ier);
1352 }
1353
1354 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1355 {
1356         u8 left = 0;
1357         u8 lsr = readb(&ch->ch_neo_uart->lsr);
1358
1359         /* We must cache the LSR as some of the bits get reset once read... */
1360         ch->ch_cached_lsr |= lsr;
1361
1362         /* Determine whether the Transmitter is empty or not */
1363         if (!(lsr & UART_LSR_TEMT))
1364                 left = 1;
1365         else {
1366                 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1367                 left = 0;
1368         }
1369
1370         return left;
1371 }
1372
1373 /* Channel lock MUST be held by the calling function! */
1374 static void neo_send_break(struct jsm_channel *ch)
1375 {
1376         /*
1377          * Set the time we should stop sending the break.
1378          * If we are already sending a break, toss away the existing
1379          * time to stop, and use this new value instead.
1380          */
1381
1382         /* Tell the UART to start sending the break */
1383         if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1384                 u8 temp = readb(&ch->ch_neo_uart->lcr);
1385                 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1386                 ch->ch_flags |= (CH_BREAK_SENDING);
1387
1388                 /* flush write operation */
1389                 neo_pci_posting_flush(ch->ch_bd);
1390         }
1391 }
1392
1393 /*
1394  * neo_send_immediate_char.
1395  *
1396  * Sends a specific character as soon as possible to the UART,
1397  * jumping over any bytes that might be in the write queue.
1398  *
1399  * The channel lock MUST be held by the calling function.
1400  */
1401 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1402 {
1403         if (!ch)
1404                 return;
1405
1406         writeb(c, &ch->ch_neo_uart->txrx);
1407
1408         /* flush write operation */
1409         neo_pci_posting_flush(ch->ch_bd);
1410 }
1411
1412 struct board_ops jsm_neo_ops = {
1413         .intr                           = neo_intr,
1414         .uart_init                      = neo_uart_init,
1415         .uart_off                       = neo_uart_off,
1416         .param                          = neo_param,
1417         .assert_modem_signals           = neo_assert_modem_signals,
1418         .flush_uart_write               = neo_flush_uart_write,
1419         .flush_uart_read                = neo_flush_uart_read,
1420         .disable_receiver               = neo_disable_receiver,
1421         .enable_receiver                = neo_enable_receiver,
1422         .send_break                     = neo_send_break,
1423         .clear_break                    = neo_clear_break,
1424         .send_start_character           = neo_send_start_character,
1425         .send_stop_character            = neo_send_stop_character,
1426         .copy_data_from_queue_to_uart   = neo_copy_data_from_queue_to_uart,
1427         .get_uart_bytes_left            = neo_get_uart_bytes_left,
1428         .send_immediate_char            = neo_send_immediate_char
1429 };