2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
162 #define ace_sync_irq(irq) synchronize_irq(irq)
164 #ifndef offset_in_page
165 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
168 #define ACE_MAX_MOD_PARMS 8
169 #define BOARD_IDX_STATIC 0
170 #define BOARD_IDX_OVERFLOW -1
172 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
173 defined(NETIF_F_HW_VLAN_RX)
174 #define ACENIC_DO_VLAN 1
175 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
177 #define ACENIC_DO_VLAN 0
178 #define ACE_RCB_VLAN_FLAG 0
184 * These must be defined before the firmware is included.
186 #define MAX_TEXT_LEN 96*1024
187 #define MAX_RODATA_LEN 8*1024
188 #define MAX_DATA_LEN 2*1024
190 #ifndef tigon2FwReleaseLocal
191 #define tigon2FwReleaseLocal 0
195 * This driver currently supports Tigon I and Tigon II based cards
196 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
197 * GA620. The driver should also work on the SGI, DEC and Farallon
198 * versions of the card, however I have not been able to test that
201 * This card is really neat, it supports receive hardware checksumming
202 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
203 * firmware. Also the programming interface is quite neat, except for
204 * the parts dealing with the i2c eeprom on the card ;-)
206 * Using jumbo frames:
208 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
209 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
210 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
211 * interface number and <MTU> being the MTU value.
215 * When compiled as a loadable module, the driver allows for a number
216 * of module parameters to be specified. The driver supports the
217 * following module parameters:
219 * trace=<val> - Firmware trace level. This requires special traced
220 * firmware to replace the firmware supplied with
221 * the driver - for debugging purposes only.
223 * link=<val> - Link state. Normally you want to use the default link
224 * parameters set by the driver. This can be used to
225 * override these in case your switch doesn't negotiate
226 * the link properly. Valid values are:
227 * 0x0001 - Force half duplex link.
228 * 0x0002 - Do not negotiate line speed with the other end.
229 * 0x0010 - 10Mbit/sec link.
230 * 0x0020 - 100Mbit/sec link.
231 * 0x0040 - 1000Mbit/sec link.
232 * 0x0100 - Do not negotiate flow control.
233 * 0x0200 - Enable RX flow control Y
234 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
235 * Default value is 0x0270, ie. enable link+flow
236 * control negotiation. Negotiating the highest
237 * possible link speed with RX flow control enabled.
239 * When disabling link speed negotiation, only one link
240 * speed is allowed to be specified!
242 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
243 * to wait for more packets to arive before
244 * interrupting the host, from the time the first
247 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
248 * to wait for more packets to arive in the transmit ring,
249 * before interrupting the host, after transmitting the
250 * first packet in the ring.
252 * max_tx_desc=<val> - maximum number of transmit descriptors
253 * (packets) transmitted before interrupting the host.
255 * max_rx_desc=<val> - maximum number of receive descriptors
256 * (packets) received before interrupting the host.
258 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
259 * increments of the NIC's on board memory to be used for
260 * transmit and receive buffers. For the 1MB NIC app. 800KB
261 * is available, on the 1/2MB NIC app. 300KB is available.
262 * 68KB will always be available as a minimum for both
263 * directions. The default value is a 50/50 split.
264 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
265 * operations, default (1) is to always disable this as
266 * that is what Alteon does on NT. I have not been able
267 * to measure any real performance differences with
268 * this on my systems. Set <val>=0 if you want to
269 * enable these operations.
271 * If you use more than one NIC, specify the parameters for the
272 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
273 * run tracing on NIC #2 but not on NIC #1 and #3.
277 * - Proper multicast support.
278 * - NIC dump support.
279 * - More tuning parameters.
281 * The mini ring is not used under Linux and I am not sure it makes sense
282 * to actually use it.
284 * New interrupt handler strategy:
286 * The old interrupt handler worked using the traditional method of
287 * replacing an skbuff with a new one when a packet arrives. However
288 * the rx rings do not need to contain a static number of buffer
289 * descriptors, thus it makes sense to move the memory allocation out
290 * of the main interrupt handler and do it in a bottom half handler
291 * and only allocate new buffers when the number of buffers in the
292 * ring is below a certain threshold. In order to avoid starving the
293 * NIC under heavy load it is however necessary to force allocation
294 * when hitting a minimum threshold. The strategy for alloction is as
297 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
298 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
299 * the buffers in the interrupt handler
300 * RX_RING_THRES - maximum number of buffers in the rx ring
301 * RX_MINI_THRES - maximum number of buffers in the mini ring
302 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
304 * One advantagous side effect of this allocation approach is that the
305 * entire rx processing can be done without holding any spin lock
306 * since the rx rings and registers are totally independent of the tx
307 * ring and its registers. This of course includes the kmalloc's of
308 * new skb's. Thus start_xmit can run in parallel with rx processing
309 * and the memory allocation on SMP systems.
311 * Note that running the skb reallocation in a bottom half opens up
312 * another can of races which needs to be handled properly. In
313 * particular it can happen that the interrupt handler tries to run
314 * the reallocation while the bottom half is either running on another
315 * CPU or was interrupted on the same CPU. To get around this the
316 * driver uses bitops to prevent the reallocation routines from being
319 * TX handling can also be done without holding any spin lock, wheee
320 * this is fun! since tx_ret_csm is only written to by the interrupt
321 * handler. The case to be aware of is when shutting down the device
322 * and cleaning up where it is necessary to make sure that
323 * start_xmit() is not running while this is happening. Well DaveM
324 * informs me that this case is already protected against ... bye bye
325 * Mr. Spin Lock, it was nice to know you.
327 * TX interrupts are now partly disabled so the NIC will only generate
328 * TX interrupts for the number of coal ticks, not for the number of
329 * TX packets in the queue. This should reduce the number of TX only,
330 * ie. when no RX processing is done, interrupts seen.
334 * Threshold values for RX buffer allocation - the low water marks for
335 * when to start refilling the rings are set to 75% of the ring
336 * sizes. It seems to make sense to refill the rings entirely from the
337 * intrrupt handler once it gets below the panic threshold, that way
338 * we don't risk that the refilling is moved to another CPU when the
339 * one running the interrupt handler just got the slab code hot in its
342 #define RX_RING_SIZE 72
343 #define RX_MINI_SIZE 64
344 #define RX_JUMBO_SIZE 48
346 #define RX_PANIC_STD_THRES 16
347 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
348 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
349 #define RX_PANIC_MINI_THRES 12
350 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
351 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
352 #define RX_PANIC_JUMBO_THRES 6
353 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
354 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
358 * Size of the mini ring entries, basically these just should be big
359 * enough to take TCP ACKs
361 #define ACE_MINI_SIZE 100
363 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
364 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
365 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
368 * There seems to be a magic difference in the effect between 995 and 996
369 * but little difference between 900 and 995 ... no idea why.
371 * There is now a default set of tuning parameters which is set, depending
372 * on whether or not the user enables Jumbo frames. It's assumed that if
373 * Jumbo frames are enabled, the user wants optimal tuning for that case.
375 #define DEF_TX_COAL 400 /* 996 */
376 #define DEF_TX_MAX_DESC 60 /* was 40 */
377 #define DEF_RX_COAL 120 /* 1000 */
378 #define DEF_RX_MAX_DESC 25
379 #define DEF_TX_RATIO 21 /* 24 */
381 #define DEF_JUMBO_TX_COAL 20
382 #define DEF_JUMBO_TX_MAX_DESC 60
383 #define DEF_JUMBO_RX_COAL 30
384 #define DEF_JUMBO_RX_MAX_DESC 6
385 #define DEF_JUMBO_TX_RATIO 21
387 #if tigon2FwReleaseLocal < 20001118
389 * Standard firmware and early modifications duplicate
390 * IRQ load without this flag (coal timer is never reset).
391 * Note that with this flag tx_coal should be less than
392 * time to xmit full tx ring.
393 * 400usec is not so bad for tx ring size of 128.
395 #define TX_COAL_INTS_ONLY 1 /* worth it */
398 * With modified firmware, this is not necessary, but still useful.
400 #define TX_COAL_INTS_ONLY 1
404 #define DEF_STAT (2 * TICKS_PER_SEC)
407 static int link_state[ACE_MAX_MOD_PARMS];
408 static int trace[ACE_MAX_MOD_PARMS];
409 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
410 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
411 static int max_tx_desc[ACE_MAX_MOD_PARMS];
412 static int max_rx_desc[ACE_MAX_MOD_PARMS];
413 static int tx_ratio[ACE_MAX_MOD_PARMS];
414 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
416 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
417 MODULE_LICENSE("GPL");
418 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
419 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
420 MODULE_FIRMWARE("acenic/tg1.bin");
422 MODULE_FIRMWARE("acenic/tg2.bin");
424 module_param_array_named(link, link_state, int, NULL, 0);
425 module_param_array(trace, int, NULL, 0);
426 module_param_array(tx_coal_tick, int, NULL, 0);
427 module_param_array(max_tx_desc, int, NULL, 0);
428 module_param_array(rx_coal_tick, int, NULL, 0);
429 module_param_array(max_rx_desc, int, NULL, 0);
430 module_param_array(tx_ratio, int, NULL, 0);
431 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
432 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
433 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
434 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
435 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
436 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
437 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
440 static char version[] __devinitdata =
441 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
442 " http://home.cern.ch/~jes/gige/acenic.html\n";
444 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
445 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
446 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
448 static const struct ethtool_ops ace_ethtool_ops = {
449 .get_settings = ace_get_settings,
450 .set_settings = ace_set_settings,
451 .get_drvinfo = ace_get_drvinfo,
454 static void ace_watchdog(struct net_device *dev);
456 static const struct net_device_ops ace_netdev_ops = {
457 .ndo_open = ace_open,
458 .ndo_stop = ace_close,
459 .ndo_tx_timeout = ace_watchdog,
460 .ndo_get_stats = ace_get_stats,
461 .ndo_start_xmit = ace_start_xmit,
462 .ndo_set_multicast_list = ace_set_multicast_list,
463 .ndo_set_mac_address = ace_set_mac_addr,
464 .ndo_change_mtu = ace_change_mtu,
466 .ndo_vlan_rx_register = ace_vlan_rx_register,
470 static int __devinit acenic_probe_one(struct pci_dev *pdev,
471 const struct pci_device_id *id)
473 struct net_device *dev;
474 struct ace_private *ap;
475 static int boards_found;
477 dev = alloc_etherdev(sizeof(struct ace_private));
479 printk(KERN_ERR "acenic: Unable to allocate "
480 "net_device structure!\n");
484 SET_NETDEV_DEV(dev, &pdev->dev);
486 ap = netdev_priv(dev);
488 ap->name = pci_name(pdev);
490 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
492 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
495 dev->watchdog_timeo = 5*HZ;
497 dev->netdev_ops = &ace_netdev_ops;
498 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
500 /* we only display this string ONCE */
504 if (pci_enable_device(pdev))
505 goto fail_free_netdev;
508 * Enable master mode before we start playing with the
509 * pci_command word since pci_set_master() will modify
512 pci_set_master(pdev);
514 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
516 /* OpenFirmware on Mac's does not set this - DOH.. */
517 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
518 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
519 "access - was not enabled by BIOS/Firmware\n",
521 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
522 pci_write_config_word(ap->pdev, PCI_COMMAND,
527 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
528 if (ap->pci_latency <= 0x40) {
529 ap->pci_latency = 0x40;
530 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
534 * Remap the regs into kernel space - this is abuse of
535 * dev->base_addr since it was means for I/O port
536 * addresses but who gives a damn.
538 dev->base_addr = pci_resource_start(pdev, 0);
539 ap->regs = ioremap(dev->base_addr, 0x4000);
541 printk(KERN_ERR "%s: Unable to map I/O register, "
542 "AceNIC %i will be disabled.\n",
543 ap->name, boards_found);
544 goto fail_free_netdev;
547 switch(pdev->vendor) {
548 case PCI_VENDOR_ID_ALTEON:
549 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
550 printk(KERN_INFO "%s: Farallon PN9100-T ",
553 printk(KERN_INFO "%s: Alteon AceNIC ",
557 case PCI_VENDOR_ID_3COM:
558 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
560 case PCI_VENDOR_ID_NETGEAR:
561 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
563 case PCI_VENDOR_ID_DEC:
564 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
565 printk(KERN_INFO "%s: Farallon PN9000-SX ",
569 case PCI_VENDOR_ID_SGI:
570 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
573 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
577 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
578 printk("irq %d\n", pdev->irq);
580 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
581 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
582 printk(KERN_ERR "%s: Driver compiled without Tigon I"
583 " support - NIC disabled\n", dev->name);
588 if (ace_allocate_descriptors(dev))
589 goto fail_free_netdev;
592 if (boards_found >= ACE_MAX_MOD_PARMS)
593 ap->board_idx = BOARD_IDX_OVERFLOW;
595 ap->board_idx = boards_found;
597 ap->board_idx = BOARD_IDX_STATIC;
601 goto fail_free_netdev;
603 if (register_netdev(dev)) {
604 printk(KERN_ERR "acenic: device registration failed\n");
607 ap->name = dev->name;
609 if (ap->pci_using_dac)
610 dev->features |= NETIF_F_HIGHDMA;
612 pci_set_drvdata(pdev, dev);
618 ace_init_cleanup(dev);
624 static void __devexit acenic_remove_one(struct pci_dev *pdev)
626 struct net_device *dev = pci_get_drvdata(pdev);
627 struct ace_private *ap = netdev_priv(dev);
628 struct ace_regs __iomem *regs = ap->regs;
631 unregister_netdev(dev);
633 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
634 if (ap->version >= 2)
635 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
638 * This clears any pending interrupts
640 writel(1, ®s->Mb0Lo);
641 readl(®s->CpuCtrl); /* flush */
644 * Make sure no other CPUs are processing interrupts
645 * on the card before the buffers are being released.
646 * Otherwise one might experience some `interesting'
649 * Then release the RX buffers - jumbo buffers were
650 * already released in ace_close().
652 ace_sync_irq(dev->irq);
654 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
655 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
658 struct ring_info *ringp;
661 ringp = &ap->skb->rx_std_skbuff[i];
662 mapping = pci_unmap_addr(ringp, mapping);
663 pci_unmap_page(ap->pdev, mapping,
667 ap->rx_std_ring[i].size = 0;
668 ap->skb->rx_std_skbuff[i].skb = NULL;
673 if (ap->version >= 2) {
674 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
675 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
678 struct ring_info *ringp;
681 ringp = &ap->skb->rx_mini_skbuff[i];
682 mapping = pci_unmap_addr(ringp,mapping);
683 pci_unmap_page(ap->pdev, mapping,
687 ap->rx_mini_ring[i].size = 0;
688 ap->skb->rx_mini_skbuff[i].skb = NULL;
694 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
695 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
697 struct ring_info *ringp;
700 ringp = &ap->skb->rx_jumbo_skbuff[i];
701 mapping = pci_unmap_addr(ringp, mapping);
702 pci_unmap_page(ap->pdev, mapping,
706 ap->rx_jumbo_ring[i].size = 0;
707 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
712 ace_init_cleanup(dev);
716 static struct pci_driver acenic_pci_driver = {
718 .id_table = acenic_pci_tbl,
719 .probe = acenic_probe_one,
720 .remove = __devexit_p(acenic_remove_one),
723 static int __init acenic_init(void)
725 return pci_register_driver(&acenic_pci_driver);
728 static void __exit acenic_exit(void)
730 pci_unregister_driver(&acenic_pci_driver);
733 module_init(acenic_init);
734 module_exit(acenic_exit);
736 static void ace_free_descriptors(struct net_device *dev)
738 struct ace_private *ap = netdev_priv(dev);
741 if (ap->rx_std_ring != NULL) {
742 size = (sizeof(struct rx_desc) *
743 (RX_STD_RING_ENTRIES +
744 RX_JUMBO_RING_ENTRIES +
745 RX_MINI_RING_ENTRIES +
746 RX_RETURN_RING_ENTRIES));
747 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
748 ap->rx_ring_base_dma);
749 ap->rx_std_ring = NULL;
750 ap->rx_jumbo_ring = NULL;
751 ap->rx_mini_ring = NULL;
752 ap->rx_return_ring = NULL;
754 if (ap->evt_ring != NULL) {
755 size = (sizeof(struct event) * EVT_RING_ENTRIES);
756 pci_free_consistent(ap->pdev, size, ap->evt_ring,
760 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
761 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
762 pci_free_consistent(ap->pdev, size, ap->tx_ring,
767 if (ap->evt_prd != NULL) {
768 pci_free_consistent(ap->pdev, sizeof(u32),
769 (void *)ap->evt_prd, ap->evt_prd_dma);
772 if (ap->rx_ret_prd != NULL) {
773 pci_free_consistent(ap->pdev, sizeof(u32),
774 (void *)ap->rx_ret_prd,
776 ap->rx_ret_prd = NULL;
778 if (ap->tx_csm != NULL) {
779 pci_free_consistent(ap->pdev, sizeof(u32),
780 (void *)ap->tx_csm, ap->tx_csm_dma);
786 static int ace_allocate_descriptors(struct net_device *dev)
788 struct ace_private *ap = netdev_priv(dev);
791 size = (sizeof(struct rx_desc) *
792 (RX_STD_RING_ENTRIES +
793 RX_JUMBO_RING_ENTRIES +
794 RX_MINI_RING_ENTRIES +
795 RX_RETURN_RING_ENTRIES));
797 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
798 &ap->rx_ring_base_dma);
799 if (ap->rx_std_ring == NULL)
802 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
803 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
804 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
806 size = (sizeof(struct event) * EVT_RING_ENTRIES);
808 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
810 if (ap->evt_ring == NULL)
814 * Only allocate a host TX ring for the Tigon II, the Tigon I
815 * has to use PCI registers for this ;-(
817 if (!ACE_IS_TIGON_I(ap)) {
818 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
820 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
823 if (ap->tx_ring == NULL)
827 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
829 if (ap->evt_prd == NULL)
832 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
833 &ap->rx_ret_prd_dma);
834 if (ap->rx_ret_prd == NULL)
837 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
839 if (ap->tx_csm == NULL)
846 ace_init_cleanup(dev);
852 * Generic cleanup handling data allocated during init. Used when the
853 * module is unloaded or if an error occurs during initialization
855 static void ace_init_cleanup(struct net_device *dev)
857 struct ace_private *ap;
859 ap = netdev_priv(dev);
861 ace_free_descriptors(dev);
864 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
865 ap->info, ap->info_dma);
867 kfree(ap->trace_buf);
870 free_irq(dev->irq, dev);
877 * Commands are considered to be slow.
879 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
883 idx = readl(®s->CmdPrd);
885 writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
886 idx = (idx + 1) % CMD_RING_ENTRIES;
888 writel(idx, ®s->CmdPrd);
892 static int __devinit ace_init(struct net_device *dev)
894 struct ace_private *ap;
895 struct ace_regs __iomem *regs;
896 struct ace_info *info = NULL;
897 struct pci_dev *pdev;
900 u32 tig_ver, mac1, mac2, tmp, pci_state;
901 int board_idx, ecode = 0;
903 unsigned char cache_size;
905 ap = netdev_priv(dev);
908 board_idx = ap->board_idx;
911 * aman@sgi.com - its useful to do a NIC reset here to
912 * address the `Firmware not running' problem subsequent
913 * to any crashes involving the NIC
915 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
916 readl(®s->HostCtrl); /* PCI write posting */
920 * Don't access any other registers before this point!
924 * This will most likely need BYTE_SWAP once we switch
925 * to using __raw_writel()
927 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
930 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
933 readl(®s->HostCtrl); /* PCI write posting */
936 * Stop the NIC CPU and clear pending interrupts
938 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
939 readl(®s->CpuCtrl); /* PCI write posting */
940 writel(0, ®s->Mb0Lo);
942 tig_ver = readl(®s->HostCtrl) >> 28;
945 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
948 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
949 tig_ver, ap->firmware_major, ap->firmware_minor,
951 writel(0, ®s->LocalCtrl);
953 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
957 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
958 tig_ver, ap->firmware_major, ap->firmware_minor,
960 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
961 readl(®s->CpuBCtrl); /* PCI write posting */
963 * The SRAM bank size does _not_ indicate the amount
964 * of memory on the card, it controls the _bank_ size!
965 * Ie. a 1MB AceNIC will have two banks of 512KB.
967 writel(SRAM_BANK_512K, ®s->LocalCtrl);
968 writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
970 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
973 printk(KERN_WARNING " Unsupported Tigon version detected "
980 * ModeStat _must_ be set after the SRAM settings as this change
981 * seems to corrupt the ModeStat and possible other registers.
982 * The SRAM settings survive resets and setting it to the same
983 * value a second time works as well. This is what caused the
984 * `Firmware not running' problem on the Tigon II.
987 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
988 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
990 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
991 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
993 readl(®s->ModeStat); /* PCI write posting */
996 for(i = 0; i < 4; i++) {
1000 t = read_eeprom_byte(dev, 0x8c+i);
1008 for(i = 4; i < 8; i++) {
1012 t = read_eeprom_byte(dev, 0x8c+i);
1020 writel(mac1, ®s->MacAddrHi);
1021 writel(mac2, ®s->MacAddrLo);
1023 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1024 dev->dev_addr[1] = mac1 & 0xff;
1025 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1026 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1027 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1028 dev->dev_addr[5] = mac2 & 0xff;
1030 printk("MAC: %pM\n", dev->dev_addr);
1033 * Looks like this is necessary to deal with on all architectures,
1034 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1035 * Ie. having two NICs in the machine, one will have the cache
1036 * line set at boot time, the other will not.
1039 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1041 if (cache_size != SMP_CACHE_BYTES) {
1042 printk(KERN_INFO " PCI cache line size set incorrectly "
1043 "(%i bytes) by BIOS/FW, ", cache_size);
1044 if (cache_size > SMP_CACHE_BYTES)
1045 printk("expecting %i\n", SMP_CACHE_BYTES);
1047 printk("correcting to %i\n", SMP_CACHE_BYTES);
1048 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1049 SMP_CACHE_BYTES >> 2);
1053 pci_state = readl(®s->PciState);
1054 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1055 "latency: %i clks\n",
1056 (pci_state & PCI_32BIT) ? 32 : 64,
1057 (pci_state & PCI_66MHZ) ? 66 : 33,
1061 * Set the max DMA transfer size. Seems that for most systems
1062 * the performance is better when no MAX parameter is
1063 * set. However for systems enabling PCI write and invalidate,
1064 * DMA writes must be set to the L1 cache line size to get
1065 * optimal performance.
1067 * The default is now to turn the PCI write and invalidate off
1068 * - that is what Alteon does for NT.
1070 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1071 if (ap->version >= 2) {
1072 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1074 * Tuning parameters only supported for 8 cards
1076 if (board_idx == BOARD_IDX_OVERFLOW ||
1077 dis_pci_mem_inval[board_idx]) {
1078 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1079 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1080 pci_write_config_word(pdev, PCI_COMMAND,
1082 printk(KERN_INFO " Disabling PCI memory "
1083 "write and invalidate\n");
1085 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1086 printk(KERN_INFO " PCI memory write & invalidate "
1087 "enabled by BIOS, enabling counter measures\n");
1089 switch(SMP_CACHE_BYTES) {
1091 tmp |= DMA_WRITE_MAX_16;
1094 tmp |= DMA_WRITE_MAX_32;
1097 tmp |= DMA_WRITE_MAX_64;
1100 tmp |= DMA_WRITE_MAX_128;
1103 printk(KERN_INFO " Cache line size %i not "
1104 "supported, PCI write and invalidate "
1105 "disabled\n", SMP_CACHE_BYTES);
1106 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1107 pci_write_config_word(pdev, PCI_COMMAND,
1115 * On this platform, we know what the best dma settings
1116 * are. We use 64-byte maximum bursts, because if we
1117 * burst larger than the cache line size (or even cross
1118 * a 64byte boundary in a single burst) the UltraSparc
1119 * PCI controller will disconnect at 64-byte multiples.
1121 * Read-multiple will be properly enabled above, and when
1122 * set will give the PCI controller proper hints about
1125 tmp &= ~DMA_READ_WRITE_MASK;
1126 tmp |= DMA_READ_MAX_64;
1127 tmp |= DMA_WRITE_MAX_64;
1130 tmp &= ~DMA_READ_WRITE_MASK;
1131 tmp |= DMA_READ_MAX_128;
1133 * All the docs say MUST NOT. Well, I did.
1134 * Nothing terrible happens, if we load wrong size.
1135 * Bit w&i still works better!
1137 tmp |= DMA_WRITE_MAX_128;
1139 writel(tmp, ®s->PciState);
1143 * The Host PCI bus controller driver has to set FBB.
1144 * If all devices on that PCI bus support FBB, then the controller
1145 * can enable FBB support in the Host PCI Bus controller (or on
1146 * the PCI-PCI bridge if that applies).
1150 * I have received reports from people having problems when this
1153 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1154 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1155 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1156 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1161 * Configure DMA attributes.
1163 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1164 ap->pci_using_dac = 1;
1165 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1166 ap->pci_using_dac = 0;
1173 * Initialize the generic info block and the command+event rings
1174 * and the control blocks for the transmit and receive rings
1175 * as they need to be setup once and for all.
1177 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1185 * Get the memory for the skb rings.
1187 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1192 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1195 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1196 DRV_NAME, pdev->irq);
1199 dev->irq = pdev->irq;
1202 spin_lock_init(&ap->debug_lock);
1203 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1204 ap->last_std_rx = 0;
1205 ap->last_mini_rx = 0;
1208 memset(ap->info, 0, sizeof(struct ace_info));
1209 memset(ap->skb, 0, sizeof(struct ace_skb));
1211 if (ace_load_firmware(dev))
1216 tmp_ptr = ap->info_dma;
1217 writel(tmp_ptr >> 32, ®s->InfoPtrHi);
1218 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
1220 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1222 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1223 info->evt_ctrl.flags = 0;
1227 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1228 writel(0, ®s->EvtCsm);
1230 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1231 info->cmd_ctrl.flags = 0;
1232 info->cmd_ctrl.max_len = 0;
1234 for (i = 0; i < CMD_RING_ENTRIES; i++)
1235 writel(0, ®s->CmdRng[i]);
1237 writel(0, ®s->CmdPrd);
1238 writel(0, ®s->CmdCsm);
1240 tmp_ptr = ap->info_dma;
1241 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1242 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1244 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1245 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1246 info->rx_std_ctrl.flags =
1247 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1249 memset(ap->rx_std_ring, 0,
1250 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1252 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1253 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1255 ap->rx_std_skbprd = 0;
1256 atomic_set(&ap->cur_rx_bufs, 0);
1258 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1259 (ap->rx_ring_base_dma +
1260 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1261 info->rx_jumbo_ctrl.max_len = 0;
1262 info->rx_jumbo_ctrl.flags =
1263 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1265 memset(ap->rx_jumbo_ring, 0,
1266 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1268 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1269 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1271 ap->rx_jumbo_skbprd = 0;
1272 atomic_set(&ap->cur_jumbo_bufs, 0);
1274 memset(ap->rx_mini_ring, 0,
1275 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1277 if (ap->version >= 2) {
1278 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1279 (ap->rx_ring_base_dma +
1280 (sizeof(struct rx_desc) *
1281 (RX_STD_RING_ENTRIES +
1282 RX_JUMBO_RING_ENTRIES))));
1283 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1284 info->rx_mini_ctrl.flags =
1285 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1287 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1288 ap->rx_mini_ring[i].flags =
1289 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1291 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1292 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1293 info->rx_mini_ctrl.max_len = 0;
1296 ap->rx_mini_skbprd = 0;
1297 atomic_set(&ap->cur_mini_bufs, 0);
1299 set_aceaddr(&info->rx_return_ctrl.rngptr,
1300 (ap->rx_ring_base_dma +
1301 (sizeof(struct rx_desc) *
1302 (RX_STD_RING_ENTRIES +
1303 RX_JUMBO_RING_ENTRIES +
1304 RX_MINI_RING_ENTRIES))));
1305 info->rx_return_ctrl.flags = 0;
1306 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1308 memset(ap->rx_return_ring, 0,
1309 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1311 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1312 *(ap->rx_ret_prd) = 0;
1314 writel(TX_RING_BASE, ®s->WinBase);
1316 if (ACE_IS_TIGON_I(ap)) {
1317 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1318 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1319 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1320 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1322 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1324 memset(ap->tx_ring, 0,
1325 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1327 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1330 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1331 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1334 * The Tigon I does not like having the TX ring in host memory ;-(
1336 if (!ACE_IS_TIGON_I(ap))
1337 tmp |= RCB_FLG_TX_HOST_RING;
1338 #if TX_COAL_INTS_ONLY
1339 tmp |= RCB_FLG_COAL_INT_ONLY;
1341 info->tx_ctrl.flags = tmp;
1343 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1346 * Potential item for tuning parameter
1349 writel(DMA_THRESH_16W, ®s->DmaReadCfg);
1350 writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
1352 writel(DMA_THRESH_8W, ®s->DmaReadCfg);
1353 writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
1356 writel(0, ®s->MaskInt);
1357 writel(1, ®s->IfIdx);
1360 * McKinley boxes do not like us fiddling with AssistState
1363 writel(1, ®s->AssistState);
1366 writel(DEF_STAT, ®s->TuneStatTicks);
1367 writel(DEF_TRACE, ®s->TuneTrace);
1369 ace_set_rxtx_parms(dev, 0);
1371 if (board_idx == BOARD_IDX_OVERFLOW) {
1372 printk(KERN_WARNING "%s: more than %i NICs detected, "
1373 "ignoring module parameters!\n",
1374 ap->name, ACE_MAX_MOD_PARMS);
1375 } else if (board_idx >= 0) {
1376 if (tx_coal_tick[board_idx])
1377 writel(tx_coal_tick[board_idx],
1378 ®s->TuneTxCoalTicks);
1379 if (max_tx_desc[board_idx])
1380 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
1382 if (rx_coal_tick[board_idx])
1383 writel(rx_coal_tick[board_idx],
1384 ®s->TuneRxCoalTicks);
1385 if (max_rx_desc[board_idx])
1386 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
1388 if (trace[board_idx])
1389 writel(trace[board_idx], ®s->TuneTrace);
1391 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1392 writel(tx_ratio[board_idx], ®s->TxBufRat);
1396 * Default link parameters
1398 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1399 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1400 if(ap->version >= 2)
1401 tmp |= LNK_TX_FLOW_CTL_Y;
1404 * Override link default parameters
1406 if ((board_idx >= 0) && link_state[board_idx]) {
1407 int option = link_state[board_idx];
1411 if (option & 0x01) {
1412 printk(KERN_INFO "%s: Setting half duplex link\n",
1414 tmp &= ~LNK_FULL_DUPLEX;
1417 tmp &= ~LNK_NEGOTIATE;
1424 if ((option & 0x70) == 0) {
1425 printk(KERN_WARNING "%s: No media speed specified, "
1426 "forcing auto negotiation\n", ap->name);
1427 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1428 LNK_100MB | LNK_10MB;
1430 if ((option & 0x100) == 0)
1431 tmp |= LNK_NEG_FCTL;
1433 printk(KERN_INFO "%s: Disabling flow control "
1434 "negotiation\n", ap->name);
1436 tmp |= LNK_RX_FLOW_CTL_Y;
1437 if ((option & 0x400) && (ap->version >= 2)) {
1438 printk(KERN_INFO "%s: Enabling TX flow control\n",
1440 tmp |= LNK_TX_FLOW_CTL_Y;
1445 writel(tmp, ®s->TuneLink);
1446 if (ap->version >= 2)
1447 writel(tmp, ®s->TuneFastLink);
1449 writel(ap->firmware_start, ®s->Pc);
1451 writel(0, ®s->Mb0Lo);
1454 * Set tx_csm before we start receiving interrupts, otherwise
1455 * the interrupt handler might think it is supposed to process
1456 * tx ints before we are up and running, which may cause a null
1457 * pointer access in the int handler.
1460 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1463 ace_set_txprd(regs, ap, 0);
1464 writel(0, ®s->RxRetCsm);
1467 * Enable DMA engine now.
1468 * If we do this sooner, Mckinley box pukes.
1469 * I assume it's because Tigon II DMA engine wants to check
1470 * *something* even before the CPU is started.
1472 writel(1, ®s->AssistState); /* enable DMA */
1477 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
1478 readl(®s->CpuCtrl);
1481 * Wait for the firmware to spin up - max 3 seconds.
1483 myjif = jiffies + 3 * HZ;
1484 while (time_before(jiffies, myjif) && !ap->fw_running)
1487 if (!ap->fw_running) {
1488 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1491 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
1492 readl(®s->CpuCtrl);
1494 /* aman@sgi.com - account for badly behaving firmware/NIC:
1495 * - have observed that the NIC may continue to generate
1496 * interrupts for some reason; attempt to stop it - halt
1497 * second CPU for Tigon II cards, and also clear Mb0
1498 * - if we're a module, we'll fail to load if this was
1499 * the only GbE card in the system => if the kernel does
1500 * see an interrupt from the NIC, code to handle it is
1501 * gone and OOps! - so free_irq also
1503 if (ap->version >= 2)
1504 writel(readl(®s->CpuBCtrl) | CPU_HALT,
1506 writel(0, ®s->Mb0Lo);
1507 readl(®s->Mb0Lo);
1514 * We load the ring here as there seem to be no way to tell the
1515 * firmware to wipe the ring without re-initializing it.
1517 if (!test_and_set_bit(0, &ap->std_refill_busy))
1518 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1520 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1522 if (ap->version >= 2) {
1523 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1524 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1526 printk(KERN_ERR "%s: Someone is busy refilling "
1527 "the RX mini ring\n", ap->name);
1532 ace_init_cleanup(dev);
1537 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1539 struct ace_private *ap = netdev_priv(dev);
1540 struct ace_regs __iomem *regs = ap->regs;
1541 int board_idx = ap->board_idx;
1543 if (board_idx >= 0) {
1545 if (!tx_coal_tick[board_idx])
1546 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
1547 if (!max_tx_desc[board_idx])
1548 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
1549 if (!rx_coal_tick[board_idx])
1550 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
1551 if (!max_rx_desc[board_idx])
1552 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
1553 if (!tx_ratio[board_idx])
1554 writel(DEF_TX_RATIO, ®s->TxBufRat);
1556 if (!tx_coal_tick[board_idx])
1557 writel(DEF_JUMBO_TX_COAL,
1558 ®s->TuneTxCoalTicks);
1559 if (!max_tx_desc[board_idx])
1560 writel(DEF_JUMBO_TX_MAX_DESC,
1561 ®s->TuneMaxTxDesc);
1562 if (!rx_coal_tick[board_idx])
1563 writel(DEF_JUMBO_RX_COAL,
1564 ®s->TuneRxCoalTicks);
1565 if (!max_rx_desc[board_idx])
1566 writel(DEF_JUMBO_RX_MAX_DESC,
1567 ®s->TuneMaxRxDesc);
1568 if (!tx_ratio[board_idx])
1569 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
1575 static void ace_watchdog(struct net_device *data)
1577 struct net_device *dev = data;
1578 struct ace_private *ap = netdev_priv(dev);
1579 struct ace_regs __iomem *regs = ap->regs;
1582 * We haven't received a stats update event for more than 2.5
1583 * seconds and there is data in the transmit queue, thus we
1584 * asume the card is stuck.
1586 if (*ap->tx_csm != ap->tx_ret_csm) {
1587 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1588 dev->name, (unsigned int)readl(®s->HostCtrl));
1589 /* This can happen due to ieee flow control. */
1591 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1594 netif_wake_queue(dev);
1600 static void ace_tasklet(unsigned long dev)
1602 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1605 cur_size = atomic_read(&ap->cur_rx_bufs);
1606 if ((cur_size < RX_LOW_STD_THRES) &&
1607 !test_and_set_bit(0, &ap->std_refill_busy)) {
1609 printk("refilling buffers (current %i)\n", cur_size);
1611 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1614 if (ap->version >= 2) {
1615 cur_size = atomic_read(&ap->cur_mini_bufs);
1616 if ((cur_size < RX_LOW_MINI_THRES) &&
1617 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1619 printk("refilling mini buffers (current %i)\n",
1622 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1626 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1627 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1628 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1630 printk("refilling jumbo buffers (current %i)\n", cur_size);
1632 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1634 ap->tasklet_pending = 0;
1639 * Copy the contents of the NIC's trace buffer to kernel memory.
1641 static void ace_dump_trace(struct ace_private *ap)
1645 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1652 * Load the standard rx ring.
1654 * Loading rings is safe without holding the spin lock since this is
1655 * done only before the device is enabled, thus no interrupts are
1656 * generated and by the interrupt handler/tasklet handler.
1658 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1660 struct ace_regs __iomem *regs = ap->regs;
1664 prefetchw(&ap->cur_rx_bufs);
1666 idx = ap->rx_std_skbprd;
1668 for (i = 0; i < nr_bufs; i++) {
1669 struct sk_buff *skb;
1673 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1677 skb_reserve(skb, NET_IP_ALIGN);
1678 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1679 offset_in_page(skb->data),
1681 PCI_DMA_FROMDEVICE);
1682 ap->skb->rx_std_skbuff[idx].skb = skb;
1683 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1686 rd = &ap->rx_std_ring[idx];
1687 set_aceaddr(&rd->addr, mapping);
1688 rd->size = ACE_STD_BUFSIZE;
1690 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1696 atomic_add(i, &ap->cur_rx_bufs);
1697 ap->rx_std_skbprd = idx;
1699 if (ACE_IS_TIGON_I(ap)) {
1701 cmd.evt = C_SET_RX_PRD_IDX;
1703 cmd.idx = ap->rx_std_skbprd;
1704 ace_issue_cmd(regs, &cmd);
1706 writel(idx, ®s->RxStdPrd);
1711 clear_bit(0, &ap->std_refill_busy);
1715 printk(KERN_INFO "Out of memory when allocating "
1716 "standard receive buffers\n");
1721 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1723 struct ace_regs __iomem *regs = ap->regs;
1726 prefetchw(&ap->cur_mini_bufs);
1728 idx = ap->rx_mini_skbprd;
1729 for (i = 0; i < nr_bufs; i++) {
1730 struct sk_buff *skb;
1734 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1738 skb_reserve(skb, NET_IP_ALIGN);
1739 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1740 offset_in_page(skb->data),
1742 PCI_DMA_FROMDEVICE);
1743 ap->skb->rx_mini_skbuff[idx].skb = skb;
1744 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1747 rd = &ap->rx_mini_ring[idx];
1748 set_aceaddr(&rd->addr, mapping);
1749 rd->size = ACE_MINI_BUFSIZE;
1751 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1757 atomic_add(i, &ap->cur_mini_bufs);
1759 ap->rx_mini_skbprd = idx;
1761 writel(idx, ®s->RxMiniPrd);
1765 clear_bit(0, &ap->mini_refill_busy);
1768 printk(KERN_INFO "Out of memory when allocating "
1769 "mini receive buffers\n");
1775 * Load the jumbo rx ring, this may happen at any time if the MTU
1776 * is changed to a value > 1500.
1778 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1780 struct ace_regs __iomem *regs = ap->regs;
1783 idx = ap->rx_jumbo_skbprd;
1785 for (i = 0; i < nr_bufs; i++) {
1786 struct sk_buff *skb;
1790 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1794 skb_reserve(skb, NET_IP_ALIGN);
1795 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1796 offset_in_page(skb->data),
1798 PCI_DMA_FROMDEVICE);
1799 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1800 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1803 rd = &ap->rx_jumbo_ring[idx];
1804 set_aceaddr(&rd->addr, mapping);
1805 rd->size = ACE_JUMBO_BUFSIZE;
1807 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1813 atomic_add(i, &ap->cur_jumbo_bufs);
1814 ap->rx_jumbo_skbprd = idx;
1816 if (ACE_IS_TIGON_I(ap)) {
1818 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1820 cmd.idx = ap->rx_jumbo_skbprd;
1821 ace_issue_cmd(regs, &cmd);
1823 writel(idx, ®s->RxJumboPrd);
1828 clear_bit(0, &ap->jumbo_refill_busy);
1831 if (net_ratelimit())
1832 printk(KERN_INFO "Out of memory when allocating "
1833 "jumbo receive buffers\n");
1839 * All events are considered to be slow (RX/TX ints do not generate
1840 * events) and are handled here, outside the main interrupt handler,
1841 * to reduce the size of the handler.
1843 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1845 struct ace_private *ap;
1847 ap = netdev_priv(dev);
1849 while (evtcsm != evtprd) {
1850 switch (ap->evt_ring[evtcsm].evt) {
1852 printk(KERN_INFO "%s: Firmware up and running\n",
1857 case E_STATS_UPDATED:
1861 u16 code = ap->evt_ring[evtcsm].code;
1865 u32 state = readl(&ap->regs->GigLnkState);
1866 printk(KERN_WARNING "%s: Optical link UP "
1867 "(%s Duplex, Flow Control: %s%s)\n",
1869 state & LNK_FULL_DUPLEX ? "Full":"Half",
1870 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1871 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1875 printk(KERN_WARNING "%s: Optical link DOWN\n",
1878 case E_C_LINK_10_100:
1879 printk(KERN_WARNING "%s: 10/100BaseT link "
1883 printk(KERN_ERR "%s: Unknown optical link "
1884 "state %02x\n", ap->name, code);
1889 switch(ap->evt_ring[evtcsm].code) {
1890 case E_C_ERR_INVAL_CMD:
1891 printk(KERN_ERR "%s: invalid command error\n",
1894 case E_C_ERR_UNIMP_CMD:
1895 printk(KERN_ERR "%s: unimplemented command "
1896 "error\n", ap->name);
1898 case E_C_ERR_BAD_CFG:
1899 printk(KERN_ERR "%s: bad config error\n",
1903 printk(KERN_ERR "%s: unknown error %02x\n",
1904 ap->name, ap->evt_ring[evtcsm].code);
1907 case E_RESET_JUMBO_RNG:
1910 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1911 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1912 ap->rx_jumbo_ring[i].size = 0;
1913 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1914 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1915 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1919 if (ACE_IS_TIGON_I(ap)) {
1921 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1924 ace_issue_cmd(ap->regs, &cmd);
1926 writel(0, &((ap->regs)->RxJumboPrd));
1931 ap->rx_jumbo_skbprd = 0;
1932 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1934 clear_bit(0, &ap->jumbo_refill_busy);
1938 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1939 ap->name, ap->evt_ring[evtcsm].evt);
1941 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1948 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1950 struct ace_private *ap = netdev_priv(dev);
1952 int mini_count = 0, std_count = 0;
1956 prefetchw(&ap->cur_rx_bufs);
1957 prefetchw(&ap->cur_mini_bufs);
1959 while (idx != rxretprd) {
1960 struct ring_info *rip;
1961 struct sk_buff *skb;
1962 struct rx_desc *rxdesc, *retdesc;
1964 int bd_flags, desc_type, mapsize;
1968 /* make sure the rx descriptor isn't read before rxretprd */
1969 if (idx == rxretcsm)
1972 retdesc = &ap->rx_return_ring[idx];
1973 skbidx = retdesc->idx;
1974 bd_flags = retdesc->flags;
1975 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1979 * Normal frames do not have any flags set
1981 * Mini and normal frames arrive frequently,
1982 * so use a local counter to avoid doing
1983 * atomic operations for each packet arriving.
1986 rip = &ap->skb->rx_std_skbuff[skbidx];
1987 mapsize = ACE_STD_BUFSIZE;
1988 rxdesc = &ap->rx_std_ring[skbidx];
1992 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1993 mapsize = ACE_JUMBO_BUFSIZE;
1994 rxdesc = &ap->rx_jumbo_ring[skbidx];
1995 atomic_dec(&ap->cur_jumbo_bufs);
1998 rip = &ap->skb->rx_mini_skbuff[skbidx];
1999 mapsize = ACE_MINI_BUFSIZE;
2000 rxdesc = &ap->rx_mini_ring[skbidx];
2004 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2005 "returned by NIC\n", dev->name,
2012 pci_unmap_page(ap->pdev,
2013 pci_unmap_addr(rip, mapping),
2015 PCI_DMA_FROMDEVICE);
2016 skb_put(skb, retdesc->size);
2021 csum = retdesc->tcp_udp_csum;
2023 skb->protocol = eth_type_trans(skb, dev);
2026 * Instead of forcing the poor tigon mips cpu to calculate
2027 * pseudo hdr checksum, we do this ourselves.
2029 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2030 skb->csum = htons(csum);
2031 skb->ip_summed = CHECKSUM_COMPLETE;
2033 skb->ip_summed = CHECKSUM_NONE;
2038 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2039 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2044 dev->stats.rx_packets++;
2045 dev->stats.rx_bytes += retdesc->size;
2047 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2050 atomic_sub(std_count, &ap->cur_rx_bufs);
2051 if (!ACE_IS_TIGON_I(ap))
2052 atomic_sub(mini_count, &ap->cur_mini_bufs);
2056 * According to the documentation RxRetCsm is obsolete with
2057 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2059 if (ACE_IS_TIGON_I(ap)) {
2060 writel(idx, &ap->regs->RxRetCsm);
2071 static inline void ace_tx_int(struct net_device *dev,
2074 struct ace_private *ap = netdev_priv(dev);
2077 struct sk_buff *skb;
2079 struct tx_ring_info *info;
2081 info = ap->skb->tx_skbuff + idx;
2083 mapping = pci_unmap_addr(info, mapping);
2086 pci_unmap_page(ap->pdev, mapping,
2087 pci_unmap_len(info, maplen),
2089 pci_unmap_addr_set(info, mapping, 0);
2093 dev->stats.tx_packets++;
2094 dev->stats.tx_bytes += skb->len;
2095 dev_kfree_skb_irq(skb);
2099 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2100 } while (idx != txcsm);
2102 if (netif_queue_stopped(dev))
2103 netif_wake_queue(dev);
2106 ap->tx_ret_csm = txcsm;
2108 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2110 * We could try to make it before. In this case we would get
2111 * the following race condition: hard_start_xmit on other cpu
2112 * enters after we advanced tx_ret_csm and fills space,
2113 * which we have just freed, so that we make illegal device wakeup.
2114 * There is no good way to workaround this (at entry
2115 * to ace_start_xmit detects this condition and prevents
2116 * ring corruption, but it is not a good workaround.)
2118 * When tx_ret_csm is advanced after, we wake up device _only_
2119 * if we really have some space in ring (though the core doing
2120 * hard_start_xmit can see full ring for some period and has to
2121 * synchronize.) Superb.
2122 * BUT! We get another subtle race condition. hard_start_xmit
2123 * may think that ring is full between wakeup and advancing
2124 * tx_ret_csm and will stop device instantly! It is not so bad.
2125 * We are guaranteed that there is something in ring, so that
2126 * the next irq will resume transmission. To speedup this we could
2127 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2128 * (see ace_start_xmit).
2130 * Well, this dilemma exists in all lock-free devices.
2131 * We, following scheme used in drivers by Donald Becker,
2132 * select the least dangerous.
2138 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2140 struct net_device *dev = (struct net_device *)dev_id;
2141 struct ace_private *ap = netdev_priv(dev);
2142 struct ace_regs __iomem *regs = ap->regs;
2144 u32 txcsm, rxretcsm, rxretprd;
2148 * In case of PCI shared interrupts or spurious interrupts,
2149 * we want to make sure it is actually our interrupt before
2150 * spending any time in here.
2152 if (!(readl(®s->HostCtrl) & IN_INT))
2156 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2157 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2158 * writel(0, ®s->Mb0Lo).
2160 * "IRQ avoidance" recommended in docs applies to IRQs served
2161 * threads and it is wrong even for that case.
2163 writel(0, ®s->Mb0Lo);
2164 readl(®s->Mb0Lo);
2167 * There is no conflict between transmit handling in
2168 * start_xmit and receive processing, thus there is no reason
2169 * to take a spin lock for RX handling. Wait until we start
2170 * working on the other stuff - hey we don't need a spin lock
2173 rxretprd = *ap->rx_ret_prd;
2174 rxretcsm = ap->cur_rx;
2176 if (rxretprd != rxretcsm)
2177 ace_rx_int(dev, rxretprd, rxretcsm);
2179 txcsm = *ap->tx_csm;
2180 idx = ap->tx_ret_csm;
2184 * If each skb takes only one descriptor this check degenerates
2185 * to identity, because new space has just been opened.
2186 * But if skbs are fragmented we must check that this index
2187 * update releases enough of space, otherwise we just
2188 * wait for device to make more work.
2190 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2191 ace_tx_int(dev, txcsm, idx);
2194 evtcsm = readl(®s->EvtCsm);
2195 evtprd = *ap->evt_prd;
2197 if (evtcsm != evtprd) {
2198 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2199 writel(evtcsm, ®s->EvtCsm);
2203 * This has to go last in the interrupt handler and run with
2204 * the spin lock released ... what lock?
2206 if (netif_running(dev)) {
2208 int run_tasklet = 0;
2210 cur_size = atomic_read(&ap->cur_rx_bufs);
2211 if (cur_size < RX_LOW_STD_THRES) {
2212 if ((cur_size < RX_PANIC_STD_THRES) &&
2213 !test_and_set_bit(0, &ap->std_refill_busy)) {
2215 printk("low on std buffers %i\n", cur_size);
2217 ace_load_std_rx_ring(ap,
2218 RX_RING_SIZE - cur_size);
2223 if (!ACE_IS_TIGON_I(ap)) {
2224 cur_size = atomic_read(&ap->cur_mini_bufs);
2225 if (cur_size < RX_LOW_MINI_THRES) {
2226 if ((cur_size < RX_PANIC_MINI_THRES) &&
2227 !test_and_set_bit(0,
2228 &ap->mini_refill_busy)) {
2230 printk("low on mini buffers %i\n",
2233 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2240 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2241 if (cur_size < RX_LOW_JUMBO_THRES) {
2242 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2243 !test_and_set_bit(0,
2244 &ap->jumbo_refill_busy)){
2246 printk("low on jumbo buffers %i\n",
2249 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2254 if (run_tasklet && !ap->tasklet_pending) {
2255 ap->tasklet_pending = 1;
2256 tasklet_schedule(&ap->ace_tasklet);
2265 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2267 struct ace_private *ap = netdev_priv(dev);
2268 unsigned long flags;
2270 local_irq_save(flags);
2275 ace_unmask_irq(dev);
2276 local_irq_restore(flags);
2278 #endif /* ACENIC_DO_VLAN */
2281 static int ace_open(struct net_device *dev)
2283 struct ace_private *ap = netdev_priv(dev);
2284 struct ace_regs __iomem *regs = ap->regs;
2287 if (!(ap->fw_running)) {
2288 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2292 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
2294 cmd.evt = C_CLEAR_STATS;
2297 ace_issue_cmd(regs, &cmd);
2299 cmd.evt = C_HOST_STATE;
2300 cmd.code = C_C_STACK_UP;
2302 ace_issue_cmd(regs, &cmd);
2305 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2306 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2308 if (dev->flags & IFF_PROMISC) {
2309 cmd.evt = C_SET_PROMISC_MODE;
2310 cmd.code = C_C_PROMISC_ENABLE;
2312 ace_issue_cmd(regs, &cmd);
2320 cmd.evt = C_LNK_NEGOTIATION;
2323 ace_issue_cmd(regs, &cmd);
2326 netif_start_queue(dev);
2329 * Setup the bottom half rx ring refill handler
2331 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2336 static int ace_close(struct net_device *dev)
2338 struct ace_private *ap = netdev_priv(dev);
2339 struct ace_regs __iomem *regs = ap->regs;
2341 unsigned long flags;
2345 * Without (or before) releasing irq and stopping hardware, this
2346 * is an absolute non-sense, by the way. It will be reset instantly
2349 netif_stop_queue(dev);
2353 cmd.evt = C_SET_PROMISC_MODE;
2354 cmd.code = C_C_PROMISC_DISABLE;
2356 ace_issue_cmd(regs, &cmd);
2360 cmd.evt = C_HOST_STATE;
2361 cmd.code = C_C_STACK_DOWN;
2363 ace_issue_cmd(regs, &cmd);
2365 tasklet_kill(&ap->ace_tasklet);
2368 * Make sure one CPU is not processing packets while
2369 * buffers are being released by another.
2372 local_irq_save(flags);
2375 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2376 struct sk_buff *skb;
2378 struct tx_ring_info *info;
2380 info = ap->skb->tx_skbuff + i;
2382 mapping = pci_unmap_addr(info, mapping);
2385 if (ACE_IS_TIGON_I(ap)) {
2386 /* NB: TIGON_1 is special, tx_ring is in io space */
2387 struct tx_desc __iomem *tx;
2388 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2389 writel(0, &tx->addr.addrhi);
2390 writel(0, &tx->addr.addrlo);
2391 writel(0, &tx->flagsize);
2393 memset(ap->tx_ring + i, 0,
2394 sizeof(struct tx_desc));
2395 pci_unmap_page(ap->pdev, mapping,
2396 pci_unmap_len(info, maplen),
2398 pci_unmap_addr_set(info, mapping, 0);
2407 cmd.evt = C_RESET_JUMBO_RNG;
2410 ace_issue_cmd(regs, &cmd);
2413 ace_unmask_irq(dev);
2414 local_irq_restore(flags);
2420 static inline dma_addr_t
2421 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2422 struct sk_buff *tail, u32 idx)
2425 struct tx_ring_info *info;
2427 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2428 offset_in_page(skb->data),
2429 skb->len, PCI_DMA_TODEVICE);
2431 info = ap->skb->tx_skbuff + idx;
2433 pci_unmap_addr_set(info, mapping, mapping);
2434 pci_unmap_len_set(info, maplen, skb->len);
2440 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2441 u32 flagsize, u32 vlan_tag)
2443 #if !USE_TX_COAL_NOW
2444 flagsize &= ~BD_FLG_COAL_NOW;
2447 if (ACE_IS_TIGON_I(ap)) {
2448 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2449 writel(addr >> 32, &io->addr.addrhi);
2450 writel(addr & 0xffffffff, &io->addr.addrlo);
2451 writel(flagsize, &io->flagsize);
2453 writel(vlan_tag, &io->vlanres);
2456 desc->addr.addrhi = addr >> 32;
2457 desc->addr.addrlo = addr;
2458 desc->flagsize = flagsize;
2460 desc->vlanres = vlan_tag;
2466 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2468 struct ace_private *ap = netdev_priv(dev);
2469 struct ace_regs __iomem *regs = ap->regs;
2470 struct tx_desc *desc;
2472 unsigned long maxjiff = jiffies + 3*HZ;
2477 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2480 if (!skb_shinfo(skb)->nr_frags) {
2484 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2485 flagsize = (skb->len << 16) | (BD_FLG_END);
2486 if (skb->ip_summed == CHECKSUM_PARTIAL)
2487 flagsize |= BD_FLG_TCP_UDP_SUM;
2489 if (vlan_tx_tag_present(skb)) {
2490 flagsize |= BD_FLG_VLAN_TAG;
2491 vlan_tag = vlan_tx_tag_get(skb);
2494 desc = ap->tx_ring + idx;
2495 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2497 /* Look at ace_tx_int for explanations. */
2498 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2499 flagsize |= BD_FLG_COAL_NOW;
2501 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2507 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2508 flagsize = (skb_headlen(skb) << 16);
2509 if (skb->ip_summed == CHECKSUM_PARTIAL)
2510 flagsize |= BD_FLG_TCP_UDP_SUM;
2512 if (vlan_tx_tag_present(skb)) {
2513 flagsize |= BD_FLG_VLAN_TAG;
2514 vlan_tag = vlan_tx_tag_get(skb);
2518 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2520 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2522 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2523 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2524 struct tx_ring_info *info;
2527 info = ap->skb->tx_skbuff + idx;
2528 desc = ap->tx_ring + idx;
2530 mapping = pci_map_page(ap->pdev, frag->page,
2531 frag->page_offset, frag->size,
2534 flagsize = (frag->size << 16);
2535 if (skb->ip_summed == CHECKSUM_PARTIAL)
2536 flagsize |= BD_FLG_TCP_UDP_SUM;
2537 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2539 if (i == skb_shinfo(skb)->nr_frags - 1) {
2540 flagsize |= BD_FLG_END;
2541 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2542 flagsize |= BD_FLG_COAL_NOW;
2545 * Only the last fragment frees
2552 pci_unmap_addr_set(info, mapping, mapping);
2553 pci_unmap_len_set(info, maplen, frag->size);
2554 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2560 ace_set_txprd(regs, ap, idx);
2562 if (flagsize & BD_FLG_COAL_NOW) {
2563 netif_stop_queue(dev);
2566 * A TX-descriptor producer (an IRQ) might have gotten
2567 * inbetween, making the ring free again. Since xmit is
2568 * serialized, this is the only situation we have to
2571 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2572 netif_wake_queue(dev);
2575 dev->trans_start = jiffies;
2576 return NETDEV_TX_OK;
2580 * This race condition is unavoidable with lock-free drivers.
2581 * We wake up the queue _before_ tx_prd is advanced, so that we can
2582 * enter hard_start_xmit too early, while tx ring still looks closed.
2583 * This happens ~1-4 times per 100000 packets, so that we can allow
2584 * to loop syncing to other CPU. Probably, we need an additional
2585 * wmb() in ace_tx_intr as well.
2587 * Note that this race is relieved by reserving one more entry
2588 * in tx ring than it is necessary (see original non-SG driver).
2589 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2590 * is already overkill.
2592 * Alternative is to return with 1 not throttling queue. In this
2593 * case loop becomes longer, no more useful effects.
2595 if (time_before(jiffies, maxjiff)) {
2601 /* The ring is stuck full. */
2602 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2603 return NETDEV_TX_BUSY;
2607 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2609 struct ace_private *ap = netdev_priv(dev);
2610 struct ace_regs __iomem *regs = ap->regs;
2612 if (new_mtu > ACE_JUMBO_MTU)
2615 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
2618 if (new_mtu > ACE_STD_MTU) {
2620 printk(KERN_INFO "%s: Enabling Jumbo frame "
2621 "support\n", dev->name);
2623 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2624 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2625 ace_set_rxtx_parms(dev, 1);
2628 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2629 ace_sync_irq(dev->irq);
2630 ace_set_rxtx_parms(dev, 0);
2634 cmd.evt = C_RESET_JUMBO_RNG;
2637 ace_issue_cmd(regs, &cmd);
2644 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2646 struct ace_private *ap = netdev_priv(dev);
2647 struct ace_regs __iomem *regs = ap->regs;
2650 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2652 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2653 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2654 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2655 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2657 ecmd->port = PORT_FIBRE;
2658 ecmd->transceiver = XCVR_INTERNAL;
2660 link = readl(®s->GigLnkState);
2661 if (link & LNK_1000MB)
2662 ecmd->speed = SPEED_1000;
2664 link = readl(®s->FastLnkState);
2665 if (link & LNK_100MB)
2666 ecmd->speed = SPEED_100;
2667 else if (link & LNK_10MB)
2668 ecmd->speed = SPEED_10;
2672 if (link & LNK_FULL_DUPLEX)
2673 ecmd->duplex = DUPLEX_FULL;
2675 ecmd->duplex = DUPLEX_HALF;
2677 if (link & LNK_NEGOTIATE)
2678 ecmd->autoneg = AUTONEG_ENABLE;
2680 ecmd->autoneg = AUTONEG_DISABLE;
2684 * Current struct ethtool_cmd is insufficient
2686 ecmd->trace = readl(®s->TuneTrace);
2688 ecmd->txcoal = readl(®s->TuneTxCoalTicks);
2689 ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
2691 ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc);
2692 ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc);
2697 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2699 struct ace_private *ap = netdev_priv(dev);
2700 struct ace_regs __iomem *regs = ap->regs;
2703 link = readl(®s->GigLnkState);
2704 if (link & LNK_1000MB)
2707 link = readl(®s->FastLnkState);
2708 if (link & LNK_100MB)
2710 else if (link & LNK_10MB)
2716 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2717 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2718 if (!ACE_IS_TIGON_I(ap))
2719 link |= LNK_TX_FLOW_CTL_Y;
2720 if (ecmd->autoneg == AUTONEG_ENABLE)
2721 link |= LNK_NEGOTIATE;
2722 if (ecmd->speed != speed) {
2723 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2737 if (ecmd->duplex == DUPLEX_FULL)
2738 link |= LNK_FULL_DUPLEX;
2740 if (link != ap->link) {
2742 printk(KERN_INFO "%s: Renegotiating link state\n",
2746 writel(link, ®s->TuneLink);
2747 if (!ACE_IS_TIGON_I(ap))
2748 writel(link, ®s->TuneFastLink);
2751 cmd.evt = C_LNK_NEGOTIATION;
2754 ace_issue_cmd(regs, &cmd);
2759 static void ace_get_drvinfo(struct net_device *dev,
2760 struct ethtool_drvinfo *info)
2762 struct ace_private *ap = netdev_priv(dev);
2764 strlcpy(info->driver, "acenic", sizeof(info->driver));
2765 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2766 ap->firmware_major, ap->firmware_minor,
2770 strlcpy(info->bus_info, pci_name(ap->pdev),
2771 sizeof(info->bus_info));
2776 * Set the hardware MAC address.
2778 static int ace_set_mac_addr(struct net_device *dev, void *p)
2780 struct ace_private *ap = netdev_priv(dev);
2781 struct ace_regs __iomem *regs = ap->regs;
2782 struct sockaddr *addr=p;
2786 if(netif_running(dev))
2789 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2791 da = (u8 *)dev->dev_addr;
2793 writel(da[0] << 8 | da[1], ®s->MacAddrHi);
2794 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2797 cmd.evt = C_SET_MAC_ADDR;
2800 ace_issue_cmd(regs, &cmd);
2806 static void ace_set_multicast_list(struct net_device *dev)
2808 struct ace_private *ap = netdev_priv(dev);
2809 struct ace_regs __iomem *regs = ap->regs;
2812 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2813 cmd.evt = C_SET_MULTICAST_MODE;
2814 cmd.code = C_C_MCAST_ENABLE;
2816 ace_issue_cmd(regs, &cmd);
2818 } else if (ap->mcast_all) {
2819 cmd.evt = C_SET_MULTICAST_MODE;
2820 cmd.code = C_C_MCAST_DISABLE;
2822 ace_issue_cmd(regs, &cmd);
2826 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2827 cmd.evt = C_SET_PROMISC_MODE;
2828 cmd.code = C_C_PROMISC_ENABLE;
2830 ace_issue_cmd(regs, &cmd);
2832 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2833 cmd.evt = C_SET_PROMISC_MODE;
2834 cmd.code = C_C_PROMISC_DISABLE;
2836 ace_issue_cmd(regs, &cmd);
2841 * For the time being multicast relies on the upper layers
2842 * filtering it properly. The Firmware does not allow one to
2843 * set the entire multicast list at a time and keeping track of
2844 * it here is going to be messy.
2846 if ((dev->mc_count) && !(ap->mcast_all)) {
2847 cmd.evt = C_SET_MULTICAST_MODE;
2848 cmd.code = C_C_MCAST_ENABLE;
2850 ace_issue_cmd(regs, &cmd);
2851 }else if (!ap->mcast_all) {
2852 cmd.evt = C_SET_MULTICAST_MODE;
2853 cmd.code = C_C_MCAST_DISABLE;
2855 ace_issue_cmd(regs, &cmd);
2860 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2862 struct ace_private *ap = netdev_priv(dev);
2863 struct ace_mac_stats __iomem *mac_stats =
2864 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2866 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2867 dev->stats.multicast = readl(&mac_stats->kept_mc);
2868 dev->stats.collisions = readl(&mac_stats->coll);
2874 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2877 void __iomem *tdest;
2884 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2885 min_t(u32, size, ACE_WINDOW_SIZE));
2886 tdest = (void __iomem *) ®s->Window +
2887 (dest & (ACE_WINDOW_SIZE - 1));
2888 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2889 for (i = 0; i < (tsize / 4); i++) {
2890 /* Firmware is big-endian */
2891 writel(be32_to_cpup(src), tdest);
2901 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2903 void __iomem *tdest;
2910 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2911 min_t(u32, size, ACE_WINDOW_SIZE));
2912 tdest = (void __iomem *) ®s->Window +
2913 (dest & (ACE_WINDOW_SIZE - 1));
2914 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2916 for (i = 0; i < (tsize / 4); i++) {
2917 writel(0, tdest + i*4);
2929 * Download the firmware into the SRAM on the NIC
2931 * This operation requires the NIC to be halted and is performed with
2932 * interrupts disabled and with the spinlock hold.
2934 static int __devinit ace_load_firmware(struct net_device *dev)
2936 const struct firmware *fw;
2937 const char *fw_name = "acenic/tg2.bin";
2938 struct ace_private *ap = netdev_priv(dev);
2939 struct ace_regs __iomem *regs = ap->regs;
2940 const __be32 *fw_data;
2944 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
2945 printk(KERN_ERR "%s: trying to download firmware while the "
2946 "CPU is running!\n", ap->name);
2950 if (ACE_IS_TIGON_I(ap))
2951 fw_name = "acenic/tg1.bin";
2953 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2955 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2960 fw_data = (void *)fw->data;
2962 /* Firmware blob starts with version numbers, followed by
2963 load and start address. Remainder is the blob to be loaded
2964 contiguously from load address. We don't bother to represent
2965 the BSS/SBSS sections any more, since we were clearing the
2966 whole thing anyway. */
2967 ap->firmware_major = fw->data[0];
2968 ap->firmware_minor = fw->data[1];
2969 ap->firmware_fix = fw->data[2];
2971 ap->firmware_start = be32_to_cpu(fw_data[1]);
2972 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2973 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2974 ap->name, ap->firmware_start, fw_name);
2979 load_addr = be32_to_cpu(fw_data[2]);
2980 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2981 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2982 ap->name, load_addr, fw_name);
2988 * Do not try to clear more than 512KiB or we end up seeing
2989 * funny things on NICs with only 512KiB SRAM
2991 ace_clear(regs, 0x2000, 0x80000-0x2000);
2992 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2994 release_firmware(fw);
3000 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3002 * Accessing the EEPROM is `interesting' to say the least - don't read
3003 * this code right after dinner.
3005 * This is all about black magic and bit-banging the device .... I
3006 * wonder in what hospital they have put the guy who designed the i2c
3009 * Oh yes, this is only the beginning!
3011 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3012 * code i2c readout code by beta testing all my hacks.
3014 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3018 readl(®s->LocalCtrl);
3019 udelay(ACE_SHORT_DELAY);
3020 local = readl(®s->LocalCtrl);
3021 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3022 writel(local, ®s->LocalCtrl);
3023 readl(®s->LocalCtrl);
3025 udelay(ACE_SHORT_DELAY);
3026 local |= EEPROM_CLK_OUT;
3027 writel(local, ®s->LocalCtrl);
3028 readl(®s->LocalCtrl);
3030 udelay(ACE_SHORT_DELAY);
3031 local &= ~EEPROM_DATA_OUT;
3032 writel(local, ®s->LocalCtrl);
3033 readl(®s->LocalCtrl);
3035 udelay(ACE_SHORT_DELAY);
3036 local &= ~EEPROM_CLK_OUT;
3037 writel(local, ®s->LocalCtrl);
3038 readl(®s->LocalCtrl);
3043 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3048 udelay(ACE_SHORT_DELAY);
3049 local = readl(®s->LocalCtrl);
3050 local &= ~EEPROM_DATA_OUT;
3051 local |= EEPROM_WRITE_ENABLE;
3052 writel(local, ®s->LocalCtrl);
3053 readl(®s->LocalCtrl);
3056 for (i = 0; i < 8; i++, magic <<= 1) {
3057 udelay(ACE_SHORT_DELAY);
3059 local |= EEPROM_DATA_OUT;
3061 local &= ~EEPROM_DATA_OUT;
3062 writel(local, ®s->LocalCtrl);
3063 readl(®s->LocalCtrl);
3066 udelay(ACE_SHORT_DELAY);
3067 local |= EEPROM_CLK_OUT;
3068 writel(local, ®s->LocalCtrl);
3069 readl(®s->LocalCtrl);
3071 udelay(ACE_SHORT_DELAY);
3072 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3073 writel(local, ®s->LocalCtrl);
3074 readl(®s->LocalCtrl);
3080 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3085 local = readl(®s->LocalCtrl);
3086 local &= ~EEPROM_WRITE_ENABLE;
3087 writel(local, ®s->LocalCtrl);
3088 readl(®s->LocalCtrl);
3090 udelay(ACE_LONG_DELAY);
3091 local |= EEPROM_CLK_OUT;
3092 writel(local, ®s->LocalCtrl);
3093 readl(®s->LocalCtrl);
3095 udelay(ACE_SHORT_DELAY);
3096 /* sample data in middle of high clk */
3097 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
3098 udelay(ACE_SHORT_DELAY);
3100 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3101 readl(®s->LocalCtrl);
3108 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3112 udelay(ACE_SHORT_DELAY);
3113 local = readl(®s->LocalCtrl);
3114 local |= EEPROM_WRITE_ENABLE;
3115 writel(local, ®s->LocalCtrl);
3116 readl(®s->LocalCtrl);
3118 udelay(ACE_SHORT_DELAY);
3119 local &= ~EEPROM_DATA_OUT;
3120 writel(local, ®s->LocalCtrl);
3121 readl(®s->LocalCtrl);
3123 udelay(ACE_SHORT_DELAY);
3124 local |= EEPROM_CLK_OUT;
3125 writel(local, ®s->LocalCtrl);
3126 readl(®s->LocalCtrl);
3128 udelay(ACE_SHORT_DELAY);
3129 local |= EEPROM_DATA_OUT;
3130 writel(local, ®s->LocalCtrl);
3131 readl(®s->LocalCtrl);
3133 udelay(ACE_LONG_DELAY);
3134 local &= ~EEPROM_CLK_OUT;
3135 writel(local, ®s->LocalCtrl);
3141 * Read a whole byte from the EEPROM.
3143 static int __devinit read_eeprom_byte(struct net_device *dev,
3144 unsigned long offset)
3146 struct ace_private *ap = netdev_priv(dev);
3147 struct ace_regs __iomem *regs = ap->regs;
3148 unsigned long flags;
3154 * Don't take interrupts on this CPU will bit banging
3155 * the %#%#@$ I2C device
3157 local_irq_save(flags);
3161 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3162 if (eeprom_check_ack(regs)) {
3163 local_irq_restore(flags);
3164 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3166 goto eeprom_read_error;
3169 eeprom_prep(regs, (offset >> 8) & 0xff);
3170 if (eeprom_check_ack(regs)) {
3171 local_irq_restore(flags);
3172 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3175 goto eeprom_read_error;
3178 eeprom_prep(regs, offset & 0xff);
3179 if (eeprom_check_ack(regs)) {
3180 local_irq_restore(flags);
3181 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3184 goto eeprom_read_error;
3188 eeprom_prep(regs, EEPROM_READ_SELECT);
3189 if (eeprom_check_ack(regs)) {
3190 local_irq_restore(flags);
3191 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3194 goto eeprom_read_error;
3197 for (i = 0; i < 8; i++) {
3198 local = readl(®s->LocalCtrl);
3199 local &= ~EEPROM_WRITE_ENABLE;
3200 writel(local, ®s->LocalCtrl);
3201 readl(®s->LocalCtrl);
3202 udelay(ACE_LONG_DELAY);
3204 local |= EEPROM_CLK_OUT;
3205 writel(local, ®s->LocalCtrl);
3206 readl(®s->LocalCtrl);
3208 udelay(ACE_SHORT_DELAY);
3209 /* sample data mid high clk */
3210 result = (result << 1) |
3211 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
3212 udelay(ACE_SHORT_DELAY);
3214 local = readl(®s->LocalCtrl);
3215 local &= ~EEPROM_CLK_OUT;
3216 writel(local, ®s->LocalCtrl);
3217 readl(®s->LocalCtrl);
3218 udelay(ACE_SHORT_DELAY);
3221 local |= EEPROM_WRITE_ENABLE;
3222 writel(local, ®s->LocalCtrl);
3223 readl(®s->LocalCtrl);
3225 udelay(ACE_SHORT_DELAY);
3229 local |= EEPROM_DATA_OUT;
3230 writel(local, ®s->LocalCtrl);
3231 readl(®s->LocalCtrl);
3233 udelay(ACE_SHORT_DELAY);
3234 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
3235 readl(®s->LocalCtrl);
3236 udelay(ACE_LONG_DELAY);
3237 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3238 readl(®s->LocalCtrl);
3240 udelay(ACE_SHORT_DELAY);
3243 local_irq_restore(flags);
3248 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",